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1. IntroductionA linear connection r on a symplectic manifold (M;!) is said to be preferred [1] if(i) it has zero torsion; (ii) r! = 0; (iii) it is an extremal of the functional L given byL(r) = 12 ZM r2!n (1)where dimM = 2n, and r2 is the square of the Ricci tensor of r de�ned using !. Inthe case of a compact surface it was shown in [1] that a preferred connection alwaysexists. The general case is still open, but we hope to get some feeling for the existenceof solutions by examining homogeneous symplectic manifolds.A compact simply connected homogeneous symplectic manifold is known to bea coadjoint orbit O � g� of a compact semisimple Lie group G endowed with theclassical Kirillov{Kostant{Souriau form [2, 6] and we look for G-invariant symplecticconnections on these.In this note, we prove the existence of at least one such preferred connection on(O; !). For the orbits of G = SU(3) we establish the uniqueness of the preferredinvariant connection.



2 M. Cahen, S. Gutt & J. Rawnsley2. Positive polynomialsThe existence argument is based on the following lemma on positive polynomials ona vector space.LEMMA 1. Let P : C N ! R be a real-valued polynomial of degree d. Assume (i)P (z) � 0, 8z 2 C N ; (ii) Qd(z) > 0 for z 6= 0 where Qd is the homogeneous componentof P of degree d; then P admits a minimum.Proof. Let (zn) be a sequence in CN such that limn!1 P (zn) = a = infz2CN P (z).Assume that the sequence (jznj) diverges and write zn = jznjun. Passing to a subse-quence, if necessary, we can assume limn!1 un = u, with Qd(u) = b > 0. Thus, if Qiis the homogeneous component of P of degree i,0 = limn!1 jznj�da = limn!1Qd(un) + d�1Xi=0 jznji�dQi(un) = b;a contradiction. Hence the sequence (zn) is bounded, so has a convergent subsequence.�3. Homogeneous symplectic manifoldsWe recall a well-known lemma about compact, simply connected homogeneous sym-plectic manifolds.Let G be a compact semisimple Lie group and g its Lie algebra. Let O be a coadjointorbit in g� and x0 2 O a base point. If we identify g with g� using the Killing formB, then x0(X) = B(X0; X) for an element X0 of g and the stabiliser H of x0 is thecentraliser of X0. Let h be its Lie algebra. Set!x0(X�x0; Y �x0) = B(X0; [X; Y ])where X� and Y � are fundamental vector �elds on OX�x = ddt exp�tX:x����t=0 :! extends by translation by G around O as an invariant symplectic form on O calledthe Kirillov{Kostant-Souriau (KKS) symplectic structure [2, 6].LEMMA 2. Let (M;!) be a connected, simply connected compact homogeneous sym-plectic manifold. Then (M;!) is symplectomorphic to a coadjoint orbit O of a compactconnected semi-simple group G, with its standard KKS symplectic structure.



Invariant symplectic connections on compact coadjoint orbits 3Proof. A connected Lie group G0 acts transitively onM . A classical result of Mont-gomery [3] shows that, as M is simply connected, the maximal compact subgroup G1of G0 acts transitively on M . Since M is simply connected, the action of G1 on M isgenerated by Hamiltonian vector �elds. Let g1 be the Lie algebra of G1; if X 2 g1,denote by fX the unique smooth function on M such that(1) dfX = i(X�)!; (2) ZM fX!n = 0:De�ne the real-valued 2-cocycle c on g1 byc(X; Y ) = ffX ; fY g � f[X;Y ]where the Poisson bracket of the function ffX ; fY g = �!(X�; Y �)). If one computesthe integral ZM c(X; Y )!n = ZMffX ; fY g!n = ZM X� � fY !n= ZM LX�(fY !n) = ZM d (i(X�)fY !n) = 0:Since c(X; Y ) is a constant function, it follows that it must vanish and hence that theaction is strongly Hamiltonian. The Kostant{Souriau theorem [2, 6] now ensures thatthe moment map �:M ! g�1 �(x)(X) = fX(x)is a G1-equivariant, symplectic covering map of a coadjoint orbit O of G1 in g�1.The centre of G1 acts trivially on g1 and g�1 so that O is homogeneous underthe (semisimple) derived group G of G1. O is thus a coadjoint orbit of a compactsemisimple Lie group G. These are known to be simply connected [4] and hence thecovering map � is a symplectic di�eomorphism. �4. Invariant symplectic connectionsA linear connection r on a symplectic manifold (M;!) is said to be symplectic [7] if(i) it has zero torsion; (ii) r! = 0.It is well known that on any symplectic manifold, there exist such connectionsand the space of symplectic connections is an a�ne space modelled on the space ofsymmetric 3-tensors onM . Take any linear torsion-free connection r0 onM and de�nea symplectic connection r0!(r0XY; Z) = !(r0XY; Z) + 13(N(X; Y; Z) +N(Y;X; Z))



4 M. Cahen, S. Gutt & J. Rawnsleywhere N(X; Y; Z) = (r0X!)(Y; Z). Then any symplectic connection r readsrXY = r0XY + A(X)Y (2)where the 1-form A with values in the endomorphisms of the tangent bundle is suchthat A(X; Y; Z) = !(A(X)Y; Z) is a completely symmetric 3-tensor on M .To try to select some symplectic connections, one considers the functional L(r) (see(1)) on the space of symplectic connections. A symplectic connection is preferred if itis an extremal of this functional, hence if it satis�es the corresponding Euler-Lagrangeequations SX;Y;Z (rXr)(Y; Z) = 0: (3)for any X; Y; Z vector �eld on M , where SX;Y;Z denotes the sum over cyclic permuta-tions of X; Y and Z.When the symplectic manifold (M;!) is homogeneous under the action of a groupG, for any X 2 g, one de�nes on M the fundamental vector �eld X�X�y = ddt exp�tX:y����t=0 y 2M:For a G-invariant symplectic connection, the Ricci tensor is invariant so the conditionto be preferred can be written asSX;Y;Z r(rX�Y � +rY �X�; Z�) = 0 (4)Indeed (rX�r)(Y �; Z�) = X�(r(Y �; Z�))� r(rX�Y �; Z�)�r(Y �;rX�Z�) (5)= r([X�; Y �]; Z�) + r(Y �; [X�; Z�])�r(rX�Y �; Z�)� r(Y �;rX�Z�) (6)= �r(rY �X�; Z�)� r(Y �;rZ�X�): (7)We always assume in this paper that G is compact semisimple. By Palais' principle [5],to determine G-invariant critical points of L, it is su�cient to determine the criticalpoints of the restriction of L to the space of G-invariant symplectic connections. Theequation for an invariant symplectic connection to be preferred, (4), allows to see thisdirectly; for this we parametrise the space of invariant symplectic connections andwrite the Ricci tensor in terms of this parametrisation.From now on, G is a compact connected semi-simple group, g is its Lie algebra,(M;!) is a symplectic manifold which is homogeneous under G, x0 2 M is a base



Invariant symplectic connections on compact coadjoint orbits 5point, H is its stabiliser, with Lie algebra h. The Killing form orthogonal complementm of h in g is AdH-invariant and is identi�ed to the tangent space toM at x0. Let r0be an invariant symplectic connection on M (it always exists since G is compact andone can average a symplectic connection). A general invariant symplectic connectiononM has the form r = r0+A where A is a 1-form with values in the endomorphismsof TM such that A(X; Y; Z) := !(A(X)Y; Z) is completely symmetric and invariant.Hence r is determined by the trilinear mapS:m� m� m! R; S(X; Y; Z) = Ax0(X�; Y �; Z�)which is AdH-invariant.LEMMA 3. The space E of invariant symplectic connections on a G- homogeneousconnected symplectic manifold where G is a compact semisimple Lie group is isomor-phic to the space of completely symmetric trilinear maps on m which are invariantunder the adjoint action of H. E = (S3m�)H : (8)This isomorphism depends on the choice of the invariant symplectic connection r0 onM .We shall now write the functional L(r) for an invariant connection in terms of thefundamental vector �elds. More precisely, we de�ne D:m! Endm by(D(X)Y )�jx0 = (rX�Y �) (x0): (9)Notice that (rX�Y �) (x0) = 0; 8X 2 h;(rX�Y �) (x0) = [X; Y ]�jx0; 8X 2 m; Y 2 h:The conditions for r to be symplectic areD(X)Y = D(Y )X + [X; Y ]m; (10)
(D(Y )X;Z) + 
(Y;D(Z)X) = 0 (11)for all X; Y; Z 2 m, where X = Xh + Xm is the decomposition of an element X 2 grelatively to g = h + m and where 
(X; Y ) = !x0(X�; Y �). Equation (11) follows, asin (5,6,7), from the invariance of ! under G. Remark that it implies that D(X)��m �adX 2 sp(m;
) where �m (resp. �h) is the projection of g on m (resp. h). Hence D(X)is traceless for any X 2 m.



6 M. Cahen, S. Gutt & J. RawnsleyFor all X; Y; Z 2 m, the curvature is given byR(X�; Y �)Z� = rrY �Z�X� �rrX�Z�Y � +r[X�;Y �]Z��rX� [Y �; Z�] +rY �[X�; Z�]= rrZ�Y �X� �rrZ�X�Y � +rZ�[X�; Y �]:Hence R(X�; Y �)Z�jx0 = (D(D(Z)Y )X �D(D(Z)X)Y +D(Z)[X; Y ]m+[Z; [X; Y ]h])�jx0= (D(D(Z)Y )X �D(Y )D(Z)X � [D(Z)X; Y ]m+D(Z)[X; Y ]m + [Z; [X; Y ]h])�jx0so that the Ricci tensor is given byr(Y �; Z�)jx0 = Tracem(D(D(Z)Y )�D(Y )D(Z) + �m � adY �D(Z)�D(Z) � �m � adY � adZ � �h � adY )= �Tracem(D(Y )D(Z)� adZ � �h � adY ):Having chosen an invariant symplectic connection r0 on M with corresponding D0and writing a general invariant symplectic connectionr = r0+A, one hasD = D0+ ~Swhere ~S : m! Endm is de�ned byA(X�)Y �jx0 = ( ~S(X)Y )�jx0so that, with our previous notation, S(X; Y; Z) = 
( ~S(X)Y; Z). The Ricci tensor isr(Y �; Z�)jx0 = �Tracem((D0 + ~S)(Y )(D0 + ~S)(Z) + adZ � �h � adY ):PROPOSITION 4. The preferred homogeneous symplectic connections on M are de-termined by the critical points of the function r2 on the space E of invariant symplecticconnections. This function is a real polynomial of degree 4 on E.Proof. r2 is an invariant function and so is constant on M . Thus L = 12r2 vol(M).If Xi is any basis for m, r2 = Pijkl !ij!klrikrjl where !ij is the inverse matrix of!ij = 
(Xi; Xj) and rij = r(X�i ; X�j )jx0. One checks that the condition for an elementr0 2 E to be a critical point of r2 is exactly the condition (4) for this connection tobe preferred.



Invariant symplectic connections on compact coadjoint orbits 75. ExistenceFrom now on, G is a compact connected semi-simple group, g is its Lie algebra, Ois a coadjoint orbit in g� with its standard KKS symplectic structure, x0 2 O is abase point, H is its stabiliser, with Lie algebra h and m is the Killing form orthogonalcomplement of h in g. We use the same notation as before.As a polynomial in S, the term of highest order in the Ricci tensor is the quadraticterm r(2)(Y; Z) = �Tracem( ~S(Y ) ~S(Z)):If Xi is any basis for m, we have, for any X; Y 2 m:r(2)(Y; Z) = �Xijkl ( ~S(Y )Xi)j( ~S(Z)Xj)i= Xijkl S(Y;Xi; Xk)!kjS(Y;Xj; Xl)!il:where !ij = !x0(X�i ; X�j ) and !ij is the inverse matrix.Take a maximal torus T of G in H and let t be its Lie algebra. We denote by �the set of roots of (gC ; tC ) and let gC = tC �X�2� g�be the root space decomposition. A root space g� is in hC if and only if �(X0) = 0.We denote by �c the set of complementary roots�c = f� 2 � j g� 6� hC g = f� 2 � j �(X0) 6= 0g:Pick a positive root system �+ such that i�(X0) > 0 for all � 2 �+ \ �c. TheH-invariant complement m of h is given bymC = X�2�c g�:Let �1; : : : ; �l be the simple roots numbered in such a way that �1; : : : ; �r arethe simple roots in �c. We use the complementary height function nc de�ned bync(�) =Pri=1 ni if � =Pli=1 ni�i. nc is additive in the sense that if � and � are rootssuch that �+� is also a root then nc(�+�) = nc(�)+nc(�). All the ni are positive forpositive roots and negative for negative roots so � 2 �+ \�c if and only if nc(�) > 0.We extend C -linearly !x0; Ax0 and rx0 to forms on (Tx0O)C and S to mC . Pick abasis of root vectors E� 2 g� such that E�� = E�. Puts��
 = A(x0)(E��; E��; E�
) = S(E�; E�; E
):



8 M. Cahen, S. Gutt & J. RawnsleyThen r is determined by s��
 for �; �; 
 2 �c, s��
 is symmetric in its labels, andG-invariance of r is equivalent to AdH-invariance of S. In particular, S is T -invariantwhich implies s��
 = 0 if � + � + 
 6= 0:Invariance of ! and r implies that !x0(E��; E��0) and rx0(E��; E��0) are zero unless� + �0 = 0. Set 
� = !x0(E��; E���) r�;�� = rx0(E��; E���).The function 12r2 de�ning our functional L(r) has the form12r2 = �12 X�2�c 
�2� r2�;��:Now 
 is skewsymmetric so 
� is purely imaginary, and r is symmetric so r�;�� isreal. Hence 12r2, which is a 4th order polynomial in the s��
 is a sum of square of realnumbers hence non negative. The highest order terms of that polynomial are given by�12 X�2�c
�2� R(2)�where R(2)� := r(2)(E�; E��), so they vanish only when all the R(2)� vanish. ButR(2)� = X��0

0 s��
s���0
0 ��;��0
� �
;�
0

= X�+
+�=0 s��
s�����

�

= X�+
+�=0 js��
j2
�

 :Now 
� = B(X0; [E�; E��]) = �(X0)B(E�; E�)and B is negative de�nite so i
� < 0 if nc(�) > 0. Thus 
�

 is positive when � and
 are roots of the opposite signs and negative when they have the same sign.We split the sum accordinglyR(2)� = X�+
+�=0�;
 same sign js��
 j2
�

 + X�+
+�=0�;
 opposite sign js��
 j2
�

 :LEMMA 5. If R(2)� = 0 for all � then s��
 = 0 for all �, �, 
.Proof. Suppose some s��
 is not zero and take such a term where the minimum ofthe complementary height of the labels,k = minfjnc(�)j; jnc(�)j; jnc(
)jg;



Invariant symplectic connections on compact coadjoint orbits 9is as near zero as possible. By symmetry we can suppose nc(�) = k and consider theexpression forR(2)� . In the terms where �, 
 have the same sign, then nc(�)+nc(
) = �kso both jnc(�)j and jnc(
)j are smaller than k and hence all these terms vanish in R(2)� .The remaining terms are all of the same sign and so R(2)� = 0 implies they all vanishtoo. This contradicts the initial assumption and hence the Lemma follows. �Thus we have provedPROPOSITION 6. The highest order terms in 12r2 are non-zero for non-zero valuesof the parameter S in the space of invariant symplectic connections on the compactcoadjoint orbit O.THEOREM 7. Every compact coadjoint orbit O has an invariant preferred symplecticconnection.Proof. r2 is an invariant function and so is constant on O. Thus L = 12r2 vol(M).By the Proposition L satis�es the conditions of Lemma 1 and hence L has at leastone critical point, its absolute minimum. �
6. Decomposition into simple factorsA coadjoint orbit of a compact semisimple Lie group G is a product of orbits ofthe simple ideals of g. In general a symplectic connection on the orbit need not becompatible with such a decomposition. However, when the connection is G-invariant,things are di�erent as we shall now see. We may assume that the compact semisimplegroup G is simply connected. It is thus the direct product of simply connected compactsimple groups G = Qpr=1Gr and we also have g =Ppr=1 gr. If g 2 G and X0 2 g, onehas AdgX0 = Adg1 � � �Adgp(X1 + � � �+Xp) = pXr=1 Adgr Xr:The conjugacy class G �X0 is thus a product of the classes Gr �Xr.The Killing form B of g is a direct sum of the correspond Killing forms, Br andthe symplectic form ! on the orbit O is a direct sum of the corresponding symplecticforms !r, on the orbits Or which correspond under the Killing form to the conjugacyclasses Gr �Xr. Thus (O; !) is a product of the orbits (Or; !r).



10 M. Cahen, S. Gutt & J. RawnsleyLEMMA 8. Any G-invariant, torsion-free symplectic connection r on Or induces aGr-invariant connection rr on Or, which is torsion-free and symplectic. Furthermorer is the product of the corresponding connections rr.Proof. Pick a torsion-free invariant symplectic connection rr on Or and take as abase point on O the product connection r0 = �pr=1rr. Then any invariant connectionr has the form r0 + A. Obviously, it is enough to show that A respects the productstructure. Let H be the stabiliser of X0 = PrXr and Hr the stabiliser of Xr thenH = �rHr. If Tr is a maximal torus in Hr then T = �rTr is a maximal torus in G andthe H-invariant complement m is a sumPr mr of complements in each simple factor.The set of roots � of (gC ; tC ) is the disjoint union of sets of roots for each simplefactor. We consider Ax0(E��; E��; E�
) which can only be non-zero if �+ � + 
 = 0 andthis can only happen if all three roots �, �, 
 belong to the same simple factor. ThusA =Pr Ar where each Ar is extended to the other simple factors by zero. r is thenthe product of rr + Ar. �7. SU(3)We now turn to the example of a regular orbit of SU(3). Let us �rst �x the notation.The Lie Algebra of SU(3) issu(3) = fX 2 End(C 3) j X + �X = 0;Trace(X) = 0gand the Lie algebra t of the maximal torus is the set of purely imaginary, diagonal,trace free, 3� 3 matrices. As a basis of t we takeh1 = i(E11 � E22); h2 = i(E22 � E33)where Eij is a matrix with a 1 in the ij position and all zeros elsewhere. Let h�1; h�2 bethe dual basis for t�. We choose as positive roots� = i(h�1 � 2h�2); � = i(h�1 + h�2); � + �:The element X0 of t has componentsX0 = p1h1 + p2h2and is regular if (p1 + p2)(p1 � 2p2)(2p1 � p2) 6= 0:



Invariant symplectic connections on compact coadjoint orbits 11We choose positive root space vectorsE� = aE32; E� = a0E13; E�+� = a00E12and the conjugate ones for negative roots.We extend the map D to mC ; the invariance condition on r yields D(E
)E� 2 g
+�and we write D(E
)E� = D
;�E
+� (
; � 2 �)Using relations (10) and (11) we getD�;� = aa0a00 +D�;�D�;�(�+�) = aa00a0 � 2p1 � p2p1 + p2 (aa0a00 +D�;�)D�;�(�+�) = �(a0a00a + 2p1 � p2p1 � 2p2D�;�)D�(�+�);� = �2p1 � p2p1 + p2 (aa0a00 +D�;�)D�(�+�);� = �2p1 � p2p1 � 2p2D�;�and the conjugate ones. The space of homogeneous symplectic connections is of di-mension 2; we shall identify it with C and take as coordinate z wherez = 2 a00aa0D�;�:The Lagrangean has the form 12r2 = L0+L0016:9:(p1+p2)2(p1�2p2)2 whereL0 = 3z2z2(2p1 � p2)2 + 12zz(z + z)(2p1 � p2))(p1 � p2)+2(z + z)2(7p21 + 7p22 � 13p1p2) + 8zz[(2p1 � p2)2+(p1 � 2p2)2] + 48(z + z)(p1 � 2p2)(p1 � p2)and L00 does not depend on z.The critical points correspond to the value of z such that @L0@z vanishes. The imagi-nary part of this condition factorises in the form(z � z)P (z; z) = 0where P (z; z) is strictly positive. Thus, if we write z = x + iy, we have y = 0 andcritical points become zeros of the real polynomialQ(x) := 3x3(2p1�p2)2+18x2(2p1�p2)(p1�p2)+4x((2p1�p2)2+4x(7p21+7p22�13p1p2)+(p1�2p2)2)+24(p1�2p2)(p1�p2):Since Q has odd degree, it has at least one real root. Now the derivative Q0 is a second



12 M. Cahen, S. Gutt & J. Rawnsleyorder polynomial whose discriminant is strictly negative on the interior of the Weylchambers; hence Q0 > 0 in this domain and thus Q has only one zero.We summarise this analysis byTHEOREM 9. On any regular adjoint orbit O of SU(3) there exists a unique SU(3)-invariant preferred symplectic connection.The theorem is also true for non-regular orbits of SU(3) since these are Her-mitean symmetric spaces (C P 2) and in this case there is only one invariant symplecticconnection.We know by Theorem 7 that L achieves its minimum on the invariant symplecticconnections. Hence this minimum is the unique critical point we just found.AcknowledgementsThe �rst named author thanks his friend Kurdika for correcting a �rst version ofLemma 1. References1. F. Bourgeois, M. Cahen, A variational principle for symplectic connections. J. Geom. Phys., toappear.2. B. Kostant, Quantization. Lectures in Modern Analysis and Applications III, edited byC. T. Taam. Lecture Notes in Mathematics 170. Springer-Verlag, Berlin, Heidelberg, New York,1970.3. D. Montgomery, Simply connected homogeneous spaces. Proc. Amer. Math. Soc., 1 (1950) 457{4694. N. Wallach, Harmonic Analysis on Homogeneous Spaces. Marcel Dekker, 1973. Note 6.6.1, p.159.5. R. Palais, The principle of symmetric criticality. Commun. Math. Phys. (1979), 19{30.6. J.-M. Souriau, Structure des syst�emes dynamiques. Dunod, Paris, 1970.7. Ph. Tondeur, A�ne Zusammenh�ange auf Mannigfaltigkeiten mit fastsymplektischer Struktur,Comm. Math. Helv., 36 (1961) 234{244.


