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QUANTIZATION OF K�AHLER MANIFOLDS. III

Michel Cahen, Simone Gutt and John Rawnsley

Abstract. We use Berezin's dequantization procedure to de�ne a formal �-product on

the algebra of smooth functions on the unit disk in C . We prove that this formal �-product

is convergent on a dense subalgebra of the algebra of smooth functions.

1. Introduction.

In two previous papers [4], [5] we have examined various geometrical methods for

quantizing K�ahler manifolds M . In particular we showed in [5] that the quantization
method of Berezin [3] can be used to construct a formal �-product [1], [2] on the smooth
functions on coadjoint orbits of compact Lie groups.

The formal �-product is constructed by using Berezin's quantization method to make
a correspondence between operators and functions (their Berezin symbols) and transfer-
ring the operator composition to the symbols (this multiplication of symbols is denoted
by �). By introducing a parameter k into the quantization we obtain a rule of com-
position on formal power series in k

�1 by taking the asymptotic expansion of the �k.
Our main result in [5] is that this asymptotic expansion exists for compact M , de�nes
an associative multiplication on formal power series in k�1 with coe�cients in C1(M)
for compact coadjoint orbits, and this formal power series converges on the space of
symbols for M a Hermitian symmetric space of compact type.

In the present paper we make the �rst steps in extending these results to some non-
compact K�ahler manifolds. Section 2 sets up the notation we will use in this paper.
In section 3 we show how to extend our asymptotic expansion of Berezin's integral
formula for the composition of symbols, proved in [5] for the compact case, to arbitrary
K�ahler manifolds for suitably chosen classes of functions on M . In section 4 we show
that if M is the unit disk in C with the Poincar�e metric then symbols of polynomial
di�erential operators are a suitable class of functions for the results of section 3 to apply.
These symbols have similar nesting properties to those we used in the compact case and

allow us to show that the asymptotic expansion of the product of two of these symbols
exists. On the other hand we can actually work out the composition of two di�erential
operators explicitly and examine the dependence of the composition on the parameter
k. We see at once that the dependence is rational and so the asymptotic expansion

is convergent on symbols of di�erential operators. From this it easily follows that the

asymptotic expansion de�nes an associative product on formal power series with smooth
coe�cients, and by the method of construction this is invariant under SU(1; 1) and also
covariant. These results are also related to the calculations of Moreno [7].
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2. Preliminaries.

We denote by (L;r; h) a quantization bundle for the K�ahler manifold (M;!; J) and
by H the Hilbert space of square-integrable holomorphic sections of L which we assume

to be non-trivial. The coherent states are vectors eq 2 H such that

s(x) = hs; eqiq; 8q 2 L�x ; x 2M; s 2 H
where L� denotes the complement of the zero-section in L. The function

�(x) = jqj2keqk2; q 2 L�x
is well-de�ned and real analytic.

We introduce also the 2-point function

 (x; y) =
jheq0 ; eqij2
keq0k2keqk2 ; q 2 L�x ; q

0 2 L�y

which is a globally de�ned real analytic function onM�M provided � has no zeros. The
latter condition will be a consequence of a stronger condition which we shall assume
shortly, so we shall assume it is true from now on without further comment. It is
a consequence of the Cauchy{Schwartz inequality that  (x; y) � 1 everywhere, with
equality where the lines spanned by eq and eq0 coincide (q 2 L�x , q0 2 L�y ). It is again a
consequence of our assumptions below that this only happens for x = y. The function
 vanishes only where the coherent states are orthogonal.

Let A : H ! H be a bounded linear operator and let

bA(x) = hAeq ; eqi
heq ; eqi ; q 2 L�

x
; x 2 M

be its symbol. The function bA has an analytic continuation to an open neighbourhood
of the diagonal in M �M given by

bA(x; y) = hAeq0 ; eqi
heq0 ; eqi ; q 2 L�x ; q

0 2 L�y

which is holomorphic in x and antiholomorphic in y. It is clear that the only source of
singularities in the analytically continued symbol is from zeros in the denominator and

these are the zeros of  . We denote by bE(L) the space of symbols of bounded operators

on H. In [5] this space played a crucial role when M was compact. In the present

situation where we drop the compactness, one of our problems is to �nd a suitable

substitute for bE(L) and this involves the use of symbols of unbounded operators.
The composition of operators on H gives rise to a product for the corresponding

symbols, which is associative and which we shall denote by � following Berezin, [3]. For
the basic facts about � quantization see [1], [2]. The �-product of symbols is given in

terms of the symbols by the integral formula

(2.1) ( bA � bB)(x) = Z
M

bA(x; y) bB(y; x) (x; y)�(y)
!
n(y)

n!
:

This formula is derived, for example in [5], by use of the adjoint A� of A.
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Remark 1. In order to apply (2.1) to the case where the operators are unbounded we

need to be able to use the adjoint of A on coherent states. This is not automatic, but
is a condition which needs to be checked. Thus our unbounded operators must satisfy

two conditions:

(1) Aeq 2 H; 8q;
(2) the sections s(x) = heq0 ; Aeqiq; q 2 Lx should be holomorphic and square inte-

grable for each q0.

Of course we also need to be able to take the symbol of the composition, so we need to

check that the result of applying B to a coherent state is in the domain of A.

Example 1. The identity map has symbol bI = 1 and so bA � 1 = 1 � bA = bA for any

operator A. In particular 1 � 1 = 1, a fact which we shall use several times later.

Let k be a positive integer. The bundle (Lk = 
k
L;rk

; h
k) is then a quantization

bundle for (M;k!; J) and we denote byHk the corresponding space of square-integrable

holomorphic sections. We let �(k) be the corresponding function and say that the quan-

tization is regular if �(k) is a non-zero constant for all nonnegative k and if  (x; y) = 1
implies x = y. The signi�cance of these conditions has been explained in [4] and [5]. In
the regular case we have shown that for powers Lk the function  in the integral (2.1)
gets replaced by powers  k.

If bA is a symbol of an operator then its analytic continuation bA(x; y) may have

singularities where  (x; y) = 0 but bA is always globally de�ned on M �M . If M

is not compact bA may not be bounded, so we introduce the class B � C
1(M) of

functions f which have an analytic continuation o� the diagonal in M � M so that
f(x; y) (x; y)l is globally de�ned, smooth and bounded on K �M and on M �K for
each compact subset K ofM for some positive power l and denote by Bl those for which
the power l su�ces. Since  is smooth and bounded it is clear that B is a subalgebra

of C1(M). In the case M is compact we obviously have bE(Ll) � Bl.
Denote by eB the set of functions f on M �M n  �1(0) such that f(x; y) (x; y)l has

a smooth extension to all of M �M which is bounded on K �M for each compact

subset K �M for some l and denote by eBl those for which the power l su�ces. If f , g

are in B then f(x; y)g(y; x) is in eB. Note also that if f 2 eB then its restriction to the

diagonal bf (x) = f(x; x) is smooth.

3. The composition of operators and an asymptotic formula.

In order to localise the integral (2.1) we use a version of the Morse lemma which we
adapt from Combet [6]. This is a modi�cation of proposition 2 of x2 of [5] which is valid
without the assumption that the K�ahler manifold is compact.

Let (M;!; J) be a K�ahler manifold with metric g. We denote by expxX the expo-
nential at x of X 2 TxM . If g is not complete the exponential map may not be de�ned
for all x and X, but in any case there is an open subset V � TM where it is de�ned

and which contains the zero-section. The di�erential of the exponential map at 0 is the
identity so the map � : V !M �M given by �(X) = (p(X); expp(X)

X) where p is the
projection in the tangent bundle p:TM !M is a di�eomorphism near the zero-section.

At any point of the zero-section the di�erential of � is the identity.

Proposition 1. Let (M;!; J) be a K�ahler manifold with metric g and �:V !M�M be

the map de�ned above. Let (L;r; h) be a regular quantization bundle overM and let  be
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the corresponding 2-point function on M �M . Then there exists an open neighbourhood

W � V of the zero-section in TM and a smooth open embedding � : W ! TM such

that

(� log ����)(X) = �gp(X)(X;X); X 2W
and the di�erential of � at any point of the zero-section is the identity.

Proof. � is a di�eomorphism of some neighbourhood V1 of the zero-section of TM onto
an open neighbourhood U of the diagonal � inM �M and we can further suppose that

U \  �1(0) = ;.
Denote by f : V1 ! R the smooth function f = � log ��. Observe that f(0x) =

� log (x; x) = 0. If we denote by a subscript 2 di�erentiation in the vertical direction

in TM one has

(D2f)0x =
1

 (x; x)
(D2 )(x;x) = 0

since all points of the diagonal are critical points of  . Finally, using Proposition 4 of

x1 of [5] (corrected to include a missing factor of 2) we get

(Hess2 f)0x = 2�gx:

For v 2 V1, de�ne the function ~gv: [0; 1]! R by ~gv(t) = f(tv). Clearly

~gv(0) = 0; ~g0
v
(0) = (D2f)0v = 0

and

~g00v (0) = (Hess2 f)0(v; v) = 2�gx(v; v) > 0

whatever v we choose. Taylor's formula with remainder gives us

f(v) =

Z
1

0

(1 � s)~g00v (s)ds

and one sees that

~g0v(s) = (D2f)svv; ~g00v (s) = (Hess2 f)sv(v; v):

We can thus introduce on each tangent space Mx a family of symmetric bilinear forms,
indexed by an element v 2 V1 \Mx

Bv(u; u
0) =

Z
1

0

(1 � s)(Hess2 f)sv(u; u
0)ds:

Clearly B0(u; u
0) = 1

2
(Hess2 f)0(u; u

0) = �gx(u; u
0) is positive de�nite.

Let V2 denote the set of points v of V1 where Bv is positive de�nite. V2 will be an
open neighbourhood of the zero-section in TM . Recall that f(v) = Bv(v; v). There
exists a unique non-singular element Cv of GL(Mx) which is symmetric relative to B0

such that

Bv(u; u
0) = B0(Cvu; u

0)
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and all eigenvalues of Cv are strictly positive. Furthermore the map V2 � TM !
End(TM), v 7! Cv is smooth. Finally the endomorphism Cv admits a unique symmet-

ric, positive de�nite square root C
1=2

v and

Bv(u; u
0) = B0(C

1=2

v
u;C

1=2

v
u
0):

Also C
1=2

0
= I and the map v 7! C

1=2

v is smooth.

De�ne the map �:V2 ! TM by �(v) = C
1=2

v v. This maps the zero-section onto the

zero-section and one can �nd a neighbourhood fW � V2 of the zero-section such that

�j
fW

: fW ! TM is an embedding. Clearly one may choose W = �(fW ), � = �jW�1
. It

is trivial to check that � has di�erential at the zero-section equal to the identity and

the proposition is proven.

Remark 1. In [5] we used the compactness of M in several places to get the existence

of an asymptotic expansion for the �-product. In particular the Liouville volume had a

uniform bound. We can replace that here by observing that, from example 1 of x2, we
have

1 = 1 �1 1 =
Z
M

 (x; y)�(1)(y)
!
n(y)

n!
:

Since  is everywhere non-negative, it follows that, if �(1) is constant, then on every
subset U of M we have Z

U

 (x; y)
!
n(y)

n!
� �

(1)
�1
:

Proposition 2. Let (M;!; J) be a K�ahler manifold, (L;r; h) be a regular quantization

bundle for M and  the corresponding 2-point function. Then, for any f belonging toeBl, the integral

(3.1) Fk(x) =

Z
M

f(x; y) (x; y)kkn
!
n(y)

n!
; for k � l + 1

admits an asymptotic expansion

Fk(x) �
X
r�0

k
�r
Cr( bf )(x)

where Cr is a smooth di�erential operator of order 2r depending only on the geometry

of M . The leading term is given by C0( bf )(x) = bf .
Note: We are not claiming that for this very general class of functions f(x; y) the integral
(3.1) depends smoothly on x, only that the coe�cients of the asymptotic expansion do.

Proof of proposition 2. Use Proposition 1 to construct a neighbourhood U1 of the di-

agonal � in M �M and a neighbourhood V1 of the zero-section in TM such that the
following hold:

(i) � : V1 ! U1, X 7! (x; expxX) is a smooth di�eomorphism;

(ii) 9 ��1 : V1 ! �
�1(V1) � TM a smooth embedding such that � log ���� = �g

on ��1(V1);
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(iii) U1 \  �1(0) = ;.
Shrinking U1, V1, if necessary, we can assume that V1 \ TxM is a bounded sub-

set of TxM . Going back to the proof of Proposition 2, one observes that ��� :
�
�1(V1) \ TxM !M = fxg�M is an embedding and hence one may de�ne a non-zero

smooth function � by

((���)�
!
n

n!
)(x; v) = �(x; v)dv

where dv denotes the linear Lebesgue measure on Mx. Shrinking V1, if necessary, one

may assume that � is de�ned on V 1 and hence is bounded as well as all its derivatives
for x in a compact subset of M .

Choose an open neighbourhood U2 of � in M �M , with U2 � U1 and de�ne V2 =

�
�1(U2). Let � : M � M ! [0; 1] be a smooth function such that �jU2 = 1 and

supp� � U1. Set � = maxx;y =2U2  (x; y). Clearly � < 1 and  (x; y) � � on M nU2. Let
U1;x = fy 2 M j (x; y) 2 U1g, U2;x = fy 2 M j (x; y) 2 U2g and �x(y) = �(x; y). The

function �x is equal to 1 on U2;x and has compact support in U1;x.

The function f appearing in the statement of the proposition is a smooth function

on (M �M) n  �1(0). In particular it is smooth in a neighbourhood of the diagonal.
One has

Fk(x) =

Z
U1;x

f(x; y) k (x; y)kn
!
n(y)

n!
+

Z
MnU1;x

f(x; y) k (x; y)kn
!
n(y)

n!
:

By assumption there exists a positive constant C1 such that jf lj � C1 on fxg �M .
Thus ����

Z
MnU1;x

f(x; y) k (x; y)kn
!
n(y)

n!

���� � C1�
(1)

�1
�
k�l�1

k
n
:

Also ����
Z
U1;x

f(x; y)(1 � �x(y)) 
k(x; y)kn

!
n(y)

n!

����
=

����
Z
U1;xnU2;x

f(x; y)(1 � �x(y)) 
k(x; y)kn

!
n(y)

n!

����
� C1�

(1)
�1
�
k�l�1

k
n
:

Grouping the terms we get

����Fk(x) �
Z
U1;x

�(x; y)f(x; y) k (x; y)kn
!
n(y)

n!

���� � C�
k
k
n
; 8k � l + 1

where C = 2C1�
(1)

�1
�
�l�1. Thus this di�erence is exponentially small for each x. The

remaining integral may be computed in the tangent space TxM as

Z
U1;x

�(x; y)f(x; y) k (x; y)kn
!
n(y)

n!

=

Z
V1;x

�(���)(x; v)f(���)(x; v)e�k�g(v;v)kn�(x; v)dv
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where V1;x = (���)�1 U1;x:

Denote by G(x; v) the function on TM de�ned by

G(x; v) =

�
�((���)(x; v))f((���)(x; v))�(x; v); if (x; v) 2 V1;
0; if (x; v) =2 V1.

It is smooth and compactly supported for x in a compact set andZ
U1;x

�(x; y)f(x; y) (x; y)kn
!
n(y)

n!
=

Z
Mx

G(x; v)e�k�g(v;v)kndv

=

Z 1

0

dr

Z
SxM

G(x; rv)e�k�r
2

r
2n�1

k
n
dv

where r(v) = g(v; v)1=2 and SxM is the unit sphere in TxM . Now use Taylor's formula
with integral remainder for G(x; rv)

G(x; rv) =

2NX
p=0

r
p

p!
(Dp

v
G)(x; 0) + r

2N+1

Z
1

0

(1� s)2N

(2N)!
(D2N+1

v
G)(x; rsv)ds:

The integral of the remainder term is easily bounded since G is compactly supported.����
Z 1

0

dr

Z
SxM

dv k
n
r
2n+2N

Z
1

0

ds
(1 � s)2N

(2N)!
(D2N+1

v
G)(x; rsv)e�k�r

2

����
=

����k�N
Z 1

0

dt

Z
SxM

dv

Z
1

0

ds
t
n+N�1

2 (1� s)2N

(2N)!�n+N+
1

2

(D2N+1

v G)(x;

r
t

k�
sv)

e
�t

2
p
k

����
� k

�N C3p
k
:

Observe �nally that if p is odd Z
SxM

(Dp

vG)(x; 0)dv = 0

since this is the integral of the restriction to the sphere of a homogeneous polynomial
of odd degree. Putting these facts together we get

k
N

����Fk(x) �
NX
p=0

(p+ n� 1)!

(2p)!

k
�p

2�p+n

Z
SxM

(D2p

v G)(x; 0)dv

���� � C�
k
k
n+N +

C3p
k
:

The derivatives of the function G in the vertical direction for v = 0 do not depend on

the choice of the cut-o� function �, but depend only on f and � (which is related to the
geometry alone). The smoothness of the coe�cients follows since they are determined by
the integral of a compact supported function in U1 which allows us to di�erentiate freely
under the integral sign even though we could not necessarily do that when evaluating

the original integral over the whole of M .
Finally, the leading term is given by

(n� 1)!

2�n

Z
SxM

G(x; 0)dv =
(n� 1)! vol(S2n�1)

2�n
�(x; 0) bf (x; x):

Since the di�erentials of both � and � at the zero section are equal to the identity, and

on a unitary frame of the tangent bundle the Liouville volume !
n

n!
is equal to 1 it follows

that �(x; 0) = 1. Moreover vol(S2n�1) = 2�
n

(n�1)!
so C0( bf ) = f̂ as desired.
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Corollary 1. In the regular case �(k) has an asymptotic expansion
P

r�0 �r=k
r as k

tends to in�nity with �0 = 1.

Proof. Apply the formula for the product to the identity operator using the fact that
the symbol of the identity is always the constant function 1:

1 = 1 �k 1 = �
(k)

Z
M

 (x; y)kkn
!
n(y)

n!
:

The integral has an asymptotic expansion in k�1 with leading term 1 by the previous

proposition. We can then invert the asymptotic expansion to obtain one for �(k).

Corollary 2. In the regular case bA �k bB has an asymptotic expansion in k
�1 as k

tends to in�nity for bA and bB in Bl for some l with coe�cients which are bidi�erential

operators.

Proof. We have already observed that if bA and bB are in Bl for some l then bA(x; y) bB(y; x)

is in eB and so proposition 2 applies to the integralZ
M

bA(x; y) bB(y; x) (x; y)kkn
!
n(y)

n!

to show that it has an asymptotic expansion with coe�cients which are bidi�erential

operators. By (2.1), since �(k) is constant, bA �k bB is a product of two functions of k
each of which has an asymptotic expansion. Hence the result.

We compute the �rst two terms of the asymptotic expansion of bA �k bB for bA and bB
in Bl and k � l.

( bA �k bB)(x) � �1 + �1

k

� bA(x; x) bB(x; x) +
n!

4�n+1k

Z
SxM

D
2

vG(x; 0)dv + � � �

where
G(x; v) = bA(x; expx �(v)) bB(expx �(v); x)�(x; v):

Taking the antisymmetric part we have

( bA �k bB� bB �k bA)(x)
� n!

4�n+1k

Z
SxM

�
D

2

vG(A;B)(x; 0) � (D2

vG)(B;A)(x; 0)
�
dv + � � �

Using the identities 1 �k B = B �k 1 = B, 1 �k 1 = 1 when expanding the derivatives
the above integrand reduces to

(3.2)

( bA �k bB� bB �k bA)(x)
� n!

2�n+1k

Z
SxM

�
Dv;2

bA(x; x)Dv;1
bB(x; x)

�Dv;2
bB(x; x)Dv;1

bA(x; x)��(x; 0)dv + � � �

where the indices 1; 2 refer to the �rst (second) variable in a function of the form bA(x; y).
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If we take an orthonormal basis ei of tangent vectors at x and v has components vi
then Z

SxM

vivjdv = vol(S2n�1)=n �ij

so that, if Di;1 denotes di�erentiation in the direction ei in the �rst variable, and so on,

then

( bA �k bB� bB �k bA)(x)
� 1

�k

2nX
j=1

Dj;2
bA(x; x)Dj;1

bB(x; x) �Dj;2
bB(x; x)Dj;1

bA(x; x) + � � �

The function bA(x; y) is holomorphic in x and antiholomorphic in y. Thus, taking

an orthonormal basis such that ej+n = Jxej ; j � n and setting uj = ej � iej+n

we have !x(uj; uk) = 2i�jk and, for j � n, Dj;2
bA = 1

2
uj( bA), Dj+n;2

bA = � i

2
uj( bA),

Dj;1
bA = 1

2
uj( bA), Dj+n;1

bA = i

2
uj( bA), etc, so that

2nX
j=1

Dj;2
bADj;1

bB �Dj;2
bBDj;1

bA =

nX
j=1

Dj;2
bADj;1

bB �Dj;2
bBDj;1

bA
+Dj+n;2

bADj+n;1
bB �Dj+n;2

bBDj+n;1
bA

=
1

2

nX
j=1

uj( bA)uj( bB)� uj( bA)uj( bB)
= if bA; bBg

so that

( bA �k bB � bB �k bA)(x) � i

�k
f bA; bBg+ � � �

Theorem 1. Let (M;!; J) be a K�ahler manifold and (L;r; h) be a regular quantization

bundle over M . Let bA; bB be in B. Then

( bA �k bB)(x) =
Z
M

bA(x; y) bB(y; x) k (x; y)�(k)kn!n(y)
n!

(y);

de�ned for k su�ciently large, admits an asymptotic expansion in k�1 as k!1

( bA �k bB)(x) �X
r�0

k
�r
Cr( bA; bB)(x)

where the cochains Cr are smooth bidi�erential operators, invariant under the automor-

phisms of the quantization and determined by the geometry alone. Furthermore

C0( bA; bB) = bA bB;
and

C1( bA; bB) �C1( bB; bA) = i

�
f bA; bBg:
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4. The Poincar�e disk.

Let D denote the open unit disk in C with the Poincar�e metric. The K�ahler form is
given by

! =
�i�dz ^ dz
2�(1 � jzj2)2 = d

�
i�zdz

2�(1� jzj2)
�
:

D can be written as the homogeneous domain SU(1; 1)=U(1) and the action of SU(1; 1)
is Hamiltonian.

If (L;r; h) is a homogenous quantization for the simply-connected group ^SU(1; 1)

then L can be trivialised on all of D by a section s0 with

js0j2 = (1� jzj2)�:

The norm on holomorphic sections is then

kfs0k2 =
Z
D

jf(z)j2(1 � jzj2)� �d
2
z

�(1 � jzj2)2

where d2z denotes the usual Lebesgue measure dxdy for z = x + iy. s0 will have �nite
norm for � > 1 which we assume.

Since D is homogeneous, � will be constant and so the coherent states for the Hilbert
space H of square-integrable holomorphic sections can be written down immediately as

es0(w)(z) = �(1� wz)��s0(z):

Note that this makes sense since 2<e(1�wz) = 1� jwj2+1� jzj2+ jw� zj2 > 0 and so
1 � wz takes values in a half space and all real powers can be de�ned as single-valued
holomorphic functions.

We calculate � by observing that s0(0) = hs0; es0(0)is0(0) and thus

1 = �

Z
D

(1 � jzj2)��2 �
�
d
2
z

= �
�

� � 1
:

Hence
� = 1� �

�1
:

The 2-point function  is given by

 (z;w) =

 
(1� jzj2)(1 � jwj2)

j1� wzj2

!�
=

 
(1 � jzj2)(1 � jwj2)

(1 � jzj2)(1 � jwj2) + jz � wj2

!�

and so has no zeros on D � D and equals 1 only on the diagonal so we have a regular
quantization.

The class of symbols which we shall use are the symbols of di�erential operators on
L
k. Denote by D(p; q; k) the operator

D(p; q; k)(fsk
0
)(z) =

�
z
p

�
@

@z

�q
f(z)

�
s
k

0
(z):
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then applied to a coherent state we have

D(p; q; k)e
(k)

s0(w)
(z) = �

(k)
Pq(k�)z

p

�
w

1� wz

�q
(1 � wz)�k�sk

0
(z)

where Pq is the polynomial of degree q given by Pq(x) = x(x + 1) : : : (x + q � 1). The

coe�cient of sk
0
is bounded and so both conditions of Remark 1 of x2 hold. The symbol

of D(p; q; k) is given by

\D(p; q; k)(z) = Pq(k�)z
p

�
z

1� jzj2
�q

and its analytic continuation by

\D(p; q; k)(z;w) = Pq(k�)z
p

�
w

1�wz

�q
:

Since
j1� wzj2 = 1� wz � zw + jzj2jwj2

� (1� jzjjwj)2
� (1� jzj)2

as a function of w 2 D for z 2 D �xed, \D(p; q; k) is in B0.
It follows that zp

�
z

1�jzj2

�q
is the symbol of the densely de�ned operator D(p;q;k)

Pq(k�)

on Hk. We can clearly compose such operators since the result of applying the �rst
to a coherent state is a coherent state for a di�erent parameter and these are in the
domain of the second as one easily checks and so the �-operation is well-de�ned and is
the symbol of the composition. An easy calculation yields(

z
p

 
z

1� jzj2

!q)
�k
�
z
r

�
z

1� jzj2
�s�

= fPq(k�)Ps(k�)g�1 \D(p; q; k) �D(r; s; k)

=

min(q;r)X
m=0

�
q

m

�
r!

(r �m)!

Ps+q�m(k�)

Pq(k�)Ps(k�)
z
p+r�m

�
z

1� jzj2
�s+q�m

:

From this we deduce that
n
z
p

�
z

1�jzj2

�qo
�k
n
z
r

�
z

1�jzj2

�so
is a rational function of k,

and hence that the asymptotic expansion given by proposition 2 of x3 is convergent on
symbols of polynomial di�erential operators. Secondly, if we consider symbols of this

type with p < N , q < N then all the functions on the right hand side are of this form

with p < 2N , q < 2N and so lie in a �xed �nite dimensional space.
Similarly, if we consider the �k-product of three symbols in order to check associativ-

ity, the result depends rationally on k with coe�cients which are symbols with p < 3N ,

q < 3N . Since we know that �k is associative, we can use the same argument as in [5]

to conclude associativity of the asymptotic expansion, provided we show that symbols
of this kind are enough to determine the di�erential operators involved.
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To see this we observe that

1

1� jzj2 = 1 + z

�
z

1� jzj2
�

is in the space of symbols, and hence so are all the functions of the form z
p
z
q

(1�jzj2)r
for p

and q less than or equal to r. Suppose that D1 and D2 are two di�erential operators
of order r with D1f = D2f for all symbols f of this form. Then we can conjugate

D1 and D2 by (1 � jzj2)r to yield di�erential operators eD1 and eD2 of order r which

satisfy eD1z
p
z
q = eD2z

p
z
q for all p and q less than or equal to r. Hence eD1 = eD2 and so

D1 = D2.
Thus associativity holds for the formal �-product de�ned on smooth functions given

by the asymptotic expansion of �k, and the coe�cients are di�erential operators de-

termined by the geometry, and independent of any choices of symbols, etc, made to

determine them. In particular it is invariant under SU(1; 1). We have thus proven the
following theorem.

Theorem 1. There is a formal �-product on smooth functions on the disk D which is

determined by asymptotic expansion of the Berezin �k. The coe�cients are bidi�erential

operators invariant under SU(1; 1). The formal series converges for pairs of functions

which are symbols of polynomial di�erential operators.
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