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Abstract

We consider invariant symplectic connections ∇ on homogeneous symplectic mani-
folds (M,ω) with curvature of Ricci type. Such connections are solutions of a variational
problem studied by Bourgeois and Cahen, and provide an integrable almost complex
structure on the bundle of almost complex structures compatible with the symplectic
structure. If M is compact with finite fundamental group then (M,ω) is symplecto-
morphic to Pn(C) with a multiple of its Kähler form and ∇ is affinely equivalent to the
Levi-Civita connection.
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The space of curvature tensors of symplectic connections on a symplectic manifold (M,ω)

of dimension 2n ≥ 4 splits under the action of the symplectic group Sp(2n,R) as a direct

sum of two subspaces on which Sp(2n,R) acts irreducibly [1, 7, 5]. For a given curvature

tensor R we shall denote by E and W its projections onto these two subspaces. The E-

component is determined by the Ricci tensor of the connection. When the W -component

vanishes identically we say that the curvature is of Ricci type.

The motivation for looking at such connections is two-fold. They provide critical points

of a functional which has been introduced in [1] to select preferred symplectic connections,

and W = 0 is the integrability condition for an almost complex structure which a symplectic

connection determines on the total space of the bundle J(M,ω) of almost complex structures

compatible with the symplectic structure [6, 8, 9].

The simplest framework in which one can study the W = 0 condition is the compact

homogeneous one. Our main result is

Theorem 1 Let (M,ω) be a compact homogeneous symplectic manifold with finite funda-

mental group. If (M,ω) admits a homogeneous symplectic connection ∇ with Ricci-type

curvature then (M,ω) is symplectomorphic to (Pn(C), ω0), where ω0 is a multiple of the

Kähler form of the Fubini–Study metric, and ∇ is affinely equivalent to the Levi-Civita con-

nection.

When we do not impose any restriction on the fundamental group, we were only able to

prove

Theorem 2 Let (M,ω) be a compact homogeneous symplectic manifold of dimension 4. If

(M,ω) admits a homogeneous symplectic connection ∇ with Ricci-type curvature then ∇ is

locally symmetric.

In §1 we prove some general identities which hold for any symplectic connection with

Ricci-type curvature. In §2 we deduce some easy consequences of these identities in the

homogeneous (respectively compact homogeneous) framework. In §3 we prove Theorem 1

in the simply connected case and show how to extend this to a finite fundamental group.

Finally §4 is devoted to the proof of Theorem 2.

1 Let (M,ω) be a symplectic manifold and ∇ be a symplectic connection (a torsion-free

connection on TM with ∇ω = 0). The curvature endomorphism R of ∇ is defined by

R(X, Y )Z =
(
∇X∇Y − ∇Y∇X − ∇[X,Y ]

)
Z

for vector fields X, Y, Z on M . The symplectic curvature tensor

R(X, Y ;Z, T ) = ω(R(X, Y )Z, T )
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is antisymmetric in its first two arguments, symmetric in its last two and satisfies the first

Bianchi identity ∮

X,Y,Z

R(X, Y ;Z, T ) = 0

where
∮

denotes the sum over the cyclic permutations of the listed set of elements. The

Ricci tensor r is the symmetric 2-tensor

r(X, Y ) = Trace[Z 7→ R(X,Z)Y ].

R also obeys the second Bianchi identity

∮

X,Y,Z
(∇XR) (Y, Z) = 0.

The Ricci part E of the curvature tensor is given by

E(X, Y ;Z, T ) =
−1

2(n+ 1)

[
2ω(X, Y )r(Z, T ) + ω(X,Z)r(Y, T )+ ω(X, T )r(Y, Z)

− ω(Y, Z)r(X, T )− ω(Y, T )r(X,Z)

]
. (1.1)

The curvature is of Ricci type when R = E.

Lemma 1 Let (M,ω) be a symplectic manifold of dimension 2n ≥ 4. If the curvature of a

symplectic connection ∇ on M is of Ricci type then there is a 1-form u such that

(∇Xr) (Y, Z) =
1

2n+ 1
(ω(X, Y )u(Z) + ω(X,Z)u(Y )) . (1.2)

Conversely, if there is such a 1-form u then the W part of the curvature satisfies

∮

X,Y,Z
(∇XW ) (Y, Z;T, U) = 0. (1.3)

Proof When the curvature is of Ricci type, the second Bianchi identity for R becomes an

identity for E. Since ω is parallel, covariantly differentiating equation (1.1) and summing

cyclically, we get

0 =

∮

X,Y,Z

2ω(Y, Z)(∇Xr)(T, U)+ ω(Y, T )(∇Xr)(Z, U) + ω(Y, U)(∇Xr)(Z, T )

− ω(Z, T )(∇Xr)(Y, U)− ω(Z, U)(∇Xr)(Y, T ). (1.4)

Choose local frames {Va}2na=1, {Wa}2na=1 on M such that ω(Va,Wb) = δab. Substitute Y = Va

and Z = Wa in equation (1.4) and sum over a to obtain

0 = 2n(∇Xr)(T, U)− (∇Tr)(X,U)− (∇Ur)(X, T )

+ ω(X, T )
∑

a

(∇War)(Va, U) + ω(X,U)
∑

a

(∇War)(Va, T ). (1.5)
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If we cyclically permute X, T, U in equation (1.5) and sum we get

(2n− 2)

∮

X,T,U
(∇Xr)(T, U) = 0 (1.6)

and since n ≥ 2 we have ∮

X,T,U
(∇Xr)(T, U) = 0 (1.7)

Using equation (1.7) in equation (1.5) gives

(2n+ 1)(∇Xr)(T, U)+ ω(X, T )
∑

a

(∇War)(Va, U) + ω(X,U)
∑

a

(∇War)(Va, T ) = 0

which is of the desired form if

u(X) = −
∑

a

(∇War)(Va, X).

Conversely, if one substitutes (1.2) into the covariant derivative of (1.1) and cyclically

sums then one obtains ∮

X,Y,Z

(∇XE)(Y, Z, T,U) = 0.

Combining this with the second Bianchi identity, gives the second part of the Lemma.

Corollary A symplectic manifold with a symplectic connection whose curvature is of Ricci

type is locally symmetric if and only if the 1-form u, defined in the Lemma, vanishes.

Remark 1 It will be useful to have an equivalent form of formula (1.2). Denote by A the

linear endomorphism such that

r(X, Y ) = ω(X,AY ). (1.8)

The symmetry of r is equivalent to saying that A is in the Lie algebra of the symplectic

group of ω. Denote by u the vector field such that

u = i(u)ω (1.9)

then (1.2) is equivalent to

∇XA =
−1

2n+ 1
(X ⊗ u+ u⊗ i(X)ω). (1.10)

Lemma 2 Let (M,ω) be a symplectic manifold with a symplectic connection ∇ with Ricci-

type curvature. Then, keeping the above notation, the following identities hold:
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(i) There is a function b such that

∇u = − 1 + 2n

2(1 + n)

(2)
r +bω (1.11)

where
(2)
r is the 2-form

(2)
r (X, Y ) = ω(X,A2Y ). (1.12)

(ii) The differential of the function b is given by

db =
1

1 + n
i(u)r. (1.13)

(iii) The covariant differential of db is given by

∇db =
1

1 + n

[
− 1

1 + 2n
u⊗ u− 1 + 2n

2(1 + n)

(3)
r +br

]
. (1.14)

where
(3)
r (X, Y ) = ω(X,A3Y ). (1.15)

Proof We can compute the action of the curvature on endomorphisms in two different

ways. On the one hand it is

R(X, Y ) ·A = [R(X, Y ), A]

= R(X, Y )A− AR(X, Y )

= − 1

2(n + 1)
[X ⊗ ω(A2Y, . )− Y ⊗ ω(A2X, . )

+A2Y ⊗ ω(X, . )−A2X ⊗ ω(Y, . )].

On the other hand the curvature is of Ricci type so that (1.10) gives

R(X, Y ) ·A =
1

2n+ 1
[X ⊗ ∇Y u− Y ⊗ ∇Xu+∇Y u⊗ ω(X, . )−∇Xu⊗ ω(Y, . )].

If we define an endomorphism B of TM by

BY =
2n+ 1

2(n+ 1)
A2Y +∇Y u

then equality of the two right hand sides yields

X ⊗ ω(BY, . )− Y ⊗ ω(BX, . ) +BY ⊗ ω(X, . )−BX ⊗ ω(Y, . ) = 0

whose only solution is

B = b Id .

This gives

∇Y u = − 2n+ 1

2(n+ 1)
ω(A2Y, . ) + bω(Y, . )
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which is equation (1.11).

Antisymmetrising (1.11) we get

du = −2n+ 1

n+ 1

(2)
r +2bω.

Taking the exterior derivative gives

0 = −2n+ 1

n + 1
d

(2)
r +2db ∧ ω.

But

d
(2)
r (X, Y, Z) =

∮

X,Y,Z
ω(∇XA2Y, Z)

= − 1

2n + 1

∮

X,Y,Z
ω(u(AY )X + ω(X,AY )u, Z)

+ ω(u(Y )AX + ω(X, Y )Au, Z)

=
2

2n+ 1

∮

X,Y,Z
ω(X, Y )r(u, Z).

Substituting, [
− 1

n + 1
r(u, . ) + db

]
∧ ω = 0.

and in dimension 4 or higher this implies

db =
1

n + 1
r(u, . )

which is (1.13). Covariantly differentiating

(∇Xdb)(Y ) =
1

n + 1
[(∇Xr)(u, Y ) + r(∇Xu, Y )]

=
1

n + 1

[
1

1 + 2n
ω(X, u)u(Y ) + r

(
− 2n+ 1

2(n+ 1)
A2X + bX, Y

)]

which is (1.14).

2 Assume (M,ω) is a G-homogeneous symplectic manifold and ∇ is a G-invariant sym-

plectic connection with Ricci-type curvature. If ∇ is not locally symmetric the G-invariant

1-form u is everywhere different from zero and the function b is also G-invariant and hence

constant. Putting these two facts into (1.13) we see that r as a bilinear form is necessarily

degenerate

r(u, . ) = 0. (2.1)

Also (1.14) implies
1

2n+ 1
u⊗ u+

1 + 2n

2(1 + n)

(3)
r −br = 0 (2.2)
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or equivalently
1

2n+ 1
u⊗ u− 1 + 2n

2(1 + n)
A3 + bA = 0. (2.3)

Applying A to (2.3) and using (2.1)

− 1 + 2n

2(1 + n)
A4 + bA2 = 0. (2.4)

It follows that the only possible non-zero eigenvalues of A are ±
√

2(1+n)
1+2n b and so are real or

imaginary.

Lemma 3 If (M,ω) is a compact homogeneous symplectic manifold admitting a homogen-

eous symplectic connection ∇ with Ricci-type curvature which is not locally symmetric then

b = 0.

Proof Recall that for any vector field X , Cartan’s identity gives

divXωn
def
== LXωn = n d

(
(i(X)ω)∧ ωn−1

)

and

LXωn = (LX − ∇X)ωn = n (ω(∇.X, . ) + ω( . ,∇.X))∧ ωn−1

so that

divX = Trace[Z 7→ ∇ZX ].

In particular, by (1.11)

div u = − 2n + 1

2(n + 1)
TraceA2 + 2nb.

G-invariance implies that div u is constant. But M compact with no boundary implies∫
M div uωn = 0 since the argument is exact; hence the constant is zero. Thus

b =
2n+ 1

4n(n+ 1)
TraceA2.

On the other hand, (2.4) implies that A2 is a multiple of a projection and with A symplectic

this has even rank 2p say; using 2.1 we get 2p < 2n. Thus

TraceA2 =
4pb(1 + n)

1 + 2n

so

b =
2n+ 1

4n(n+ 1)
.
4pb(1 + n)

1 + 2n
=
p

n
b

and hence b = 0.

It follows that A4 = 0 so A is nilpotent; moreover (2.3) tells us that A3 has rank 1.
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Lemma 4 Let (M,ω) be a 4-dimensional homogeneous symplectic manifold admitting a ho-

mogeneous symplectic connection∇ with Ricci-type curvature which is not locally symmetric.

Let A be the endomorphism associated to the Ricci tensor. Then

(i) either A is nilpotent, b 6= 0, A2 = 0, and A has rank 1 at any point;

(ii) or A is nilpotent, b = 0, and A3 has rank 1 at any point;

(iii) or A has a non zero eigenvalue so b 6= 0. Then A admits a pair of non zero eigenval-

ues of opposite sign (real or imaginary) with multiplicity 1 and 0 is an eigenvalue of

multiplicity 2 at any point. Furthermore, A has necessarily a nilpotent part.

Proof The dimension – at any point x ∈M – of the generalised 0 eigenspace of A is even

and non-zero, so is 2 or 4. If it is 4 then A is nilpotent and A4 = 0 in dimension 4. Thus,

by (2.3), bA2 = 0. If b 6= 0 then A2 = 0 so, by (2.4), A has rank 1 at any point. Otherwise

b = 0 and A3 has rank 1 at any point.

When the generalised 0 eigenspace V0 is 2-dimensional at any point, then ±
√

2(1+n)
1+2n b

are eigenvalues with multiplicity 1. Choose a globally defined vector field v ∈ V0 so that

ω(v, u) = 1. Set Av = pu. Then

∇X(Av) = ∇X(pu) = (Xp)u+ p

(
− 1 + 2n

2(1 + n)
A2X + bX

)

but it is also equal to

∇X(Av) = (∇XA)v +A(∇Xv) = − 1

1 + 2n
(Xu(v) + uω(X, v)) + A(∇Xv).

Observe that ω(A2X, u) = ω(A(∇Xv), u) = 0, so that

pω(bX, u) = ω(− 1

1 + 2n
u(v)X, u) =

1

1 + 2n
ω(X, u).

Hence pb = 1
1+2n which implies that p 6= 0. Thus A has a nilpotent part.

3 We first prove Theorem 1 in the simply-connected case. It is standard that a compact

simply-connected homogeneous symplectic manifold (M,ω) is symplectomorphic to a coad-

joint orbit of a simply-connected compact semisimple Lie group G. Such a Lie group G is

a product of simple groups and the orbit is a product of orbits. We may throw away any

factors where the orbit is zero dimensional as the remaining group will still act transitively.

A G-invariant symplectic connection ∇ on such an orbit is compatible with the product

structure. If the curvature of ∇ is of Ricci type, then it was shown in [3] that the curvature

is zero when (M,ω,∇) is a product of more than one factor. But a non-trivial compact

coadjoint orbit of a simple Lie group does not admit a flat connection since it has a non-zero

Euler characteristic. It follows that we can assume G is simple and (M,ω) is a coadjoint
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orbit (O, ωO) with its Kirillov–Kostant–Souriau symplectic structure and with an invariant

symplectic connection ∇ with curvature of Ricci type.

Further, the Euler characteristic of such an orbit is non-zero. If the vector field u were

non-zero, then invariance would imply that it is everywhere non-zero and this cannot happen.

Thus u = 0 and hence ∇ is locally symmetric (∇R = 0).

Pick a point ξ0 ∈ O and construct a symmetric symplectic triple (l, σ,Ω) as follows: Let

a = {Rξ0(X, Y ) ∈ End(Tξ0O) | X, Y ∈ Tξ0O} and l = Tξ0O ⊕ a. The bracket is defined by

[X, Y ] = Rξ0(X, Y ), X, Y ∈ Tξ0O; (3.1)

[B,X ] = BX, B ∈ a, X ∈ Tξ0O; (3.2)

[B,C] = BC − CB, B, C ∈ a, (3.3)

σ by

σ = − IdTξ0O⊕ Id � ,

and Ω by

Ω(X + Y,X ′+ Y ′) = ωξ0(X,X
′), X,X ′ ∈ Tξ0, Y, Y ′ ∈ a.

Lemma 5 (l, σ,Ω) is, indeed, a symmetric symplectic triple.

Proof There are two things to check to see that l is a Lie algebra. Firstly that the brackets

defined above belong to l. The only ones in doubt are the brackets of two elements of a.

But a is in fact the linear infinitesimal holonomy. This follows since the latter is spanned by

the values of the curvature endomorphism and its covariant derivatives. The latter vanish

by the local symmetry condition.

The second thing to check is the Jacobi identity. Obviously this holds if all three elements

are in a since this is a Lie algebra. If all three are in Tξ0O then [X, [Y, Z]] = −Rξ0(Y, Z)X

and the Jacobi identity is satisfied for these elements by the first Bianchi identity. When

one element is in Tξ0O and two in a we have

[X, [B,C]] + [B, [C,X ]]+ [C, [X,B]] = −[B,C]X +BCX − CBX = 0.

Finally, if two elements are in Tξ0O and one in a we have

[X, [Y,B]] + [Y, [B,X ]]+ [B, [X, Y ]] = −Rξ0(X,BY )− Rξ0(BX, Y )

+BRξ0(X, Y )− Rξ0(X, Y )B

= (B ·Rξ0)(X, Y )

where B ·Rξ0 denotes the natural action of the holonomy Lie algebra a on curvature tensors.

But ∇R = 0 if and only if B ·Rξ0 = 0, ∀B ∈ a.

The other two properties follow immediately from the definitions.
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If L is the simply connected Lie group associated to l and K the Lie subgroup associ-

ated to the subalgebra a then K is the connected component of the fixed point set of the

automorphism of L induced by σ and M1 = L/K is a simply connected symmetric space. Ω

induces a symplectic form ω1 on M1 which is parallel for the canonical connection ∇1.

Consider the point ξ0 ∈ M = O and the point ξ1 = eK ∈ M1. There is a linear

isomorphism φ from the tangent space Tξ0M to the tangent space Tξ1M1 so that

φ (R0(X, Y )Z) = R1(φX, φY )φZ.

This implies [4, p. 259, thm. 7.2] that there exists an affine symplectic diffeomorphism ψ of

a neighbourhood U0 of ξ0 in O onto a neighbourhood U1 of ξ1 in M1 such that ψ∗ξ0 = φ.

Both (O, ωO,∇) and (M1, ω1,∇1) are real analytic, as is ψ, and O is simply connected

whilst ∇1 is complete. Hence [4, p. 252, thm. 6.1] there exists a unique affine map ψ̃ : O →
M1 such that ψ̃|U0 = ψ. This map ψ̃ is symplectic since it is an analytic extension of the map

ψ which is symplectic. Symplectic maps are immersions, and hence local diffeomorphisms

when the dimensions are equal as they are in this case. Hence ψ̃(O) is open. On the other

hand, O is compact, so ψ̃(O) is compact and thus closed. Hence ψ̃ is surjective. It follows

that M1 is compact.

From the preceding arguments we see that (M1, ω1,∇1) is a compact simply connected

symmetric symplectic space whose curvature is of Ricci type. The only such space is Pn(C)

with a multiple of its standard Kähler form ω0 and the Levi-Civita connection ∇0 of the

Fubini–Study metric. Since O and M1 are both simply connected they are diffeomorphic

and hence we have proved Theorem 1 in the simply connected case.

Next we consider the case where M has a finite fundamental group, (M,ω) is G-homoge-

neous symplectic with a G-invariant symplectic connection ∇ with curvature of Ricci type.

Then the simply connected covering space M̃ is compact and carries such data ω̃, ∇̃ for the

simply connected covering group G̃.

It follows that (M̃, ω̃, ∇̃) is diffeomorphic to (Pn(C), ω0,∇0) and hence that M is diffeo-

morphic to Pn(C)/Γ where Γ is a discrete subgroup of PU(n + 1) acting properly discon-

tinuously on Pn(C). But non-trivial elements of PU(n + 1) always have fixed points, so Γ

must be trivial. This proves Theorem 1.

4 We now proceed to give the proof of Theorem 2 indicating along the way why we restrict

ourselves to dimension 4 and why we only obtain a local result.

Recall that when (M,ω) is homogeneous and admits a non-locally-symmetric invariant

symplectic connection with Ricci-type curvature we have the non-zero vector field u and the

Ricci endomorphism satisfies

Au = 0,

1

1 + 2n
u⊗ u− 1 + 2n

2(1 + n)
A3 + bA = 0, (4.1)
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1 + 2n

2(1 + n)
A4 − bA2 = 0.

Furthermore, if M is compact Lemma 3 tells us that b = 0 so that A4 = 0, and A3 has rank

1:

A3 =
2(1 + n)

(1 + 2n)2
u⊗ u.

The 1-form u is everywhere non-zero so there is a globally defined vector field e1 with

u(e1) everywhere 6= 0. The vector fields e1, e2 = Ae1, e3 = A2e1, e4 = A3e1 form at each

point x ∈M a basis of a 4-dimensional subspace Vx of the tangent space TxM . Furthermore,

by equation (4.1)

e4 =
2(1 + n)

(1 + 2n)2
u(e1)u.

If we choose the vector field e1 so that ω(e1, e4) = ε with ε2 = 1, we get − 2(1+n)
(1+2n)2 (u(e1))

2 = ε

so that ε = −1 and (u(e1))
2 =

(1+2n)2

2(1+n) so that u = u(e1)e4. Remark that we can always

assume that ω(e1, e2) = 0 (by adding to e1 a multiple of e3). So the symplectic form restricted

to Vx writes in the chosen basis




0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0



.

The tangent space at each point x ∈M writes

TxM = Vx ⊕ V ′x

where V ′x is the ωx-orthogonal to Vx; it is stable under A and, since A3 has rank 1, A3|V ′x = 0

but this is not enough to describe the behaviour of A on V ′x.

From now on, we restrict ourselves to the 4-dimensional case. We define 1-forms α, β, γ, δ

such that

∇Xe1 = α(X)e1 + β(X)e2 + γ(X)e3 + δ(X)e4.

Using formula (1.10) for ∇A (i.e. ∇XA = −1
2n+1(X ⊗ u+ u(e1)e4 ⊗ i(X)ω)) we obtain

∇Xe2 =
−u(e1)

2n+ 1
X1e1 +

(
α(X)− u(e1)

2n+ 1
X2

)
e2

+

(
β(X)− u(e1)

2n+ 1
X3

)
e3 +

(
γ(X)− 2u(e1)

2n+ 1
X4

)
e4,

∇Xe3 =
−u(e1)

2n+ 1
X1e2 +

(
α(X)− u(e1)

2n+ 1
X2

)
e3 + β(X)e4,

∇Xe4 =
−u(e1)

2n+ 1
X1e3 +

(
α(X)− 2u(e1)

2n+ 1
X2

)
e4.



Homogeneous symplectic manifolds with Ricci-type curvature 11

On the other hand, formula (1.11) gives

∇Xe4 =
−u(e1)

2n+ 1
A2X

so that

α(X) =
u(e1)

2n+ 1
X2.

The fact that ∇ is symplectic gives the additional condition that

γ(X) =
u(e1)

2n+ 1
X4.

The connection is thus determined by the two 1-forms β and δ. The vanishing of the torsion

gives the expression of the brackets of the vector fields ej .

We can now compute the action of the curvature endomorphism on the vector fields ej

in two different ways: using the formulas above or using the fact that the curvature is of

Ricci type.

This yields two identities

dβ =
3

2(n+ 1)
ω +

u(e1)

2n+ 1
e2
∗ ∧ β +

1

2(n+ 1)
e1
∗ ∧ e4

∗,

dδ = 2γ ∧ β − 2

2(n+ 1)
e3
∗ ∧ e4

∗ + 2α ∧ δ

where the ej∗ are 1-forms so that ej∗(ek) = δjk at each point. Using the formulas for the

bracket of vector fields we have

de3
∗ =

2u(e1)

2n+ 1
e1
∗ ∧ e4

∗ −
u(e1)

2n + 1
e2
∗ ∧ e3

∗ + e2
∗ ∧ β,

and substituting e2
∗ ∧ β in dβ yields

d(β − u(e1)

2n+ 1
e3
∗) =

2

n + 1
ω

which is impossible on a compact manifold. This contradiction tells us that u must vanish

and hence that ∇ is locally symmetric.
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