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Abstract

Programme for reading seminar at Warwick starting in Winter 2024.

Introduction

Goals Motivic homotopy theory was originally envisioned as a setting in which methods
from algebraic topology (specifically, homotopy theory) could be brought to bear on questions
in algebraic geometry and number theory. As such it has been highly successful. However, it
has become increasingly clear that the direction can also be reversed. Methods and tools from
motivic homotopy theory have proven very powerful in classical homotopy theory as well.
The goal of this reading seminar is to understand a particularly striking instance of that.

One of the fundamental problems in algebraic topology is the computation of stable ho-
motopy groups of spheres, most of which are still unknown. The most significant advances on
this problem in recent years resulted from the realization that some of the central tools used
in these computations have a motivic origin. This fact can be phrased in different ways, and
one of our goals is to understand the most structured one of these. From a topological point
of view, it describes a motivic deformation of stable homotopy theory. From a motivic point
of view, it provides a purely topological description of a certain category arising in motivic
homotopy theory. Both are very striking.

The other goal is to understand how this close relation between topology and algebraic
geometry yields computational power that resulted in significant advances in our knowledge
of stable homotopy groups of spheres.

Rough plan The programme is designed so that people with different interests and back-
ground can follow just parts of the seminar. The first part will explain some of the compu-
tations of stable homotopy groups of spheres, taking the motivic origin essentially as a black
box. This motivic origin manifests itself as a deformation of sorts and this serves as, ehm, moti-
vation for studying deformations of stable homotopy theory. This is the content of the second
part, which covers synthetic spectra. These have already found plenty of other applications,
so should be of independent interest as well. The third and last part brings the two strands
together and establishes the motivic deformation of stable homotopy theory.
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Prerequisites The first part takes place in the stable homotopy category and some expe-
rience with spectra would be good. Also, spectral sequences will feature prominently and
experience with this tool would also be good. Depending on how the audience feels about it,
this background material could also be recalled at the start.

For the second part, we will use the language of∞-categories and Higher Algebra. I’d say
the former is an essential prerequisite (for example, as covered in last term’s course) and for
the latter we could have a review session if the audience feels this is necessary. Since the third
part involves motivic homotopy theory, some background in algebraic geometry is required.
However, this prerequisite is so minimal that I expect everyone to know enough. (And the
motivic homotopy category will be introduced in the course of the seminar.)

Talks The following list of talks is only tentative. We might want to insert some talks recall-
ing additional background material. Some (most? ;-)) talks might also end up taking longer
than one hour in which case we should be flexible. I (=Martin) am always happy to chat in
case you run into issues while preparing your talk!

0.1 Overview

I’m happy to give an overview talk explaining the motivation and direction in which we’re
heading.

1 Stable homotopy groups of spheres

1.1 Introduction

Introduce the problem of computing these groups; describe structural results and give plenty
of examples. E.g. [Rav86, § 1.1]

1.2 Adams

Recall the (dual) mod-𝑝 Steenrod algebra, set up the (classical) Adams spectral sequence [Rav86,
§ 2, 3] and give sample computations. Take this as an opportunity for getting everyone up to
speed on spectral sequences. Explain what the Adams filtration is.

1.3 Adams-Novikov

Define the complex cobordism spectrum𝑀𝑈 , describe its coefficient ring and the co-operations.
Same for 𝐵𝑃 . Set up the Adams-Novikov spectral sequence based at 𝑀𝑈 and 𝐵𝑃 . (This is a
special case of the theory in [Rav86, § 2] done in the previous talk.) Give sample computa-
tions. [Rav86, § 4] Explain what can be achieved with these methods, see also [Isa19].1 (The
case 𝑝 = 2 is different from 𝑝 > 2.)

1That is, how many stable homotopy groups of spheres can be computed with these methods?
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1.4 Cofiber of 𝜏, first take

Follow [Isa19] explaining how the classical Adams spectral sequence is of motivic origin,
see [Isa19, § 1.3, 3.0.1/2]. (This already suggests a deformation picture at the level of spec-
tral sequences.) Do the same for the classical Adams-Novikov spectral sequence, involving the
cofiber of 𝜏 . And how this yields information about the spectral sequence. (The introduction
(1.2, 1.3, 1.5) gives a nice overview.) It would be nice to give some sample computations. State
what can be achieved with these motivic methods.1

1.5 Cofiber of 𝜏, second take

The deformation picture suggested above is substantiated in [GWX21], see p. 333ff. Fol-
low [GWX21] explaining how the classical algebraic Novikov spectral sequence is of motivic
origin, involving the cofiber of 𝜏 . And how this yields information about the spectral sequence.
(The introduction gives a nice overview.) It would be nice to give some sample computations,
see the introduction again, and the appendix. State what can be achieved with these motivic
methods, see also [IWX23].1

2 Deformations of stable homotopy theory

The remaining goal is to explain how the deformation picture at the level of spectral sequences
underlies a motivic deformation of stable homotopy theory. This was first shown in [GWX21]
and later generalized in [Pst23]. Indeed, the latter considers deformations of stable homotopy
theory in some generality, and we will follow that in this part. In the third part, we will
specialize to the motivic deformation of interest.

A general remark directed at speakers: This part is quite heavy in (∞-)category-theory and
you will encounter many notions you or the audience might be unfamiliar with (to name a
few: derived ∞-categories, symmetric monoidal ∞-categories and modules, additive ∞-sites,
t-structures, Hopf algebroids, . . . ). Make sure to introduce these notions. We will start in
section 4 of [Pst23] but you will need to go back to sections 2 and 3 to make sense of the
material. Finally, it won’t be necessary (I think) to talk about hypercomplete sheaves.

There is substantial overlap between the first two talks. The two speakers should liaise
about who discusses what.

2.1 Motivated introduction to synthetic spectra I

Recall the deformation picture suggested at the level of spectral sequences and use this as mo-
tivation for this part. Synthetic spectra (based on an Adams-type homology theory 𝐸) are a
deformation of Sp in a sense akin to how the derived category is a deformation of its abelian
heart. You can sketch its construction following [Chu]. The focus in this talk is on big picture;
the details will be given in subsequent talks.
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2.2 Motivated introduction to synthetic spectra II

The goal of this talk is to define synthetic spectra and understand their basic properties, while
still leaving the details for later talks. Following [Pst23, § 4.1–2], start by defining synthetic
spectra and observe the basic properties and structures: stable, presentable and symmetric
monoidal (Prop 4.2). Continue by introducing the synthetic analogue a : Sp → Syn

𝐸
, and

how the monoidal structure on Syn
𝐸
is characterized by a (Lem. 4.4, Rem. 4.5).

Start by introducing the bigraded sphere (Def. 4.6), topological degree and Chow degree
(Def. 4.8). Continue by defining 𝑌-(co)homology of synthetic spectra (Def. 4.9). Note the
general calculations Cor. 4.12, Prop. 4.21. Note Prop. 4.26, and use this to introduce 𝜏 :
a𝑆−1 → Ω(a𝑆0). Continue with Prop. 4.28 which gives us that this map does indeed describe
the degree to which a synthetic spectrum preserves suspensions. Finish by drawing the picture
that connects this 𝜏-map with deformations, namely the generic fiber (Cor. 4.34, Thm. 4.37)
and the cofiber (Rem. 4.55).

2.3 Spherical sheaves on additive sites

From this talk on, we will go back and start filling in the details from the earlier talks, start-
ing with spherical sheaves following § 2.1, 2.5. Start by defining additive ∞-sites (Def. 2.3;
make sure everyone knows what a site is), recall 𝑃Σ and state the basic properties of spherical
(pre)sheaves: Cor. 2.7 and Thm. 2.8 (recognition of spherical sheaves), Cor. 2.9. Spherical
sheaves are well-behaved with respect to stabilization (Prop. 2.13) and symmetric monoidal
structures (Cor. 2.29, Prop. 2.30).

Introduce Grothendieck abelian categories, compact generators (Def. 2.51), epimorphism
Grothendieck pretopology (Def. 2.53) and the projective envelope (Def. 2.55). Use this to
recognise Grothendieck abelian categories with a choice of compact generators, as spherical
sheaves (Thm. 2.58). By 3.2, an example of where this holds is for comodules over so called
Adams Hopf algebroids. Further use this to describe Comod𝐸∗𝐸 as spherical sheaves through
the equivalence Comod𝐸∗𝐸 ' Sh𝑆𝑒𝑡Σ (Comod𝑓 𝑝

𝐸∗𝐸
), when 𝐸 is "sufficiently nice" (we will come

back to this in the next talk), using Rem. 2.65.

2.4 Adams-type homology theories and sheaves

In this talk we will introduce the type of spectra on which synthetic spectra will be based,
namely "Adams Type", by following § 3.3. Start by defining Adams-type (Def. 3.13, 3.14) and
give basic examples (such as the sphere, Landweber exact homology theories and fields). Fol-
lowing Rem. 3.16, note that if 𝐸 is Adams type, then 𝐸∗𝐸 is a flat Hopf algebroid2 and we get
the spectral sequence

Ext𝑠,𝑡
𝐸∗
(𝐸∗𝑋, 𝐸∗) ⇒ 𝐸𝑡−𝑠𝑋 .

FromThm 3.2 and 2.58 it follows that Comod𝐸∗𝐸 is a Grothendieck abelian category. Continue
by showing that Sp𝑓 𝑝

𝐸
is an excellent ∞-site (Prop. 3.23) and that 𝑦 (𝑋 ) is a spherical sheaf

(Prop. 3.24). Using Thm. 3.27 and Thm. 3.2, conclude that if 𝐸 is Adams-type, then 𝐸∗ :
2Make sure everyone knows what a Hopf algebroid is.
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Sp𝑓 𝑝
𝐸

→ Comod𝑓 𝑝
𝐸∗𝐸

induces a symmetric monoidal equivalence

Sh𝑠𝑒𝑡Σ (Sp𝑓 𝑝
𝐸
) ' Sh𝑠𝑒𝑡Σ (Comod𝑓 𝑝

𝐸∗𝐸
) ' Comod𝐸∗𝐸 .

2.5 The t-structure on synthetic spectra

We now have all of the preliminary knowledge necessary to start truly understanding syn-
thetic spectra, so start by recalling this definition. Introduce the general notion of t-structures,
give examples (derived category, spectra) and introduce the t-structure on spherical sheaves
(Def. 2.15, Prop 2.16). Use this to understand the t-structure on synthetic spectra which satisfies

Syn♥
𝐸
' Sh𝐴𝑏Σ (Sp𝑓 𝑝

𝐸
) ' Sh𝑆𝑒𝑡Σ (Sp𝑓 𝑝

𝐸
) ' Comod𝐸∗𝐸,

as in Prop. 4.16. Give the explicit form of this equivalence just after 4.16. Recall the definition
of the synthetic analogue a : Sp → Syn

𝐸
, introduce 𝜋♥

𝑘
𝑋 for 𝑋 ∈ Syn

𝐸
and use this to describe

the relation between synthetic homology and t-structure homotopy groups (Thm. 4.18). Con-
clude with 4.19–21.

2.6 The generic fiber

Following § 4.3, start by recalling the thread/deformation map 𝜏 : a𝑆−1 → Ω(a𝑆0) (Def. 4.27)
and Prop. 4.28. Describe the connection between 𝜏 and t-structure covers of synthetic ana-
logues (Rem. 4.31 after 4.29 and 4.30 - the cofiber of 𝜏 will be more important in the following
talk). Define 𝜏-invertible (Def. 4.32) and discuss Prop. 4.33 and the equivalence Syn

𝐸
(𝜏−1) '

Mod𝜏−1𝑆0,0 (Syn𝐸) (Cor. 4.34). Define the spectral Yoneda embedding, and prove that Sp '
Syn

𝐸
(𝜏−1) (Thm. 4.37) - this is the generic fiber of the deformation.

2.7 The special fiber

The goal of this talk is to understand the modules over the cofiber of 𝜏 in terms of Hovey’s
stable∞-category of comodules. Start by introducing StableΓ as in the beginning of § 3.2, and
Thm. 3.7. Note that this is not equivalent to D(Comod𝐸∗𝐸) in general. Following Cor. 3.8,
sketch how the connective lift of theYoneda embedding gives an equivalence Σ∞

+ 𝑦 : Comod𝐸∗𝐸
'−→

Stable♥𝐸∗𝐸 . Next, construct the adjunction in Lem. 4.43 between Syn
𝐸
and Stable𝐸∗𝐸 , and prove

the equivalence Stable♥𝐸∗𝐸 ' Syn♥
𝐸
from Lem. 4.44 as well as the equivalence from Lem. 4.45.

The main result of this talk is Thm. 4.46 which identifies modules over the cofiber of 𝜏 , with a
subcategory of Hovery’s stable∞-category of comodules. Mention (Prop. 4.53, Lem. 4.51) ex-
amples of when this inclusion is an equivalence. (No need to introduce “plenty of projectives”
nor discuss the proof of 4.53. In our main application, these assumptions are not satisfied.)

2.8 Even synthetic spectra based on MU

1 talk covering [Pst23, § 5.2, 6].
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3 Comparison with stable motivic homotopy theory

The goal of this third part is to establish an equivalence between 𝑝-completed cellular motivic
spectra over Spec(C) and even synthetic spectra based on 𝑀𝑈 . This will draw upon both
preceding parts.

You can find some of the topics below also covered in the 2023 Talbot programme. See
there for references (or ask me).

3.1 Motivic homotopy theory

Define Sp𝑘 , the stable motivic homotopy (∞-)category over a field 𝑘. (Don’t follow the no-
tation in [Pst23]: The cellular part should have a separate name.) State basic properties and
sample computations, e.g. 𝜋0(S0

𝑘
), motivic cohomology of a point, the dual Steenrod algebra.

Construct the Betti realization SpC → Sp and describe what it does on objects and maps of
interest (e.g. spheres, notable maps between spheres: 𝜌, [, 𝜏). Define the cellular subcategory
and give examples of cellular objects.

3.2 MGL

Construct themotivic ring spectrum𝑀𝐺𝐿 as a cellular object and give themain results of [Pst23,
§ 7.1, 7.2].

3.3 As spherical sheaves

[Pst23, § 7.3]

3.4 Finishing up

[Pst23, § 7.4, 7.5] Also describe the resulting deformation picture again.
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