Preferred invariant symplectic connections on compact coadjoint
orbits

Michel Cahen (mcahen@ulb.ac.be)
Université Libre de Bruxelles, C.P. 218 - bd du Triomphe, 1050 Bruzelles, Belgique

Simone Gutt (sgutt@ulb.ac.be)
U.L.B. Campus Plaine, CP 218, 1050 Bruzelles, Belgique
and Université de Metz, Ile du Saulcy, F-57045 Metz Cedex 01, France

John Rawnsley (j.rawnsley@warwick.ac.uk)
Mathematics Institute, University of Warwick, Coventry CVj 7TAL, United Kingdom

May 1999
To appear in Letters in Mathematical Physics

Abstract. We prove the existence of at least one G-invariant preferred symplectic connection on
any coadjoint orbit of a compact semisimple Lie group G. We look at the case of the orbits of SU(3)
and show that in this case the invariant preferred connection is unique.

Moshé Flato has been a close and wonderful friend and an inspiration for us for
more than twenty years. This contribution is dedicated to him, always present in our
hearts.

1. Introduction

A linear connection V on a symplectic manifold (M, w) is said to be preferred [1] if
(i) it has zero torsion; (ii) Vw = 0; (iii) it is an extremal of the functional L given by
L(V) = %/MTQLU" (1)
where dim M = 2n, and r? is the square of the Ricci tensor of V defined using w. In
the case of a compact surface it was shown in [1] that a preferred connection always
exists. The general case is still open, but we hope to get some feeling for the existence
of solutions by examining homogeneous symplectic manifolds.
A compact simply connected homogeneous symplectic manifold is known to be
a coadjoint orbit O C g* of a compact semisimple Lie group G endowed with the
classical Kirillov-Kostant-Souriau form [2, 6] and we look for G-invariant symplectic
connections on these.
In this note, we prove the existence of at least one such preferred connection on
(O,w). For the orbits of G = SU(3) we establish the uniqueness of the preferred

invariant connection.
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2. Positive polynomials

The existence argument is based on the following lemma on positive polynomials on

a vector space.

LEMMA 1. Let P:CN — R be a real-valued polynomial of degree d. Assume (i)
P(2) >0,Yz € CN; (ii) Qu(z) > 0 for z # 0 where Qg is the homogeneous component
of P of degree d; then P admits a minimum.

Proof. Let (2,) be a sequence in CV such that lim, o P(2,) = a = inf,ccov P(2).
Assume that the sequence (|z,|) diverges and write z, = |z,|u,. Passing to a subse-
quence, if necessary, we can assume lim, . u, = u, with Q4(u) = b > 0. Thus, if Q;

is the homogeneous component of P of degree 1,

d—1
0= lim |z, ™% = lim Qq(u,) + Z 20| 0Q; (uy) = b,

a contradiction. Hence the sequence (z,) is bounded, so has a convergent subsequence.
O

3. Homogeneous symplectic manifolds

We recall a well-known lemma about compact, simply connected homogeneous sym-
plectic manifolds.

Let G be a compact semisimple Lie group and g its Lie algebra. Let O be a coadjoint
orbit in g* and zy € O a base point. If we identify g with g* using the Killing form
B, then z¢(X) = B(Xj, X) for an element X, of g and the stabiliser H of xq is the
centraliser of X,. Let h be its Lie algebra. Set

Wao (X5, Vo) = B(Xo, [X, Y])

o’ T To

where X* and Y* are fundamental vector fields on O

d
X, = —exp—tX.x
dt —0
w extends by translation by G around O as an invariant symplectic form on O called

the Kirillov-Kostant-Souriau (KKS) symplectic structure [2, 6].

LEMMA 2. Let (M,w) be a connected, simply connected compact homogeneous sym-
plectic manifold. Then (M,w) is symplectomorphic to a coadjoint orbit O of a compact

connected semi-simple group G, with its standard KKS symplectic structure.
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Proof. A connected Lie group G, acts transitively on M. A classical result of Mont-
gomery [3] shows that, as M is simply connected, the maximal compact subgroup G,
of Gy acts transitively on M. Since M is simply connected, the action of Gy on M is
generated by Hamiltonian vector fields. Let g; be the Lie algebra of Gy; if X € g,

denote by fx the unique smooth function on M such that
(1) dfxy =i(X")w; (2) / fxw" =0.
M
Define the real-valued 2-cocycle ¢ on g; by

o(X,Y) ={fx, fr} — fixy

where the Poisson bracket of the function {fx, fy} = —w(X*,Y*)). If one computes
the integral

/MC(X’Y)wn - /M{fx,fY}w”:/Mx*,wan

Since ¢(X,Y) is a constant function, it follows that it must vanish and hence that the
action is strongly Hamiltonian. The Kostant—Souriau theorem [2, 6] now ensures that
the moment map pu: M — g
p(@)(X) = fx(z)

is a G'j-equivariant, symplectic covering map of a coadjoint orbit O of GGy in gj.

The centre of Gy acts trivially on g; and gj so that O is homogeneous under
the (semisimple) derived group G of G;. O is thus a coadjoint orbit of a compact
semisimple Lie group G. These are known to be simply connected [4] and hence the

covering map p is a symplectic diffeomorphism.
Il

4. Invariant symplectic connections

A linear connection V on a symplectic manifold (M, w) is said to be symplectic [7] if
(i) it has zero torsion; (ii) Vw = 0.

It is well known that on any symplectic manifold, there exist such connections
and the space of symplectic connections is an affine space modelled on the space of
symmetric 3-tensors on M. Take any linear torsion-free connection V' on M and define

a symplectic connection V°

w(VLY, Z2) = w(VyY, Z) + Y(N(X,Y, Z) + N(V, X, 7))

1
3
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where N(X,Y,Z) = (Vw)(Y, Z). Then any symplectic connection V reads
VxY = VLY + AX)Y (2)

where the 1-form A with values in the endomorphisms of the tangent bundle is such
that A(X,Y,Z) = w(A(X)Y, Z) is a completely symmetric 3-tensor on M.

To try to select some symplectic connections, one considers the functional L(V) (see
(1)) on the space of symplectic connections. A symplectic connection is preferred if it
is an extremal of this functional, hence if it satisfies the corresponding Euler-Lagrange

equations

SX,Y,Z (er)(Y, Z) =0. (3)

for any X, Y, Z vector field on M, where Sx y 7 denotes the sum over cyclic permuta-
tions of X,Y and Z.
When the symplectic manifold (M, w) is homogeneous under the action of a group

G, for any X € g, one defines on M the fundamental vector field X*

d
X' = —exp—tX. e M.
y = 75 €XP y oY

For a G-invariant symplectic connection, the Ricci tensor is invariant so the condition

to be preferred can be written as
SX’Y,ZT(V)(*Y*-FVy*X*,Z*) =0 (4)
Indeed

(Vxer) (Y, Z%) = X*(r(Y*, Z) — 1(V - Y™, Z%)

—r(Y*, Vx-Z%) (5)
= r([X*, Y], Z) +r(Y*, [X*, Z7))

—r(Vx-Y*, Z%) = r(Y*, Vx. Z%) (6)
= —r(vy*X*,Z*) —T(Y*,Vz*X*)- (7)

We always assume in this paper that G is compact semisimple. By Palais’ principle [5],
to determine G-invariant critical points of L, it is sufficient to determine the critical
points of the restriction of L to the space of G-invariant symplectic connections. The
equation for an invariant symplectic connection to be preferred, (4), allows to see this
directly; for this we parametrise the space of invariant symplectic connections and
write the Ricci tensor in terms of this parametrisation.

From now on, GG is a compact connected semi-simple group, g is its Lie algebra,

(M,w) is a symplectic manifold which is homogeneous under G, o € M is a base
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point, H is its stabiliser, with Lie algebra h. The Killing form orthogonal complement
m of b in g is Ad H-invariant and is identified to the tangent space to M at x,. Let V°
be an invariant symplectic connection on M (it always exists since G is compact and
one can average a symplectic connection). A general invariant symplectic connection
on M has the form V = V°+ A where A is a 1-form with values in the endomorphisms
of TM such that A(X,Y,7) := w(A(X)Y, Z) is completely symmetric and invariant.

Hence V is determined by the trilinear map
Smxmxm—=R SX,Y,Z)=A4, (X", Y, 7"

which is Ad H-invariant.
LEMMA 3. The space £ of invariant symplectic connections on a G- homogeneous
connected symplectic manifold where G is a compact semisimple Lie group is isomor-
phic to the space of completely symmetric trilinear maps on m which are invariant
under the adjoint action of H.

£ =(S*m")H. (8)
This isomorphism depends on the choice of the invariant symplectic connection V° on

M.

We shall now write the functional L(V) for an invariant connection in terms of the

fundamental vector fields. More precisely, we define D: m — End m by
(DX)Y) o = (Vx-Y7) (o). (9)
Notice that
(Vx:Y*)(x9) = 0, VX €b;
(Vx:Y*)(x9) = [X, Y] ]2, VX €mY €.
The conditions for V to be symplectic are
D(X)Y =D(Y)X + [X,Y]n, (10)

Q(D(Y)X, Z) + Q(Y, D(Z)X) = 0 (11)

for all X,Y,Z € m, where X = Xy + X, is the decomposition of an element X € g
relatively to g = h + m and where Q(X,Y) = w,,(X*, Y*). Equation (11) follows, as
in (5,6,7), from the invariance of w under G. Remark that it implies that D(X) — 7, 0
ad X € sp(m, Q) where 7, (resp. my) is the projection of g on m (resp. h). Hence D(X)

is traceless for any X € m.
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For all X,Y, Z € m, the curvature is given by

R(X*,Y*)Z* = VVY*Z*X* - VVX*Z*Y* + V[X*,Y*}Zk
_VX*[Y*az*]+vY*[X*:Z*]
= Vy,.v+ X" = Vo, x- Y+ V2 [X" V7]

Hence

R(X*,Y") 2",y = (D(D(Z)Y)X — D(D(Z)X)Y + D(Z)[X, V]

so that the Ricci tensor is given by

r(Y*, Z%)|s = Tracen(D(D(Z)Y) — D(Y)D(Z) +mmwoadY o D(Z)
—D(Z)omwoadY —adZomyoadY)
= — Tracen(D(Y)D(Z) —ad ZomyoadY).

Having chosen an invariant symplectic connection V® on M with corresponding D°
and writing a general invariant symplectic connection V = V94 A, one has D = D°+S

where S : m — Endm is defined by
AX)Y oy = (S(X)Y) g
so that, with our previous notation, S(X,Y, Z) = Q(S(X)Y, Z). The Ricci tensor is

r(Y*, Z%) |4y = — Tracen ((D° + S)(Y)(D° + S)(Z) +ad Z o my 0 ad V).

PROPOSITION 4. The preferred homogeneous symplectic connections on M are de-
termined by the critical points of the function r> on the space € of invariant symplectic
connections. This function is a real polynomial of degree 4 on &.

Proof. r* is an invariant function and so is constant on M. Thus L = 72 vol(M).

If X; is any basis for m, r?

= ik wwklryr; where w is the inverse matrix of
wij = Q(X;, Xj) and 1 = r(X7, X7)|s,- One checks that the condition for an element
VY € £ to be a critical point of r? is exactly the condition (4) for this connection to

be preferred.
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5. Existence

From now on, G is a compact connected semi-simple group, g is its Lie algebra, O
is a coadjoint orbit in g* with its standard KKS symplectic structure, o € O is a
base point, H is its stabiliser, with Lie algebra h and m is the Killing form orthogonal
complement of h in g. We use the same notation as before.

As a polynomial in S, the term of highest order in the Ricci tensor is the quadratic
term

r(Y, Z) = — Trace, (S(Y)S(Z)).
If X, is any basis for m, we have, for any X,Y € m:

rO(Y,Z) = =) (S(YV)X;)(S(2)X;)!

= SV, Xy, XM S(Y, X, X',
ijki
where w;j = wy, (X}, X7) and w" is the inverse matrix.
Take a maximal torus 7 of G in H and let t be its Lie algebra. We denote by A
the set of roots of (g%, t%) and let

g(C:t(CEBZga

a€A

be the root space decomposition. A root space g* is in h® if and only if a(X,) = 0.

We denote by A, the set of complementary roots
Ac={aeAlg" b} ={aeA|a(X) #0}.

Pick a positive root system A7 such that ia(Xy) > 0 for all € AT N A.. The
H-invariant complement m of h is given by
mt=>" g
agA.

Let ai,...,a; be the simple roots numbered in such a way that aq,...,a, are
the simple roots in A.. We use the complementary height function n. defined by
ne(a) =>_ niifa= Zﬁ:l n;c;. n. is additive in the sense that if & and 3 are roots
such that a+ f is also a root then n.(a+ ) = n.(a)+n.(F). All the n; are positive for
positive roots and negative for negative roots so & € AT NA, if and only if n.(«) > 0.
and r,, to forms on (7,,0)¢ and S to m®. Pick a

basis of root vectors E, € g* such that E_, = E,. Put

We extend C-linearly w,,, A

o

Sapy = A(IO)(E(’;, Ej, BY) = S(Eq, Eg, E,).
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Then V is determined by s,g, for o, 3,7 € A., Sapy is symmetric in its labels, and
G-invariance of V is equivalent to Ad H-invariance of S. In particular, S is T-invariant
which implies

Saﬂ,y:U if Oé+ﬁ+’77é0
Invariance of w and V implies that w,,(E}, EX) and r, (E%, E%) are zero unless
a+a' =0.Set Qp = wy, (Ej, B*5) 155 = 120(Ef, ¥ ).
The function 1r? defining our functional L(V) has the form

2 1 —2,.2
T =3 E Qa Ta’_a.

OéeAc

N | =

Now (2 is skewsymmetric so (2, is purely imaginary, and r is symmetric so r,,_q is
real. Hence %7‘2, which is a 4th order polynomial in the s,3, is a sum of square of real

numbers hence non negative. The highest order terms of that polynomial are given by

-3 2 %RY

aEA,

where R? = r®(E,, E_,), so they vanish only when all the R vanish. But

08 gt On ot
2 B,=B" Yy,—v
R((Jz) = E , SapyS—ap'y

BB 5
_ Z SafyS—a—f—vy
Btr+a=0 2582,
Z EN ‘
Btr+a=0 258,

Now

Qo = B(Xo, [Ea, E—a]) = a(Xo)B(Ea, Ex)

and B is negative definite so iQ, < 0 if n.(a) > 0. Thus Q< is positive when § and
~ are roots of the opposite signs and negative when they have the same sign.

We split the sum accordingly

2 2
R® — } : |Sas4] I E : E
a .
B+7+a=0 2582, B+r+a=0 2542,
B,y same sign B,y opposite sign

LEMMA 5. If r? =0 for all o then sap, = 0 for all o, 3, 7.
Proof. Suppose some s,3, is not zero and take such a term where the minimum of

the complementary height of the labels,

k= min{|nc(a)], [n.(6)]; [ne(7)},
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is as near zero as possible. By symmetry we can suppose n.(«) = k and consider the
expression for R? . In the terms where 3, v have the same sign, then n.(3)+n.(y) = —k
so both |n.(4)| and |n.(7)| are smaller than £ and hence all these terms vanish in RY.
The remaining terms are all of the same sign and so Rg) = 0 implies they all vanish
too. This contradicts the initial assumption and hence the Lemma follows.

W

Thus we have proved

PROPOSITION 6. The highest order terms in %TQ are non-zero for non-zero values
of the parameter S in the space of invariant symplectic connections on the compact

coadjoint orbit O.

THEOREM 7. FEvery compact coadjoint orbit O has an invariant preferred symplectic
connection.

Proof. r? is an invariant function and so is constant on O. Thus L = 72 vol(M).
By the Proposition L satisfies the conditions of Lemma 1 and hence L has at least
one critical point, its absolute minimum.

O

6. Decomposition into simple factors

A coadjoint orbit of a compact semisimple Lie group G is a product of orbits of
the simple ideals of g. In general a symplectic connection on the orbit need not be
compatible with such a decomposition. However, when the connection is G-invariant,
things are different as we shall now see. We may assume that the compact semisimple
group G is simply connected. It is thus the direct product of simply connected compact
simple groups G = [[/_, G, and we also have g = >*_, g,. If g € G and X, € g, one

has

p
Ady Xo = Ady, -+ Ady, (X1 + -+ X)) = ) Ad,, X,
r=1

The conjugacy class G - X is thus a product of the classes G, - X,.

The Killing form B of g is a direct sum of the correspond Killing forms, B, and
the symplectic form w on the orbit O is a direct sum of the corresponding symplectic
forms w,, on the orbits O, which correspond under the Killing form to the conjugacy
classes G, - X,. Thus (O,w) is a product of the orbits (O,,w,).
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LEMMA 8. Any G-invariant, torsion-free symplectic connection V on O, induces a
G -invariant connection V" on O,, which is torsion-free and symplectic. Furthermore
V is the product of the corresponding connections V'.

Proof. Pick a torsion-free invariant symplectic connection V' on O, and take as a
base point on O the product connection V® = II’_ V' . Then any invariant connection
V has the form V° 4+ A. Obviously, it is enough to show that A respects the product
structure. Let H be the stabiliser of Xo = > X, and H, the stabiliser of X, then
H =11,H,. If T, is a maximal torus in H, then T" = II,7, is a maximal torus in G and
the H-invariant complement m is a sum ) . m, of complements in each simple factor.
The set of roots A of (g%, t%) is the disjoint union of sets of roots for each simple
factor. We consider A, (FE, E};, EZ) which can only be non-zero if a + 3 + v = 0 and
this can only happen if all three roots «, 3, v belong to the same simple factor. Thus
A=) A, where each A, is extended to the other simple factors by zero. V is then
the product of V' + A,.

Il

7. SU(3)

We now turn to the example of a regular orbit of SU(3). Let us first fix the notation.
The Lie Algebra of SU(3) is

su(3) = {X € End(C?) | X +7X = 0, Trace(X) = 0}

and the Lie algebra t of the maximal torus is the set of purely imaginary, diagonal,

trace free, 3 x 3 matrices. As a basis of t we take
hy = i(Fy — Ex), hy = i(Fayy — Es3)

where Fj; is a matrix with a 1 in the 75 position and all zeros elsewhere. Let A7, h; be

the dual basis for t*. We choose as positive roots
a =i(h] — 2h3), B =i(h} + hj), a+ 3.
The element X, of t has components
Xo = prhi + pahe

and is regular if

(p1 +p2)(p1 — 2p2) (2p1 — p2) # 0.
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We choose positive root space vectors
Eo =akb3,, FEg= a'E13, FEoyp = a" By

and the conjugate ones for negative roots.
We extend the map D to m®; the invariance condition on V yields D(E,)Es € g'*°

and we write

D(Ey)Es = DysEy5 (7.0 € A)

Using relations (10) and (11) we get

Dgo = ?—FDa,ﬂ
Da,—(a+5) = ag' - %(Z—i’ D)
Daarn = ~(m + 2Pp,
D,(aﬂs),a = —%(z_ﬁl Da,ﬂ)
D_(atp)8 = —HDM

and the conjugate ones. The space of homogeneous symplectic connections is of di-
mension 2; we shall identify it with C and take as coordinate z where

all

zZ = QJDO‘:B

LI +L”

16.9.(p1+p2)%(p1—2p2)? where

The Lagrangean has the form 1r? =

L' = 32°Z°(2p1 — p2)® + 1222(2 + 2) (201 — p2)) (p1 — p2)
+2(2 +2)2(Tp? + Tp3 — 13p1p2) + 82Z[(2p1 — p2)?
+(p1 — 2172)2] +48(2 + Z) (p1 — 2p2) (p1 — p2)

and L" does not depend on z.

The critical points correspond to the value of z such that %—LE' vanishes. The imagi-

nary part of this condition factorises in the form
(z—=2Z)P(z,2) =0

where P(z,Z) is strictly positive. Thus, if we write z = x + iy, we have y = 0 and
critical points become zeros of the real polynomial Q(z) := 3z3(2p; —pa)*+182*(2p; —

p2)(p1—p2) +42((2p1 —p2)* +42(Tpi +Tp3 — 13pipa) + (p1 — 2p2)?) +24(p1 — 2p2) (P1 —2).-
Since @ has odd degree, it has at least one real root. Now the derivative ' is a second
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order polynomial whose discriminant is strictly negative on the interior of the Weyl
chambers; hence ' > 0 in this domain and thus @ has only one zero.

We summarise this analysis by

THEOREM 9. On any regular adjoint orbit O of SU(3) there exists a unique SU(3)-

inwvariant preferred symplectic connection.

The theorem is also true for non-regular orbits of SU(3) since these are Her-
mitean symmetric spaces (CP?) and in this case there is only one invariant symplectic
connection.

We know by Theorem 7 that L achieves its minimum on the invariant symplectic

connections. Hence this minimum is the unique critical point we just found.
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