
THE SYMBIOSIS OF C∗- AND W∗-ALGEBRAS

NATHANIAL P. BROWN

Abstract. These days it is common for young operator algebraists to know a lot about
C∗-algebras, or a lot about von Neumann algebras – but not both. Though a natural
consequence of the breadth and depth of each subject, this is unfortunate as the interplay
between the two theories has deep historical roots and has led to many beautiful results. We
review some of these connections, in the context of amenability, with the hope of convincing
(younger) readers that tribalism impedes progress.

1. Introduction

I was raised a hardcore C∗-algebraist. My thesis focused on C∗-dynamical systems, and
never once required a weak topology. As a fresh PhD my knowledge of von Neumann algebras
was superficial, at best. I didn’t really like von Neumann algebras, didn’t understand them,
and certainly didn’t need them to prove theorems. Conversations with new W∗-PhDs make
it clear that this goes both ways; they often know little about C∗-algebras, and care less.

Today, I still know relatively little about von Neumann algebras, but I have grown to
love them. And they are an indispensable tool in my C∗-research. Conversely, recent work
of Narutaka Ozawa (some in collaboration with Sorin Popa) has shown that C∗-techniques
can have deep applications to the structure theory of certain von Neumann algebras. In
other words, there are very good reasons for C∗-algebraists and von Neumann algebraists to
learn something about each other’s craft. In the “old” days (say 30 or more years ago), the
previous sentence would have been silly (indeed, some “old” timers may still find it silly) as
the field of operator algebras was small enough for students to become well acquainted with
most of it. That’s no longer the case. Hence, I hope these notes will help my generation,
and those that follow, to see the delightfully intertwined theories of C∗- and W∗-algebras as
an indivisible unit.

I do not intend to write an encyclopedia of C∗- and W∗-interactions. Amenability (for
groups, actions and operator algebras) is a perfect context for illustrating some of the most
important interactions, so these notes are organized around that theme.1

2. C∗-algebras vs. W∗-algebras

This expository section will be written later – it is irrelevant to the math contained in
these notes. However, we’ll need the following basic fact.

Theorem 2.1. Let X be a Banach space, M be a von Neumann algebra and Tλ : X → M
be a bounded net of linear maps. Then {Tλ}λ∈Λ has a cluster point in the point-ultraweak
topology.

3. Five classical theorems

Here are some general tools that facilitate the passage between norm-closed and weakly-
closed algebras. The first result, one of the oldest in the subject, is still used daily.

1Large portions of these notes are cut-n-pasted directly from [2]. This preliminary manuscript still requires
much polishing, so please don’t distribute beyond the participants of the summer school in Santander.
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Theorem 3.1 (Bicommutant Theorem). Let A ⊂ B(H) be a nondegenerate C∗-algebra.
Then the weak-operator-topology closure of A is equal to the double commutant A′′.

Theorem 3.2 (Kaplansky’s Density Theorem). Let A ⊂ B(H) be a nondegenerate C∗-
algebra. Then the unit ball of A is weakly dense in the unit ball of A′′.

Theorem 3.3 (Up-Down Theorem). Let A ⊂ B(H) be a nondegenerate C∗-algebra on a
separable Hilbert space H. For each self-adjoint x ∈ A′′, there exists a decreasing sequence
of self-adjoints xn ≥ xn+1 ≥ · · · in A′′ such that

(1) xn → x in the strong operator topology, and

(2) for each n ∈ N, there exists an increasing sequence of self-adjoint y
(n)
k ≤ y

(n)
k+1 in A,

such that y
(n)
k → xn (as k →∞) in the strong operator topology.

Theorem 3.4 (Lusin’s Theorem). Let A ⊂ B(H) be a nondegenerate C∗-algebra. For every
finite set of vectors F ⊂ H, ε > 0, projection p0 ∈ A′′ and self-adjoint y ∈ A′′, there exist
a self-adjoint x ∈ A and a projection p ∈ A′′ such that p ≤ p0, ‖p(h) − p0(h)‖ < ε for all
h ∈ F, ‖x‖ ≤ min{2‖yp0‖, ‖y‖}+ ε and xp = yp.

Theorem 3.5 (Double Dual Theorem). The (Banach space) double dual A∗∗ of a C∗-algebra
A is a von Neumann algebra. Moreover, the ultraweak topology on A∗∗ (coming from its von
Neumann algebra structure) agrees with the weak-∗ topology (coming from A∗), and hence
restricts to the weak topology on A (coming from A∗).

From a C∗-algebraist’s point of view, the double dual theorem is probably the most impor-
tant as it allows one to come back from the world of von Neumann algebras. That is, suppose
one wants to prove a theorem about a C∗-algebra, exploiting the fact that von Neumann
algebras have far more structure (projections, traces, etc.) and vastly more powerful tools
(e.g. Borel functional calculus, polar decompositions, trivial representation theory). Well,
in any representation of the given C∗-algebra one could take the weak closure and switch
to von Neumann algebra techniques. But how to come back to the C∗-algebra of interest?
Answer: The Hahn-Banach Theorem, of course!! That is, rather than work in any old weak
closure, one should work in the double dual von Neumann algebra, where the Hahn-Banach
theorem implies that convex sets in A ⊂ A∗∗ have the same norm and weak closures.

That probably makes little sense, so here’s an illustrative example (that we’ll use later
on). Let’s show that if A∗∗ is semidiscrete, then A is nuclear.

Semidiscreteness and Nuclearity. First we have to recall a few facts about an impor-
tant class of morphisms. We say a linear map ϕ : A → B is completely positive (c.p.) if
ϕn : Mn(A) → Mn(B), defined by

ϕn([ai,j]) = [ϕ(ai,j)],

is positive (i.e., maps positive matrices to positive matrices) for every n ∈ N. When the
domain or range is a matrix algebra, complete positivity can be reformulated.

Proposition 3.6. Let A be a C∗-algebra and {ei,j} be matrix units of Mn(C). A map
ϕ : Mn(C) → A is c.p. if and only if [ϕ(ei,j)] is positive in Mn(A).

Given a linear map ϕ : A→ Mn(C), define a functional ϕ̂ on Mn(A) by

ϕ̂([ai,j]) =
n∑

i,j=1

ϕ(ai,j)i,j,

where ϕ(ai,j)i,j means the (i, j)th entry of the matrix ϕ(ai,j).
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Proposition 3.7. Let A be a unital C∗-algebra. A map ϕ : A → Mn(C) is c.p. if and only
if ϕ̂ is positive on Mn(A).

Definition 3.8. A (contractive c.p.) map θ : A → B is nuclear if there exist contractive
c.p. maps ϕn : A→ Mk(n)(C) and ψn : Mk(n)(C) → B such that ψn ◦ ϕn(a) → θ(a) in norm,
for all a ∈ A.

A C∗-algebra A is nuclear if id : A → A is nuclear – i.e., if there exist contractive c.p.
maps ϕn : A → Mk(n)(C) and ψn : Mk(n)(C) → A such that ψn ◦ ϕn(a) → a in norm, for all
a ∈ A.

A W∗-algebra M is semidiscrete if there exist contractive c.p. maps ϕn : M → Mk(n)(C),
ψn : Mk(n)(C) →M such that ψn ◦ ϕn(x) → x ultraweakly, for all x ∈M .

Proposition 3.9. If A∗∗ is semidiscrete, then A is nuclear.

Proof. I’ll sketch the argument, highlighting the use of the double dual theorem and neglect-
ing some nontrivial details (see [2, Proposition 2.3.8]).

Let ϕn : A∗∗ → Mk(n)(C), ψn : Mk(n)(C) → A∗∗ be such that ψn ◦ ϕn(x) → x ultraweakly,
for all x ∈ A∗∗. An approximation argument, using Proposition 3.6 and the fact that Mk(A)
is ultraweakly dense in Mk(A

∗∗) for all k ∈ N, allows us to assume that ψn(Mk(n)(C)) ⊂ A
for all n.

Here’s the punchline: for each a ∈ A, since the ultraweak topology on A∗∗ restricts to
the weak topology on A, the Hahn-Banach theorem implies that a belongs to the norm-
closed convex hull of {ψn(ϕn(a))}!! It’s not too hard to see that one can replace a convex
combination of maps into different matrix algebras with a single map into a single matrix
algebra, and a standard direct-sum trick allows us to replace individual operators a ∈ A
with finite sets, thereby completing the proof. �

4. Reduced Group C∗-algebras

For a discrete group Γ we let λ : Γ → B(`2(Γ)) denote the left regular representation:
λs(δt) = δst for all s, t ∈ Γ, where {δt : t ∈ Γ} ⊂ `2(Γ) is the canonical orthonormal basis.
There is also a right regular representation ρ : Γ → B(`2(Γ)), defined by ρs(δt) = δts−1 . Note
that λ and ρ are unitarily equivalent; the intertwining unitary is defined by Uδt = δt−1 .

We denote the group ring of Γ by C[Γ]. By definition, it is the set of formal sums∑
s∈Γ

ass,

where only finitely many of the scalar coefficients as ∈ C are nonzero, and multiplication is
defined by

(
∑
s∈Γ

ass)(
∑
t∈Γ

att) =
∑
s,t∈Γ

asatst.

The group ring C[Γ] acquires an involution by declaring (
∑

s∈Γ ass)
∗ =

∑
s∈Γ ass

−1. Note
that the left regular representation can be extended to an injective ∗-homomorphism C[Γ] →
B(`2(Γ)), which we also denote by λ. Evidently, there is a one-to-one correspondence between
unitary representations of Γ and ∗-representations of C[Γ].

Both amenable and exact groups are defined in terms of their canonical actions on `∞(Γ).
For f ∈ `∞(Γ) and s ∈ Γ we let s.f ∈ `∞(Γ) be the function s.f(t) = f(s−1t); simple
calculations show that f 7→ s.f defines a group action of Γ on `∞(Γ). An important fact
is that this action is spatially implemented by the left regular representation. That is, if we
regard `∞(Γ) ⊂ B(`2(Γ)) as multiplication operators (i.e., fδt = f(t)δt), then a calculation
shows

λsfλ
∗
s = s.f
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for all f ∈ `∞(Γ) and s ∈ Γ.
The reduced C∗-algebra of Γ, denoted C∗

λ(Γ),2 is the completion of C[Γ] with respect to
the norm

‖x‖r = ‖λ(x)‖B(`2(Γ)).

Though isomorphic to C∗
λ(Γ), it is sometimes useful to consider C∗

ρ(Γ), which is just the
closure of C[Γ] in the right regular representation.

Example 4.1. If Γ = Z, then C∗
λ(Γ) = C(T), the continuous functions on the circle. Indeed,

the Fourier transform identifies `2(Z) with L2(T,Lebesgue) and one checks that this unitary
takes C∗

λ(Z) to (continuous) multiplication operators. More generally, for every abelian group

Γ, Pontryagin duality gives an identification of C∗
λ(Γ) with C(Γ̂), the continuous functions

on the dual group.

Proposition 4.2. The vector state x 7→ 〈xδe, δe〉 defines a faithful tracial state on C∗
λ(Γ).

Proof. A simple calculation shows this state to be tracial.
Clearly ρs commutes with every operator in C∗

λ(Γ) (since this is easily seen on the gener-
ators λg ∈ C∗

λ(Γ)). It follows that δe is a separating vector, meaning that xδe = yδe if and
only if x = y (for all x, y ∈ C∗

λ(Γ)). Indeed, if xδe = yδe, then

xδs = ρ∗sxδe = ρ∗syδe = yδs,

for all s ∈ Γ. Since such vectors span `2(Γ), it follows that x = y. With this observation,
faithfulness is simple: If 0 ≤ x ∈ C∗

λ(Γ) and 0 = 〈xδe, δe〉, then 0 = ‖x1/2δe‖ and this implies
x1/2 = 0. Thus x = 0 too. �

The group von Neumann algebra of Γ is defined to be

L(Γ) = C∗
λ(Γ)′′ ⊂ B(`2(Γ)).

A fundamental theorem of Murray and von Neumann states that L(Γ) is the commutant
of the right regular representation ρ : Γ → B(`2(Γ)) – i.e., L(Γ) = ρ(C[Γ])′ and L(Γ)′ =
ρ(C[Γ])′′.

Another way of describing L(Γ) is as the set of T ∈ B(`2(Γ)) such that T is constant
down the diagonals – meaning that for every s, t, x, y ∈ Γ such that ts−1 = yx−1, we have
〈Tδs, δt〉 = 〈Tδx, δy〉.3 A simple calculation shows that every unitary λs ∈ B(`2(Γ)) is
constant down all diagonals; hence any finite linear combination has this property; thus
anything in the weak closure C∗

λ(Γ)′′ = L(Γ) does too. The converse, that every such
operator is a weak limit of something in C∗

λ(Γ), uses the bicommutant theorem. Indeed,
assume T ∈ B(`2(Γ)) and assume there exist scalars {αs}s∈Γ ⊂ C such that 〈Tδg, δh〉 = αhg−1

for all g, h ∈ Γ. A simple calculation shows 〈Tρsδg, δh〉 = 〈ρsTδg, δh〉, for all s ∈ Γ, and hence
T ∈ ρ(C[Γ])′ = L(Γ).

Definition 4.3. A function ϕ : Γ → C is said to be positive definite if the matrix

[ϕ(s−1t)]s,t∈F ∈ MF (C)

is positive for every finite set F ⊂ Γ.

2You will also see C∗
r (Γ) in the literature.

3“What? Why is that ‘constant down the diagonals’?” you may wonder. Well, if Γ = Z and you write
down the matrix of such an operator (with respect to the canonical basis), you’ll see that it really is constant
down the diagonals.



THE SYMBIOSIS OF C∗- AND W∗-ALGEBRAS 5

Fix a positive definite function ϕ and let Cc(Γ) be the finitely supported functions on Γ.
Define a sesquilinear form Cc(Γ)× Cc(Γ) → C by

〈f, g〉ϕ =
∑
s,t∈Γ

ϕ(s−1t)f(t)g(s).

This form is positive semidefinite. Indeed, if f ∈ Cc(Γ) has support F , then

〈f, f〉ϕ =
∑
s,t∈Γ

ϕ(s−1t)f(t)f(s) =
〈
[ϕ(s−1t)]s,t∈F (f), (f)

〉
,

where the inner product on the right is the standard one on `2(F ). Since ϕ is positive
definite, 〈f, f〉ϕ ≥ 0 as asserted. Hence we can mod out by the zero elements and complete

to get a Hilbert space `2ϕ(Γ). For f ∈ Cc(Γ) we let f̂ ∈ `2ϕ(Γ) denote its natural image. Here’s
a GNS construction for the present context.

Definition 4.4. If ϕ is a positive definite function on Γ, then λϕ : Γ → B(`2ϕ(Γ)) is the

unitary representation given by λϕs (f̂) = ŝ.f , where s.f(t) = f(s−1t), for all t ∈ Γ.4

Note that

〈λϕs δ̂e, δ̂e〉ϕ = 〈δ̂s, δ̂e〉ϕ = ϕ(s),

for all s ∈ Γ, and hence we recover ϕ from the vector functional 〈· δ̂e, δ̂e〉.
Perhaps the construction of `2ϕ(Γ) seems familiar? It should. Suppose ϕ is a positive linear

functional on C∗(Γ). Then s 7→ ϕ(s) is a positive definite function on Γ: for s1, . . . , sn ∈ Γ
we have

[ϕ(s−1
i sj)]i,j = (idn ⊗ ϕ)

(
s1 s2 · · · sn
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


∗ 

s1 s2 · · · sn
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

),
which is positive since ϕ is a c.p. map. It is a simple exercise to show that the GNS space
of C∗(Γ) with respect to ϕ is nothing but `2ϕ(Γ).

We will need one more important fact about positive definite functions: they naturally
give rise to completely positive maps at the C∗-level. First a bit more notation.

Definition 4.5. Let ϕ : Γ → C be a function. We define a corresponding linear functional
ωϕ : C[Γ] → C by

ωϕ(
∑
t∈Γ

αtt) =
∑
t∈Γ

ϕ(t)αt

and multiplier mϕ : C[Γ] → C[Γ] by

mϕ(
∑
t∈Γ

αtt) =
∑
t∈Γ

ϕ(t)αtt.

Theorem 4.6. Let ϕ : Γ → C be a function with ϕ(e) = 1. The following are equivalent:

(1) the function ϕ is positive definite;
(2) there exists a unitary representation λϕ of Γ on a Hilbert space Hϕ and a unit vector

ξϕ such that

ϕ(s) = 〈λϕ(s)ξϕ, ξϕ〉;
(3) the functional ωϕ extends to a state on C∗(Γ);

4It isn’t hard, just tedious, to check that this is really a unitary representation.
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(4) the multiplier mϕ extends to a u.c.p. map on either C∗(Γ) or C∗
λ(Γ), or extends to a

normal u.c.p. map on L(Γ).

Proof. (1) ⇒ (2): This follows from Definition 4.4.
(2) ⇒ (3): Trivial.
(3) ⇒ (4): First we handle the von Neumann algebra case. We can identify ωϕ with

a vector state in the universal representation C∗(Γ) ⊂ B(H) (i.e., the direct sum of all
GNS representations). By Fell’s absorption principle, there is a unitary operator which
conjugates C∗

λ(Γ)⊗1 onto the “diagonal” subalgebra of C∗
λ(Γ)⊗C∗(Γ); that is, the mapping

σ : C∗
λ(Γ) → C∗

λ(Γ)⊗ C∗(Γ) defined by∑
t

αtλt 7→
∑
t

αt(λt ⊗ t)

is a ∗-homomorphism and it extends to a normal ∗-homomorphism (also denoted σ) from
L(Γ) into L(Γ) ⊗̄ B(H) (since Fell’s principle is spatially implemented). Notice that mϕ

coincides with the continuous u.c.p. map

(idL(Γ) ⊗ ωϕ) ◦ σ : L(Γ) → L(Γ),

and this completes the von Neumann case (which evidently implies the reduced C∗-algebra
case as well).

For C∗(Γ) we consider the diagonal map C∗(Γ) → C∗(Γ)⊗ C∗(Γ), s 7→ s⊗ s, and repeat
the argument above.

(4) ⇒ (1): If mϕ is u.c.p., then for any finite sequence s1, . . . , sn ∈ Γ,

[ϕ(s−1
i sj)]ij = diag(s1, . . . , sn)[mϕ(s

−1
i sj)]ij diag(s−1

1 , . . . , s−1
n )

is positive since [s−1
i sj]ij ∈ Mn(C(Γ)) is positive. �

5. Amenable groups

Definition 5.1. A group Γ is amenable if there exists a state µ on `∞(Γ) which is invariant
under the left translation action: for all s ∈ Γ and f ∈ `∞(Γ), µ(s.f) = µ(f).

Such a state µ is called an invariant mean.

Definition 5.2. For a discrete group Γ, we let Prob(Γ) be the space of all probability
measures on Γ:

Prob(Γ) = {µ ∈ `1(Γ) : µ ≥ 0 and
∑
t∈Γ

µ(t) = 1}.

Note that the left translation action of Γ on `∞(Γ) leaves the subspace Prob(Γ) invariant;
hence we can also use µ 7→ s.µ to denote the canonical action of Γ on Prob(Γ).

Definition 5.3. We say Γ has an approximate invariant mean if for any finite subset E ⊂ Γ
and ε > 0, there exists µ ∈ Prob(Γ) such that

max
s∈E

‖s.µ− µ‖1 < ε.

Recall that the symmetric difference of two sets E and F , denoted E4F , is E∪F \E∩F .

Definition 5.4. We say Γ satisfies the Følner condition if for any finite subset E ⊂ Γ and
ε > 0, there exists a finite subset F ⊂ Γ such that

max
s∈E

|sF 4 F |
|F |

< ε,
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where sF = {st : t ∈ F}.5 A sequence of finite sets Fn ⊂ Γ such that

|sFn4 Fn|
|Fn|

→ 0

for every s ∈ Γ is called a Følner sequence.
Note that this implies the existence of an approximate invariant mean given by normalized

characteristic functions. Indeed, if χF is the characteristic function over F , then 1
|F |χF ∈

Prob(Γ) and a computation confirms that

‖s.( 1

|F |
χF )− 1

|F |
χF‖1 =

|sF 4 F |
|F |

.

It turn out that all the definitions above give rise to the same class of groups. Before the
proof, however, a few examples might be nice.

Example 5.5 (Elementary amenable groups). It is not hard to see that finite groups are
amenable (take the state which maps χ{s} to 1/|Γ|, for each group element). So are abelian
groups, as the Markov-Kakutani fixed point theorem easily implies. (There is an alter-
nate proof below.) It is also true that the class of amenable groups is closed under taking
subgroups, extensions, quotients and inductive limits. (These all make excellent exercises.)
Hence anything built out of finite or abelian groups, using the four operations above, is also
amenable; by definition, these are the elementary amenable groups. In particular, all solvable
(hence all nilpotent) groups are amenable.

Example 5.6 (Groups with subexponential growth). A group Γ is said to have subexponen-
tial growth if lim sup |En|1/n = 1 for every finite subset E ⊂ Γ. (En = {g1g2 · · · gn : gi ∈ E}.)
It is clear that if a particular finite set E satisfies the above condition, then every subset
F ⊂ En will too. Hence if Γ is generated by a finite subset E ⊂ Γ as a semigroup, then it
suffices to check the growth condition only for E.

Such groups are amenable. To see this, we construct an increasing sequence E0 ⊂ E1 ⊂
E2 ⊂ · · · of finite subsets of G, whose union equals Γ, such that E−1

n = En, EmEn ⊂ Em+n,
and lim inf |En|1/n = 1. (Start with any finite set, keep throwing in group elements, and
then take higher powers as in the definition of subexponential growth.) It turns out that
some subsequence of {En} must be a Følner sequence. Indeed, for any g ∈ Ek, we have
gEn−k ⊂ En, and thus |gEn ∩ En| ≥ |gEn−k| = |En−k|. The proof of the ratio test, from
elementary calculus, contains the following general fact:

lim inf
n→∞

an
an−k

≤ lim inf
n→∞

ak/nn ,

for an ≥ 0 and any fixed k ∈ N. Applying the reciprocal of this inequality, we have

lim sup
n→∞

|gEn ∩ En|
|En|

≥ lim sup
n→∞

|En−k|
|En|

≥ lim sup
n→∞

1

|En|k/n
= 1.

It is a fun combinatorial exercise to show all abelian groups have subexponential growth.

Here is the simplest example of something nonamenable.

Example 5.7 (Nonabelian free groups). The free group F2 of rank two is not amenable.
Let a, b ∈ F2 be the free generators and set

A+ = {all reduced words starting with a} ⊂ F2.

5Since sF 4F = [sF \ (sF ∩F )]∪ [F \ (sF ∩F )], it follows that |sF4F |
|F | = 2− 2 |F∩sF |

|F | . Hence the Følner

condition is equivalent to requiring maxs∈E
|sF∩F |
|F | > 1− ε/2, which is often how it gets used in our context.
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Similarly, let A− be the reduced words beginning with a−1 and likewise define B+ and B−.
Then, for C = {1, b, b2, . . .} ⊂ F2, we have

F2 = A+ t A− t (B+ \ C) t (B− ∪ C)

= A+ t aA−

= b−1(B+ \ C) t (B− ∪ C).

This kind of decomposition is said to be paradoxical.6 Note that the existence of an invariant
mean µ on `∞(Γ) would lead to a contradiction:

1 = µ(1) = µ(χA+) + µ(χA−) + µ(χB+\C) + µ(χB−∪C)

= µ(χA+) + µ(a.χA−) + µ(b−1.χB+\C) + µ(χB−∪C)

= µ(χA+ + a.χA− + b−1.χB+\C + χB−∪C)

= 2µ(1) = 2.

Since amenability passes to subgroups, it follows that all nonabelian free groups (on any
number of generators) are nonamenable.

Here is a small sample of the known characterizations of amenable groups.

Theorem 5.8. Let Γ be a discrete group. The following are equivalent:

(1) Γ is amenable;
(2) Γ has an approximate invariant mean;
(3) Γ satisfies the Følner condition;
(4) the trivial representation τ0 is weakly contained in the regular representation λ (i.e.,

there exist unit vectors ξi ∈ `2(Γ) such that ‖λs(ξi)− ξi‖ → 0 for all s ∈ Γ);
(5) there exists a net (ϕi) of finitely supported positive definite functions on Γ such that

ϕi → 1 pointwise;
(6) C∗(Γ) = C∗

λ(Γ);
(7) C∗

λ(Γ) has a character (i.e., one-dimensional representation);
(8) for any finite subset E ⊂ Γ, we have

‖ 1

|E|
∑
s∈E

λs‖ = 1;

(9) C∗
λ(Γ) has the CPAP;

(10) L(Γ) is semidiscrete.

Proof. (1) ⇒ (2): Take an invariant mean µ on `∞(Γ). Being the predual of `∞(Γ), `1(Γ)
is dense in `∞(Γ)∗ and thus we can find a net (µi) in Prob(Γ) which converges to µ in the
σ(`∞(Γ)∗, `∞(Γ))-topology. Note that for each s ∈ Γ, the net (s.µi − µi) converges to zero
weakly in `1(Γ) (not just weak∗ in `∞(Γ)∗). Hence, for any finite subset E ⊂ Γ, the weak
closure of the convex subset

⊕
s∈E{s.µ − µ : µ ∈ Prob(Γ)} contains zero. Since the weak

and norm closures coincide, by the Hahn-Banach Theorem, assertion (2) follows.
(2) ⇒ (3): Let a finite subset E ⊂ Γ and ε > 0 be given. Choose µ ∈ Prob(Γ) such that∑

s∈E

‖s.µ− µ‖1 < ε.

Given a positive function f ∈ `1(Γ) and r ≥ 0, we define a set F (f, r) = {t ∈ Γ : f(t) > r}
and let χF (f,r) be the characteristic function of this set. For a pair of positive functions

6This paradoxical decomposition leads to the famous Banach-Tarski paradox. See Eric Weisstein’s website
Mathworld (mathworld.wolfram.com) for more.
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f, h ∈ `1(Γ) and t ∈ Γ, observe that |χF (f,r)(t)− χF (h,r)(t)| = 1 if and only if r lies between
the numbers f(t) and h(t). If both f and h are bounded above by 1, it follows that

|f(t)− h(t)| =
∫ 1

0

|χF (f,r)(t)− χF (h,r)(t)|dr.

Applying this observation to µ and s.µ, we get

‖s.µ− µ‖1 =
∑
t∈Γ

|s.µ(t)− µ(t)|

=
∑
t∈Γ

∫ 1

0

|χF (s.µ,r)(t)− χF (µ,r)(t)|dr

=

∫ 1

0

(∑
t∈Γ

|χsF (µ,r)(t)− χF (µ,r)(t)|
)
dr

=

∫ 1

0

|sF (µ, r)4 F (µ, r)|dr.

Hence we have

ε

∫ 1

0

|F (µ, r)|dr = ε >
∑
s∈E

‖sµ− µ‖1 =

∫ 1

0

∑
s∈E

|sF (µ, r)4 F (µ, r)|dr.

Thus for some r we must have∑
s∈E

|sF (µ, r)4 F (µ, r)| < ε|F (µ, r)|,

which shows that F (µ, r) is almost invariant under translation by the elements in E.
(3) ⇒ (4): Let (Fi) be a Følner sequence and ξi = |Fi|−1/2χFi

be the normalized charac-
teristic functions of the Fi’s (viewed as unit vectors in `2(Γ)). The same calculation used in
the `1 context (see the paragraph after Definition 5.4) shows that ‖λs(ξi)− ξi‖`2(Γ) → 0 for
every s ∈ Γ.

(4) ⇒ (5): Consider the vector states x 7→ 〈xξi, ξi〉. As noted in the previous section,
these restrict to positive definite functions on Γ and obviously tend to 1 pointwise. To make
them finitely supported, one simply forces each ξi to be a finitely supported `2 function.

(5) ⇒ (6): Take a net (ϕi) as in condition (5). By Theorem 4.6, the multipliers mϕi
(resp.

m̃ϕi
) are u.c.p. on C∗(Γ) (resp. C∗

λ(Γ)). We note that λ ◦mϕi
= m̃ϕi

◦ λ on C∗(Γ) since the
two maps are continuous and coincide on the dense subspace C[Γ]. Observe that mϕi

(x) → x
for every x ∈ C∗(Γ) since this is true for x ∈ C[Γ]. Now suppose x ∈ C∗(Γ) and λ(x) = 0.
Then, we have

λ(mϕi
(x)) = m̃ϕi

(λ(x)) = 0

for every i. But since ϕi is finitely supported, we have mϕi
(x) ∈ C[Γ], and hence λ(mϕi

(x)) =
0 implies mϕi

(x) = 0. Therefore, x = limimϕi
(x) = 0 and the ∗-homomorphism λ : C∗(Γ) →

C∗
λ(Γ) is injective.
(6) ⇒ (7): The trivial representation Γ → C extends to C∗(Γ) = C∗

λ(Γ).
(7) ⇒ (1): Let τ : C∗

λ(Γ) → C be any ∗-homomorphism, but regard it as a state. Extending
to B(`2(Γ)), we may assume that τ is also defined on `∞(Γ) ⊂ B(`2(Γ)). Since the left
translation action is spatially implemented,

τ(s.f) = τ(λsfλ
∗
s) = τ(λs)τ(f)τ(λs) = τ(f)

for all s ∈ Γ and f ∈ `∞(Γ) (the unitaries λs belong to the multiplicative domain of τ).
Hence, τ is an invariant mean as desired.
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At this point we have shown the first seven conditions to be equivalent.

(4) ⇔ (8): The ⇒ direction is easy. For the converse, it suffices to show that if E is a finite
symmetric set (meaning E = E−1) satisfying condition (8), then E generates an amenable
group. In this situation, the norm-one operator S = 1

|E|
∑

s∈E λs is self-adjoint. Thus, for

any ε > 0, we can find a unit vector ξ ∈ `2(Γ) such that |〈Sξ, ξ〉| > 1− ε. Letting |ξ| be the
pointwise absolute value of ξ, a straightforward calculation confirms

1− ε < |〈Sξ, ξ〉| ≤ 〈S|ξ|, |ξ|〉 =
1

|E|
∑
s∈E

〈λs|ξ|, |ξ|〉.

Since the cardinality of E is fixed, by taking ε sufficiently small, we deduce that all the
numbers 〈λs|ξ|, |ξ|〉 must be close to 1; hence the norms ‖λs|ξ|− |ξ|‖ are small, for all s ∈ E.

(1) ⇒ (9): Let Fk ⊂ Γ be a sequence of Følner sets. For each k let Pk ∈ B(`2(Γ)) be
the orthogonal projection onto the finite-dimensional subspace spanned by {δg : g ∈ Fk}.
Identify PkB(`2(Γ))Pk with the matrix algebra MFk

(C) and let {ep,q}p,q∈Fk
be the canonical

matrix units of MFk
(C). One can check that for each s ∈ Γ we have ep,pλseq,q = 0 unless

sq = p, and ep,pλseq,q = ep,q if sq = p. Since Pk =
∑

p∈Fk
ep,p, we have

PkλsPk =
∑
p,q∈Fk

ep,pλseq,q =
∑

p∈Fk∩sFk

ep,s−1p.

Let ϕk : C∗
λ(Γ) → MFk

(C) be the u.c.p. map defined by x 7→ PkxPk. Now define a map
ψk : MFk

(C) → C∗
λ(Γ) by sending

ep,q 7→
1

|Fk|
λpλq−1 .

Evidently this map is unital; it is also completely positive, as one can check.
The ϕk’s and ψk’s do the trick. Since the linear span of {λs : s ∈ Γ} is norm dense in

C∗
λ(Γ), it suffices to check that ‖λs − ψk ◦ ϕk(λs)‖ → 0 for all s ∈ Γ. This follows from the

definition of Følner sets together with the following computation:

ψk ◦ ϕk(λs) = ψk(
∑

p∈Fk∩sFk

ep,s−1p) =
∑

p∈Fk∩sFk

1

|Fk|
λs =

|Fk ∩ sFk|
|Fk|

λs.

Hence the reduced group C∗-algebra is nuclear.
(1) ⇒ (10): The maps constructed above also prove semidiscreteness of L(Γ). It suffices

to show that for every x ∈ L(Γ) and g, h ∈ Γ,

〈ψk ◦ ϕk(x)δg, δh〉 → 〈xδg, δh〉.
If x ∈ L(Γ) is given, then we can find unique scalars {αs}s∈Γ such that 〈xδg, δh〉 = αs,
whenever hg−1 = s. A computation shows

ψk ◦ ϕk(x) =
∑
s∈Γ

αs
|Fk ∩ sFk|
|Fk|

λs.

It follows that for each fixed pair g, h ∈ Γ,

〈ψk ◦ ϕk(x)δg, δh〉 = 〈
∑
s∈Γ

αs
|Fk ∩ sFk|
|Fk|

λsδg, δh〉 = αhg−1

|Fk ∩ hg−1Fk|
|Fk|

converges to 〈xδg, δh〉 = αhg−1 as k →∞.
(9) ⇒ (1): Let ϕn : C∗

λ(Γ) → Mk(n)(C) and ψn : Mk(n)(C) → C∗
λ(Γ) be u.c.p. maps

converging to idC∗
λ(Γ) in the point-norm topology. By Arveson’s Extension Theorem we

may assume that the ϕn’s are actually defined on all of B(`2(Γ)). In other words, letting
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Φn = ψn ◦ ϕn, we have u.c.p. maps Φn : B(`2(Γ)) → C∗
λ(Γ) such that Φn(x) → x for all

x ∈ C∗
λ(Γ). Taking a point-ultraweak limit point of {Φn} (see Theorem 2.1), we get a u.c.p.

map Φ: B(`2(Γ)) → L(Γ) which restricts to the identity on C∗
λ(Γ). This is all we need to

show amenability of Γ.
Let τ be the canonical vector trace on L(Γ) and consider the state

η = τ ◦ Φ

on B(`2(Γ)). Restricting to `∞(Γ) ⊂ B(`2(Γ)), we get an invariant mean. Indeed, for any
T ∈ B(`2(Γ)) and s ∈ Γ we have

η(λsTλ
∗
s) = τ

(
λsΦ(T )λ∗s

)
= τ(Φ(T )) = η(T ),

where the first equality uses the fact that Φ restricts to the identity on C∗
λ(Γ) (hence C∗

λ(Γ)
falls in the multiplicative domain of Φ) and the second uses the fact that τ is a trace.
Thus if T ∈ `∞(Γ), we have η(s.T ) = η(λsTλ

∗
s) = η(T ), since left translation is spatially

implemented.
(10) ⇒ (1): Semidiscreteness allows one to construct a u.c.p. map Φ: B(`2(Γ)) → L(Γ)

which restricts to the identity on L(Γ) (use Arveson’s Extension Theorem and Theorem 2.1).
This is more than enough to imply amenability of Γ, as we saw above. �

Remark 5.9. This theorem not only shows that amenable groups give rise to a very natural
class of nuclear C∗-algebras, but it also gives our first examples of nonnuclear C∗-algebras
(since there are plenty of nonamenable groups).

Remark 5.10. A similar theorem holds in the locally compact case, but not everything gen-
eralizes. For example, nuclearity or semidiscreteness need not imply amenability in general;
Connes proved in [3] that if G0 denotes the connected component of G and if G/G0 is
amenable, then C∗

λ(G) is nuclear and L(G) is semidiscrete. In particular, all connected Lie
groups have nuclear reduced C∗-algebras (though they need not be amenable).

6. Tensor Products and The Trick

To a von Neumann algebraist there is only one tensor product. This is a problem. Indeed,
a wonderful feature of the C∗-theory is its complexity. This exposes new ideas and sometimes,
in the right hands, provides insight that would otherwise remain out of sight.

The spatial and maximal C∗-norms

When A and B are C∗-algebras, it can happen that numerous different norms make A�B
(the algebraic tensor product) into a pre-C∗-algebra. In other words, A�B may carry more
than one C∗-norm.

Definition 6.1. A C∗-norm ‖ · ‖α on A � B is a norm such that ‖xy‖α ≤ ‖x‖α‖y‖α,
‖x∗‖α = ‖x‖α and ‖x∗x‖α = ‖x‖2

α for all x, y ∈ A � B. We will let A ⊗α B denote the
completion of A�B with respect to ‖ · ‖α.

The following example is both of fundamental importance and also illustrates the fact that
even “trivial” examples in this subject can have subtleties which require care.

Proposition 6.2. For each C∗-algebra A there is a C∗-norm on the algebraic tensor product
Mn(C)� A and it is unique.

Proof. We assume the reader knows how to make Mn(A) into a C∗-algebra and hence the
existence of a C∗-norm follows from the existence of an algebraic ∗-isomorphism

Mn(C)� A ∼= Mn(A).
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Uniqueness is then a consequence of the fact that C∗-algebras have unique norms since
Mn(C)� A is a C∗-algebra with respect to the norm it gets from Mn(A).7 �

It requires a little work, but it’s a fact that C∗-norms on algebraic tensor products always
exist. Here are the two most natural candidates.

Definition 6.3. (Maximal norm) Given A and B, we define the maximal C∗-norm on A�B
to be

‖x‖max = sup{‖π(x)‖ : π : A�B → B(H) a (cyclic) ∗-homomorphism}
for x ∈ A�B. We let A⊗max B denote the completion of A�B with respect to ‖ · ‖max.

Definition 6.4. (Spatial norm) Let π : A → B(H) and σ : B → B(K) be faithful represen-
tations. Then the spatial (or minimal) C∗-norm on A�B is

‖
∑

ai ⊗ bi‖min = ‖
∑

π(ai)⊗ σ(bi)‖B(H⊗K).

The completion of A�B with respect to ‖ · ‖min is denoted A⊗B.8

Remark 6.5 (Von Neumann algebra tensor products). If M ⊂ B(H) and N ⊂ B(K) are
von Neumann algebras, then there are a number of C∗-norms that one can put on M �
N . However, the norm completions won’t be von Neumann algebras and researchers have
virtually forgotten about the subject of C∗-tensor products of von Neumann algebras. On the
other hand, the von Neumann algebraic tensor product is still very important and is denoted
byM ⊗̄N . By definition, this is the von Neumann algebra generated byM⊗C1K ⊂ B(H⊗K)
and C1H ⊗N ⊂ B(H⊗K) – i.e., the weak closure of M ⊗N ⊂ B(H⊗K).

Remark 6.6 (Operator space tensor products). For completeness we also mention that one
defines the spatial tensor product norm on operator systems (or spaces) in exactly the same
way. Given X and Y , we take embeddings X ⊂ B(H) and Y ⊂ B(K) which induce the
given operator space structures and then define X⊗Y to be the norm closure of the span of
{x⊗ y ∈ B(H⊗K) : x ∈ X, y ∈ Y }. As we’ll soon see for C∗-algebras, X ⊗Y is independent
of the embeddings (so long as they induce the proper operator space structures, of course).

There are numerous technical points which one should worry about. The first is whether
or not ‖ · ‖max is even finite. This is the case thanks to the existence of restrictions – i.e.,
given a ∗-representation π : A�B → B(H), there are ∗-representations πA : A→ B(H) and
πB : B → B(H) such that π(a ⊗ b) = πA(a)πB(b) for all a ∈ A and b ∈ B (see [2, Theorem
3.2.6]). This easily implies that ‖x‖max <∞ for all x ∈ A�B.

The remainder of this section is devoted to resolving the following technical issues.

(1) Are ‖ · ‖max and ‖ · ‖min norms (as opposed to seminorms)?9

(2) Is ‖ · ‖min independent of the choice of faithful representations?
(3) Can one usually reduce the nonunital case to the unital case?

All three questions have affirmative answers, though none are completely obvious.
Let us first tackle the norm vs. seminorm question. The following universal property of

‖ · ‖max implies that it suffices to show ‖ · ‖min is a norm.

7Depending on what the phrase “C∗-algebras have unique norms” means to you, there may or may not
be a subtlety here. If this statement only means, “Whenever an algebra B is a C∗-algebra with respect to
two norms ‖ · ‖ and ‖ · ‖′, then those norms agree,” then the proof of uniqueness has a gap. Luckily, the
more general statement, “If (B, ‖ · ‖) is a C∗-algebra and (B, ‖ · ‖′) is a pre-C∗-algebra (i.e., not necessarily
complete), then ‖ · ‖ = ‖ · ‖′,” is true and this is what we are using above.

8You will also see A⊗min B in the literature.
9Since both of these (semi)norms are defined via ∗-representations and honest C∗-norms, an affirmative

answer to this question will imply that both ‖ · ‖max and ‖ · ‖min are C∗-norms.
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Proposition 6.7 (Universality). If π : A�B → C is a ∗-homomorphism, then there exists
a unique ∗-homomorphism A ⊗max B → C which extends π. In particular, any pair of
∗-homomorphisms with commuting ranges πA : A → C and πB : B → C induces a unique
∗-homomorphism

πA × πB : A⊗max B → C.

Proof. Faithfully representing C on some Hilbert space, this fact follows from the definition
of ‖ · ‖max. �

Corollary 6.8. The norm ‖ · ‖max is the largest possible C∗-norm on A�B.

Proof. If ‖ · ‖α is any other C∗-norm on A� B, then, by universality, there is a (surjective)
∗-homomorphism A⊗max B → A⊗α B. Hence, ‖x‖α ≤ ‖x‖max for every x ∈ A�B. �

In particular, ‖ · ‖max dominates ‖ · ‖min and thus, if ‖x‖min = 0 ⇒ x = 0, then it will
follow that both ‖ · ‖max and ‖ · ‖min are honest norms.

Lemma 6.9. The product ∗-homomorphism B(H) � B(K) → B(H ⊗ K), induced by the
commuting ∗-representations B(H) ∼= B(H)⊗C1K ⊂ B(H⊗K) and B(K) ∼= C1H ⊗ B(K) ⊂
B(H⊗K), is injective.

Proof. We must show that if a finite sum of tensor product operators
∑

i Si⊗Ti ∈ B(H⊗K)
is zero, then the corresponding sum of elementary tensors

∑
i Si ⊗ Ti ∈ B(H)�B(K) is also

zero. We may assume that the operators {Si} ⊂ B(H) are linearly independent.
If 0 =

∑
i Si ⊗ Ti ∈ B(H⊗K), then for all vectors v, w ∈ H and ξ, η ∈ K we have

〈(
∑
i

Si ⊗ Ti)v ⊗ ξ, w ⊗ η〉 = 0.

Rearranging terms, we get

〈(
∑
i

Si ⊗ Ti)v ⊗ ξ, w ⊗ η〉 =
∑
i

〈Si ⊗ Ti(v ⊗ ξ), w ⊗ η〉

=
∑
i

〈Siv, w〉〈Tiξ, η〉

= 〈(
∑
i

〈Tiξ, η〉Si)v, w〉.

Since this holds for all v, w ∈ H, it follows that the operator
∑

i〈Tiξ, η〉Si ∈ B(H) is zero
and hence, by linear independence, that each of the coefficients 〈Tiξ, η〉 is zero. Since this
holds for all ξ, η ∈ K, it follows that 0 = Ti ∈ B(K) for all i, and the proof is complete. �

Corollary 6.10. For each x ∈ A�B, if ‖x‖min = 0, then x = 0.

Proof. If π : A → B(H) and σ : B → B(K) are faithful representations, then the tensor
product map

π � σ : A�B → B(H)� B(K)

is also injective. Together with the previous lemma this implies the result. �

We now resolve the second technical question.

Proposition 6.11. The spatial tensor product norm is independent of the choices of faithful
representations π : A→ B(H) and σ : B → B(K).
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Proof. For the moment we will let ‖ · ‖(π,σ)
min denote the minimal norm with respect to π and

σ. Evidently it suffices to prove that if σ′ : B → B(K′) is another faithful representation,

then ‖ · ‖(π,σ)
min = ‖ · ‖(π,σ′)

min .
For notational reasons it is slightly more convenient to give the proof in the separable

setting. It is a simple exercise to net-ify the argument and deduce the general case. Let
P1 ≤ P2 ≤ · · · be finite-rank projections in B(H) such that Pn has rank n and ‖Pn(h)−h‖ →
0 for all h ∈ H. Then it is not hard to show that for every X ∈ B(H⊗K) we have

‖X‖ = sup
n
{‖(Pn ⊗ 1K)X(Pn ⊗ 1K)‖}.

Thus, if
∑
ai ⊗ bi ∈ A�B is arbitrary, we have

‖
∑

ai ⊗ bi‖(π,σ)
min = sup

n
{‖
∑

(Pnπ(ai)Pn)⊗ σ(bi)‖}

and

‖
∑

ai ⊗ bi‖(π,σ′)
min = sup

n
{‖
∑

(Pnπ(ai)Pn)⊗ σ′(bi)‖}.

But since PnB(H)Pn is naturally isomorphic to Mn(C), we have

‖
∑

(Pnπ(ai)Pn)⊗ σ(bi)‖ = ‖
∑

(Pnπ(ai)Pn)⊗ σ′(bi)‖

for each n, since there is a unique C∗-norm on Mn(C)�B (Proposition 6.2). �

Finally we present a result which allows many nonunital questions to be handled (rela-
tively) painlessly. For a nonunital C∗-algebra A we will let Ã denote the unitization.

Corollary 6.12. If A is nonunital, then any C∗-norm ‖ · ‖α on A�B can be extended to a
C∗-norm on Ã�B. Hence, when both A and B are nonunital, any C∗-norm ‖ · ‖α on A�B
can be extended to a C∗-norm on Ã� B̃.

Proof. See [2, Corollary 3.3.12]. �

Exercises

Exercise 6.1. Show that both ‖ · ‖min and ‖ · ‖max are commutative tensor product norms –
i.e., there are canonical isomorphisms A⊗B ∼= B ⊗ A and A⊗max B ∼= B ⊗max A.

Exercise 6.2. Show that both ‖ · ‖min and ‖ · ‖max are associative – i.e., there are canonical
isomorphisms (A ⊗ B) ⊗ C ∼= A ⊗ (B ⊗ C) and (A ⊗max B) ⊗max C ∼= A ⊗max (B ⊗max C).
How would you define the maximal or minimal tensor product of n algebras?

Exercise 6.3. Give an example of a ∗-representation π : A � B → B(H) such that both πA
and πB are injective but π is not. (Hint: Think finite dimensional and abelian.)

Exercise 6.4. Prove that if π : A → B(H) and σ : B → B(K) are arbitrary (not necessarily
faithful) representations, then there exists a unique extending ∗-homomorphism π⊗ σ : A⊗
B → B(H ⊗ K) such that π ⊗ σ(a ⊗ b) = π(a) ⊗ σ(b). (Hint: Dilate π and σ to faithful
representations and then cut back down.)

Exercise 6.5. If π : A → C and σ : B → D are ∗-homomorphisms, prove that there is a
unique ∗-homomorphism π ⊗ σ : A⊗B → C ⊗D such that π ⊗ σ(a⊗ b) = π(a)⊗ σ(b).

Exercise 6.6. Prove that B(`2)� B(`2) ⊂ B(`2 ⊗ `2) (see Lemma 6.9) is not dense in norm.
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Takesaki’s Theorem

It’s a nontrivial fact that ‖ · ‖min is really the smallest possible C∗-norm on A�B. For a
proof see [2].

Theorem 6.13 (Takesaki). For arbitrary C∗-algebras A and B, ‖ · ‖min is the smallest
C∗-norm on A�B.

The following corollary gets used, both explicitly and implicitly, all of the time. For
example, in the literature it is often written that A�B has a unique C∗-norm if and only if
A⊗max B = A⊗B.

Corollary 6.14. For any A and B and any C∗-norm ‖ · ‖α on A � B we have natural
surjective ∗-homomorphisms

A⊗max B → A⊗α B → A⊗B.

Continuity of tensor product maps

Continuity of maps on tensor products requires some care. It turns out that nothing funny
happens so long as one sticks to c.p. maps, but this is the largest class of maps which always
behave well. To get a feel for what can go wrong, let’s consider a finite-dimensional example.

Proposition 6.15. Let ϕ : Mn(C) → Mn(C) be the usual transpose map on the n × n
matrices. Then ϕ is a unital, positive isometry but the norm of

ϕ⊗ idMn(C) : Mn(C)⊗Mn(C) → Mn(C)⊗Mn(C)

is greater than or equal to n.10

Proof. It’s well known, and easily verified, that the transpose map is a positive isometry.
Let {ei,j}1≤i,j≤n be a system of matrix units for Mn(C) and consider

S :=
n∑

i,j=1

ei,j ⊗ ej,i.

Evidently S is a permutation matrix – hence unitary – and has norm one. (If {δk} is an
orthonormal basis, then S(δk ⊗ δl) = δl ⊗ δk.) On the other hand

ϕ⊗ idMn(C)(S) =
n∑

i,j=1

ej,i ⊗ ej,i

and a straightforward computation shows that this matrix is equal to nP where P is the
one-dimensional projection onto the span of the vector

v =
n∑
k=1

δk ⊗ δk.

�

Unlike the case of states, this shows that the tensor product of norm-one maps need not
have norm one – even on the 2 × 2 matrices when one map is the identity and the other is
a positive unital isometry! The next result follows easily from the previous one.

Proposition 6.16. Let ϕ : A → A be a positive, unital isometry. It can happen that ϕ �
idA : A�A→ A�A is unbounded. For example, let ϕ be the transpose map on the unitization
of the compact operators.

10Actually, it is equal to n, but we won’t need this fact.
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Not wanting to dwell on the problems that occur for more general maps, let’s treat the
case of c.p. maps and move on. We will need the following result approximately ℵ0 times
(maybe more).

Theorem 6.17 (Continuity of tensor product maps). Let ϕ : A→ C and ψ : B → D be c.p.
maps. Then the algebraic tensor product map

ϕ� ψ : A�B → C �D

extends to a c.p. (hence continuous) map on both the minimal and maximal tensor products.
Moreover, letting ϕ⊗max ψ : A⊗max B → C ⊗max D and ϕ⊗ ψ : A⊗B → C ⊗D denote the
extensions, we have

‖ϕ⊗max ψ‖ = ‖ϕ⊗ ψ‖ = ‖ϕ‖‖ψ‖.

Proof. We first handle the spatial tensor product case. Assume C ⊂ B(H) and D ⊂ B(K).
Let πA : A → B(H̃), πB : B → B(K̃) be the Stinespring dilations of ϕ and ψ, respectively,
and VA : H → H̃, VB : K → K̃ the associated bounded linear operators. By Exercise 6.4
there is a natural ∗-homomorphism πA ⊗ πB : A ⊗ B → B(H̃ ⊗ K̃). Hence we may define
ϕ⊗ ψ : A⊗B → C ⊗D by the formula

ϕ⊗ ψ(x) = (VA ⊗ VB)∗πA ⊗ πB(x)(VA ⊗ VB).

Note that on elementary tensors we have

ϕ⊗ ψ(a⊗ b) = (V ∗
AπA(a)VA)⊗ (V ∗

BπB(b)VB) = ϕ(a)⊗ ψ(b).

Hence ϕ ⊗ ψ really is a c.p. extension of ϕ � ψ which takes values in C ⊗D ⊂ B(H ⊗ K).
Finally note that the completely bounded norm satisfies

‖ϕ⊗ ψ‖cb ≤ ‖VA ⊗ VB‖2 = ‖VA‖2‖VB‖2 = ‖ϕ‖‖ψ‖.

The other inequality is easy and will be left to the reader (consider elementary tensors).
For the maximal tensor product, let’s first tackle the case that B = D and ψ = idB. Fix

a faithful representation C⊗maxB ⊂ B(H). By the existence of restrictions, we may assume
that C ⊂ B(H) and B ⊂ B(H) commute (and generate C⊗maxB) thus allowing us to regard
ϕ as a c.p. map into B(H) with B ⊂ ϕ(A)′. Applying Stinespring to ϕ – also lifting B with
the commutant ϕ(A)′ (see [2, Proposition 1.5.6]) – we get a ∗-representation of A⊗maxB (by
universality) which we can cut to recover the original map ϕ�idB : A�B → C⊗maxB ⊂ B(H)
(just as in the spatial tensor product case above).

Since an arbitrary map ϕ�ψ : A�B → C�D can be decomposed as (ϕ� idD)◦(idA�ψ),
the proof is complete. �

The next result is a trivial consequence (that we will use frequently and without reference).

Corollary 6.18. Assume θ : A → C and σ : B → D are c.c.p. maps and θn : A → C are
c.c.p. maps converging to θ in the point-norm topology. Then

θn ⊗max σ → θ ⊗max σ

and

θn ⊗ σ → θ ⊗ σ

in the point-norm topology as well.
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Inclusions and The Trick

In this section we discuss one of the important subtleties of C∗-tensor products. We also
introduce one of the great tensor product tricks, a technique so important that it should not
be regarded as a trick, but rather The Trick.

The issue at hand is whether or not inclusions of C∗-algebras give inclusions of tensor
products. So long as one stays at the algebraic (i.e., pre-C∗-algebra) level, nothing funny
happens. This simple fact implies that spatial tensor products are also well behaved in this
regard.

Proposition 6.19. If A ⊂ B and C are C∗-algebras, then there is a natural inclusion

A⊗ C ⊂ B ⊗ C.

Proof. Perhaps we should first point out what this proposition is really asserting. Since we
have a natural algebraic inclusion

A� C ⊂ B � C,

one can ask what sort of norm we would get on A�C if we took the spatial norm on B�C
and restricted it. This proposition asserts that we just get the spatial norm on A� C.

Having understood the meaning of the result, the proof is now an immediate consequence
of Proposition 6.11. �

Applying this fact again on the right hand side implies that a pair of inclusions A ⊂ B
and C ⊂ D induces a natural inclusion A⊗ C ⊂ B ⊗D.

For maximal tensor products the question then becomes: If A ⊂ B and C are given, do
we have a natural inclusion A ⊗max C ⊂ B ⊗max C? In general this turns out to be false
and may seem a little puzzling at first. However, when reformulated at the algebraic level,
it becomes clear what can go wrong. Indeed, what we are really asking is whether or not
the maximal norm on B � C restricts to the maximal norm on A � C ⊂ B � C. But the
maximal norm is defined via a supremum over representations and since every representation
of B �C gives a representation of the smaller algebra A�C, it is clear that the supremum
only over representations of B � C will always be less than or equal to the supremum over
all representations of A� C.

Having seen what the problem could be, it’s not too hard to formulate a condition which
ensures that inclusions behave nicely for maximal tensor products.

Proposition 6.20. Let A ⊂ B be an inclusion of C∗-algebras and assume that for every
nondegenerate ∗-homomorphism π : A→ B(H) there exists a c.c.p. map ϕ : B → π(A)′′ such
that ϕ(a) = π(a) for all a ∈ A. Then for every C∗-algebra C there is a natural inclusion

A⊗max C ⊂ B ⊗max C.

Proof. By universality, we have a canonical ∗-homomorphism A ⊗max C → B ⊗max C. Our
goal is to show that if x ∈ A⊗max C is in the kernel of this map, then x = 0.

Let π : A ⊗max C → B(H) be a faithful representation and πA : A → B(H), πC : C →
B(H) be the restrictions. Note that πC(C) ⊂ πA(A)′ and hence the commuting inclusions
πA(A)′′ ↪→ B(H), πC(C) ↪→ B(H) induce, by universality, a product ∗-homomorphism

πA(A)′′ ⊗max πC(C) −→ B(H).
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Extend πA to a c.c.p. map ϕ : B → π(A)′′ such that ϕ(a) = π(a) for all a ∈ A. By
Theorem 6.17 we have the following commutative diagram:

B ⊗max C
ϕ⊗maxπC// πA(A)′′ ⊗max πC(C)

��
A⊗max C

OO

π // B(H).

The fact that π is faithful implies that the map on the left is also injective. �

We will soon introduce The Trick and provide the converse to the previous result, but first
we consider two nice corollaries.

Corollary 6.21. If A ⊂ B, A is nuclear and C is arbitrary, then we have a natural inclusion

A⊗max C ⊂ B ⊗max C.

Proof. Let π : A → B(H) be a representation and ϕn : A → Mk(n)(C), ψn : Mk(n)(C) →
π(A) be c.c.p. maps converging to π in the point-norm topology.11 By Arveson’s Extension
Theorem we may assume that each of the ϕn’s is actually defined on all of B. Letting
Φ: B → πA(A)′′ be any point-ultraweak cluster point of the maps ψn◦ϕn : B → A ⊂ πA(A)′′,
we get the c.c.p. extension of π required to invoke Proposition 6.20. �

Corollary 6.22. If A ⊂ B is a hereditary subalgebra, then for every C we have a natural
inclusion

A⊗max C ⊂ B ⊗max C.

Proof. If {en} ⊂ A is an approximate unit, then the c.c.p. maps ϕn : B → A, ϕn(b) = enben
have the property that ϕn(a) → a for all a ∈ A. With this observation, the proof is similar
to the previous corollary, so we leave the details to the reader. �

Proposition 6.23 (The Trick). Let A ⊂ B and C be C∗-algebras, ‖ · ‖α be a C∗-norm on
B �C and ‖ · ‖β be the C∗-norm on A�C obtained by restricting ‖ · ‖α to A�C ⊂ B �C.
If πA : A → B(H), πC : C → B(H) are representations with commuting ranges and if the
product ∗-homomorphism

πA × πC : A� C → B(H)

is continuous with respect to ‖ · ‖β, then there exists a c.c.p. map ϕ : B → πC(C)′ which
extends πA.

Proof. Assume first that A, B and C are all unital and, moreover, that 1A = 1B. Let

πA ×β πC : A⊗β C → B(H)

be the extension of the product map to A⊗βC. Since A⊗βC ⊂ B⊗αC, we apply Arveson’s
Extension Theorem to get a u.c.p. extension Φ: B ⊗α C → B(H). The desired map is just
ϕ(b) = Φ(b⊗ 1C).

To see that ϕ takes values in πC(C)′ is a simple multiplicative domain argument. Indeed,
C1B ⊗ C lives in the multiplicative domain of Φ since Φ|C1B⊗C = πC is a ∗-homomorphism.
Since B ⊗ C1C commutes with C1B ⊗ C and u.c.p. maps are bimodule maps over their
multiplicative domains, a simple calculation completes the proof.

The nonunital case is a bit more irritating but can be deduced from the unital case as
follows. For a C∗-algebra D, let D̃ be the unitization if D is nonunital and D̃ = D if
D is already unital. For an arbitrary inclusion A ⊂ B and auxiliary algebra C we may
extend any C∗-norm ‖ · ‖α on B � C to unitizations (Corollary 6.12) and get an inclusion

11It’s crucial that π : A → π(A) be nuclear; the result need not hold if π(A) is replaced by B(H).
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B ⊗α C ⊂ B̃ ⊗α C̃. Let A1 = A + C1B̃ (which may or may not be the same as Ã) and

note that A1 � C ⊂ B̃ ⊗α C̃. Hence ‖ · ‖β extends to a norm which yields an inclusion

A ⊗β C ⊂ A1 ⊗β C̃. The key observation is that A ⊗β C is an ideal in A1 ⊗β C̃ and hence

any representation of A⊗β C extends to a representation of A1 ⊗β C̃. Given this fact, it is
easy to deduce the general case from the unital one proved above. �

At first glance, the utility of The Trick is far from obvious, but please be patient as the
mileage one can get out of this simple observation is remarkable. Let us briefly explain what
the point is and then we will give an application.

Given an inclusion A ⊂ B and a representation π : A → B(H), Arveson’s Extension
Theorem always allows one to extend π to a c.c.p. map ϕ : B → B(H). When The Trick is
applicable, it gives one the ability to better control the range of ϕ and this is how it gets
used. As our first example we provide the converse of Proposition 6.20, promised earlier.
An inclusion satisfying one of the following equivalent conditions is called relatively weakly
injective.

Proposition 6.24. Let A ⊂ B be an inclusion. Then the following are equivalent:

(1) there exists a c.c.p. map ϕ : B → A∗∗ such that ϕ(a) = a for all a ∈ A;
(2) for every ∗-homomorphism π : A → B(H) there exists a c.c.p. map ϕ : B → π(A)′′

such that ϕ(a) = π(a) for all a ∈ A;
(3) for every C∗-algebra C there is a natural inclusion

A⊗max C ⊂ B ⊗max C.

Proof. Since every representation of A extends to a normal representation of A∗∗, the equiv-
alence of the first two statements is easy.

Assume condition (3) and let π : A → B(H) be a representation. Let C = π(A)′ and,
by universality, we can apply The Trick to the product map induced by the commuting
representations π : A→ B(H) and π(A)′ ↪→ B(H). That’s it. �

Definition 6.25. A C∗-algebra A ⊂ B(H) is said to have Lance’s weak expectation property
(WEP) if there exists a u.c.p. map Φ: B(H) → A∗∗ such that Φ(a) = a for all a ∈ A.

A simple application of Arveson’s Extension Theorem shows that the WEP is independent
of the choice of faithful representation.

Corollary 6.26. A C∗-algebra A has the WEP if and only if for every inclusion A ⊂ B and
arbitrary C we have a natural inclusion A⊗max C ⊂ B ⊗max C.

Proof. Assume first that A ⊂ B(H) has the WEP and A ⊂ B. The inclusion A ↪→ B(H)
extends to a c.c.p. map Ψ: B → B(H) by Arveson’s Extension Theorem. Composing with Φ
gives a map B → A∗∗ which restricts to the identity on A and then Proposition 6.24 applies.
The converse uses The Trick just as in the previous proposition. This time take B = B(HU),
the universal representation of A, and C = (A∗∗)′. �

We opened this section by claiming that inclusions of tensor products can be tricky and
then proceeded to give several instances where they behave well. Here is an example where
inclusions misbehave.

Proposition 6.27. Let Γ be a discrete group. Then the following are equivalent:

(1) Γ is amenable;
(2) C∗

λ(Γ) has the WEP;
(3) the natural inclusion ι : C∗

λ(Γ) ↪→ B(`2(Γ)) induces an injective tensor product map

ι⊗max id : C∗
λ(Γ)⊗max C

∗
λ(Γ) ↪→ B(`2(Γ))⊗max C

∗
λ(Γ).
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In particular, the natural map

ι⊗max id : C∗
λ(Γ)⊗max C

∗
λ(Γ) → B(`2(Γ))⊗max C

∗
λ(Γ)

has a nontrivial kernel for every nonamenable group.

Proof. (1) ⇒ (2) follows from Theorem 5.8, since Theorem 2.1 easily implies that every
nuclear C∗-algebra has the WEP. The implication (2) ⇒ (3) is immediate from Corollary
6.26.

For the final implication we use The Trick to produce a u.c.p. map Φ: B(`2(Γ)) → L(Γ)
such that Φ(x) = x for all x ∈ C∗

λ(Γ). We already saw in the proof of Theorem 5.8 that this
is enough to imply amenability of Γ.

So let B = B(`2(Γ)), C = C∗
λ(Γ) and recall that the commutant of the right regular

representation is L(Γ). In other words, if C∗
λ(Γ) ⊗max C

∗
λ(Γ) → B(`2(Γ)) is the product of

the left and right regular representations, then the extension ϕ : B(`2(Γ)) → B(`2(Γ)) given
by The Trick takes values in L(Γ). �

Exercises

Exercise 6.7. Let Γ be a discrete group and let

λ× ρ : C∗
λ(Γ)� C∗

ρ(Γ) → B(`2(Γ))

be the product of the left and right regular representations. Prove that Γ is amenable if and
only if λ× ρ is continuous with respect to the minimal tensor product norm.

Exercise 6.8. Let X be a locally compact Hausdorff space and C0(X) be the continuous
functions vanishing at ∞. For a C∗-algebra A we let

C0(X,A) = {f : X → A : f is continuous and f(∞) = 0}.

Show that there is a natural isomorphism

C0(X)⊗max A ∼= C0(X)⊗ A ∼= C0(X,A)

such that h⊗ a maps to the function x 7→ h(x)a. (Hint: A partition of unity argument will
show density.)

7. Nuclearity, Injectivity and Semidiscreteness

This section is what we’ve been after, one of the greatest applications of W∗-theory to C∗-
theory that I’m aware of. The results below are due to Connes, Choi-Effros and Kirchberg.

Lemma 7.1. 12 Assume that θ : A→ B is a nuclear map. Then for every C∗-algebra C the
map θ⊗max idC : A⊗max C → B⊗max C factors through A⊗C. That is, there exists a c.c.p.
map Ψ: A⊗ C → B ⊗max C such that the diagram

A⊗max C

&&MMMMMMMMMM

θ⊗maxidC // B ⊗max C

A⊗ C
Ψ

88q
q

q
q

q

commutes, where A⊗max C → A⊗ C is the canonical quotient map.

12The converse of this lemma also holds, but we won’t need it.
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Proof. Let ϕn : A→ Mk(n)(C) and ψn : Mk(n)(C) → B be c.c.p. maps converging to θ in the
point-norm topology. Due to the fact that there is a unique C∗-norm on Mk(n)(C) � C, we
get an approximately commuting diagram

A⊗max C

��

ϕn⊗maxidC

**TTTTTTTTTTTTTTT

θ⊗maxidC // B ⊗max C

A⊗ C
ϕn⊗idC

// Mk(n)(C)⊗ C.

ψn⊗maxidC

OO

Hence we can define a sequence of c.c.p. maps Ψn : A⊗ C → B ⊗max C by

Ψn = (ψn ⊗max idC) ◦ (ϕn ⊗ idC).

It follows that the algebraic tensor product map θ� idC : A�C → B�C is contractive from
the spatial norm on A�C to the maximal norm on B�C (since Ψn(x) → θ� idC(x) for all
x ∈ A�C) and hence it extends to a contractive linear map Ψ: A⊗C → B⊗maxC. Finally,
one checks that Ψ is the point-norm limit of the Ψn’s, hence is completely positive. �

Proposition 7.2. If A is nuclear, then for every C∗-algebra C there is a unique C∗-norm
on A� C. In other words, the canonical quotient mapping

A⊗max C → A⊗ C

is injective.

Proof. Apply Lemma 7.1 to θ = idA : A→ A. �

The conclusion of the previous result is the historical definition of nuclearity. For now, let
us say that A is ⊗-nuclear if A ⊗max B = A ⊗ B for every C∗-algebra B – thus nuclearity
implies ⊗-nuclearity. But what is ⊗-nuclearity good for? Well, here’s something.

Proposition 7.3. If A is ⊗-nuclear and π : A → B(H) is a nondegenerate representation,
then π(A)′′ is injective – i.e., there is a u.c.p. map Φ: B(H) → π(A)′′ such that Φ(x) = x
for all x ∈ π(A)′′.13

Proof. A simple application of The Trick, applied to

π(A)′ ⊗max A = π(A)′ ⊗ A ⊂ B(H)⊗ A,

shows that π(A)′ is injective. The result now follows from the triviality of W∗-representation
theory, together with the existence of Haagerup standard form. �

Theorem 7.4. For a C∗-algebra A, the following are equivalent:

(1) A is ⊗-nuclear;
(2) A is nuclear;
(3) A∗∗ is semidiscrete;
(4) A∗∗ is injective.

Proof. We’ve already seen (3) =⇒ (2) (Proposition 3.9), (2) =⇒ (1) (Proposition 7.2) and
(1) =⇒ (4) (Proposition 7.3). The remaining implication is very hard and played no small
role in the awarding of a Fields Medal to Alain Connes (cf. [3]).14 For details see [2]. �

13It follows from Arveson’s Extension Theorem that injectivity defined this way is equivalent to the usual
definition found in homological algebra books (where the category has operator systems as objects and u.c.p.
maps as morphisms).

14Today there are simpler proofs, but there is still no simple proof.
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If J / A is a closed, 2-sided ideal, then A∗∗ = J∗∗ ⊕ (A/J)∗∗. Hence the next corollary is
easily deduced from the previous theorem.

Corollary 7.5. Nuclearity passes to quotients.

To any C∗-algebraist that still isn’t convinced of the usefulness of von Neumann algebras,
I have a challenge: give a C∗-proof of the previous corollary. Good luck...

Knowing the equivalence of (2) and (3) in Theorem 7.4 would be enough to deduce Corol-
lary 7.5. Which begs the following question: is there a simple proof of (2) =⇒ (3)?

8. Reduced Crossed Products

Definition 8.1. Let Γ be a discrete group and A be a C∗-algebra. An action of Γ on A is
a group homomorphism α from Γ into the group of ∗-automorphisms on A. A C∗-algebra
equipped with a Γ-action is called a Γ-C∗-algebra.15

Our goal is to construct a single C∗-algebra which encodes the action of Γ on A. In group
theory, this procedure is well known and is called the semidirect product. We will adapt
this idea and create an algebra A oα Γ with the property that there is a copy of Γ inside
the unitary group of A oα Γ (at least when A is unital) and there is a natural inclusion
A ⊂ AoαΓ such that (a) AoαΓ is generated by A and Γ and (b) αg(a) = gag∗ for all a ∈ A
and g ∈ Γ (i.e., the action of Γ becomes inner).

For a Γ-C∗-algebra A, we denote by Cc(Γ, A) the linear space of finitely supported functions
on Γ with values in A. A typical element S in Cc(Γ, A) is written as a finite sum S =∑

s∈Γ ass. We equip Cc(Γ, A) with an α-twisted convolution product and ∗-operation as
follows: for S =

∑
s∈Γ ass, T =

∑
t∈Γ btt ∈ Cc(Γ, A) we declare

S ∗α T =
∑
s,t∈Γ

asαs(bt)st and S∗ =
∑
s∈Γ

αs−1(a∗s)s
−1.

The twisted convolution is a generalization of the classical convolution of two `2(Z) functions,
but the algebraic explanation of these formulas is perhaps more enlightening. Indeed, we
are trying to turn Cc(Γ, A) into a ∗-algebra where the action becomes inner and hence the
definition above comes from the formal calculation

(
∑
s∈Γ

ass)(
∑
t∈Γ

btt) =
∑
s,t∈Γ

as(sbts
∗)st =

∑
s,t∈Γ

asαs(bt)st.

However you care to think about it, Cc(Γ, A) is the smallest ∗-algebra which encodes the
action of Γ on A. Note that when A = C and the action α is trivial, we simply recover the
group ring C[Γ]. Now the question is, “How shall we complete Cc(Γ, A)?” Just as for group
C∗-algebras, there are two natural choices, a universal and a reduced completion.

A covariant representation (u, π,H) of the Γ-C∗-algebra A consists of a unitary represen-
tation (u,H) of Γ and a ∗-representation (π,H) of A such that usπ(a)u∗s = π(αs(a)) for
every s ∈ Γ and a ∈ A. It is not hard to see that every covariant representation gives rise
to a ∗-representation of Cc(Γ, A) and, conversely, every (nondegenerate) ∗-representation of
Cc(Γ, A) arises this way. For a covariant representation (u, π,H), we denote by u × π the
associated ∗-representation of Cc(Γ, A).

15Of course, there could be many different actions of Γ on A, giving rise to different Γ-C∗-algebra
structures.
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Definition 8.2. The full crossed product (sometimes called the “universal” crossed product)
of a C∗-dynamical system (A,α,Γ), denoted AoαΓ, is the completion of Cc(Γ, A) with respect
to the norm

‖x‖u = sup ‖π(x)‖,
where the supremum is over all (cyclic) ∗-homomorphisms π : Cc(Γ, A) → B(H).

Though it isn’t completely obvious, we will soon see that there are lots of representations
Cc(Γ, A) → B(H). (In particular, ‖·‖u really is a norm, as opposed to seminorm, on Cc(Γ, A)
and hence we have a natural inclusion Cc(Γ, A) ⊂ Aoα Γ.) Evidently our definition implies
the following universal property.

Proposition 8.3 (Universal property). For every covariant representation (u, π,H) of a
Γ-C∗-algebra A, there is a ∗-homomorphism σ : Aoα Γ → B(H) such that

σ(
∑
s∈Γ

ass) =
∑
s∈Γ

π(as)us,

for all
∑

s∈Γ ass ∈ Cc(Γ, A).

To define the reduced crossed product, we begin with a faithful representation A ⊂ B(H).
Define a new representation of A on H⊗ `2(Γ) by

π(a)(v ⊗ δg) = (αg−1(a)(v))⊗ δg,

where {δg}g∈G is the canonical orthonormal basis of `2(Γ). Under the identification H ⊗
`2(Γ) ∼=

⊕
g∈ΓH we have simply taken the direct sum representation

π(a) =
⊕
g∈Γ

α−1
g (a) ∈ B(

⊕
g∈Γ

H).

The point of doing this is that now the left regular representation of Γ spatially implements
the action α: for all elementary tensors we have

(1⊗ λs)π(a)(1⊗ λ∗s)(v ⊗ δg) = (1⊗ λs)π(a)(v ⊗ δs−1g)

= (1⊗ λs)((αg−1s(a)(v))⊗ δs−1g)

= (αg−1s(a)(v))⊗ δg

= (αg−1(αs(a))(v))⊗ δg

= π(αs(a))(v ⊗ δg).

Hence we get an induced covariant representation (1⊗λ)×π, called a regular representation.16

Definition 8.4. The reduced crossed product of a C∗-dynamical system (A,Γ, α), denoted
Aoα,rΓ, is defined to be the norm closure of the image of a regular representation Cc(Γ, A) →
B(H⊗ `2(Γ)).

For notational simplicity, we will usually forget about the representation π and the fact
that we had to inflate the left regular representation of Γ – i.e., we often (abuse notation
slightly and) denote a typical element x ∈ Cc(Γ, A) ⊂ Aoα,rΓ as a finite sum x =

∑
s∈Γ asλs.

Though the following proposition should come as no surprise, the proof contains some
important calculations.

Proposition 8.5. The reduced crossed product A oα,r Γ does not depend on the choice of
the faithful representation A ⊂ B(H).

16Regular representations are easily seen to be injective on Cc(Γ, A); hence the universal norm really is a
norm.
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Proof. The proof boils down to the fact that there is a unique C∗-norm on Mn(A), just
as in the proof of Proposition 6.11. For a finite set F ⊂ Γ, let P ∈ B(`2(Γ)) be the
finite-rank projection onto the span of {δg : g ∈ F}. Rather than compute the norm of
x ∈ B(H ⊗ `2(Γ)), we will cut by the (infinite-rank) projections 1 ⊗ P and show that the
norm of the compression is independent of the representation A ⊂ B(H) – taking a limit
over finite sets in Γ, we conclude the same for x.

Let {ep,q}p,q∈F be the canonical matrix units of PB(`2(Γ))P ∼= MF (C) and fix some arbi-
trary elements a ∈ A and s ∈ Γ. Let π : A→ B(H⊗ `2(Γ)) be a regular representation. Our
first claim is that

(1⊗ P )π(a) = (1⊗ P )π(a)(1⊗ P ) =
∑
q∈F

α−1
q (a)⊗ eq,q.

This is clear if one thinks of π(a) as a diagonal matrix in B(
⊕

g∈ΓH); in the tensor product
picture we have

π(a) =
∑
q∈Γ

α−1
q (a)⊗ eq,q,

where convergence is in the strong operator topology.
Thus we see that

(1⊗ P )π(a)(1⊗ λs)(1⊗ P ) =
(∑
q∈F

α−1
q (a)⊗ eq,q

)
(1⊗ PλsP )

=
(∑
q∈F

α−1
q (a)⊗ eq,q

)( ∑
p∈F∩sF

1⊗ ep,s−1p

)
=

∑
p∈F∩sF

α−1
p (a)⊗ ep,s−1p ∈ A⊗MF (C).

Now if x =
∑
asλs ∈ Cc(Γ, A) ⊂ B(H⊗ `2(Γ)), then we have

(1⊗ P )x(1⊗ P ) =
∑
s∈Γ

∑
p∈F∩sF

α−1
p (as)⊗ ep,s−1p ∈ A⊗MF (C)

and thus the norm of (1⊗ P )x(1⊗ P ) does not depend on the embedding A ⊂ B(H). �

The following description of positive elements is sometimes handy.

Corollary 8.6. An element x =
∑

s∈Γ asλs ∈ Cc(Γ, A) is positive in A oα,r Γ if and only
if for any finite sequence s1, . . . , sn ∈ Γ, the operator matrix [α−1

si
(asis

−1
j

)]i,j ∈ Mn(A) is

positive.

Proof. Since an operator is positive if and only if its compression by any projection is positive,
the result follows from a calculation above:

(1⊗ P )x(1⊗ P ) =
∑
s∈Γ

∑
p∈F∩sF

α−1
p (as)⊗ ep,s−1p ∈ A⊗MF (C).

Indeed, if F = {s1, . . . , sn}, then we can identify this double sum with the operator matrix
in the statement of the corollary. (Let p = si and sj = s−1p.) �

Here is a C∗-dynamical version of Fell’s absorption principle, with identical proof.

Proposition 8.7 (Fell’s absorbtion principle II). If (u, idA,H) is a covariant representation
(i.e., A ⊂ B(H) and the action α is spatially implemented in this representation), then the
covariant representation

(u⊗ λ, idA ⊗ 1,H⊗ `2(Γ))
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is unitarily equivalent to a regular representation. In particular, we have a natural ∗-
isomorphism

C∗((u⊗ λ)(Γ), A⊗ 1
) ∼= Aoα,r Γ.

Proof. Let (u, idA,H) be a covariant representation and define a unitary U on H⊗ `2(Γ) by
U(ξ ⊗ δt) = utξ ⊗ δt. One checks that

U(1⊗ λs)U
∗ = (us ⊗ λs) and U(

∑
t

α−1
t (a)⊗ et,t)U

∗ = a⊗ 1

for every s ∈ Γ and a ∈ A. �

We close this section with the existence of conditional expectations. First, a lemma.

Lemma 8.8. Let ψ be a faithful state on B. Then idA ⊗ ψ : A⊗B → A is faithful.

Proof. Observe that {f ⊗ g : f ∈ A∗, g ∈ B∗} ⊂ (A ⊗ B)∗ separates the points of A ⊗ B.
Indeed, A⊗B ⊂ B(H⊗K) and vector states arising from elementary tensors h⊗ k ∈ H⊗K
separate all of B(H⊗K).

So, if x ∈ (A⊗B)+ is nonzero, we can find a state ϕ on A such that (ϕ⊗ idB)(x) ∈ B is
nonzero (and positive). Since ψ is faithful, we have

0 < ψ((ϕ⊗ idB)(x)) = ϕ((idA ⊗ ψ)(x)),

which implies (idA ⊗ ψ)(x) is nonzero. �

Proposition 8.9. The map E : Cc(Γ, A) → A, E(
∑

s asλs) = ae, extends to a faithful
conditional expectation from Aoα,r Γ onto A. In particular,

max
s∈Γ

‖as‖A ≤ ‖
∑
s∈Γ

asλs‖Aoα,rΓ.

Proof. Let (u, idA,H) be a covariant representation. By Fell’s absorption principle, we may
view A oα,r Γ as the C∗-algebra generated by A ⊗ 1 and (u ⊗ λ)(Γ) – in particular, it is a
subalgebra of B(H)⊗ C∗

r (Γ). The key observation is that in this representation our map E
is nothing but the restriction of idB(H) ⊗ τ , where τ is the canonical faithful tracial state on
C∗
r (Γ) (which is clear since τ(λs) = 0, whenever s 6= e). Thus the previous lemma implies

that E is faithful.
Finally, note that as = E(zλ∗s) for z =

∑
s asλs. This implies the asserted inequality, so

the proof is complete. �

Remark 8.10. Note that E : Aoα,r Γ → A is Γ-equivariant : E(λszλ
−1
s ) = αs(E(z)) for every

s ∈ Γ and z ∈ Aoα,r Γ.

More generally, if α and β are actions of Γ on sets X and, respectively, Y , we will say a
map Φ: X → Y is Γ-equivariant if Φ ◦ αg = βg ◦ Φ for all g ∈ Γ.

9. Crossed Products by Amenable Groups

Let’s construct explicit approximating maps on crossed products by amenable groups.
The analysis is a little boorish, but it has been very important for other purposes (e.g.
noncommutative entropy theory or calculating Haagerup invariants).

Suppose A ⊂ B(H) and α : Γ → Aut(A) is a homomorphism. If Γ is amenable, it turns
out that we can easily construct approximating maps by cutting to Følner sets and then
mapping back to the crossed product. We will need a few simple lemmas.

Lemma 9.1. Let A be a C∗-algebra and let n ∈ N. Every positive element in Mn(A) is a
sum of n elements of the form [a∗i aj]

n
i,j=1.
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Proof. Take an arbitrary positive element x ∈ Mn(A) and decompose it as a product x =
[bij]

∗[bij]. Now one writes

[bij] = A1 + A2 + · · ·+ An

and

[bij]
∗ = A∗

1 + A∗
2 + · · ·+ A∗

n,

where

A1 =


b11 b12 · · · b1n
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 , A2 =


0 0 · · · 0
b21 b22 · · · b2n
...

...
. . .

...
0 0 · · · 0

 ,
and so on. Since A∗

jAi = 0 whenever i 6= j, a straightforward calculation completes the
proof. �

Lemma 9.2. If A is a Γ-C∗-algebra and F ⊂ Γ is a finite set, then for each set {ap}p∈F ⊂ A,
the element ∑

p,q∈F

αp(a
∗
paq)λpq−1 ∈ Cc(Γ, A)

is positive as an element in Aoα Γ (or Aoα,r Γ).

Proof. The element in question is equal to (
∑

p∈F apλp−1)∗(
∑

p∈F apλp−1). �

Here are the approximating maps we’re after.

Lemma 9.3. If A is a Γ-C∗-algebra and F ⊂ Γ is a finite set, then there exist c.c.p. maps
ϕ : Aoα,r Γ → A⊗MF (C) and ψ : A⊗MF (C) → Cc(Γ, A) ⊂ Aoα,r Γ such that for all a ∈ A
and s ∈ Γ we have

ψ ◦ ϕ(aλs) =
|F ∩ sF |
|F |

aλs.

Proof. In the proof of Proposition 8.5 we saw that there is a c.c.p. map ϕ : A oα,r Γ →
A⊗MF (C) such that

ϕ(aλs) =
∑

p∈F∩sF

α−1
p (a)⊗ ep,s−1p.

It suffices to prove that ψ : A⊗MF (C) → Cc(Γ, A) ⊂ Aoα,r Γ defined by

ψ(a⊗ ep,q) =
1

|F |
αp(a)λpq−1

is a c.c.p. map, as a simple calculation confirms the asserted formula.
In fact, it suffices to prove that ψ is positive since there is a natural commutative diagram

Mn(C)⊗ (A⊗MF (C))
∼=−−−→ (Mn(C)⊗ A)⊗MF (C)y y

Mn(C)⊗ (Aoα,r Γ)
∼=−−−→ (Mn(C)⊗ A) oτ⊗α,r Γ.

By Lemma 9.1, we only need to check that for every set {ap}p∈F ⊂ A, ψ(
∑
a∗paq⊗ep,q) ≥ 0.

But

ψ(
∑
p,q∈F

a∗paq ⊗ ep,q) =
∑
p,q∈F

1

|F |
αp(a

∗
paq)λpq−1 ,

so the previous lemma completes the proof. �
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Theorem 9.4. For any amenable group Γ and action α : Γ → Aut(A), the following state-
ments hold:

(1) Aoα Γ = Aoα,r Γ;
(2) A is nuclear if only if Aoα Γ is nuclear.

Proof. Proof of (1): It suffices to show that there exist c.c.p. maps

Ψn : Aoα,r Γ → Aoα Γ

such that ‖x−Ψn ◦ π(x)‖u → 0 for all x ∈ Cc(Γ, A) ⊂ Aoα Γ, where

π : Aoα Γ → Aoα,r Γ

is the canonical quotient map (coming from universality).
The key observation is that the proof of Lemma 9.3 is algebraic. In other words, if Fn ⊂ Γ

is a Følner sequence and ϕn, ψn are the corresponding maps constructed in Lemma 9.3, then
we can define c.c.p. maps Ψn : A oα,r Γ → A oα Γ by Ψn = ψn ◦ ϕn, but simply regarding
the ψn’s as taking values in the universal crossed product (as opposed to the reduced one,
since the range of ψn is contained in Cc(Γ, A)). The formula in Lemma 9.3 still holds, and
hence for x =

∑
k∈Γ akk ∈ Cc(Γ, A) we have

‖x−Ψn(π(x))‖AoαΓ = ‖
∑
k∈Γ

(1− |Fn ∩ (k + Fn)|
|Fn|

)akk‖AoαΓ → 0

since only finitely many ak’s are nonzero.
Proof of (2): The “if” direction is trivial since there is a conditional expectation AoαΓ →

A. For the converse, note that another way of stating Lemma 9.3 is this: there exist c.c.p.
maps ϕn : AoαΓ → A⊗Mk(n)(C) and ψn : A⊗Mk(n)(C) → AoαΓ such that ψn ◦ϕn → id in
the point-norm topology. Since A⊗Mk(n)(C) is nuclear whenever A is nuclear, the remainder
of the proof is trivial. �

10. Amenable Actions

We now step up the generality ladder and consider crossed products by amenable actions –
i.e., the group involved need not be amenable, but we require it to act nicely. When defined
“appropriately” (not the definition usually found in the literature, but an equivalent one
that makes our present work easier) and done abstractly, finding approximating maps on a
crossed product by an amenable action is only slightly harder than the last section.

Given a Γ-C∗-algebra A, we put a third norm on the (α-twisted) convolution algebra
Cc(Γ, A): for finitely supported functions S, T : Γ → A we define

〈S, T 〉 =
∑

S(g)∗T (g) ∈ A

and
‖S‖2 = ‖〈S, S〉‖1/2.

The informed reader will notice that we have made a Hilbert C∗-module. The Cauchy-
Schwarz inequality holds in this context: ‖〈S, T 〉‖A ≤ ‖S‖2‖T‖2, for all S, T ∈ Cc(Γ, A).17

Definition 10.1. An action α : Γ → Aut(A) on a unital C∗-algebra A is amenable if there
exist finitely supported functions Ti : Γ → A with the following properties:

(1) 0 ≤ Ti(g) ∈ Z(A) (the center of A) for all i ∈ N and g ∈ Γ;

17This is a general fact about Hilbert modules, but here we only need the case that A is abelian. If
A = C(X), the asserted inequality follows from the usual Cauchy-Schwarz inequality, applied pointwise in
X.
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(2) 〈Ti, Ti〉 =
∑

g∈Γ Ti(g)
2 = 1A;

(3) ‖s ∗α Ti − Ti‖2 → 0 for all s ∈ Γ, where s ∈ Cc(Γ, A) is the function which sends
s 7→ 1A and all other group elements to zero.18

The functions Ti will replace the Følner sets we used in the previous section.

Lemma 10.2. Let A be a Γ-C∗-algebra and T : Γ → A be a finitely supported function such
that 0 ≤ T (g) ∈ Z(A) for all g ∈ Γ and

∑
g T (g)2 = 1A. Then,

(1) T ∗α T ∗(s) =
∑

p∈F∩sF
T (p)αs(T (s−1p)), where F is the support of T , and

(2) ‖1A − T ∗α T ∗(s)‖ ≤ ‖T − s ∗α T‖2, for all s ∈ Γ.

Proof. Statement (1) is a trivial calculation, using the fact that T (g)∗ = T (g) for all g ∈ Γ.
To prove the second statement, we first note that s ∗α T (p) = αs(T (s−1p)) for all p ∈ Γ.

Now we compute

1A − T ∗α T ∗(s) =
∑
p∈Γ

T (p)2 −
∑
p∈Γ

T (p)αs(T (s−1p))

=
∑
p∈Γ

T (p)
(
T (p)− αs(T (s−1p))

)
= 〈T, T − s ∗α T 〉.

Hence the desired inequality follows from the Cauchy-Schwarz inequality, since ‖T‖2 = 1. �

Here is the analogue of Lemma 9.3 for crossed products by amenable actions.

Lemma 10.3. Let A be a unital Γ-C∗-algebra and T : Γ → A be a finitely supported function
with support F , such that 0 ≤ T (g) ∈ Z(A) for all g ∈ Γ and

∑
g T (g)2 = 1A. Then, there

exist u.c.p. maps ϕ : A oα,r Γ → A ⊗ MF (C) and ψ : A ⊗ MF (C) → A oα,r Γ such that for
all s ∈ Γ and a ∈ A,

ψ ◦ ϕ(aλs) =
(
T ∗α T ∗(s)

)
aλs.

Proof. We already have a u.c.p. compression map ϕ : Aoα,r Γ → A⊗MF (C) such that

ϕ(aλs) =
∑

p∈F∩sF

α−1
p (a)⊗ ep,s−1p ∈ A⊗MF (C).

Define
X =

∑
p∈F

α−1
p (T (p))⊗ ep,p

and note that X = X∗. Hence compression by X is a c.p. map and a computation confirms
that

Xϕ(aλs)X =
∑

p∈F∩sF

α−1
p (T (p)a)α−1

s−1p(T (s−1p))⊗ ep,s−1p.

We know the map A⊗MF (C) → Aoα,r Γ defined by

b⊗ ex,y 7→ αx(b)λxy−1

is u.c.p., so we get another u.c.p. map ψ : A ⊗ MF (C) → A oα,r Γ by composing it with
compression by X:

ψ : A⊗MF (C)
X ·X→ A⊗MF (C)

b⊗ex,y 7→αx(b)λxy−1

−→ Aoα,r Γ.

18This definition comes from the characterization of (classical) amenability in terms of weak containment
of the trivial representation in the left regular representation.
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Finally, since T (g) ∈ Z(A) for all g ∈ Γ, we have

ψ ◦ ϕ(aλs) =
∑

p∈F∩sF

αp

(
α−1
p (T (p)a)α−1

s−1p(T (s−1p))
)
λs

=
( ∑
p∈F∩sF

T (p)αs(T (s−1p))
)
aλs

=
(
T ∗α T ∗(s)

)
aλs.

�

The proof of the next theorem is but a tiny perturbation of that given for Theorem 9.4.
We leave the details to the reader.

Theorem 10.4. For any amenable action of Γ on A, the following statements hold:

(1) Aoα Γ = Aoα,r Γ;
(2) A is nuclear if only if Aoα Γ is nuclear.

We call a compact19 space X a Γ-space if it is equipped with an action of Γ (by homeo-
morphisms). Let x 7→ s.x denote the action of s ∈ Γ on x ∈ X. To help distinguish, we let
αs : C(X) → C(X) denote the induced automorphism of C(X) (i.e., αs(f)(x) = f(s−1.x)).
The notion of an amenable action comes from classical (i.e., abelian) dynamical systems. As
already mentioned, our definition at the C∗-level is not very common in the literature. Here
is a more popular version.

Definition 10.5. An action of Γ on a compact space X is called (topologically) amenable
(or, equivalently, X is an amenable Γ-space) if there exists a net of continuous mapsmi : X →
Prob(Γ), such that for each s ∈ Γ,

lim
i→∞

(
sup
x∈X

‖s.mx
i −ms.x

i ‖1

)
= 0,

where s.mx
i (g) = mx

i (s
−1g).20

Remark 10.6. Let Prob(X) be the set of all regular Borel probability measures on X. In
Proposition 14.1 we will show for a countable group Γ that amenability can be reformulated
as: For any finite subset E ⊂ Γ, ε > 0 and any m ∈ Prob(X), there exists a Borel map
µ : X → Prob(Γ) (i.e., the function X → R, x 7→ µx(t), is Borel for every t ∈ Γ) such that

max
s∈E

∫
X

‖s.µx − µs.x‖1 dm(x) < ε.

Lemma 10.7. An action α : Γ → Homeo(X) is amenable if and only if the induced action
on C(X) is amenable in the sense of Definition 10.1.

Proof. The proofs of both directions are similar. First assume the action is amenable in the
sense of Definition 10.5. Let mi : X → Prob(Γ) be a sequence of continuous maps such that
for each s ∈ Γ,

lim
i→∞

(
sup
x∈X

‖s.mx
i −ms.x

i ‖1

)
= 0.

Define Si : Γ → C(X) by
Si(g)(x) = mx

i (g).

19As usual, compactness includes the Hausdorff axiom.
20By definition, Prob(Γ) is the set of probability measures on Γ – which we identify with the set of positive,

norm-one elements in `1(Γ). Continuity means with respect to the restriction of the weak-∗ topology on `1(Γ).
In other words, m : X → Prob(Γ) is continuous if and only if for each convergent net xi → x ∈ X we have
mxi(g) → mx(g) for all g ∈ Γ.
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Then for each x ∈ X we have ∑
g

Si(g)(x) =
∑
g

mx
i (g) = 1,

since mx
i is a probability measure. Defining T̃i(g) =

√
Si(g), it follows that for each i,

〈T̃i, T̃i〉 =
∑
g

T̃i(g)
2 = 1C(X).

21

Of course, the T̃i’s are not finitely supported (we will fix that later) but note that for each
x ∈ X,

(s ∗α T̃i)(g)(x) = αs
(
T̃i(s

−1g)
)
(x) = T̃i(s

−1g)(s−1.x) =

√
s.ms−1.x

i (g).

Using the inequality (a− b)2 ≤ |a2 − b2| for all positive numbers a, b, we then get

‖s ∗α T̃i − T̃i‖2
2 = sup

x∈X

(∑
g∈Γ

|
√
s.ms−1.x

i (g)−
√
mx
i (g)|2

)
≤ sup

x∈X

(∑
g∈Γ

|s.ms−1.x
i (g)−mx

i (g)|
)

x=s.y
= sup

y∈X

(∑
g∈Γ

|s.my
i (g)−ms.y

i (g)|
)

= sup
y∈X

‖s.my
i −ms.y

i ‖1 → 0.

Hence the T̃i’s have the right properties, except for finite support. Fixing this problem is
easy once we prove the following claim.

Claim. If T : Γ → C(X) is a positive function such that 〈T, T 〉 = 1C(X), then there exists
a sequence of finitely supported positive functions Tn : Γ → C(X) such that 〈Tn, Tn〉 = 1C(X)

for all n and

‖s ∗α Tn − Tn‖2 → ‖s ∗α T − T‖2,

for all s ∈ Γ.
To prove this claim, we let Fn ⊂ Fn+1 be a sequence of finite subsets of Γ such that⋃
Fn = Γ. Since ∑

g∈Γ

T (g)2 = 1C(X)

and convergence is uniform, it follows that for all sufficiently large n,∑
g∈Fn

T (g)2 > 0,

meaning bounded uniformly away from 0. Hence we can define Tn by declaring

Tn(g) =

√
1∑

g∈Fn
T (g)2

T (g),

for all g ∈ Fn and Tn(g) = 0 if g /∈ Fn. Tedious and unenlightening calculations (left to the
diligent few) show that these functions do the trick.

21Note that Dini’s Theorem implies this sum converges uniformly, since everything is positive.
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To prove the opposite direction of Lemma 10.7, one basically reverses the procedure above.
That is, define mx

i (g) = Ti(g)
2(x) and calculate away. It should be noted that the Cauchy-

Schwarz inequality gets used in the following way:∑
|a2
i − b2i | =

∑
|ai − bi|(ai + bi) ≤ ‖(ai)− (bi)‖2‖(ai) + (bi)‖2.

�

The proof of this lemma shows that if X is an amenable Γ-space, then we can assume
each map mi : X → Prob(Γ) has the property that there exists a finite set Fi ⊂ Γ with
supp(mx

i ) ⊂ Fi, for every x ∈ X. Here is a direct proof of this fact.

Lemma 10.8. Let m : X → Prob(Γ) be a continuous map. Then, for any ε > 0, there exist
m̃ : X → Prob(Γ) and a finite subset F ⊂ Γ such that supp m̃x ⊂ F and ‖mx − m̃x‖1 < ε
for all x ∈ X.

Proof. For every finite subset F ⊂ Γ, let U(F ) = {x ∈ X : ‖mxχF‖1 > 1− ε/2} ⊂ X, where
χF is the characteristic function of F . It is easily seen that {U(F )}F is an open cover of
X which is upward directed. Since X is compact, there exists F such that X = U(F ). It
follows that m̃x = mxχF + ‖mxχΓ\F‖1δe has the desired property. �

Exercises

Exercise 10.1. Assume Γ× Γ acts on C(X) and there exist two Γ× Γ-invariant subalgebras
A,B ⊂ C(X) such that (a) Γ×{e}|A is amenable while {e}×Γ|A is trivial and (b) Γ×{e}|B
is trivial while {e} × Γ|B is amenable. Prove that the action of Γ× Γ on C(X) is amenable.
(In addition to helping cement Definition 10.5 in your mind, this exercise will be needed
later; see Corollary 16.4.)

11. The Uniform Roe Algebra

Let Γ be a discrete group and E ⊂ Γ be a finite subset. The tube of width E is the subset
Tube(E) in Γ× Γ given by

Tube(E) = {(s, t) ∈ Γ× Γ : st−1 ∈ E}.22

By the generic term tube we mean a tube of width E for some finite subset E ⊂ Γ. The
uniform algebra (or the uniform Roe algebra) C∗

u(Γ) of Γ is the C∗-subalgebra of B(`2(Γ))
generated by C∗

λ(Γ) and `∞(Γ). Thinking of operators in B(`2(Γ)) as infinite matrices indexed
by Γ, it is instructive to convince yourself of the following fact: x = [xs,t]s,t∈Γ ∈ B(`2(Γ))
belongs to the ∗-algebra generated by λ(C[Γ]) and `∞(Γ) if and only if x is supported in a
tube (i.e., there exists a finite set E ⊂ Γ such that xs,t = 0 whenever (s, t) /∈ Tube(E)).23

It turns out that the uniform Roe algebra is an old friend incognito.

Proposition 11.1. Let α : Γ → Aut(`∞(Γ)) be the left translation action. Then

C∗
u(Γ) ∼= `∞(Γ) oα,r Γ.

22One should be careful about st−1 and s−1t. We use here the right invariant tube so that λ(s) is
supported on a tube. However, when we deal with the Cayley graph later, we use the left invariant metric
to make the left multiplication action isometric.

23If you aren’t familiar with this point of view, it is good to start with `∞(Γ); all of these operators
are supported in Tube({e}). Next consider an element from the group ring λ(C[Γ]). Such an operator is
“constant down the diagonals,” so which tube is it supported in?
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Proof. We may apply the construction of `∞(Γ)oα,rΓ to any faithful representation of `∞(Γ),
so we start with the canonical inclusion `∞(Γ) ⊂ B(`2(Γ)).

Define a unitary U : `2(Γ) ⊗ `2(Γ) → `2(Γ) ⊗ `2(Γ) by U(δx ⊗ δy) = δx ⊗ δyx. Now we
compute

Uπ(f)(δs ⊗ δt) = U((α−1
t (f)δs)⊗ δt)

= U((f(ts)δs)⊗ δt)

= f(ts)δs ⊗ δts

= δs ⊗ (f(ts)δts)

= (1⊗ f)(U(δs ⊗ δt)).

It follows that Uπ(f)U∗ = 1 ⊗ f for all f ∈ `∞(Γ). A similar calculation shows that U
commutes with 1⊗ λg for all g ∈ Γ and hence

U(`∞(Γ) oα,r Γ)U∗ = C1⊗ C∗(`∞(Γ), C∗
λ(Γ)) ∼= C∗

u(Γ).

�

Note that `∞(Γ)oα,rΓ is universal in the following sense: ifX is a compact Hausdorff space
with homeomorphic Γ-action β, then there is a covariant homomorphism C(X) → `∞(Γ).
To see this simply pick a point x ∈ X, consider the orbit {βg(x) : g ∈ Γ}, and define a
homomorphism C(X) → `∞(Γ) by restriction: f 7→ (f(βg(x)))g∈Γ. It is an easy exercise to
check that if β is an amenable action, then translation on `∞(Γ) is also amenable – simply
map the functions T : Γ → C(X) over to `∞(Γ) using the covariant map C(X) → `∞(Γ).
It follows that Γ admits an amenable action on some compact space if and only if the left
translation action on `∞(Γ) is amenable.

Corollary 11.2. If Γ admits an amenable action on some compact Hausdorff space, then
C∗
u(Γ) is nuclear.

12. Exact C∗-algebras and Solid von Neumann Algebras

Though I won’t get into the details, there is an important connection with exactness that
must be mentioned.

Definition 12.1. A C∗-algebra A is exact if there exists a faithful, nuclear ∗-representation
π : A→ B(H). A discrete group Γ is exact if C∗

λ(Γ) is exact.

As with nuclearity, this is not the historically correct definition. A deep theorem of
Kirchberg states that the original definition (which involved tensor products and short exact
sequences) is equivalent to the definition above.

The following result connects exactness with amenable actions. It is due to Ozawa (and,
independently, Anantharaman-Delaroche), following an important contribution by Guentner
and Kaminker. See [2, Chapter 5] for details.

Theorem 12.2. For a discrete group Γ, the following are equivalent:

(1) Γ is exact;
(2) C∗

u(Γ) is nuclear;
(3) Γ acts amenably on some compact topological space.

Moreover, if Γ is countable and exact, then Γ acts amenably on a compact metrizable space.

It turns out that exact C∗-algebras enjoy an important approximation property that isn’t
as well known as it should be.
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Definition 12.3. A C∗-algebra A is locally reflexive if for every finite-dimensional operator
system24 E ⊂ A∗∗, there exists a net of c.c.p. maps ϕi : E → A which converges to idE in
the point-ultraweak topology.

The following result is due to Kirchberg, but depends on some older tensor product work
of Archbold and Batty. See [2, Chapter 9] for details.

Theorem 12.4. Exact C∗-algebras are locally reflexive.

Though it’s technical and hard (at this point) to see the significance of, let’s prove an
important lemma which illustrates the usefulness of local reflexivity.

Lemma 12.5. Let M ⊂ B(H) be a von Neumann algebra which contains a weakly dense exact
C∗-algebra B ⊂M . Assume N ⊂M is a von Neumann subalgebra with a weakly continuous
conditional expectation Φ: M → N , such that there exists a u.c.p. map Ψ: B(H) →M with
the property that Φ|B = Ψ|B. Then N is injective.

Proof. Let E ⊂ N be a finite-dimensional operator system and ϕn : E → B be contractive
c.p. maps converging to idE in the point-ultraweak topology. By Arveson’s Extension The-
orem, we may assume each ϕn is defined on all of B(H) (and now takes values in B(H)).
Then one readily checks that Φ ◦Ψ ◦ϕn : B(H) → N are u.c.p. maps with the property that
Φ ◦Ψ ◦ ϕn(x) → x ultraweakly for all x ∈ E (since Φ ◦Ψ ◦ ϕn(x) = Φ(ϕn(x)) for all x ∈ E).
Taking a cluster point in the point-ultraweak topology we get a u.c.p. map θE : B(H) → N
which restricts to the identity on E. Taking another cluster point of the maps θE (over
all finite-dimensional operator systems E ⊂ N) we get the desired conditional expectation
B(H) → N . �

Specializing to group von Neumann algebras and applying The Trick we get:

Lemma 12.6. Assume Γ is exact and let N ⊂ L(Γ) be a von Neumann sublagebra with
trace-preserving conditional expectation Φ: L(Γ) → N . If

Φ|C∗
λ(Γ) × idC∗

ρ (Γ) : C
∗
λ(Γ)� C∗

ρ(Γ) → B(`2(Γ))

is ⊗-continuous, then N is injective.

Proof. Since C∗
λ(Γ)⊗C∗

ρ(Γ) ⊂ B(`2(Γ))⊗C∗
ρ(Γ), The Trick applied to Φ|C∗

λ(Γ)× idC∗
ρ (Γ) yields

a u.c.p. map Ψ: B(`2(Γ)) → L(Γ) such that Ψ|C∗
λ(Γ) = Φ|C∗

λ(Γ). Hence Lemma 12.5 completes
the proof. �

Definition 12.7. A von Neuman algebra M is called solid if the relative commutant of
every diffuse von Neumann subalgebra is injective.

The consequences of this definition will be discussed later, but now is an appropriate time
to prove a celebrated theorem of Ozawa.

Theorem 12.8 (Ozawa, 2003). Assume Γ is exact and the canonical map C∗
λ(Γ)�C∗

ρ(Γ) →
B(`2(Γ)) → B(`2(Γ))/K(`2(Γ)) is ⊗-continuous. Then L(Γ) is solid.

Proof. Let M ⊂ L(Γ) be diffuse and A ⊂M be a masa (in M). Since A′∩L(Γ) ⊃M ′∩L(Γ)
and there is a conditional expectation A′ ∩L(Γ) →M ′ ∩L(Γ), it suffices to prove A′ ∩L(Γ)
is injective. Since M is diffuse, A is non-atomic – i.e., A ∼= L∞[0, 1]. Hence we can find a
generating unitary u ∈ A such that un → 0 ultraweakly.

24That is, E is a self-adjoint linear subspace containing the unit of A∗∗.
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Let N = A′ ∩L(Γ) and Φ: L(Γ) → N be the unique trace-preserving conditional expecta-
tion. As is well known, we can define a conditional expectation Ψ: B(`2(Γ)) → A′∩B(`2(Γ))
by taking a cluster point of the maps

ϕn(T ) :=
1

n

n∑
i=1

uiTu−i.

Evidently Ψ|L(Γ) is a trace-preserving conditional expectation of L(Γ) onto N ; hence, by
uniqueness, Ψ|L(Γ) = Φ. Moreover, since C∗

ρ(Γ) ⊂ A′ ∩ B(`2(Γ)) we have that C∗
ρ(Γ) lies in

the multiplicative domain of Ψ. Thus,

Ψ(
k∑
j=1

xjyj) =
k∑
j=1

Φ(xj)yj,

for all xj ∈ L(Γ) and yj ∈ C∗
ρ(Γ). In particular,

Φ|C∗
λ(Γ) × idC∗

ρ (Γ)(x⊗ y) = Φ(x)y = Ψ(xy),

for all x ∈ C∗
λ(Γ) and y ∈ C∗

ρ(Γ).
By Lemma 12.6, to prove N is injective, it suffices to show that

Φ|C∗
λ(Γ) × idC∗

ρ (Γ) : C
∗
λ(Γ)� C∗

ρ(Γ) → B(`2(Γ))

is ⊗-continuous. However, by the previous paragraph, and our assumption that

C∗
λ(Γ)� C∗

ρ(Γ) → B(`2(Γ)) → B(`2(Γ))/K(`2(Γ))

is ⊗-continuous, it suffices to show that Ψ contains K(`2(Γ)) in its kernel (since this means it
factors through the Calkin algebra). But this is a routine exercise, so the proof is complete.

�

Of course, Ozawa’s theorem would be of little interest if it didn’t apply to any examples.
So our next task is to provide such examples. Though it isn’t easy, we’ll eventually see that
all hyperbolic groups satisfy the hypotheses of Theorem 12.8. Before that, however, let’s
give a simple consequence of the definition of solidity. A II1-factor M is said to be prime if
it can’t be written as the tensor product of two II1-factors.

Proposition 12.9. If M is a solid II1-factor and N ⊂M is a non-injective subfactor, then
N is prime.

Proof. Assume N is not prime. Then we can write N = N1⊗̄N2 where N1 is diffuse and N2

is not injective. By definition, the relative commutant of N1 (in M) is injective. But this
commutant contains N2, which is a contradiction (since there is a conditional expectation
N ′

1 ∩M → N2). �

13. The Case of Free Groups

There are several different ways of proving exactness for free groups. Here is a straight-
forward proof based on measures.

Proposition 13.1. Free groups are exact.

Proof. It suffices to show F2 is exact. For t ∈ F2 of length l with reduced form t = t1 · · · tl,
we denote t(k) = t1 · · · tk for k ≤ l and t(k) = t for k > l. Fix N ∈ N and define
m : F2 → Prob(F2) by

mt =
1

N

N−1∑
k=0

δt(k).
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Clearly, all mt are supported on the finite set of elements in F2 with length < N . An
instructive calculation left to the reader confirms that ‖s.mt − mst‖ ≤ 2|s|/N for every
s, t ∈ F2. Letting N →∞ completes the proof. �

The proof above is more transparent when viewed geometrically in the Cayley graph of
F2. Moreover, a geometric point of view will be crucial in the next two sections, so let’s
develop our intuition by proving that free groups act amenably on their ideal boundaries.

Fix r ∈ N and let Fr = 〈g1, . . . , gr〉 be the rank-r free group (think of the r = 2 case for
now). Then, its ideal boundary is the set

∂Fr = {(ai) ∈
∏
N

{g1, g
−1
1 , . . . , gr, g

−1
r } : ∀i ∈ N, ai+1 6= a−1

i }.

The complement of ∂Fr (in
∏

N{g1, g
−1
1 , . . . , gr, g

−1
r }) is easily seen to be open in the product

topology; hence ∂Fr is compact. For geometric intuition, it is better to identify ∂Fr with the
set of infinite paths in the Cayley graph of Fr which start at the neutral element. Indeed,
given x = (xi) ∈ ∂Fr, we first think of x as the infinite word x1x2x3 · · · (note that this
is in reduced form, since no cancellation occurs); then we identify this word with the path
determined by the sequence of vertices {x1, x1x2, x1x2x3, . . .} in the Cayley graph of Fr.
Thinking of ∂Fr as infinite reduced words, it is easy to see that Fr acts continuously on ∂Fr
by left multiplication (and rectifying possible cancellation).

For x ∈ ∂Fr with reduced word form x = x1x2 · · · , we set x(0) = e and x(k) = x1 · · ·xk
for all k > 0. Fix N ∈ N and define a continuous map µ : ∂Fr → Prob(Fr) by

µx =
1

N

N−1∑
k=0

δx(k).

Looking at the Cayley graph in Figure 1, µx is just the normalized characteristic function
of the first N steps along the infinite path determined by x. Here’s an important observa-
tion/exercise: For each s ∈ Fr and x ∈ ∂Fr, there exists a unique geodesic path starting at
s and eventually merging with the path determined by s.x ∈ ∂Fr (see Figure 2); moreover,
s.µx is just the normalized characteristic function of the first N steps along this geodesic.

r r r r rr rr r
r r r

r r r

r

r
e

qx ∈ ∂F2

F2

�

Figure 13.1. The Cayley
graph of F2 and the boundary
∂F2

���qs A
A q
e

�
�
�
�

�
qs.x

q
µs.x
q

s.µx

Figure 13.2. Amenability of
F2 acting on ∂F2

With this geometric picture in mind, one checks that ‖s.µx−µs.x‖ ≤ 2|s|/N for all s ∈ Fr
and x ∈ ∂Fr. Letting N →∞, this shows that Fr acts amenably on its ideal boundary.
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14. Groups Acting on Trees

For any Γ-space K, we denote the stabilizer subgroup of a ∈ K by Γa = {s ∈ Γ : s.a = a}.
Our goal here is to show that a group acting on a tree is exact whenever all the vertex
stabilizers are exact. This gives an alternate proof of the fact that amalgamated free products
of exact groups are exact, since Γ = Γ1 ∗Λ Γ2 acts on a tree in such a way that the vertex
stabilizers are conjugates of Γ1 or Γ2.

The flexibility provided by Borel maps makes the following result very useful.

Proposition 14.1. Let Γ be a countable group, X a compact Γ-space and K a countable
Γ-space. Assume that the stabilizer subgroups Γa are exact, for all a ∈ K, and that there
exists a net of Borel maps ζn : X → Prob(K) (i.e., the function X 3 x 7→ ζxn(a) ∈ R is Borel
for every a ∈ K) such that

lim
n

∫
X

‖s.ζxn − ζs.xn ‖ dm(x) = 0

for every s ∈ Γ and every regular Borel probability measure m on X. Then Γ is exact.
Moreover, if X is amenable as a Γa-space for every a ∈ K, then X is an amenable Γ-space.

Proof. We first claim that for every ε > 0 and finite subset E ⊂ Γ, there exists a continuous
map η : X → Prob(K) such that

max
s∈E

sup
x∈X

‖s.ηx − ηs.x‖ < ε.

Let E ⊂ Γ be a fixed finite symmetric subset containing e. For every continuous map
η : X → Prob(K), we define fη ∈ C(X) by

fη(x) =
∑
s∈E

‖s.ηx − ηs.x‖ =
∑
s∈E

∑
a∈K

|ηx(s−1.a)− ηs.x(a)|.

Observe that fP
k αkζk ≤

∑
k αkfζk for every αk ≥ 0 with

∑
k αk = 1. Hence, it suffices to

show that 0 is in the norm-closed convex hull of {fη : η : X → Prob(K) is continuous}. By
the Hahn-Banach separation theorem, it actually suffices to show 0 is in the weak closure of
this set. That is, by the Riesz representation theorem, we must show that for every finite
set of regular Borel probability measures µ1, . . . , µn on X, there exists a continuous function
η : X → Prob(K) such that

∫
fη dµi < ε, for i = 1, . . . , n.

Letting m = 1
n

∑
µi, a little thought reveals that we really only have to find η such that∫

fη dm < ε (for a smaller ε than that above). So, let ε > 0 be arbitrary. By assumption,
there exists a Borel map ζ : X → Prob(K) such that∑

s∈E

∫
X

‖s.ζx − ζs.x‖ dm(x) <
ε

9
.

Fubini’s Theorem and the fact that ζs.x is a probability measure implies

1 =

∫
X

(∑
a∈K

ζs.x(a)
)
dm(x) =

∑
a∈K

∫
X

ζs.x(a) dm(x),

for every s. Hence we can find a finite subset F ⊂ K such that∑
s∈E

∫
X

∑
a∈Γ\F

ζs.x(a) dm(x) <
ε

9
.
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By Lusin’s Theorem (applied to the measure
∑

s∈E s.m) we can approximate, for each a ∈ F ,
the Borel function x 7→ ζx(a) by a continuous function x 7→ ηx(a) so that

∑
s∈E

∑
a∈F

∫
X

|ηs.x(a)− ζs.x(a)| dm(x) <
ε

9
.

Now fix a0 ∈ K \F and define ηx(a0) = 1−
∑

a∈F η
x(a), for every x ∈ X. For b /∈ F ∪{a0} we

define ηx(b) = 0 for all x ∈ X. We may assume that ηx(a0) ≥ 0 and regard η as a continuous
map η : X → Prob(K) such that supp ηx ⊂ F ∪ {a0} for all x ∈ X. It follows that

∑
s∈E

∫
X

‖ηs.x − ζs.x‖ dm(x) <
4ε

9
.

This implies ∫
X

fη(x) dm(x) <

∫
X

∑
s∈E

‖s.ζx − ζs.x‖ dm(x) +
8ε

9
< ε

and we obtain the claim.
Now, let a finite subset E ⊂ Γ and ε > 0 be given. By our work above, there exists a

continuous map η such that supx∈X ‖s.ηx − ηs.x‖ < ε for every s ∈ E. We may assume
that there exists a finite subset F ⊂ Γ such that supp ηx ⊂ F for all x ∈ X. Picking one
point out of every orbit, we can find a Γ-fundamental domain V ⊂ K – i.e., K decomposes
into the disjoint union

⊔
v∈V Γv – and let v : K → V be the corresponding projection (v

takes every element in an orbit to its representative in V ). Next we fix a cross section
σ : K → Γ such that a = σ(a).v(a) for every a ∈ K. Since the map v is constant along
orbits, σ(s.a)−1sσ(a) ∈ Γv(a) for every s ∈ Γ and a ∈ K. For each v ∈ V , we set

Ev = {σ(s.a)−1sσ(a) : a ∈ F ∩ Γv and s ∈ E} ⊂ Γv.

Let Y be a compact Γ-space which is amenable as a Γv-space for every v ∈ V . (Such Y
always exists when each Γa is exact – take Y = βΓ). The proof of our proposition will be
complete once we see that X×Y is an amenable Γ-space (with the diagonal action). Indeed,
this will imply Γ is exact; moreover, if we can take Y = X, then the diagonal embedding
X ↪→ X × X is Γ-equivariant and continuous – hence amenability of X will follow from
amenability of the diagonal action on X×X. Since Y is Γv-amenable and Ev is finite, there
exists a continuous map νv : Y → Prob(Γ) such that

max
s∈Ev

sup
y∈Y

‖s.νyv − νs.yv ‖ < ε.

Now, we define µ : X × Y → Prob(Γ) by

µx,y =
∑
a∈F

ηx(a)σ(a).ν
σ(a)−1.y
v(a) .
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The map µ is clearly continuous. Moreover, we have

s.µx,y =
∑
a∈K

ηx(a) sσ(a).ν
σ(a)−1.y
v(a)

=
∑
a∈F

ηx(a)σ(s.a).
(
σ(s.a)−1sσ(a).ν

σ(a)−1.y
v(a)

)
≈ε

∑
a∈K

ηx(a)σ(s.a).ν
σ(s.a)−1s.y
v(s.a)

≈ε

∑
a∈K

ηs.x(s.a)σ(s.a).ν
σ(s.a)−1s.y
v(s.a)

= µs.x,s.y

for every s ∈ E and (x, y) ∈ X × Y . �

Remark 14.2. This result really does generalize the fact that extensions of exact groups are
exact. Let Γ be a group and Λ / Γ be a normal subgroup such that Λ and Γ/Λ are exact.
The hypotheses of Proposition 14.1 are satisfied with X = β(Γ/Λ) and K = Γ/Λ.

The hard work is essentially over. We now recall lots of definitions and prove a few
well-known facts about trees, compactifications and groups acting on these objects.

Let T be a tree, which we identify (as a metric space) with its vertex set. A finite or
infinite sequence x(0), x(1), . . . in T is called a geodesic path if d(x(n), x(m)) = |n −m| for
every n and m.25 For convenience, if (x(n))Nn=0 is a finite geodesic path, then we extend
it to an infinite sequence by setting x(m) = x(N) for every m ≥ N ; we still call this
sequence a (finite) geodesic, even though it isn’t, strictly speaking. Two geodesic paths x
and x′ are equivalent if they eventually flow together, i.e., if there exist m0, n0 ∈ N such
that x(m0 + n) = x′(n0 + n) for every n ≥ 0. We can (and will) identify T with a subset
of the equivalence classes of geodesics: every point x in T is identified with the equivalence
class of geodesic paths ending at x. The ideal boundary ∂T of T is defined as the set of
all equivalence classes of infinite geodesic paths. We define the compactification of the tree
T to be T̄ = T t ∂T (a topology will be described shortly). If (x(n))n is a geodesic path
with equivalence class x ∈ T̄, then we say the geodesic path (x(n))n connects x(0) with
x. For a bi-infinite geodesic path (x(n))∞n=−∞, we let x(∞) ∈ ∂T (resp. x(−∞) ∈ ∂T) be
the equivalence class of the geodesic path (x(n))n≥0 (resp. (x(−n))n≥0), and we say (x(n))n
connects x(−∞) with x(∞).

Lemma 14.3. Let x ∈ T and y ∈ ∂T. Then, there exists a unique geodesic connecting x
with y.

Proof. Pictorially, the proof is totally transparent. Here’s the recipe in words: Let (y(n))
be a representative of y and let (w(j))Nj=1 be a finite geodesic connecting x with y(0) (which
exists, since T is connected). Let N0 ≤ N be the first integer such that there exists n0 with
w(N0) = y(n0) – i.e., find the first point of intersection of the two geodesics. Define a new
geodesic (z(k)) by z(k) = w(k) for 1 ≤ k ≤ N0 and z(k) = y(n0 + (k − N0)) for k > N0.
Evidently (z(k)) is a geodesic connecting x with y.

Uniqueness of (z(k)) follows from the fact that T is a tree – any other geodesic connecting
x with y would yield a loop in T. �

The lemma above is really a special case. Indeed, essentially the same proof yields the
following fundamental fact (left to the reader): If x, y ∈ T̄, then there exists a geodesic

25In a tree, a path is geodesic if and only if it never backtracks.
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connecting x with y (since T is connected), and it is unique (since T is a tree); this path
will be denoted [x, y].

If [x,w0] is a finite geodesic path and [w0, y] is any other geodesic, then we let [x,w0]∪[w0, y]
denote the concatenation of these two paths (which is equal to [x, y], of course). The following
important lemma will be used repeatedly.

Lemma 14.4. Given x, y, z ∈ T̄, [x, y] ∩ [y, z] ∩ [z, x] is a singleton (i.e., there exists a
unique point w0 ∈ T such that [x, y] = [x,w0] ∪ [w0, y], [x, z] = [x,w0] ∪ [w0, z] and [y, z] =
[y, w0] ∪ [w0, z]).

Proof. Again, the proof is trivial pictorially, so we only state the main idea. First note that
[x, y] and [z, y] are equivalent geodesics. Letting w0 be the first point of intersection of [x, y]
and [z, y], the remainder of the proof is routine. �

We’re now ready to topologize T̄. For x ∈ T̄ and a finite subset F ⊂ T, we define

U(x;F ) = {x} ∪ {y ∈ T̄ : [x, y] ∩ F = ∅}.

One checks that {U(x;F )}x,F forms a basis for a topology (if x ∈ U(x1, F1) ∩ U(x2, F2),
then Lemma 14.4 implies that U(x, F1 ∪ F2) ⊂ U(x1, F1)∩U(x2, F2)) and that the resulting
topology is Hausdorff (given x, y, and any point z0 6= x, y on the geodesic [x, y], Lemma 14.4
implies U(x, {z0})∩U(y, {z0}) = ∅; and if x and y are adjacent, then U(x, {y})∩U(y, {x}) =
∅). This topology is very visual: cut finitely many edges in T and the connected components
of T̄ are open (first verify this when only one edge is cut). Finally, it is worth checking that
for a point x ∈ T, the set {x} is open if and only if x has finite degree.

Proposition 14.5. The topological space T̄ is compact and any automorphism (i.e., isomet-
ric bijection) of the tree T extends to a homeomorphism of T̄.

Proof. We must show that any net (xα)α∈A in T̄ has an accumulation point.
Fix a base point o ∈ T and identify every xα ∈ T̄ with the unique geodesic path connecting

o to xα. Let N be the largest integer (possibly 0 or ∞) such that there exist x(0), . . . , x(N)
satisfying

N⋂
n=0

{α ∈ A : xα(n) = x(n)} ∈ U .

We observe that for each n there exists at most one x(n) such that {α : xα(n) = x(n)} ∈ U
and such that (x(n))Nn=0 is a geodesic path. Thus, if N = ∞, then the boundary point
represented by (x(n))∞n=0 is an accumulation point. On the other hand, if N < ∞, then
x(N) is an accumulation point. Thus T̄ is compact.

If s is an automorphism of T, then it naturally acts on T̄ = T t ∂T. Namely, for every
x ∈ T̄, we define s.x ∈ T̄ to be the equivalence class of the geodesic path (s.x(n))n, where
(x(n))n is a representative of x. It is routine to check that this is a homeomorphism. �

Lemma 14.6. Let T be a countable tree with fixed base point o. There exists a sequence of
Borel maps

ζn : T̄ → Prob(T)

such that

sup
x∈T̄

‖s.ζxn − ζs.xn ‖ ≤ 2d(s.o, o)

n

for every automorphism s on T.
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Proof. As before, we identify every x ∈ T̄ with the unique geodesic path (x(n))n connecting
o to x. (Recall our convention that x(k) = x when x ∈ T and k ≥ dist(x, o).) The maps ζn,
defined by

ζxn =
1

n

n−1∑
k=0

δx(k) ∈ Prob(T),

satisfy the desired inequality. Indeed, s.ζxn(p) > 0 if and only if s−1.p is one of the first n
points in the geodesic from o to x; equivalently, p is one of the first n points in the geodesic
from s.o to s.x. Similarly, ζs.xn (q) > 0 if and only if q is one of the first n points in the geodesic
from o to s.x. Hence, for n > d(s.o, o) we have cancellation in the difference s.ζxn − ζs.xn ,
because the geodesics from s.o to s.x and o to s.x are equivalent.

Finally, it is easy to see that the ζn’s are Borel since the set {x ∈ T̄ : x(k) = z} is clopen
in T̄ for every k ≥ 0 and z ∈ T. �

Theorem 14.7. Let Γ be a countable group and T be a countable tree on which Γ acts. If
every vertex stabilizer Γx of x ∈ T is exact, then Γ is exact. In particular, an amalgamated
free product of exact groups is exact.

Proof. This follows from Proposition 14.1 and Lemma 14.6. �

We close this section with a result that won’t be needed until later.

Lemma 14.8. Let Γ be a group and T be a tree on which Γ acts. Let (sn) be a net in Γ
such that sn /∈ sΛ eventually26 for every s ∈ Γ and every edge stabilizer Λ. If sn.x → z for
some x ∈ T and z ∈ T̄, then sn.y → z for every y ∈ T.

Proof. We consider the open neighborhood of z given by a finite set F of edges in T. It
suffices to show that the geodesic paths [sn.x, sn.y] between sn.x and sn.y do not cross F
eventually. Since [sn.x, sn.y] = sn.[x, y], this reduces to showing that sn.e 6= e′ eventually
for any edges e, e′ in T. Take s ∈ Γ such that se = e′. (If there is no such s, then we are
already done.) Then sn.e = e′ if and only if sn ∈ sΓe, where Γe is the edge stabilizer of e.
Hence sn.e 6= e′ eventually, by assumption. �

Exercises

Exercise 14.1. Let X be a compact space which has no isolated points. Prove that the
cardinality of X is at least c (cardinality of the continuum).

Exercise 14.2. Let X be a compact Γ-space whose cardinality is countable. Prove that there
is a point x ∈ X whose stabilizer subgroup Γx has finite index in Γ. (This explains the fact
that Γ is exact if each stabilizer subgroup Γx is exact, which follows from Proposition 14.1
with K = X and ζ : X 3 x 7→ δx ∈ Prob(K).)

Exercise 14.3. Let T be a countable tree which has no infinite geodesic path. Prove that
Aut(T) fixes either a point or an unoriented edge (i.e., a pair of points).

15. Hyperbolic groups

In this section we study an important class of graphs, namely those which are hyperbolic
in the sense of Gromov. The main result is that groups which act properly on such graphs
are exact.

Let K be a connected graph. We view K as a discrete metric space with the graph
metric d. As in the previous section, a geodesic path α is a sequence of vertices such that

26That is, ∀s,∀Λ there exists n0 such that ∀n, n ≥ n0 ⇒ sn /∈ sΛ.
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d(α(m), α(n)) = |m− n| for every m and n. Since K is connected, for every pair x, y ∈ K,
there exists a (not necessarily unique) geodesic path connecting x to y. Though not exactly
well-defined, we often use [x, y] to denote a geodesic path from x to y (multiple such geodesics
may exist). For every subset A ⊂ K and r > 0, we define

d(x,A) = inf{d(x, a) : a ∈ A} and Nr(A) = {x ∈ K : d(x,A) < r}.
The set Nr(A) is called the r-tubular neighborhood of A in K. For subsets A,B ⊂ K, the
Hausdorff distance between A and B is defined by

dH(A,B) = inf{r : A ⊂ Nr(B) and B ⊂ Nr(A)}.

Definition 15.1. Let K be a connected graph. A geodesic triangle 4 in K consists of three
points x, y, z in K and three geodesic paths [x, y], [y, z], [z, x] connecting them.

Definition 15.2 (Hyperbolic graph). For δ > 0, we say a geodesic triangle 4 is δ-slim if
each of its sides is contained in the open δ-tubular neighborhood of the union of the other
two – i.e., [x, y] ⊂ Nδ([y, z] ∪ [z, x]) and similarly for the other two sides. We say that the
graph K is hyperbolic if there exists δ > 0 such that every geodesic triangle in K is δ-slim.

Note that hyperbolicity makes sense for any geodesic metric space (i.e., metric space
where geodesics always exist). To get a feel for this concept, one should check that a tree is
ε-hyperbolic (i.e., every geodesic triangle is ε-slim) for every ε > 0.

A comparison tripod is a geodesic triangle in a tree. It is not too hard to see that for
every geodesic triangle 4 in a graph K there exist a unique tripod and a unique map f
from 4 into the tripod that is isometric on all edges. Indeed, the lengths of the legs of the
comparison tripod are determined by the Gromov product

〈y, z〉x =
1

2
(d(y, x) + d(z, x)− d(y, z)).27

Definition 15.3. For δ > 0, we say that a geodesic triangle 4 is δ-thin if u, v ∈ 4 and
f(u) = f(v) imply that d(u, v) < δ, where f is the unique map to 4’s comparison tripod.
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Figure 15.1. Thin geodesic triangle
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Figure 15.2. Comparison tripod

It is clear that any δ-thin geodesic triangle is δ-slim. The converse almost holds.

Proposition 15.4. Let K be a hyperbolic graph. Then there exists δ > 0 such that every
geodesic triangle 4 is δ-thin.

Proof. It will be convenient to think of K with the edges thrown in and each having length
1; that is, view K as a (continuous, rather than discrete) connected geodesic metric space.
We will show that if every geodesic triangle in K is δ-slim, then they are all 4δ-thin.

27This number is the distance from x to the intersection point in Figure 15.2. It is not an integer, in
general, of course.
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Let 4 = [x, y]∪ [y, z]∪ [z, x] be a geodesic triangle and choose points u on [x, y] and v on
[z, x] such that

d := d(u, x) = d(v, x) ≤ 〈y, z〉x.
By the intermediate value theorem, there is y′ on [x, y] such that 〈y′, z〉x = d. We note that
u is on the subpath [x, y′] of [x, y]. Let [y′, z] be any geodesic connecting y′ to z and let w
be the point on [y′, z] such that d(w, y′) = d(u, y′). It follows that f(u) = f(v) = f(w) for
the unique comparison map f from the geodesic triangle 4′ = [x, y′] ∪ [y′, z] ∪ [z, x] onto its
comparison tripod. Since 4′ is δ-slim, u ∈ Nδ([y

′z] ∪ [z, x]) and v ∈ Nδ([x, y
′] ∪ [y′z]). If

u ∈ Nδ([z, x]) or v ∈ Nδ([x, y
′]), then we must have d(u, v) < 2δ by the triangle inequality.

Otherwise, we have d(u,w) < 2δ and d(v, w) < 2δ. Therefore, we have d(u, v) < 4δ in either
case. �

Now let Γ be a finitely generated group and S be a finite symmetric set of generators.
We always equip the Cayley graph X(Γ,S) with the graph metric d (which is left invariant).
Suppose that S ′ is another finite symmetric set of generators and let d′ be the graph metric
on X(Γ,S ′). The vertex sets of X(Γ,S) and X(Γ,S ′) are the same, of course; however their
metric structures are different. But not that different. Indeed, if we choose n ∈ N so that
S ⊂ (S ′)n = {s1s2 · · · sn : si ∈ S ′} and S ′ ⊂ Sn, then it is readily seen that

n−1d(x, y) ≤ d′(x, y) ≤ nd(x, y)

for every x, y ∈ Γ. Thus the formal identity from X(Γ,S) to X(Γ,S ′) is quasi-isometric.
More generally, we say that a map f : (K, d) → (K ′, d′) between metric spaces is a quasi-
isometric embedding if there exist C ≥ 1 and r > 0 such that

C−1d(x, y)− r ≤ d′(f(x), f(y)) ≤ Cd(x, y) + r

for every x, y ∈ K. Thus, if Γ is finitely generated, its Cayley graph (with respect to a finite
generating set) is unique up to quasi-isometry. Hence it is natural to look for properties
which are quasi-isometry invariants, as they will provide invariants of groups.

Hyperbolicity turns out to be just such an invariant. This follows from the important
fact that hyperbolic metric spaces enjoy geodesic stability – i.e., if a path is “close to being
geodesic,” then it is close (in Hausdorff distance) to an honest geodesic. To make this precise,
we must define “close to being geodesic.” For C ≥ 1 and r > 0, we say that a finite sequence28

α in K is (C, r)-quasigeodesic if

C−1d(α(m), α(n))− r ≤ |m− n| ≤ Cd(α(m), α(n)) + r

for every m,n.

Proposition 15.5. Let K be a hyperbolic graph, C ≥ 1 and r > 0. Then, there exists D > 0
with the following property: For any (C, r)-quasigeodesic sequence α and any geodesic path
β having the same origin and terminal point as α, one has dH(α, β) < D.

In particular, a graph is hyperbolic if it quasi-isometrically embeds into some hyperbolic
graph.29

Proof. Let α and β be given. We set D0 = max{d(p, α) : p on β} (hence β is contained in
the D0 tubular neighborhood of α).

Now suppose that q0 is a point on α such that d(q0, β) ≥ D0. By maximality of D0,
for every point u on β, there exists a point u′ on α such that d(u, u′) ≤ D0. Since the
endpoints of α and β are the same, “the intermediate value theorem” implies the existence

28It is important that we don’t require α to be a path in this definition, because quasi-isometric embeddings
don’t always map paths to paths – i.e., neighbors need not map to neighbors.

29Think about the δ-slim condition and this is easily deduced.
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of consecutive u0, u1 on β such that u′0 is on the origin (or “left”) side and u′1 is on the
terminus (or “right”) side of q0. (That is, u′ is on the left of q0 when u is the starting point
of β, and it is on the right when u is the endpoint – hence there is a place where u′ jumps
over q0.) Since d(u′0, u

′
1) ≤ 2D0 + 1, the length of the subsequence of α from u′0 to u′1 is at

most C(2D0 + 1) + r. It follows that

d(u0, q0) ≤ d(u0, u
′
0) + d(u′0, q0) ≤ D0 + C(C(2D0 + 1) + 2r).

Therefore, we have dH(α, β) ≤ D for D = D0 + C(C(2D0 + 1) + 2r). Hence, we must show
that D0 is bounded above by a function depending only on δ, C and r, where δ is the constant
satisfying Definition 15.2.

Choose a point p0 on β such that d(p0, α) = D0. Choose two points b0 and b1 on β,
one coming before p0 and one after, such that d(b0, p0) = 2D0 = d(b1, p0) – or, if this isn’t
possible, take an endpoint of β. Let ak, k = 1, 2, be points on α such that d(bk, ak) = d(bk, α)
and choose geodesic paths γ0 and γ1 connecting b0 to a0 and b1 to a1, respectively. (Note
that if bk is an endpoint, then ak = bk, so we take γk to be the single point ak = bk in this
case.) Maximality of D0 implies that d(bk, ak) ≤ D0, and hence d(p0, γk) ≥ D0. Let α′ be
the subsequence of α connecting a0 to a1. (It may flow backward.) Since

d(a0, a1) ≤ d(a0, b0) + d(b0, b1) + d(b1, a1) ≤ 6D0

and α is a (C, r)-quasigeodesic path, the length of α′ is at most 6CD0 + r. By joining γ0,
α′ and γ1, we obtain a sequence γ connecting b0 to b1. For the reader’s convenience, we list
the properties of γ: it connects b0 to b1; d(p0, γ) ≥ D0; the length |γ| of the sequence γ is at
most (6C + 2)D0 + r; and d(γ(k), γ(k + 1)) ≤ C(1 + r) for every k.

Now we apply the Weierstrass bisection process. Set b0k = bk, p
0
0 = p0 and γ0 = γ. Let c0

be (one of) the midpoint(s) of γ0 and consider a geodesic triangle [b00, c
0] ∪ [c0, b01] ∪ [b01, b

0
0].

Since K is hyperbolic, there exists p1
0 in [b00, c

0] ∪ [c0, b01] such that d(p0
0, p

1
0) ≤ δ. If p1

0 is on
[b00, c

0], then we set b10 = b00 and b11 = c0 – otherwise let b10 = c0 and b11 = b01. Let γ1 be the
subsequence of γ connecting b10 to b11. We note that |γ1| ≤ (2/3)|γ|. Now, we continue this
process by letting c1 be (one of) the midpoint(s) of γ1, and so on. This process terminates
in l steps, with l ≤ log |γ|/ log(3/2), and gives rise to pl0 on [bl0, b

l
1] such that bl0 and bl1 are

consecutive points on γ. It follows that

D0 ≤ d(p0, γ) ≤ lδ + d(bl0, b
l
1) ≤ δ log(3/2)−1 log

(
(6C + 2)D0 + r

)
+ C(1 + r).

Since linear functions grow faster than logarithms, it follows that for each fixed C, r and δ,
the numbers D0 must be uniformly bounded (independent of α and β). �

Having established geodesic stability, the following definition is independent of the choice
of generating set.

Definition 15.6 (Hyperbolic group). Let Γ be a finitely generated group. We say that Γ is
hyperbolic if its Cayley graph is hyperbolic.

Remark 15.7. Since the Cayley graph of Fn is a tree, free groups are hyperbolic. Other ex-
amples include co-compact lattices in simple Lie groups of real rank one and the fundamental
groups of compact Riemannian manifolds of negative sectional curvature (cf. [5]).

Our next goal is to define the Gromov boundary; drawing lots of pictures will help.
Let K be a hyperbolic graph. We say that two infinite geodesic paths α and β in K are

equivalent if

lim inf
m,n→∞

〈α(m), β(n)〉o = ∞
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for some o ∈ K. Geometrically, this means α and β are pointing in the same direction. It
is clear that the definition is independent of the choice of o ∈ K. It’s not so clear that we
have an equivalence relation, hence a lemma.

Lemma 15.8. There exists a constant C = C(K) > 0 with the following property: For any
two equivalent infinite geodesic paths α and β in K and any m ≥ d(α(0), β(0)), there exists
n with |m− n| ≤ d(α(0), β(0)) such that d(α(m), β(n)) < C.

In particular, α and β are equivalent if and only if supm d(α(m), β(m)) <∞ (and this is
clearly an equivalence relation).

Proof. Choose δ > 0 so that every geodesic triangle is δ-thin. Let m ≥ d(α(0), β(0)) be
given. Let o = α(0) and find m1, n1 ∈ N such that 〈α(m1), β(n1)〉o > m. Choose any
geodesic path [o, β(n1)] connecting o to β(n1). Let x be the vertex on [o, β(n1)] such that
d(o, x) = d(o, α(m)) = m. Since 〈α(m1), β(n1)〉o > m, we have d(x, α(m)) < δ. Let n be such
that n < n1 and d(x, β(n1)) = d(β(n), β(n1)). Since d(o, x) ≥ d(α(0), β(0)), such an n exists.
Moreover |m − n| ≤ d(α(0), β(0)) and d(x, β(n)) < δ. It follows that d(α(m), β(n)) < 2δ.
This proves the first assertion.

For the second assertion, let equivalent geodesic paths α and β and m ≥ d(α(0), β(0))
be given. Then, by the first assertion, there is n with |m − n| ≤ d(α(0), β(0)) such that
d(α(m), β(n)) < C. Hence, d(α(m), β(m)) ≤ d(α(m), β(n)) + |m − n| ≤ C + d(α(0), β(0)).
Conversely, suppose dH(α, β) < ∞ and take m0, n0 ≥ 0 such that d(α(m0), β(n0)) ≤
dH(α, β) + 1. Then, for any m ≥ m0 and n ≥ n0, one has

2〈α(m), β(n)〉o = d(α(m), o) + d(β(n), o)− d(α(m), β(n))

≥ m− d(α(0), o) + n− d(β(0), o)

− ((m−m0) + d(α(m0), β(n0)) + (n− n0))

≥ m0 + n0 − (d(α(0), o) + d(β(0), o) + dH(α, β) + 1).

This proves lim infm,n→∞〈α(m), β(n)〉o = ∞. �

Definition 15.9. We define the Gromov boundary ∂K of a hyperbolic graph K to be the
set of all equivalence classes of infinite geodesic paths. We call K̄ = K ∪ ∂K the Gromov
compactification of K (we soon describe the topology). For a hyperbolic group Γ, Γ̄ denotes
the Gromov compactification of its Cayley graph.

Definition 15.10. For a finite or infinite geodesic path α = x0x1 · · · in K, we denote by
α− = x0 its starting point and α+ its terminal point (i.e., the boundary point α represents,
in the infinite case). As before, we say that α connects α− with α+.

The Cayley graph of a finitely generated group is always uniformly locally finite (or has
bounded geometry) – i.e., there is a uniform bound on the degree of vertices. This is a nice
property for a graph to have, so from now on, we assume that the hyperbolic graph K is
uniformly locally finite and, in particular, countable. We leave it as an exercise to check that
every x ∈ K can be connected to every z ∈ ∂K via a geodesic path.

Although the topology on K̄ can be defined like that of a tree, we give a different descrip-
tion. Fix a base point o ∈ K. For z ∈ ∂K and R > 0, we set

U(z, R) = {x ∈ K̄ : ∃ geodesic paths α, β with α+ = x, β+ = z

such that lim inf
m,n→∞

〈α(m), β(n)〉o > R},
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where in the case x ∈ K, we choose the “geodesic” α(m) = x for all m. We also define

U ′(z, R) = {x ∈ K̄ : ∀ geodesic paths α, β with α+ = x, β+ = z,

we have lim inf
m,n→∞

〈α(m), β(n)〉o > R}.

It turns out these sets satisfy the axioms for a neighborhood basis. The resulting topology
on K̄ is as expected: K̄ is compact and K is a dense open discrete subset. Let’s prove this.

It is clear that U ′(z, R) ⊂ U(z, R). On the other hand, we have

Lemma 15.11. There exists C = C(K) > 0 with the following property: If α, α′ and β, β′

are geodesic paths such that α+ = α′+ and β+ = β′+, then

lim inf
m,n→∞

〈α′(m), β′(n)〉o ≥ lim inf
m,n→∞

〈α(m), β(n)〉o − C.

In particular, U ′(z, R) ⊃ U(z, R + C) for every z ∈ ∂K and R > 0.

Proof. This follows from Lemma 15.8 and the inequality

〈α′(m′), β′(n′)〉o ≥ 〈α(m), β(n)〉o − (d(α′(m′), α(m)) + d(β′(n′), β(n))).

�

Lemma 15.12. For any R > 0, there exists S > 0 with the following property: For any
y, z ∈ ∂K with y ∈ U(z, S), we have U(y, S) ⊂ U(z, R).

Proof. Choose some δ > 0 such that every geodesic triangle is δ-thin. By Lemma 15.11, it
suffices to show that if y ∈ U ′(z,N) for y, z ∈ ∂K and N ∈ N, then U ′(y,N) ⊂ U(z,N − δ).
Let x ∈ U ′(y,N) and take geodesic paths α, β and γ connecting o to x, y and z, respectively.
Since lim inf〈γ(n), β(m)〉o > N , we have d(γ(N), β(N)) < δ. Similarly, d(β(N), α(N)) < δ
and hence d(γ(N), α(N)) < 2δ. It follows that for every m,n ≥ N ,

2〈α(m), γ(n)〉o = m+ n− d(α(m), γ(n))

≥ m+ n− (m−N + d(α(N), γ(N)) + n−N)

≥ 2N − 2δ.

This shows x ∈ U(z,N − δ). �

Now, it is easy to check that {U(z, R)}R>0 defines a (not necessarily open) neighborhood
basis and the resulting topology is Hausdorff.

Definition 15.13. We equip K̄ = K∪∂K with a topology by declaring that a subset O ⊂ K̄
is open if and only if for every z ∈ ∂K ∩ O, there exists R > 0 such that U(z, R) ⊂ O. We
note that for every x ∈ K, the singleton set {x} is open in K̄.

It is clear that this topology is independent of the choice of the base point o. Moreover,
for a hyperbolic group Γ, the Gromov compactification Γ̄ is independent of the choice of
finite generating subset (thanks to Proposition 15.5).

Theorem 15.14. Let K be a locally finite hyperbolic graph. Then the topological space K̄
defined above is compact and contains K as a dense open subset. Every automorphism (i.e.,
isometric bijection) on K extends uniquely to a homeomorphism on K̄.

Proof. The proof is similar to that of Proposition 14.5. We only prove compactness; the rest
is trivial. It suffices to show that an arbitrary net (xi)i∈I in K̄ has an accumulation point.
For every i, choose a geodesic path αi connecting o to xi. For convenience, we set αi(n) = xi
when n ≥ d(o, xi). Let U be a cofinal ultrafilter on the directed set I. Since K is locally
finite, for every n, there exists a unique point α(n) ∈ K such that {i : αi(n) = α(n)} ∈ U .
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Since each αi is a geodesic path, α is also a geodesic path (or perhaps a path which is
eventually constant). It is not too hard to see that α+ ∈ K̄ is an accumulation point. �

Here is the exactness result we have been after.

Theorem 15.15. Let K be a uniformly locally finite hyperbolic graph and Γ be a group acting
properly30 on it. Then the action of Γ on the Gromov compactification K̄ is amenable. In
particular, every hyperbolic group is exact (since it acts properly on its Cayley graph).

Proof. For x, y ∈ K, we denote by T (x, y) the set of z ∈ ∂K such that there exists a geodesic
path connecting x to z which passes through y. It is not hard to see that T (x, y) is a closed
subset of ∂K. For every x ∈ K, z ∈ ∂K and integers l, k with l ≥ k, we define a subset
S(x, z, l, k) ⊂ K by declaring

S(x, z, l, k) = {α(l) : α a geodesic path in K

such that d(α−, x) ≤ k and α+ = z}.

Note that for every x, y ∈ K and k, l, we have

{z ∈ ∂K : y ∈ S(x, z, l, k)}

=
⋃
{T (x′, y) : x′ ∈ K with d(x′, x) ≤ k and d(x′, y) = l}

and hence the former set is Borel in K̄. Also, note the inclusion S(x, z, l, k) ⊂ S(x, z, l, k′)
whenever k ≤ k′.

Let C = C(K) > 0 be the constant appearing in Lemma 15.8. Since K is uniformly
locally finite, there exists D > 0 such that every ball in K of radius C contains at most D/3
points. By Lemma 15.8, the subset S(x, z, l, k) is contained in the C-tubular neighborhood
of a subpath α([l − k, l + k]) of any geodesic path α connecting x to z. This implies that
|S(x, z, l, k)| ≤ Dk for all x, z, k, l with l ≥ k. For a finite subset S ⊂ K, we denote by
χS ∈ Prob(K) the normalized characteristic function on S. Define a sequence of Borel
functions ηn : K × ∂K → Prob(K) by

ηn(x, z) =
1

n

2n∑
k=n+1

χS(x,z,3n,k).

We claim that, for each x, x′ ∈ K, we have

lim
n→∞

sup
z∈∂K

‖ηn(x, z)− ηn(x
′, z)‖ = 0.

Let d = d(x, x′). Fix z ∈ ∂K and n ≥ d and set Sk = S(x, z, 3n, k) and S ′k = S(x′, z, 3n, k).
Then, we have Sk ∪ S ′k ⊂ Sk+d and Sk ∩ S ′k ⊃ Sk−d for every n < k ≤ 2n. It follows that

‖χSk
− χS′k‖ = 2

(
1− |Sk ∩ S ′k|

max{|Sk|, |S ′k|}

)
≤ 2

(
1− |Sk−d|

|Sk+d|

)

30In this case, being proper is equivalent to saying every vertex stabilizer is finite.
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for n < k ≤ 2n. Since |Sk| ≤ Dk, we have

‖ηn(x, z)− ηn(x
′, z)‖ ≤ 1

n

2n∑
k=n+1

‖χSk
− χS′k‖

≤ 2

(
1− 1

n

2n∑
k=n+1

|Sk−d|
|Sk+d|

)

≤ 2

1−

(
2n∏

k=n+1

|Sk−d|
|Sk+d|

)1/n


= 2

1−

( ∏n+d
k=n+1−d |Sk|∏2n+d
k=2n+1−d |Sk|

)1/n


≤ 2
(
1− (D(2n+ d))−2d/n

)
.

Since (D(2n+ d))−2d/n → 1 as n→∞, this proves the claim.
Now we fix a base point o ∈ K, set ζzn = ηn(o, z) and observe that the maps ζn : ∂K →

Prob(K) are Borel. Since we have (s.ηn)(x, z) = ηn(s.x, s.z) for every s ∈ Γ and (x, z) ∈
K × ∂K, it follows that

lim
n→∞

sup
z∈∂K

‖s.ζnz − ζns.z‖ = lim
n→∞

sup
z∈∂K

‖ηn(s.o, s.z)− η(o, s.z)‖ = 0.

Finally, for x ∈ K we set ζxn = δx, and one can check that the Borel maps ζn satisfy the
hypotheses of Proposition 14.1 – hence the action of Γ on K̄ is amenable. �

16. The Akemann-Ostrand Property

At this point we’ve established that all hyperbolic groups are exact. The other hypothesis
required by Ozawa’s theorem (Theorem 12.8) is ⊗-continuity of the canonical map C∗

λ(Γ)�
C∗
ρ(Γ) → B(`2(Γ))/K(`2(Γ)). We now show hyperbolic groups have this property, too. For

free groups this fact was established by Akemann and Ostrand in [1].

Definition 16.1. A compactification of a group Γ is a compact topological space Γ̄ = Γ∪∂Γ
containing Γ as an open dense subset. We assume that a compactification is (left) equivariant
in the sense that the left translation action of Γ on Γ extends to a continuous action on Γ̄.
The compactification Γ̄ is said to be small at infinity if for every net {sn} ⊂ Γ converging
to a boundary point x ∈ ∂Γ and every t ∈ Γ, one has that snt→ x.

By Gelfand duality, there is a one-to-one correspondence between compactifications Γ̄ and
C∗-algebras C(Γ̄), where c0(Γ) ⊂ C(Γ̄) ⊂ `∞(Γ) is left-translation invariant. The proof of
the following lemma is a good exercise.

Lemma 16.2. Let Γ be a group and Γ̄ = Γ ∪ ∂Γ be a compactification. The following are
equivalent:

(1) the compactification Γ̄ is small at infinity;
(2) the right translation action extends to a continuous action on Γ̄ in such a way that

it is trivial on ∂Γ;
(3) one has f t − f ∈ c0(Γ) for every f ∈ C(Γ̄) and t ∈ Γ, where f t(s) = f(st−1) for

f ∈ `∞(Γ).

Proposition 16.3. For any hyperbolic group Γ, the Gromov compactification Γ̄ is small at
infinity.
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Proof. Let a sequence {sn} converging to a boundary point x ∈ ∂Γ and t ∈ Γ be given. Let
β be a geodesic path converging to x. Since d(snt, sn) = d(t, e) for every n, we have

lim inf
m,n→∞

〈smt, β(n)〉e ≥ lim inf
m,n→∞

〈sm, β(n)〉e − d(t, e) = ∞.

This means that snt→ x. �

We’ve seen that the left-translation action of a hyperbolic group Γ on `∞(Γ) is amenable,
but much more is true: the action of Γ×Γ on `∞(Γ) (given by the left and right translations)
is amenable mod c0(Γ).

Corollary 16.4. If Γ is hyperbolic, then Γ × Γ acts amenably on the quotient algebra
`∞(Γ)/c0(Γ).

Proof. The previous proposition ensures that we can find a (Γ × Γ)-invariant subalgebra
A ⊂ `∞(Γ)/c0(Γ) such that the restriction of the Γ× Γ action to A is amenable on Γ× {e}
and trivial on {e} × Γ (just let A be the image of C(Γ̄) under the quotient map). By
symmetry, we can also find B ⊂ `∞(Γ)/c0(Γ) such that the restriction of the Γ × Γ action
to B is trivial on Γ × {e} and amenable on {e} × Γ. The result now follows from Exercise
10.1. �

We’re finally ready to show that Theorem 12.8 is not vacuous.

Corollary 16.5. Let Γ be hyperbolic, λ and ρ be the left and, respectively, right regular
representations and π : B(`2(Γ)) → B(`2(Γ))/K(`2(Γ)) be the quotient map. Then, the ∗-
homomorphism

C∗
λ(Γ)� C∗

ρ(Γ) 3
∑
k

ak ⊗ xk 7→ π(
∑
k

akxk) ∈ B(`2(Γ))/K(`2(Γ))

is continuous with respect to the minimal tensor norm.

Proof. This is in fact an immediate corollary of Corollary 16.4 and Theorem 10.4, but we give
a different proof here. It suffices to show that there exists a nuclear C∗-algebra A ⊂ B(`2(Γ))
such that C∗

λ(Γ) ⊂ A and π(A) commutes with π(C∗
ρ(Γ)). Indeed, if such A exists, then we

have an inclusion C∗
λ(Γ)⊗C∗

ρ(Γ) ⊂ A⊗C∗
ρ(Γ) = A⊗maxC

∗
ρ(Γ) and a natural ∗-homomorphism

A⊗max C
∗
ρ(Γ) → B(`2(Γ))/K(`2(Γ)).

So, let Γ̄ = Γ ∪ ∂Γ be the Gromov compactification and embed C(Γ̄) ⊂ `∞(Γ) as above.
By Theorems 15.15 and 10.4, the C∗-subalgebra A of the uniform Roe algebra generated
by C(Γ̄) and C∗

λ(Γ) is nuclear. (It is ∗-isomorphic to C(Γ̄) or Γ by Proposition 11.1.) By
Proposition 16.3, we have

ρ∗tfρt − f = f t − f ∈ c0(Γ) ⊂ K(`2(Γ))

for any f ∈ C(Γ̄) and any t ∈ Γ, which implies that π(A) commutes with π(C∗
ρ(Γ)), as

desired. �

For free groups, the following fact is a celebrated result of Liming Ge [4].

Corollary 16.6. For every hyperbolic group Γ, L(Γ) is prime.

Proof. Since Theorem 12.8 applies to hyperbolic groups, the result follows from Proposition
12.9. In fact, the result even holds for noninjective subfactors of L(Γ). �
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17. More Applications to von Neumann algebras

Shortly after Ozawa proved Theorem 12.8, he teamed up with Popa and proved several
more remarkable results. This sections contains a unified and succinct approach to much of
their work.

We make the blanket assumption that all groups are countable and von Neumann algebras
have separable predual.

Requisite Results

Unfortunately, we require some nontrivial von Neumann algebra results (mostly due to
Popa) that won’t be proved here – see [2, Appendix F] for details.

Theorem 17.1. Let A ⊂ M be finite von Neumann algebras with separable predual and
let p ∈ M be a nonzero projection. Then, for a von Neumann subalgebra B ⊂ pMp, the
following are equivalent:

(1) there is no sequence (wn) of unitary elements31 in B such that ‖EA(b∗wna)‖2 → 0
for every a, b ∈M ;

(2) there exists a positive element d ∈ 〈M,A〉 with Tr(d) < ∞ such that the ultraweakly
closed convex hull of {w∗dw : w ∈ B unitary} does not contain 0;

(3) there exists a B-A-submodule H of pL2(M) with dimAH <∞;
(4) there exist nonzero projections e ∈ A and f ∈ B, a unital normal ∗-homomorphism

θ : fBf → eAe and a nonzero partial isometry v ∈M such that

∀x ∈ fBf, xv = vθ(x)

and such that v∗v ∈ θ(fBf)′ ∩ eMe and vv∗ ∈ (fBf)′ ∩ fMf .

Definition 17.2. Let A ⊂ M and B ⊂ pMp be finite von Neumann algebras. We say B
embeds in A inside M if one of (and hence all of) the conditions in Theorem 17.1 holds.

Note that if there is a nonzero projection p0 ∈ B such that p0Bp0 embeds in A inside M ,
then B embeds in A inside M (as condition (4) in Theorem 17.1 evidently implies). Recall
that a (nonzero) projection f ∈ B is minimal if and only if fBf = Cf , and a von Neumann
algebra B is diffuse if it has no minimal projections.

Corollary 17.3. Let M be a finite von Neumann algebra with separable predual and (An) be
a sequence of von Neumann subalgebras. Let N ⊂ pMp be a von Neumann subalgebra such
that N does not embed in An inside M for any n. Then, there exists a diffuse abelian von
Neumann subalgebra B ⊂ N such that B does not embed in An inside M for any n.

Lemma 17.4. Let A,B ⊂M be diffuse finite von Neumann algebras such that A and B′∩M
are factors. (This implies that M and B are also factors.) Assume that A′

0 ∩M ⊂ A for
any diffuse von Neumann subalgebra A0 ⊂ A. If B embeds in A inside M , then there exists
a unitary element u ∈M such that uBu∗ ⊂ A.

A subgroup Λ ⊂ Γ is called malnormal if for every s ∈ Γ \ Λ one has sΛs−1 ∩ Λ = {e}.

Theorem 17.5. Let Λ ⊂ Γ be a malnormal subgroup and A0 ⊂ L(Λ) be a diffuse von
Neumann subalgebra. Then, A′

0 ∩ L(Γ) ⊂ L(Λ). More generally, if u ∈ L(Γ) is a unitary
element such that uA0u

∗ ⊂ L(Λ), then u ∈ L(Λ).

31A unitary element w in B is a partial isometry in M such that w∗w = p = ww∗.
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Subalgebras with noninjective relative commutants

Definition 17.6. Let Γ be a group and G be a family of subgroups of Γ. We say a subset
Ω of Γ is small relative to G if it is contained in a finite union of sΛt’s, where s, t ∈ Γ and
Λ ∈ G. (Here sΛt = {sat : a ∈ Λ} ⊂ Γ.)

Let c0(Γ;G) ⊂ `∞(Γ) be the C∗-subalgebra generated by functions whose supports are
small relative to G. More intuitively, for a net (si) in Γ, we write si → ∞/G if si /∈ sΛt
eventually32 for every s, t ∈ Γ and Λ ∈ G. Hence, for f ∈ `∞(Γ) we have that f ∈ c0(Γ;G)
⇔ {x ∈ Γ : |f(x)| > ε} is small relative to G for every ε > 0 ⇔ lims→∞/G f(s) = 0.

Definition 17.7. We say the group Γ is bi-exact relative to G if it is exact and there exists
a map

µ : Γ → Prob(Γ)

such that for every s, t ∈ Γ, one has

lim
x→∞/G

‖µ(sxt)− s.µ(x)‖ = 0.

Remark 17.8. A countable exact group Γ is bi-exact relative to G if for every finite subset
E ⊂ Γ and ε > 0, there exists µ : Γ → Prob(Γ) such that for every s, t ∈ E the subset
{x : ‖µ(sxt) − s.µ(x)‖ ≥ ε} is small relative to G. Since we won’t need this fact, we won’t
prove it. However, the main points are laid out in Exercise 17.1.

Let K(Γ;G) be the hereditary C∗-subalgebra of B(`2(Γ)) generated by c0(Γ;G):

K(Γ;G) = the norm closure of c0(Γ;G)B(`2(Γ))c0(Γ;G).

Since the left and right regular representations λ and, respectively, ρ normalize c0(Γ;G), the
reduced group C∗-algebras C∗

λ(Γ) and C∗
ρ(Γ) are in the multipliers of K(Γ;G).

Lemma 17.9. Let Γ be an exact group and G be a nonempty family of subgroups of Γ. Then
Γ is bi-exact relative to G if and only if there exists a u.c.p. map

θ : C∗
λ(Γ)⊗ C∗

ρ(Γ) → B(`2(Γ))

such that θ(a⊗ b)− ab ∈ K(Γ;G) for every a ∈ C∗
λ(Γ) and b ∈ C∗

ρ(Γ).

Proof. We first prove the “if” direction. Let θ be a u.c.p. map such that θ(a ⊗ b) − ab ∈
K(Γ;G). By Voiculescu’s Theorem, there is an isometry V : `2(Γ) → `2(Γ × Γ) such that
θ(a⊗ b)− V ∗(a⊗ b)V ∈ K(`2(Γ)) for every a and b. It follows that

V ∗(λ(s)⊗ ρ(t))V − λ(s)ρ(t) ∈ K(Γ;G)

for every s, t ∈ Γ. Define a map µ : Γ → Prob(Γ) by

µ(x)(y) =
∑
z∈Γ

|(V δx)(y, z)|2.

It follows that

‖µ(sxt)− s.µ(x)‖1 ≤ ‖ |V δsxt|2 − |(λ(s)⊗ ρ(t))−1V δx|2‖1

≤ 2‖V δsxt − (λ(s)⊗ ρ(t))−1V δx‖2 → 0

as x→∞/G.
Now we prove the “only if” direction. Define a unitary operator U on `2(Γ) ⊗ `2(Γ) by

U(δx⊗ δy) = δx⊗ δx−1y, so that U∗(λ(s)⊗ρ(t))U = (λ⊗λ)(s)(1⊗ρ)(t) (cf. Fell’s absorption
principle). Let µ : Γ → Prob(Γ) be a map as in the definition of bi-exactness and define an

32∀s, t,∀Λ,∃i0 such that ∀i we have the implication i ≥ i0 ⇒ si /∈ sΛt.
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isometry V : `2(Γ) → `2(Γ) ⊗ `2(Γ) by V δx = U(µ(x)1/2 ⊗ δx). Then, it is routine to check
that

V ∗(λ(s)⊗ ρ(t))V δx = 〈λ(s)(µ(x)1/2), µ(sxt−1)1/2〉λ(s)ρ(t)δx.

Since

lim
x→∞/G

‖λ(s)(µ(x)1/2)− µ(sxt−1)1/2‖2
2 ≤ lim

x→∞/G
‖s.µ(x)− µ(sxt−1)‖1 = 0,

we have V ∗(λ(s)⊗ ρ(t))V − λ(s)ρ(t) ∈ K(Γ;G) for every s, t ∈ Γ. �

Here is the main theorem of this section. (See Definition 17.2 for the terminology “N
embeds in L(Λ) inside L(Γ)”.)

Theorem 17.10. Let Γ be a countable group and G be a countable family of subgroups
of Γ. Assume that the group Γ is bi-exact relative to G. Let p ∈ L(Γ) be a projection
and N ⊂ pL(Γ)p be a von Neumann subalgebra. If the relative commutant N ′ ∩ pL(Γ)p is
noninjective, then there exists Λ ∈ G such that N embeds in L(Λ) inside L(Γ).

The proof of this result requires some preparation. Let M ⊂ B(H) be a von Neumann
algebra and consider the ∗-homomorphism

ΦM : M �M ′ 3
∑

ak ⊗ bk 7→
∑

akbk ∈ B(H).

We note that ΦM is min-continuous if and only if M is injective. We will need a refinement
of this result for von Neumann subalgebras contained in corners P ⊂ pMp.

Proposition 17.11. Let M ⊂ B(H) be a finite von Neumann algebra and p ∈ M be a
projection. Let P ⊂ pMp be a von Neumann subalgebra and EP : pMp → P be the trace-
preserving conditional expectation. Consider the bi-normal u.c.p. map

ΦP : M �M ′ 3
∑
k

ak ⊗ bk 7→
∑
k

EP (pakp)bkp ∈ B(pH).

Suppose that there are weakly dense C∗-subalgebras Cl ⊂ M and Cr ⊂ M ′ such that Cl is
exact and ΦP is min-continuous on Cl � Cr. Then P is injective.

Proof. It can be shown that our assumptions imply that ΦP is min-continuous on M �M ′

(cf. [2, Lemma 9.2.9]). By The Trick, ΦP |M extends to a u.c.p. map ψ from B(H) into
(pM ′)′ = pMp. (Note that the argument for The Trick only requires ΦP |C1⊗M ′ to be ∗-
homomorphic.) It follows that EP ◦ ψ|B(pH) is a conditional expectation from B(pH) onto
P . �

We primarily consider ΦP in the case where P = B′ ∩ pMp for a projection p ∈ M and
a diffuse abelian von Neumann subalgebra B ⊂ pMp (meaning B has no nonzero minimal
projections). Every diffuse abelian von Neumann algebra B with separable predual is ∗-
isomorphic to L∞[0, 1] and hence is generated by a single unitary element u0 ∈ B (e.g.,
u0(t) = e2πit). Fixing such a generator, we define a c.p. map ΨB from B(H) into B(pH) by

ΨB(x) = ultraweak- lim
n

1

n

n∑
k=1

uk0xu
−k
0 ,

where the limit is taken along some fixed ultrafilter. It is not hard to see that ΨB is a
(nonunital) conditional expectation onto B′ ∩ B(pH) and that ΨB|pMp is a trace-preserving
conditional expectation from pMp onto B′ ∩ pMp. By uniqueness of the trace-preserving
conditional expectation, one has ΨB(a) = EP (pap) for every a ∈M . It follows that

ΨB(
∑
k

akbk) =
∑
k

EP (pakp)bkp = ΦP (
∑
k

ak ⊗ bk)
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for ak ∈M and bk ∈M ′.

Proof of Theorem 17.10. By contradiction, suppose that the conclusion of the theorem is
not true. Then, by Corollary 17.3, there is a diffuse abelian von Neumann subalgebra
B ⊂ N such that B does not embed in L(Λ) inside M = L(Γ) for any Λ. We will use
Theorem 17.1 with A = L(Λ). For this, observe that χΛ ∈ `∞(Γ) ⊂ B(L2(M)) is nothing
but the orthogonal projection eA onto L2(A) and hence χsΛ = λ(s)eAλ(s)∗ ∈ 〈M,A〉+ with
Tr(χsΛ) = 1. It follows that ΨB(χsΛ) is a positive element in p〈M,A〉p ∩ B′ such that
Tr(ΨB(χsΛ)) ≤ 1. By assumption and Theorem 17.1, ΨB(χsΛ) = 0. Since ρ(Γ) is in the
multiplicative domain of ΨB, this implies that ΨB(χsΛt) = 0 for every s, t ∈ Γ and Λ ∈ G, or
equivalently, K(Γ;G) ⊂ ker ΨB. Hence, for the u.c.p. map θ given in Lemma 17.9, one has
ΦP = ΨB ◦ θ and ΦP is min-continuous on C∗

λ(Γ)�C∗
ρ(Γ). Injectivity of P = B′ ∩ pMp now

follows from Proposition 17.11. �

Exercise

Exercise 17.1. Prove the claim made in Remark 17.8. Here is a hint: Let {e} = E0 ⊂ E1 ⊂
E2 · · · be an increasing sequence of finite symmetric subsets of Γ with

⋃
En = Γ. Find µn

for En and ε = 1/n. Define relatively small sets Ωn inductively by

Ωn =
⋃

s,t∈En

{x : ‖µn(sxt)− s.µn(x)‖ ≥ 1/n} ∪ EnΩn−1En.

Set |x| = min{n : x ∈ Ωn} and µ(x) = |x|−1
∑|x|

n=1 µn(x).

On bi-exactness

Definition 17.12. Let Γ be a group and G be a family of subgroups of Γ. For f ∈ `∞(Γ) and
t ∈ Γ, we define the right translation f t ∈ `∞(Γ) by f t(s) = f(st−1). Note that (f t)t

′
= f tt

′
.

Now define a compact space Γ̄G by

C(Γ̄G) = {f ∈ `∞(Γ) : f − f t ∈ c0(Γ;G) for every t ∈ Γ}
and view it as a Γ-space, where Γ acts by left translation. We define another compact
Γ-space ∆GΓ ⊂ Γ̄G by

C(∆GΓ) = C(Γ̄G)/c0(Γ;G)

and we call it the G-boundary of Γ.

Remark 17.13. It is not hard to see that x ∈ Γ̄G belongs to ∆G if and only if there is a net
(sn) in Γ such that sn → x and sn →∞/G.

It is possible that G = ∅ and c0(Γ;G) = {0}, but otherwise we have c0(Γ) ⊂ c0(Γ;G) ⊂
C(Γ̄G) and Γ̄G is an equivariant compactification of Γ.33 By Gelfand duality, there is a
one-to-one correspondence between equivariant compactifications Γ̄ of Γ and intermediate
C∗-subalgebras c0(Γ) ⊂ C(Γ̄) ⊂ `∞(Γ) which are left translation invariant. It is possible that
Γ ∈ G and c0(Γ;G) = `∞(Γ) and ∆GΓ = ∅.

Note that f ∈ C(Γ̄G) if f − f t ∈ c0(Γ;G) for all t in some generating subset of Γ, since
f − f tt

′
= (f − f t

′
) + (f − f t)t

′
.

Proposition 17.14. Let Γ be a countable group and G be a nonempty family of subgroups
of Γ. Then the following are equivalent:

(1) Γ is bi-exact relative to G;

33A compactification is a compact space Γ̄ containing Γ as an open dense subset; it is equivariant if the
left translation action of Γ on Γ extends continuously to Γ̄. (This is the same as Definition 16.1, where
equivariance was assumed.)
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(2) the G-boundary ∆GΓ is amenable;34

(3) the Gelfand spectrum of `∞(Γ)/c0(Γ;G) is amenable as a Γ× Γ-space (with the left-
times-right translation action).

Proof. Assume condition (1) and let µ : Γ → Prob(Γ) be a map as in Definition 17.7. Then,
the u.c.p. map µ∗ : `

∞(Γ) → `∞(Γ) defined by µ∗(f)(x) = 〈f, µ(x)〉 has the property that
µ∗(s.f) − s.µ∗(f)t ∈ c0(Γ;G). In particular, µ∗(f) ∈ C(Γ̄G). Let Q : C(Γ̄G) → C(∆GΓ) be
the quotient map. Then, Q ◦µ∗ is a Γ-equivariant u.c.p. map from `∞(Γ) into C(∆GΓ). One
can now deduce the amenability of ∆GΓ from Exercise 17.3.

Next, we assume condition (2) and let X denote the Gelfand spectrum of `∞(Γ)/c0(Γ;G).
The inclusion C(Γ̄G) ⊂ `∞(Γ) induces a continuous map ϕl : X → ∆GΓ which is Γ × Γ-
equivariant, where the right action of Γ on ∆GΓ is trivial. By symmetry, there exists a
continuous Γ× Γ-equivariant map ϕr : X → ∆G

rΓ, where ∆G
rΓ is amenable as a 1× Γ-space

and is trivial as a Γ× 1-space. Thus, the Γ× Γ-space ∆GΓ×∆G
rΓ is amenable and ϕl × ϕr

is a Γ× Γ-equivariant continuous map from X into it. Therefore, X is amenable.
Finally, assume condition (3) and define a C∗-algebra D by

D = C∗(λ(Γ), ρ(Γ), `∞(Γ)) + K(Γ;G) ⊂ B(`2(Γ)).

It is not hard to see that K(Γ;G) is an ideal in D and D/K(Γ;G) is a quotient of the crossed
product of `∞(Γ)/c0(Γ;G) by Γ × Γ (actually, it’s isomorphic to this crossed product). By
assumption, the canonical ∗-homomorphism C∗

λ(Γ)�C∗
ρ(Γ) → D/K(Γ;G) is min-continuous

and D/K(Γ;G) is nuclear. Hence, the quotient map from D to D/K(Γ;G) has a u.c.p.
splitting on any separable C∗-subalgebra, by the Choi-Effros Lifting Theorem. Thanks to
Lemma 17.9, we are done. �

It will be more convenient to work with ∆GΓ than the original definition of bi-exactness.
This allows us to exploit the technology developed in previous chapters.

Definition 17.15. Let Γ̄ be an equivariant compactification of Γ. We say Γ̄ is small at
infinity relative to G if the following holds: If (sn) is a net in Γ such that sn → x ∈ Γ̄ and
sn →∞/G, then snt→ x for every t ∈ Γ.

One should check that an equivariant compactification Γ̄ of Γ is small at infinity relative
to G if and only if the identity map on Γ extends to a continuous map from Γ̄G onto Γ̄. The
image of ∆GΓ under this map is the set of x ∈ Γ̄ such that there is a net (sn) in Γ with the
property that sn → x and sn →∞/G.

Example 17.16. In the examples below, amenability of ∆GΓ follows from that of Γ̄G.

(1) Let G be the empty family. Then, c0(Γ;G) = {0} and Γ̄G is a one-point set. Hence
Γ̄G is amenable if and only if Γ is amenable.

(2) Let G = {111}, where 111 is the trivial subgroup consisting of the neutral element. Then,
c0(Γ;G) = c0(Γ) and Γ̄G is the universal compactification which is small at infinity.
Recall from Section 15 that if Γ is a hyperbolic group, then there is a Γ-equivariant
continuous map from Γ̄G onto the Gromov compactification – hence Γ̄G is amenable
for a hyperbolic group (Corollary 16.4).

(3) Suppose Γ ∈ G. Then c0(Γ;G) = C(Γ̄G) = `∞(Γ) and Γ̄G = βΓ. Hence Γ̄G is amenable
if and only if Γ is exact.

It is often useful to ignore amenable subgroups.

34By convention, we say that the empty Γ-space ∅ is amenable if Γ is exact.
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Lemma 17.17. Let Γ be an exact group, Υ ⊂ Γ be an amenable subgroup and G be a family
of subgroups of Γ. If there is a map

ζ : Γ → `1(Γ/Υ)

such that

lim
x→∞/G

‖ζ(sxt)− s.ζ(x)‖
‖ζ(x)‖

= 0

for every s, t ∈ Γ, then Γ is bi-exact relative to G.

Proof. We define µ : Γ → Prob(Γ/Υ) by µ(x) = ‖ζ(x)‖−1|ζ(x)|. Then,

‖µ(sxt)− s.µ(x)‖ ≤
∣∣∣∣1− ‖ζ(sxt)‖

‖ζ(x)‖

∣∣∣∣+ ‖ζ(sxt)− s.ζ(x)‖
‖ζ(x)‖

≤ 2
‖ζ(sxt)− s.ζ(x)‖

‖ζ(x)‖
→ 0 as x→∞/G

for every s, t ∈ Γ. Let µ∗ : `
∞(Γ/Υ) → `∞(Γ) be the u.c.p. map defined by µ∗(f)(x) =

〈µ(x), f〉. It is not hard to see that µ∗(f) ∈ C(Γ̄G) and composed with the quotient map, it
gives rise to a Γ-equivariant u.c.p. map from `∞(Γ/Υ) into C(∆GΓ). We view `∞(Γ/Υ) as
the C∗-subalgebra of right Υ-invariant functions in `∞(Γ). Since Υ is amenable, by taking an
“average” over the right Υ-action, one can find a (left) Γ-equivariant conditional expectation
from `∞(Γ) onto `∞(Γ/Υ). Combining these two Γ-equivariant u.c.p. maps, we obtain a Γ-
equivariant u.c.p. map from `∞(Γ) into C(∆GΓ). Amenability of ∆GΓ now follows from
Exercise 17.3. �

Proposition 17.18. Let Γ be a group. For families G and G ′ of subgroups of Γ, define

G ∧ G ′ = {Λ ∩ sΛ′s−1 : Λ ∈ G, Λ′ ∈ G ′, s ∈ Γ}.

If Γ is bi-exact relative to G and to G ′, then Γ is bi-exact relative to G ∧ G ′.

Proof. For notational simplicity, set Γ̃ = Γ× Γ, A = `∞(Γ) and I = c0(Γ;G), I ′ = c0(Γ;G ′).
Then, the natural short exact sequence

0 // (I/(I ∩ I ′)) o Γ̃ // (A/(I ∩ I ′)) o Γ̃ // (A/I) o Γ̃ // 0

is exact. By assumption, (I/(I ∩ I ′)) o Γ̃ ∼= ((I + I ′)/I ′) o Γ̃ / (A/I ′) o Γ̃ and (A/I) o Γ̃
are nuclear. Hence the middle algebra (A/(I ∩ I ′)) o Γ̃ is also nuclear. Therefore, it suffices
to show that I ∩ I ′ = c0(Γ;G ∧ G ′). We may assume that G is saturated in the sense that
sΛs−1 ∈ G for any Λ ∈ G and s ∈ Γ, and likewise for G ′. It is not hard to see that I ∩ I ′
is generated by a function whose support is contained in Λt ∩ Λ′t′. Pick any x ∈ Λt ∩ Λ′t′

(unless it is empty) and observe that Λt ∩ Λ′t′ = (Λ ∩ Λ′)x. This completes the proof. �

Exercises

Exercise 17.2. LetX be a compact Γ-space and Prob(X) be the state space of C(X) equipped
with the natural Γ-action. Prove that X is amenable if and only if Prob(X) is amenable.

Exercise 17.3. Let X be a compact Γ-space and assume there is a Γ-equivariant u.c.p. map
from `∞(Γ) into C(X). Prove that X is amenable provided that Γ is exact.
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Examples

Direct product of hyperbolic groups.

Lemma 17.19. Let Γ1, . . . ,Γn be groups and Γ =
∏n

i=1 Γi be the direct product. Let Gi be a
family of subgroups of Γi and define a family G of subgroups of Γ by

G =
⋃
i

{Λ×
∏
j 6=i

Γj : Λ ∈ Gi}.

If each of Γi is bi-exact relative to Gi, then Γ is bi-exact relative to G.

We leave the proof as an exercise.

Theorem 17.20. Let Γ1, . . . ,Γn be hyperbolic groups and N1, . . . , Nm be noninjective II1-
factors. If there exists an embedding

N1 ⊗̄ · · · ⊗̄Nm ↪→ pL(Γ1 × · · · × Γn)p,

for some projection p ∈ L(Γ1 × · · · × Γn), then m ≤ n.

Proof. By Theorem 17.10 and Lemma 17.19, after permuting indices, one has

e1N1e1 ⊗̄ · · · ⊗̄Nm−1 ↪→ p0L(Γ1 × · · · × Γn−1)p0

for some nonzero projections e1 ∈ N1 and p0 ∈ L(Γ1 × · · · × Γn−1). By induction, we are
done. �

Semidirect products and wreath products.

Lemma 17.21. Let Γ = Υ o Λ be a semidirect product of discrete groups. Let GΛ be a
family of subgroups of Λ and set G = {ΥoΛ0 : Λ0 ∈ GΛ}. If Υ is amenable and Λ is bi-exact
relative to GΛ, then Γ is bi-exact relative to G.

Proof. Let µ : Λ → Prob(Λ) be a map as in Definition 17.7. It is not hard to see that the
composition of µ with the quotient Γ → Λ = Γ/Υ satisfies the conditions of Lemma 17.17.

�

This is not so interesting unless GΛ is very small (e.g., if Λ is hyperbolic). So, we consider
another example.

Let us recall the definition of the wreath product Υ o Λ of a group Υ by another group
Λ. To ease notation, denote by ΥΛ the algebraic direct product group

⊕
Λ Υ and view

an element x ∈ ΥΛ as a finitely supported function x : Λ → Υ, where the support of x is
supp(x) = {p ∈ Λ : x(p) 6= e}. We note that (xy)(p) = x(p)y(p) ∈ Υ for x, y ∈ ΥΛ and
p ∈ Λ. Then, Λ acts on ΥΛ by left translation: αs(x)(p) = x(s−1p). The wreath product
Υ o Λ is defined to be the semidirect product ΥΛ oα Λ.

In what follows, we denote Υ o Λ by Γ and agree that p, s and t represent elements of Λ,
while x, y and z represent elements of ΥΛ (the group

⊕
Λ Υ of finitely supported functions

from Λ into Υ). Hence a typical element of Γ will be denoted by xs or yt. In particular,
sx = αs(x)s, where α is the left translation action of Λ on ΥΛ.

Proposition 17.22. Let Γ = Υ oΛ be the wreath product and let G = {Λ}. If Υ is amenable
and Λ is exact, then Γ is bi-exact relative to G.

The proof of this proposition requires several steps. We fix a proper length function | · |Λ
on Λ:

(1) |s|Λ = |s−1|Λ ∈ R≥0 for s ∈ Λ and |s|Λ = 0 if and only if s = e;
(2) |st|Λ ≤ |s|Λ + |t|Λ for every s, t ∈ Λ;
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(3) the subset BΛ(R) = {s ∈ Λ : |s|Λ ≤ R} is finite for every R > 0.

(Such a function exists – see [2, Proposition 5.5.2].) Likewise, fix a length function on Υ.
For yt ∈ Γ, we define ζ(yt) ∈ `1(Λ) by

ζ(yt)(p) =

{
min{|p|Λ, |t−1p|Λ}+ |y(p)|Υ if p ∈ supp(y),

0 if p /∈ supp(y).

Lemma 17.23. For G = {Λ}, one has

lim
yt→∞/G

| supp(y)|
‖ζ(yt)‖

= 0.

Proof. We first claim that limyt→∞/G ‖ζ(yt)‖ = ∞. Let R > 0 be given and suppose yt ∈ Γ
is such that ‖ζ(yt)‖ ≤ R. Then supp(y) ⊂ BR(Λ) ∪ tBR(Λ) and y(p) ∈ BR(Υ) for every
p ∈ Λ. Define y′ ∈ ΥΛ by y′(p) = y(p) for p ∈ BR(Λ) and y′(p) = e for p /∈ BR(Λ). Then,
y = y′y′′ with supp(y′) ⊂ BR(Λ) and supp(y′′) ⊂ tBR(Λ). Hence, for the finite subset

E = {z ∈ ΥΛ : supp(z) ⊂ BR(Λ) and z(p) ∈ BR(Υ) for every p ∈ Λ}

of ΥΛ, we have

yt = y′tαt−1(y′′) ∈
⋃

z′,z′′∈E

z′Λz′′.

This means that the subset ΩR = {yt ∈ Γ : ‖ζ(yt)‖ ≤ R} is small relative to G and the claim
follows.

Let C > 0 be given and suppose yt ∈ Γ is such that ‖ζ(yt)‖ ≤ C| supp(y)|. Since
ζ(yt)(p) ≥ 2C for p ∈ supp(y) \

(
B2C(Λ) ∪ tB2C(Λ)

)
, we have

| supp(y) \
(
B2C(Λ) ∪ tB2C(Λ)

)
| ≤ | supp(y)|/2.

This implies | supp(y)| ≤ 4|B2C(Λ)| and yt ∈ ΩR for R = 4C|B2C(Λ)|. By the first part of
the proof, {yt ∈ Γ : | supp(y)|/‖ζ(yt)‖ ≥ C−1} is small relative to G. �

Lemma 17.24. The following hold:

(1) ‖ζ(xyt)− ζ(yt)‖ ≤ ‖ζ(x)‖ for every x, y ∈ ΥΛ and t ∈ Λ;
(2) ‖ζ(syt)− s.ζ(yt)‖ ≤ |s|Λ| supp(y)| for every y ∈ ΥΛ and s, t ∈ Λ;
(3) ‖ζ(ytx)− ζ(yt)‖ ≤ ‖ζ(x)‖ for every x, y ∈ ΥΛ and t ∈ Λ;
(4) ‖ζ(yts)− ζ(yt)‖ ≤ |s|Λ| supp(y)| for every y ∈ ΥΛ and s, t ∈ Λ.

Proof. Note that ζ(xyt)(p)− ζ(yt)(p) is nonzero only if p ∈ supp(x). Also,

|ζ(xyt)(p)−ζ(yt)(p)|

=

{ ∣∣ |x(p)y(p)|Υ − |y(p)|Υ
∣∣ if p ∈ supp(y) ∩ supp(xy),

ζ(xt)(p) otherwise

≤ ζ(x)(p)

for p ∈ supp(x). This yields the first assertion. For the second, observe that ζ(syt)(p) and
(s.ζ(yt))(p) are nonzero only if p ∈ s supp(y) and that

|ζ(syt)(p)−(s.ζ(yt))(p)|
= |min{|p|Λ, |(st)−1p|Λ} −min{|s−1p|Λ, |(st)−1p|Λ}|
≤ |s|.
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This yields the second assertion. For the third assertion, we observe that ζ(ytx)(p)−ζ(yt)(p)
is nonzero only if p ∈ t supp(x) and that for q ∈ supp(x), one has

ζ(ytx)(tq) =

{
min{|tq|Λ, |q|Λ}+ |y(tq)x(q)|Υ if y(tq) 6= x(q)−1,

0 if y(tq) = x(q)−1,

ζ(yt)(tq) =

{
min{|tq|Λ, |q|Λ}+ |y(tq)|Υ if tq ∈ supp(y),

0 if tq /∈ supp(y).

Hence for q ∈ supp(x), one has

|ζ(ytx)(tq)− ζ(yt)(tq)| ≤ |q|Λ + |x(q)|Υ = ζ(x)(q)

and the third assertion follows. Finally, since ζ(yts)(p) and ζ(yt)(p) are nonzero only if
p ∈ supp(y) and

|ζ(yts)(p)− ζ(yt)(p)| = |min{|p|Λ, |s−1t−1p|Λ} −min{|p|Λ, |t−1p|Λ}| ≤ |s|,

for p ∈ supp(y), the fourth assertion follows. �

Proof of Proposition 17.22. With Lemmas 17.23 and 17.24 in hand, it is easy to verify the
condition of Lemma 17.17. Indeed, one just has to check the condition separately for x ∈ ΥΛ

and s ∈ Λ, acting from the left or the right. �

Corollary 17.25. Let Γ = Υ o Λ be the wreath product. Suppose that Υ is amenable and Λ
is bi-exact relative to {111} (e.g., if Λ is hyperbolic). Then, Γ is bi-exact relative to {111}.

Proof. Combine Lemma 17.21, Proposition 17.22 and Proposition 17.18. �

Theorem 17.26. Let Γ = Υ o Λ be the wreath product of an amenable group Υ by an
exact group Λ. If N ⊂ pL(Γ)p is a von Neumann subalgebra with a noninjective relative
commutant, then N embeds in L(Λ) inside L(Γ).

Proof. Combine Theorem 17.10 and Proposition 17.22. �

Corollary 17.27. Let Γ = Υ oΛ be the wreath product of an amenable group Υ by an exact
group Λ. If N ⊂ L(Γ) is a noninjective nonprime factor whose relative commutant N ′∩L(Γ)
is a factor, then there exists a unitary element u ∈ L(Γ) such that uNu∗ ⊂ L(Λ).

Proof. Write N as a tensor product N = N1 ⊗̄N2 of type II1-factors N1 and N2. Since N is
noninjective, we may assume that N2 is noninjective. By Theorem 17.26, N1 embeds in L(Λ)
inside L(Γ). By Lemma 17.4 and Theorem 17.5, we can find a unitary element u ∈ L(Γ)
such that uN1u

∗ ⊂ L(Λ). This implies uN2u
∗ ⊂ (uN1u

∗)′ ∩ L(Γ) ⊂ L(Λ), by Theorem 17.5.
Therefore, uNu∗ ⊂ L(Λ). �

Amalgamated free products.

Proposition 17.28. Let Γ = Γ1 ∗Λ Γ2 be an amalgamated free product and let G = {Γ1,Γ2}.
If both Γi are exact and Λ is amenable, then Γ̄G is amenable and, in particular, Γ is bi-exact
relative to G.

Before giving the proof, we point out that the amenability assumption on Λ is essential.
Indeed, if Γi = Γ′i × Λ and Λ is nonamenable, then Γ = (Γ′1 ∗ Γ′2) × Λ and thus L(Γ′1 ∗ Γ′2)
has a noninjective commutant in L(Γ). More generally, if si ∈ Γi \ Λ normalize Λ and
s1as

−1
1 = s2as

−1
2 for all a ∈ Λ, then s = s1s

−1
2 ∈ Γ has infinite order and commutes with Λ.
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Proof. We first prove that the Γ-space Γ̄G is amenable as a Γi-space. We prove this for i = 1.
Let A ⊂ `∞(Γ1) be the C∗-subalgebra of those functions f such that f = f t for all t ∈ Λ.
Averaging over the right Λ-action, we obtain a (left) Γ1-equivariant conditional expectation
from `∞(Γ1) onto A. By Exercise 17.3, it suffices to find a Γ1-equivariant ∗-homomorphism
π from A into C(Γ̄G). Fix a system {e} t S0

i ⊂ Γi of representatives of Λ\Γi, and set

X = {e} t S0
2 t S0

2S
0
1 t S0

2S
0
1S

0
2 t · · · ⊂ Γ.

Then, every s ∈ Γ can be uniquely written in the form s = s1x, where s1 ∈ Γ1 and x ∈ X (cf.
[2, Appendix E]). We define π : A→ `∞(Γ) by π(f)(s1x) = f(s1) for s1 ∈ Γ1 and x ∈ X. Our
task is to show π(f)−π(f)t ∈ c0(Γ;G) for every t ∈ Γ1∪Γ2. Suppose first that t ∈ Γ1. Then,
for every s1x ∈ Γ, one has either s1xt

−1 = s1t
−1 (if x = e) or s1xt

−1 = s1ay for some a ∈ Λ
and y ∈ X (if x 6= e). Since f is right Λ-invariant, π(f)− π(f)t has support in Γ1. It follows
that π(f)− π(f)t ∈ c0(Γ;G). Suppose next that t ∈ Γ2. Then, one has π(f)− π(f)t = 0 by
similar reasoning. Altogether, this implies Γ̄G is amenable as a Γi-space.

Let T = Γ/Γ1 t Γ/Γ2 be the Bass-Serre tree on which Γ = Γ1 ∗Λ Γ2 acts and let T̄ be
its compactification,35 as defined in Section 14. We will find a Γ-equivariant continuous
map from Γ̄G into T̄, which suffices to show the amenability of Γ̄G by Proposition 14.1
and Lemma 14.6. Choose a base point o ∈ T and define a Γ-equivariant ∗-homomorphism
σ : C(T̄) → `∞(Γ) by σ(f)(s) = f(so). We will show σ(f) − σ(f)t ∈ c0(Γ; {Λ}) for every
f ∈ C(T̄) and t ∈ Γ. Suppose by contradiction that this is not the case. Then, there exists
ε > 0 such that the set

Ω = {s ∈ Γ : |f(so)− f(st−1o)| ≥ ε} ⊂ Γ

is not small relative to {Λ}. Hence, there exists a net (sn) in Ω such that sn →∞/{Λ}. We
may assume that sno → z for some z ∈ T̄. Since every edge stabilizer of the Γ-action on
the Bass-Serre tree is an inner conjugate of Λ, we can apply Lemma 14.8 and deduce that
snt

−1o→ z. Hence we obtain the contradiction

ε ≤ lim
n
|f(sno)− f(snt

−1o)| = |f(z)− f(z)| = 0.

Therefore, σ(f)− σ(f)t ∈ c0(Γ; {Λ}) ⊂ c0(Γ;G) and we are done. �

Theorem 17.29. Let Γ = Γ1 ∗Λ Γ2 be an amalgamated free product such that both Γi are
exact and Λ is amenable. If N ⊂ L(Γ) is a von Neumann subalgebra with a noninjective
relative commutant, then there exists i such that N embeds in L(Γi) inside L(Γ).

Proof. Combine Theorem 17.10 and Proposition 17.28. �

Recall that a group Γ is said to have infinite conjugacy classes (ICC) if the sets {sts−1 :
s ∈ Γ} are infinite for every nonneutral element t ∈ Γ.

Corollary 17.30. Let Γ = Γ1 ∗ Γ2 be a free product of ICC exact groups. If N ⊂ L(Γ) is
a noninjective nonprime factor whose relative commutant N ′ ∩ L(Γ) is a factor, then there
exist i ∈ {1, 2} and a unitary element u ∈ L(Γ) such that uNu∗ ⊂ L(Γi).

We omit the proof of this corollary as it is very similar to the proof of Corollary 17.27.
We say Γ is a product group if it is isomorphic to a direct product of nontrivial groups.

We note that if Γ = Γ′ × Γ′′ is an ICC product group, then Γ′ and Γ′′ are also ICC and, in
particular, infinite.

35Although we use the term “compactification”, T is not open in T̄.
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Corollary 17.31. Let Γ1, . . . ,Γn and Λ1, . . . ,Λm be ICC nonamenable exact product groups.
If

M = L(F∞ ∗ Γ1 ∗ · · · ∗ Γn) ∼= L(F∞ ∗ Λ1 ∗ · · · ∗ Λm),

then n = m and, modulo permutation of indices, L(Γi) is unitarily conjugated to L(Λi) inside
M for every 1 ≤ i ≤ n.

Proof. It follows from Corollary 17.30 that there are maps ı,  and unitary elements u1, . . . , um
and v1, . . . vn such that ujL(Λj)u

∗
j ⊂ L(Γı(j)) and viL(Γi)v

∗
i ⊂ L(Λ(i)). It follows that

vı(j)ujL(Λj)u
∗
jv
∗
ı(j) ⊂ L(Λ(ı(j)))

for every j. By Theorem 17.5 and Exercise 17.4, this implies (ı(j)) = j and vı(j)uj ∈ L(Λj).
In particular, the above inclusions are tight and ujL(Λj)u

∗
j = L(Γı(j)). Likewise, one has

ı((i)) = i for every 1 ≤ i ≤ n. �

This corollary is an analogue of Kurosh’s isomorphism theorem for groups and, like
Kurosh’s Theorem, it says almost nothing about the positions of the copies of L(F∞).

Exercise

Exercise 17.4. Let Λ1,Λ2 ⊂ Γ be groups and suppose that for every s ∈ Γ one has sΛ1s
−1 ∩

Λ2 = {e} (e.g., Γ = Λ1 ∗ Λ2). Let A0 ⊂ L(Λ1) be a diffuse von Neumann subalgebra. Prove
that there is no unitary element u ∈ L(Γ) such that uA0u

∗ ⊂ L(Λ2).
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