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Abstract

These notes grew out of the Quantisation Seminar 1997-98 on Deligne’s paper [6]
and the lecture of the first author in the Workshop on Quantization and Momentum
Maps at the University of Warwick in December 1997.

We recall the definitions of the cohomology classes introduced by Deligne for
equivalence classes of differential star products on a symplectic manifold and show
the properties of and relations between these classes by elementary methods based
on Cech cohomology.



1 Introduction

In this paper, we present in a purely Cech cohomology context some of the results given by
Deligne [6] concerning cohomology classes associated to equivalence classes of differential
star products on a symplectic manifold.

Star products were introduced in [1] to give a deformation approach to quantization.
A star product is a formal deformation of the algebraic structure of the space of smooth
functions on a Poisson manifold, both of the associative structure given by the usual prod-
uct of functions and the Lie structure given by the Poisson bracket. We consider here only
differential star products (i.e. defined by a series of bidifferential operators) on a symplec-
tic manifold. Although the question makes sense more generally for Poisson manifolds,
Deligne’s method depends crucially on the Darboux theorem and the uniqueness of the
Moyal star product on R*" so the methods do not extend to general Poisson manifolds.
Different methods are used by Kontsevich [17] to construct and classify differential star
products on a Poisson manifold.

The existence of a differential star product on any symplectic manifold was first proven
in 1983 by De Wilde and Lecomte [8] whilst the fact that equivalence classes of differential
star products are parametrized by series of elements in the second de Rham cohomology
space of M appeared first in Nest and Tsygan [20], in Bertelson, Cahen and Gutt [3, 4]
and in Deligne [6]. In the first two cited papers, the correspondence relies on Fedosov’s [10]
geometrical construction of a star product; Fedosov takes a symplectic connection, extends
it as a connection in the Weyl bundle whose curvature lies in the centre and builds from
this a star product whose equivalence class is determined by the cohomology class of this
central curvature. The classification then depends on showing that every differential star
product is equivalent to a Fedosov star product.

In his paper, Deligne defines two cohomological classes associated to differential star
products on a symplectic manifold. The first class is a relative class; fixing a star product on
the manifold, it intrinsically associates to any equivalence class of star products an element
in H*(M;R)[v] (i-e. a series of elements in the second de Rham cohomology space of M).
This is done in Cech cohomology by looking at the obstruction to gluing local equivalences
(and is thus a globalisation of the old step by step techniques which showed that, at each
order in the parameter, equivalence classes were parametrized by H?(M;R)).

Deligne’s second class is built from special local derivations of a star product. The
same derivations played a special role in the first general existence theorem [8] for a star
product on a symplectic manifold. Deligne used some properties of Fedosov’s construction
and central curvature class to relate his two classes and to see how to characterise an

equivalence class of star products by the derivation related class and some extra data



obtained from the second term in the deformation. We do this here by direct methods.

The content of our paper is as follows:

Section 2 includes definitions of star products and equivalence on symplectic manifolds
as well as a brief study of the differential Hochschild cohomology of the algebra of smooth
functions on a manifold.

Section 3 collects some basic results on the topological conditions for the equivalence of
two star products. We determine when a self-equivalence is inner and what are the v-linear
derivations of a star product on a symplectic manifold (M, w).

Section 4 describes the relative Cech cohomology class introduced by Deligne as the
obstruction to piecing together local equivalences between two differential star products on
a symplectic manifold.

Section 5 describes the intrinsic derivation-related Cech cohomology class associated to
a star product; it is obtained by comparing local “v-Euler” derivations of this star product.
The relation between the relative class of two star products and their intrinsic derivation
related classes is found.

Section 6 introduces the characteristic class, defined from the intrinsic derivation re-
lated class and the second term of the deformation. We show directly some equivariance
properties of this class (relative to diffeomorphisms and to changes of the deformation pa-
rameter) and the fact that it characterises equivalence classes of star products. The proof
of the fact that this class is the same as Fedosov’s central curvature class is not included
in these notes, see Deligne [6].

Section 7 includes the De Wilde proof [7] of the existence of a star product on any
symplectic manifold. To whit a simultaneous construction of a star product and a family
of local v-Euler derivations of it yielding a given intrinsic derivation related class. This
employs the techniques of the previous sections, refining the Neroslavsky and Vlassov [19]
step-by-step techniques to apply to the De Wilde-Lecomte proof [8].

Section 8 gives the first and second differential cohomology space for a star-deformed
associative algebra viewed as an R[v]-algebra. In particular, it gives an elementary proof
of the fact that the second differential Hochschild cohomology space for a star-deformed
algebra (C°°(M)[v], %) is isomorphic to Z?(M;R) ® vH?*(M;R)[v] where Z?(M;R) is the
space of closed 2-forms on the manifold (see also [25]).

Section 9 gives all automorphisms and derivations of a star product which are continuous
for the v-adic topology; in particular, we show that a symplectomorphism of a symplectic
manifold (M,w) can be extended to a v-linear automorphism of a given differential star
product on (M, w) if and only if its action on H?(M; R)[v] preserves its characteristic class.

Section 10 explains some of the steps to get from the Deligne’s definition of a deformation



[6] to the usual one considered in the first part of these notes. In his paper Deligne
deduces this and other results from the algebraic geometrical approach to deformation
theory; in these notes we give equivalent low-brow proofs based around partitions of unity
and coverings by contractible Darboux charts to go between local and global structures.
Let us close the introduction by emphasising that the results in these pages are not
new, except for Section 9, and can be found mostly in Deligne [6]. We decided to write
these notes in view of the large number of people who asked for a written account of the
seminar on the subject. The interest of the presentation is that it is self-contained and
the proofs are done in an elementary way. Similar presentations of some of this material
exist; in particular De Wilde [7] and Karabegov [16] give purely Cech-theoretic accounts
of Deligne’s intrinsic derivation-related class (see Section 5) and De Wilde shows by Cech
methods how this class and a 2-form induced by the skew-symmetric part of the second

term of the deformation characterise the equivalence class of the deformation.
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2 Preliminaries

This section contains a basic introduction to the setting for the rest of the paper. It includes
definitions of star products and equivalence on symplectic manifolds as well as a brief study

of the differential Hochschild cohomology of the algebra of smooth functions on a manifold.

Definition 2.1 Let M be a smooth manifold then a symplectic structure on M is a
closed 2-form w on M which is non-degenerate as a bilinear form on each tangent space. A
symplectic manifold is a pair (M, w) consisting of a smooth manifold M together with

a symplectic structure w on M.

Definition 2.2 Let (M,w) be a symplectic manifold then a symplectic vector field on

M is a vector field X whose (local) flow preserves w or, equivalently, if
Lxw = 0.
The Cartan identity for the Lie derivative yields
Lxw =i(X)dw + d(i(X)w) = d(i(X)w)
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since w is closed. Hence X is symplectic if and only if i(X)w is a closed 1-form.

Definition 2.3 If (M,w) is symplectic manifold then a vector field X for which i(X)w is
exact is called a Hamiltonian vector field. If u € C*°(M), then X, denotes the unique

Hamiltonian vector field with
i(X,)w = du.

Obviously, the space of symplectic vector fields modulo the Hamiltonian vector fields is
isomorphic to the space of closed 1-forms modulo the exact 1-forms and hence to H'(M; R).
Locally the Poincaré Lemma implies each symplectic vector field is a Hamiltonian vector
field; as a consequence symplectic vector fields are also called locally Hamiltonian vector
fields.

Definition 2.4 If (M,w) is symplectic manifold and u,v € C*(M) then the Poisson
bracket of u and v is defined by

{u,v} = X, (v) = w(X,, Xy).

The Poisson bracket makes C*°(M) into a Lie algebra. The Poisson tensor A is the

alternating 2-vector field with
{u,v} = A(du A dv).

Remark 2.5 In coordinates the components A% form the inverse matrix of the components
wij of w. The Jacobi identity for the Poisson bracket Lie algebra is equivalent to the

vanishing of the derivative dw or to the Schouten bracket [A, A].

In what follows we shall consider deformations of both the associative and Lie algebra
structures of real-valued smooth functions N = C'*°(M); similar results hold for complex
smooth functions. All deformations considered will be formal in the sense that they will
be defined on N[v] the space of formal power series in an indeterminate v with coefficients

in N. Questions of convergence of these formal series will not be considered.
Definition 2.6 (Bayen et al. [2]) A star product on (M,w) is a bilinear map

N x N — N[v], (u,v)>—>u*v=u*yv=ZVrCr(u,v)

r>0

such that

e when the map is extended v-linearly to N[v] x N[v] it is formally associative:

(uxv)*w=musx*(v*w);



e (a) Co(u,v) =uv, (b) Ci(u,v)— Ci(v,u) ={u,v};
e lxu=ux1l=u.

Remark 2.7 In this definition we follow Deligne’s normalisation for C, that its skew

symmetric part is {, }. In the original definition it was equal to the Poisson bracket.
2 g

Remark 2.8 Property (b) above implies that the centre of N[v], when the latter is viewed
as an algebra with multiplication x, is a series whose terms Poisson commute with all

functions so is an element of R[v] when M is connected.

Definition 2.9 If x is a star product on (M,w) then we define the star commutator by
[u,v], =uxv—v*u
which obviously makes N[v] into a Lie algebra with star adjoint representation
ad,u(v) = [u,v],.
Remark 2.10 Properties (a) and (b) of Definition 2.6 imply
[u, v], = v{u,v} + ...

so that repeated bracketing leads to higher and higher order terms. This makes N[v] an

example of a pronilpotent Lie algebra. See Section 4 for some consequences of this.

Definition 2.11 Two star products * and %' on (M, w) are said to be equivalent if there

is a series

o<
T=1d+)» VT,
r=1
where the 7, are linear operators on NV, such that

T(f  g) = Tf +' Ty. (1)

In studying star products on N[v] modulo equivalence we use the Gerstenhaber theory
of deformations [12] of N which requires a knowledge of the Hochschild cohomology of N
with values in N. So we begin by studying this.

A p-cochain on N is a p-linear map from N x ... x N (p copies) to N. The Hochschild
coboundary operator for the algebra N of smooth functions on a manifold M is denoted
by 0:

(0C) (ug, - .. up) =

woCl(un, .y up) + Y (1) Clug, ooy tp 1) + (=17 C (g, -y 1)y



On 1- and 2-cochains 0 is given by

(OF)(u,v) = uF(v)— F(uv)+ F(u)v;
(0C)(u,v,w) = uC(v,w)— C(uv,w)+ C(u,vw) — C(u, v)w.

A cochain C'is called a cocycle if 9C = 0, and a coboundary if C' = dB for some (p—1)-
cochain B. A p-cochain C is called differential if it is given by differential operators on
each argument and k-differential if the differential operators have order at most k. It is
said to vanish on constants if it is zero whenever any argument is a constant function. 1-
differential cochains vanishing on constants are always cocycles. 1-cocycles are derivations
of C* (M), so are vector fields and hence are 1-differential cochains vanishing on constants.

The Hochschild coboundary operator sends differential cochains to differential cochains.

Definition 2.12 The p-th differential Hochschild cohomology of N is the space
H% (N, N) of differential p-cocycles modulo differential p-coboundaries.

If C and D are p- and g-cochains, respectively, then we can define a (p + ¢)-cochain by
(C®D)(ur, ..., uprq) = Clur,. .., up) D(Upits ..., Upiq)
0 acts as a graded derivation:
(C®D)=0C®D+(-1)’C®0dD.

If D is a differential operator of order k, then we may view it as a k-differential 1-
cochain. For a vector field X we have 0X = 0, and if k¥ > 2 a repeated application of
Leibniz’ Rule then shows that dD is a bi-differential operator of order & — 1.

We define the support supp C' of a cochain C' to be the union of the supports of its

coefficients when written in coordinates.

Proposition 2.13 If C is a 1-differential p-cochain on R* and A is its alternating part
then C' = 0B + A where B is 2-differential, and determined by C' so that supp B C supp C.

Proor 1If C is a 1-differential p-cochain vanishing on constants, then C' has the form

ou ou
C(ula"'aup) = Z C’il,...,ipax—'l--- 8.Ip

i1yl

where the coefficients are given by

Cil,...,i = C(Q?il, N ,xip).

P

If o is a permutation of {1,...,p} and C a p-cochain then we set
(0-C)u, ..., up) = Cug-131), .-, Ug1(p))
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which is an action on cochains. It is not, however, compatible with the Hochschild cobound-
ary.
If 7 is a transposition of consecutive integers, say the interchange of 7 and i + 1 and C
a 1-differential p-cochain vanishing on constants then we define a (p — 1)-cochain ®,(C) by
0%u;
0x, 0z,

‘I)T(C)(Ula cees Up—l) = (—1)i ZC(Uh ey U1 Ty Tgy Uit 15 - - 7“[)—1)

Then, using the Leibniz formula for second derivatives and the derivation property of C' in

each argument, a straightforward computation shows that
09,.(C)=C+r1-C.
If 71 and 7, are each transpositions of consecutive integers then we have
(P, (1-C)—9,(C))=C—115-C.

It is clear that if we keep composing such transpositions we build up any element o of the
symmetric group and we manufacture a 2-differential (p — 1)-cochain ®,(C') which is com-
pletely determined by C' once we fix a decomposition of ¢ into a product of transpositions

of consecutive integers and
09,(C) = C —sign(o)o-C.

If we set

B(C) = 3 0, (C)

gESy
then
1 :
C=0%(C)+ o Z sign(o)o - C

) oESy
so that C' is cohomologous to its skewsymmetric part.

Note that the explicit nature of ® means that supp ®(C) C supp C' O

Proposition 2.14 If C is a differential p-cocycle on C®(R™) then there is a differential
(p — 1)-cochain B and a skewsymmetric 1-differential p-cocycle A with C = 0B + A. If C
vanishes on constants then B (and hence A) can be chosen to vanish on constants. We can

choose B and A so that supp B and supp A are contained in supp C.

PROOF Any 1-cocycle is a vector field so the result is trivially true for p = 1.
Assume the result true for r-cocycles with » < p and let C' be a differential p-cocycle

with p > 2. Consider C(uy,...,u,) as a differential operator in u;. Suppose it has order



k > 1 then we shall show that we can subtract a coboundary to reduce the order. An
induction then shows the order can be reduced to 1.

We consider the terms of highest order in u;

Cluy, ..., up E 5 6 ————— D, (ugy . uy)
Zl: ﬂk ‘/L‘ll ' ka
where the D;, ; are (p — 1)-cochains, symmetric in iy, ..., 4. In other words, in multi-
index notation i = (iy,..., ),

C=) 0®D;i+....

li|=k

It follows from the derivation property with respect to tensor products above that

0C=-> 0;®0D;+....
li|=k
so that, when C is a p-cocycle, the coefficients of the highest order derivatives of u; are
(p—1)-cocycles. By induction D; = OFE;+ F; with F; a skewsymmetric 1-differential cocycle
and supports in supp C' if needed. Set

G = Z@@E

then an easy calculation gives

cdcroc=No0F+H
li|=k
where H only has terms involving derivatives of the first argument of order strictly less
than k£ and C’ is still a cocycle.

Taking the coboundary of this equation we have

0=> 0(0)®F, + 0H, (2)
li|=k

and since 0(0;)(u, v), for |i| = k, only has terms 0, ud;»v with |i'|+ |i""| = k and both |¢'|, |#"|
non-zero, the highest order terms in the first argument which can occur are of order £ — 1
and these terms in 9(9;) ® F; will be of order 1 in the second and remaining arguments. So
the leading terms in 9(0;) ® F; are of multi-order (kK — 1,1,...,1). We examine how such

terms can arise from 0H.
If we expand H = .

i1t Hi,. i, 10 ®...®0;, |, where each i, is a multiindex and

the coefficients are symmetric in each multiindex separately, then

aH = Z Hi1,...ip71 Z(—l)r_lail ® e ® 8(8“) ‘e 6Z~p71

11,.ndp—1 r



and so terms of order (k —1,1,...,1) can only come from labels iy,...,,...i,1 where
liy| = k —1, exactly one multiindex 4, has |i,| = 2 for some r > 2 and all other multiindices
have length 1.

Thus, if we take the terms of order (kK — 1,1,...,1) in equation (2) and write out all

multiindices fully, we have
KFGy ik 1j0)dorndp T 2H iy g 1) Grda)sodip T - - F 2H iy ik 1)1 Gpm1d) = O

with the H terms symmetric in the bracketed pairs of indices. Denoting by S, the group of
permutations of (1,...,p) and €(o) the signature of a permutation o, if we antisymmetrise

over the last p indices, all the H terms drop out and we get a relation among the F’s

E , e(o-)F(il"'ik—1jo(1))9ja’(2)a"'ajo(p) =0

oSy

which implies, since F' is skewsymmetric in its last p — 1 indices,

p

— _ S ~
Flivoinsjiiods = DV Fa i ivyivion

s=2

where 7~ denotes omission and, since F' is symmetric in its first & labels,

=

kF(il"'ik)’j2""’jp - Z (_I)SF(le’;"lk]s)sZrﬂZsfS9]11 ’

r=1 s=2

Thus

p

(k+p— 1)F(i1...ik),j2,.--,jp = Z(_1)5K1‘1...ik,js,jg,...j}...,jp

§=2

where

k
i1 ik fssj2redandp Z F('il---’z;njkjs),ir:j?:---]:m:jp + F(il~~~ik)’js’j2:---j:---’jp
r=1

is symmetric in its first £ 4+ 1 indices.

One can write

p
(k +p— ]‘)F(il-.-ik)sj2s---9jp = Z(_l)us'l...ik,js,jg,...j:...,jp
§=2

p
— s 5§—2
- E (_1) {(_1) K’il---ikanaj3:---yjp
5=2
S
s—t
+ Z( 1) (Kil---iksjtsj%"'ajtflajts“'sz + Kil---iksjt15j29"'7jt15ji5“-5j17):|
t=3
= (p - 1)Ki1'-'iksj27j3s-“sjp

p
t
+ Z( 1) (p +1 t) (K'il---'ik’jt’jQ’m:jt—lyjt:---’jp + Kil~~~ik7jt—17j2,~~~yjt—1Jta---yjp)
t=3

9



so that the terms corresponding to the first line in the last equation coincide with the terms

of order £ in the first variable of the coboundary of a constant multiple of
Ky igjssgarnipOin ings ® 0js ® ... ® 0

and the terms corresponding to each summand in the second line in the last equation
coincide with the terms of order k in the first variable of the coboundary of a constant

multiple of

i )azlzk ®3j2®...®6jt,ljt®...®8j

( 21 kesJts] 25050t — 15Tt 5+ 5]p + ULk sJt— 1525050t — 15Tt se-0]p P

Combining the above results, we can build a p — 1 cochain G’ so that C' — 9(G") is a multi
differential operator with terms involving derivatives of the first argument of order less than
k. Iterating, we can reduce the order in the first argument to 1.

Now assume that

i—1 61;2
then
"9
- — D;
aC ;8@@8

so C being a cocycle is equivalent to the D, being cocycles. In this case we have D; =
OF; + F; with F; 1-differential and

c+azai ® F; :Zai ® F;
=1 i=1

and the RHS is now 1-differential in all arguments.
Using the previous Proposition, this 1-differential cocycle is equal to its total skewsym-
metrization plus a coboundary.

Hence the induction proceeds. O

Theorem 2.15 FEvery differential p-cocycle C' on a manifold M is the sum of the cobound-

ary of a differential (p-1)-cochain and a 1-differential skewsymmetric p-cocycle A:
C =0B + A.

If C' wvanishes on constants then B can be chosen to vanish on constants also.

PROOF Take a locally finite covering {Uy}cx of M by charts with a subordinate partition

of unity p,. Then any p-cocycle C' is a locally finite sum of p-cocycles

C=) pnC

A€EA

10



with supports in charts. By the preceding two Propositions
p,\C' = 8B)\ + A)\

with the supports of B, and A, in U,. It follows that the sums
p-Y B A-Y4,
AEA AEA

are locally finite, so globally defined, and C' = 0B + A as required. O

Corollary 2.16 H:.(N,N)=T(A'TM).

PrROOF It remains to show that the alternating part of a coboundary is zero and we leave
this to the reader. O

Remark 2.17 This is a smooth version of the Hochschild-Kostant-Rosenberg Theorem
[15]. It was first mentioned in the context of smooth functions by Vey [24] who considered
the proof well-known. Other classes of cochains than differential have been considered,
such as distributional cochains, with essentially the same result [22]. But for completely

general cochains the full cohomology is not known.

Remark 2.18 The proofs of the above results work globally on a manifold if we use a
connection to write the cochain in terms of its symbol and do the induction with respect
to the degree. Then we see that all the choices can be made explicit, and the inductions

are finite, so the method can be made constructive.

Remark 2.19 In the symplectic case the 1-differential skewsymmetric p-cocycle A in The-
orem 2.15 can be rewritten in terms of the Hamiltonian vector fields and a smooth p-form

Cluy, ... up) = (0B)(u1,...,up) + Xy, ..., Xy,)- (3)

Definition 2.20 A star product * on (M, w) is called differential if the 2-cochains C,(u, v)

giving it are bi-differential operators.

Definition 2.21 Two differential star products % and %" on (M,w) are said to be differ-

entially equivalent if there is a series
T=1d+ i v'T,
r=1
where the T, are differential operators on NN, such that
T(f +g) = Tf # Tg. (4)

11



In fact for differential star products there is no difference between the two notions of

equivalence as the following result shows [6, 18]:

Theorem 2.22 Let x and ' be differential star products and T'(u) = u+ 3 -, V' T,(u) an
equivalence so that T(uxv) = T(u) ¥ T'(v) then the T, are differential operators.

PROOF Suppose we know that the first £ operators T7,...,T; in T are differential op-
erators and set T"(u) = u+ >, ., o, V" Tr(u). Then T" = T ' o T is an equivalence be-
tween the differential star products % and %" where u " v = T' (T'(u) ' T'(v)). T"
has the form T"(u) = u + v*"'T", 1 (u) + ---. Taking the terms of degree k + 1 in
wsv = T" (T (u)*"T" (v)) we see that (91" 1) (1, v) = T" 1 (W)v4+uT" 1 (V) =T" 1 (uv)
is a bidifferential symmetric 2-cocycle. By Theorem 2.15 07", is the coboundary of a
differential 1-cochain plus a 1-differential skewsymmetric cochain. Since both exact terms
are symmetric, the skewsymmetric term vanishes. Thus there is a differential 1-cochain B
such that 9(T"y+1 — B) = 0. It follows that X = T"; 1 — B is a derivation of N and hence
is a vector field. Thus T";,1 = B + X is differential. T, is a combination of Ty, ..., T}
and T";,1 and hence is also differential. It follows now by induction that 7' is differential.

O

A simple application of Theorem 2.15 is:

Proposition 2.23 A differential star product is equivalent to one with linear term in v

given by +{u,v}.

PROOF Let u* v = uv + vCi(u,v) + - - - be a star product then Cy(u,v) is a Hochschild
cocycle with antisymmetric part given by +{u,v}. By Theorem 2.15 C'(u,v) = 3{u,v} +
uB(v) — B(uv) + B(u)v for a differential 1-cochain B. If we set T'(u) = u + vB(u) and
us'v="T(T""(u)* T~ (v)) then an easy calculation gives u*'v = uv + sv{u,v} +---. T

is obviously a differential equivalence so that " is differential. a

3 Local equivalences and v-linear derivations

In this section we collect some basic results on the topological conditions for the equiva-
lence of two star products [18]; when is a self-equivalence inner; and what are the v-linear

derivations of a star product on a symplectic manifold (M, w).

Proposition 3.1 Let * and ' be two differential star products on (M,w) and suppose that
H*(M;R) = 0. Then there exists a local equivalence T = Td+ Y., v*T}. on N[v] such
that u+'v="T(T 'uxT~"v) for all u,v € N[v].

12



PROOF Let us suppose that, modulo some equivalence, the two star products * and
coincide up to order k. Then associativity at order k shows that Cj — C}, is a Hochschild

2-cocycle and so by (3) can be written as
(Crk = C)(u,v) = (9B)(u, v) + A(Xy, X,)

for a 2-form A. The total skewsymmetrization of the associativity relation at order k + 1
shows that A is a closed 2-form. Since the second cohomology vanishes, A is exact, A = dF'.
Transforming by the equivalence defined by Tu = u+v*~12F(X,), we can assume that the
skewsymmetric part of C — C}, vanishes. Then (Cy — C})(u,v) = (0B)(u,v) = uB(v) —
B(uv) + B(u)v where B is a differential operator on N and using the equivalence defined
by T = I + v* B we can assume that the star products coincide, modulo an equivalence, up
to order k£ + 1.

This gives the inductive step, and since two star products always agree in their leading

term, it follows, by induction, that they are equivalent. O

Corollary 3.2 Let * and *' be two differential star products on (M,w). Let U be a
contractible open subset of M and Ny = C>®(U). Then there exists a local equivalence
T =1d+Y ., V" Ti on Ny[v] that u+' v ="T(T~'uxT~"v) for all u,v € Ny[v].

PROOF A contractible open set has vanishing cohomology groups and a differentiable star
product on M restricts to give a star product on any open set U of M, so the previous

Proposition can be applied. O

Proposition 3.3 Let x be a differential star product on (M,w) and suppose that H'(M;R)
vanishes. Then any self-equivalence A =1d+ Y, o, V¥ Ax of * is inner: A = exp ad, a for

some a € N[v].

PrROOF We build a recursively. The condition A(u % v) = Au % Av implies (taking the
coefficient of v) that A (uv) 4+ Cy(u,v) = Ay (u)v+ uA;(v) + C(u,v) so that A; is a vector
field. Taking the skew part of the terms in v? we have that A, is a derivation of the Poisson
bracket. It follows that A;(u) = {ag, u} for some function ag. Then (exp —ad,ag) o A =
Id +O(v?) as an easy calculation shows. Now we proceed by induction.

Suppose we have found a*~V = ag + -+ + ¥ a;_; such that A’ = (exp —ad, a* D)o
A=Td+v*1 A"+ O(V*+2) then we can repeat the argument of the previous paragraph
since A’ also preserves x. The terms of degree k£ + 1 show that Ay, is a vector field and
the antisymmetric part of the the terms of degree £+ 2 show that it is a Hamiltonian vector
field A’y (u) = {ag,u} for some function a;. Taking a®) = a*=1) + vFa, gives a formal

function with (exp —ad, a®¥)) o A = Id +O(v**?) completing the induction step. O
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Again this yields directly:

Corollary 3.4 Let x be a differential star product on (M,w). Let U be a contractible open
set of M and Ny = C=(U). If A=1d+ 3., v* A is a formal linear operator on Ny|[v]

which preserves the differential star product x, then there is a € Ny[v] with A = exp ad, a.

Proposition 3.5 Any v-linear derivation of a differential star product x on (M,w) is of
the form D =Y ,5, V' D; where D; corresponds to a symplectic vector field X; and is given

on a contractible open set U by
1
Diuly = > (f7 xu—uxf)

if Xiuly = {f{, u}lv.

PROOF Assuming a derivation D is of the form Du = v*D'u + ... (where k > 0), the
equation D(u * v) = Du* v+ u * Dv at order k in v yields D'(u.v) = D'u.v + u.D'v, so
D'y = Xu where X is a vector field on M. Taking the skew part of terms in v**!, we have
that X is a symplectic vector field on M, i.e. that Lxw = 0. In that case, one can write,

on a contractible open set U,
Xulp = {fY,u}|y where fU e C>(U).
Since the C, vanish on constants for r > 0, one can globally define E: N — N[v] by
E(u) = B (fU*u—u*fU)
v

and, by associativity of x,, E is a derivation of the star product. Notice that D — V*E

starts with terms of order £ + 1. An induction gives the result. 4

Corollary 3.6 With the same notation as in Corollary 3.4, any local v-linear derivation
Dy of a differential star product x on Ny[v] for a contractible open set U is essentially

inner: Dy = %ad* dy for some dy € Ny[v].

4 The Relative Class

We shall describe here the Cech cohomology class introduced by Deligne when one considers
two differential star products on a symplectic manifold. It is built from local equivalences
between those star products, using the property that any local self equivalence of a differ-

ential star product is of the form exp ad, a for some locally defined a.

14



It is convenient to write the composition of automorphisms of the form expad, a in
terms of a. In a pronilpotent situation this is done with the Campbell-Baker—Hausdorff

composition which is denoted by a o, b:
1
ao,b=ua+ / Y(exp ad, a o exp tad, b)bdt
0

where

z—1 = n+1 n

Notice that the formula is well defined (at any given order in v, only a finite number of

terms arise) and it is given by the usual series
1 1
ao,b=a+0b+ §[a, bl + E([a, [a, bl ]« + [, [b, ali]s) - - -
The following results are standard [5]:

Lemma 4.1

e o, 1S an associative composition law;
e exp ad,(a o, b) = exp ad, a o exp ad, b;
e ao,bo, (—a) =exp(ad,a)b;
e —(ao,b)=(=b)o,(—a);
d 1 —exp(—ad, a)

o Eo(_a) o, (a+1tb) =

(b)-

ad, a

Let (M,w) be a symplectic manifold. We fix a locally finite open cover U = {U, }aer
by Darboux coordinate charts such that the U, and all their non-empty intersections are
contractible, and we fix a partition of unity {6, }.cs subordinate to Y. Set N, = C*(U,),
Nos = C>*(U, N Up), and so on.

Now suppose that = and *' are two differential star products on (M, w). We have seen

that their restrictions to N,[v] are equivalent so there exist formal differential operators
To: Nu[v] — N,[v] such that

To(uxv) = Ty(u) *' Ty(v), u, v € No[v].

On U, NUg, Tﬂ’1 oT, will be a self-equivalence of * on N,z[v] and so there will be elements
tﬁa = _taﬂ in Naﬁ[[lj]] with
Tﬂ_1 o T, = exp ad, tg,.
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On U, NUg N U, the element
typa = tay Ox 145 Ox tga

induces the identity automorphism and hence is in the centre R[v] of N,g,[v]. The family
of .3, is thus a Cech 2-cocycle for the covering U with values in R[¢]. The standard
arguments show that its class does not depend on the choices made, and is compatible with
refinements. Since every open cover has a refinement of the kind considered it follows that

t.5o determines a unique Cech cohomology class [t,s.] € H?(M;R)[v].

Definition 4.2
t(+', %) = [ty50] € H* (M R)[V]
is Deligne’s relative class.
Proposition 4.3 If x, ', " are three differential star products on (M,w) then
t(x" %) = t(+" ") + t(+, *). (5)

PROOF Let the local equivalences between ' and * be T, and between *” and %' be S,,.
On U, NUg let

Tﬂ_1 oT, = exp ad, g4, Sgl 0 S, = exp ady Sga
and set V,, = S, o T,, which are local equivalences between *" and *. Then
Vﬁ’1 o Vo = exp ad, (tga 0x T,y ' (Sga))

and hence we can choose
Usa = tga O Ty (Spa)-
Observe that vg, = —vag since
toa 0« To ' (Sga) 0x (—tga) = exp ad. tga (T ' (spa)) = Tg_lTaTa_l(sﬁa) = _Tﬂ_l(saﬂ)-
Then, on U, N Ug N U,, we have
Tq_l(scw) Oulys = typ 0u (—typ) O Ty_l(sow) Ox 1y
= 1ty ox exp ad. —typ (Ty_l(sow))
= 14504 (TEI oT,o T,;l)(s(w)

= 1y 0« Tﬁ_l(sa'y)
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SO

Uyga = Uay Ox Uyg Ok Uga
= tay O« T,;l(s(w) Oy Lyg Ok T/;I(S'yﬂ) O Lga Ox Tojl(sﬁa)
= tay Ox by Ou tga O To ' (Say Ok S48 Ok Spa)
= 1ypa O« Ta_l(svﬁa)

= tyBa O« Syfa

- tvﬁa + Sy8a;

the last two steps following since s,3, is central. O

Proposition 4.4 The class t(', %) vanishes if and only if the two differential star products

are equivalent.

ProoFr If x and *' are equivalent, the equivalence being defined by T, we can choose the
restriction of T to U, for T, and the class obviously vanishes.

Now consider what happens if the class #(', %) vanishes. Then we can modify t3, by
addition of a central element (and so not changing its adjoint action) so that t,3, = 0.
But then ¢4 is a cocycle and hence a coboundary, so there are functions ¢, € N,[v] with
typ = (—ty) 0u tp.

This is shown by the following standard inductive argument. At order zero, the cocycle
condition is

0 0 0 _
t0, + 05+ th, = 0.

Defining
{0} _ 0
ty) = Z Oatl s,

yields
tys = (=t}) o 15"

up to order one in v. If there is a solution

ti =>"vt,

r<k

SO that
k

up to order k + 1, then the cocycle

Cys = =t o, b5 0, 11
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has first non vanishing term of order k£ + 1 with

k41 | k41 k1 _
Cay TCp +TC5 =0.

B
Defining
E+1 _ E+1
t5" = fachi
6]
and
k41 k E+1,k41
k1 = gk} 4 Rtk
we have

up to order k + 2 in v, hence the result by induction. Setting

T', =T, o0exp ad, t,

we have T', = T'5 on U,NUs and hence there is a global equivalence 7" on N with 7" = T",
on U,. O

Given a differential star product * we thus have a map from equivalence classes of

differential star products to H*(M;R)[v] given by
[] — t(+, %)
and we have just shown that this map is injective.

Proposition 4.5 Fixing a differential star product %, the map from equivalence classes of
differential star products to H*(M;R)[v] given by

[+'] = t(+, %)
18 surjective.

PROOF To see that the map is surjective we proceed in two steps. We first show that

given a 2-cocycle t,5,, we can find t3, € N,g[v] so that
typa = tay O typ Ox Lpa-

We then construct a differential operator 7T, on U, starting with the identity so that
TB’1 o Ty = exp ad, tgq.
For the first step, we use, as above, the fact that the sheaf of functions is fine. At order

zero, the cocycle condition takes the form

0 0 0 0
t’yﬁa — téﬂa + té’ya - t(ﬁ’)’ﬂ == 0

18



We define
0o _ 0
1o =D 01150
v

so that
0 _ 40 0 0
t,yﬂa = ta,y + t,yﬂ + tﬁa'

Assume now, by induction, that we have tgfl} such that tgfl} = —t({l];} and
_ ik {k} {k}
tyga = ti) o £33 o, 1y,
up to order k + 1. Let us define

! k ’
cypa =t 0 ]3] 0u £5)

r
vBa

c is not necessarily a cocycle. Nevertheless the ¢

are constants Vr < k. Note that in a non-commutative situation

k+1
vBa

so that the coefficients ¢
are completely skewsymmetric in their

indices since

k+1 k k}yk+1
Cajy_ﬁ = (téa} Ox CyBa Ox t(gﬁ}) -
k1
= %8a
and
k k
Cyap = tév} 0, tiﬁ} Oy t,{m}

k k
= (—t!hy o, (—tl}) o, (—tlh)
k k
= —(t o, t o, t1) = —cop.

Furthermore, it can be checked that

(Cya © C3ga © Cova © Coyp) T = AL — GEL + 5t — o5lg
= 0.

Hence, if we define

o' = 2 0u(t5a = )

8!

and

tgfjl} _ tg;} + VkHtf;Zla
then we have

b = 5 0, 571 o, )

up to order k£ + 2, and tgzﬂ} = —t({lzﬂ} so the induction proceeds.
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For the second step, we need to find differential operators T, on N,[v], starting with
the identity, so that exp ad, g, = Tﬁ_1 oT,. This, again, is a recursive argument: Suppose

we have found To(ék) such that
Tﬂ(k) o exp ad, tg, © To(ék)_1 =Id+15Sg, + -+ -,

then it is easy to see that Sg, is a 1-cocycle with values in the smooth differential operators
vanishing on constants. Since these form a fine sheaf, this 1-cocycle is a coboundary, so
there are differential operators S, on N,[v] vanishing on constants with Sz, = S, — Sz on
Ua NUp. Setting

T+ = (1d +0£S,) o TP

we have

T[gkﬂ) o exp ad, tgq © Tcsk+1)_1 =Id+/415, + -

and the recursion proceeds. Having found such operators T, we then twist * to yield %’ by

defining
ux'v="T, (T, (u)«T;'(v)) on U,.

From the way we constructed * it is easy to see that the class of %' will be ¢(«, x). O

We summarise these results in a theorem.

Theorem 4.6 Fizing a differential star product x, the class t(x',*) in H*(M;R)[v] de-
pends only on the equivalence class of the differential star product *', and sets up a bijection

between the set of equivalence classes of differential star products and H*(M;R)[v].

5 The Intrinsic Derivation-related Class

The addition formula of Proposition 4.3 suggests that ¢(+’, ) should be a difference of classes
c(¥'),c(x) € H*(M;R)[v]. Moreover by Proposition 4.5 the class ¢() should determine
the star product * up to equivalence. As a step in that direction we consider an intrinsic
class which is an obstruction to piecing together local derivations of the star product.

We retain the notation of the previous section and continue to denote by U the covering

by contractible Darboux charts.

Definition 5.1 Say that a derivation D of N[v],* is v-Euler on an open set U if it has
the form 5

D=v—+X+D 6

l/ay + X + (6)

where X is conformally symplectic (Cxw = w) and D' =3~ ., v" D; with the D] differential

operators on U.
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Proposition 5.2 Let = be a differential star product on (M,w) then for each U, € U we
have a v-Euler derivation Do = v + Xo + D), of the algebra (No[V], ).

PrROOF On an open set in R?" with the standard symplectic structure €2 denote the
Poisson bracket by P. Let X be a conformal vector field so LxQ2 = Q and hence that
the Poisson tensor P satisfies LxP = —P. It follows that the power P" of P as a bi-
differential operator satisfies LxP" = —rP". The Moyal star product *™ is given by
usMo=wv+ Y o (%) /rlP"(u,v). It is easy to see that D = v-Z 4+ X is a derivation of
*M

(U,,w) is symplectomorphic to an open set in R*® and any differential star product
on this open set is equivalent to *™. We can then pull back D and *™ to U, by a
symplectomorphism to give a star product *’ with a derivation of the form l/% + X, IfT
is an equivalence of * with %' on U, then D, =T ' o (ya% + X,) oT is a derivation of the

required form. O

We take such a collection of derivations D, given by Proposition 5.2 and on U, NUsz we
consider the differences Dg — D,. They are derivations of * and the v derivatives cancel
out, so D — D, is a v-linear derivation of N,g[r]. Any v-linear derivation is of the form
L ad, d, so there are dg, € Nys[v] with

1
Dﬁ — Da = ; ad* dﬂa (7)

with dg, unique up to a central element. On U, NUg N U, the combination dy, + d s+ dga
must be central and hence defines d,z, € R[v]. It is easy to see that d,g, is a 2-cocycle

whose Cech class [d,5a] € H?>(M;R)[v] does not depend on any of the choices made.

Definition 5.3 d(*) = [d,5.] € H*(M;R)[v] is Deligne’s intrinsic derivation-related

class.

Remark 5.4 In fact the class considered by Deligne is actually %d(*) but we prefer the
present normalisation. De Wilde [7] and Karabegov [16] give purely Cech-theoretic accounts

of this class.

Proposition 5.5 If x and «' are equivalent differential star products then d(x") = d(x).

PrROOF Suppose T'(u * v) = T(u) ' T(v), and we have chosen local v-Euler derivations
D, for * then we can take D! = TD,T~" for #'. Then

1 1
Dy—D,=T(Dsg—D)T~' =T (E ad, d5a> T-' = - ad, T(dga).
Thus, for these choices of derivations, dj, = T'(dsa) and so d. 5, = T(dysa) = dypa since

the higher order terms of 7" are differential operators vanishing on constants. O
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Proposition 5.6 If d(x) = > . v"d"(+) then d’(x) = [w] under the de Rham isomor-
phism, and d*(x) = 0.

PROOF For d°, consider the terms of degree zero in (7) using (6) applied to a function
u € N,
(X5 — Xo)u = {d%a, u}.

We set 0, = i(X,)w then df, = w on U,. Hence
(05 — 0a)(Xu) = w(Xp—Xo, X))
= —(Xg — Xa)u
= _{d%a’ U}
= Xu(d,%a)

50 05 — 0, = d(d},,) on Uy NUs. Hence d) 4, is the Cech representative corresponding with
the closed 2-form w under the de Rham isomorphism. Thus d°(x) = [w].

For d' we first observe that by Proposition 5.5 we can replace * by any equivalent star
product. In particular, we may assume that x has C; (u,v) = %{u, v} and the antisymmetric
part C5 of Cy is given by a closed 2-form A, C5 (u,v) = A(X,, X,). Now

ad. dgau = dgo *u—uxdg,
= v{dga,u} +20°Cy (dga,u) + - -
= {dfe, u} + 07 ({dj, u} + 205 (5, u) + O()

for u € N,s. Equating terms of degree one in (7) we have

(DY) = DWV)u = {dhy,u} +2C; (d%, u)
= {dj,u} +24(Xy , Xo). (8)

If we take the terms of degree one in v in D, (u *v) = Dy(u) * v 4+ u* Dy(v) we see at
once that DY = Y, is a vector field. If we take the antisymmetric part (in u and v) of the

terms of degree two in v we obtain

205 (u,v) + Xo(Cy (u,v)) = Oy (Xa(u),v) — C5 (u, Xo(v)) =
1 1 1
i{D((ll)(u)a U} + i{u: DS)(U)} - iDg})({U, U})
which can be rewritten in terms of the closed 2-form A as
2 (Lx,A) (Xu, Xy) = {Ya(u), v} + {u, Ya(v)} — Ya({u, v}). (9)
If we let B, = —i(Y,)w then B,(X,) = Y,(u) so the right hand side of (9) becomes
_Xv(Ba(Xu)) + Xu(Ba(Xv)) - Ba(X{u,v}) = dBa(Xua Xv)
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SO 1
£XQA = §dBa.

Since A is closed, then from Cartan’s Identity, i(X,)A — %Ba is closed on U, and hence

exact. There is thus a smooth function f, on U, with

1
i(Xa)A — 5Bo = dfa.

Substituting into (8), and using Xd% = X3 — X, we have

(Vs —Yo)u = {dja,u} +2A(X5 — Xo, Xy)
= {dja, u} + Bs(Xy) — Ba(X,) + 2df5(X,) — 2dfa(X,).

Since Y3(u) = Bg(X,), these terms cancel leaving

{déaau} :ZQ{fﬁ__jaau}

and hence the class d'(x) = 0. 0

Lemma 5.7 Consider two differentiable star products x and ¥ on (M, w) with local equiv-
alences T, and local v-Euler derivations D, for * . Then D! = T, o D, o Toj1 are local
v-Euler derivations for «'. Let Dg— D, = %ad* dg and TB’1 oT, =exp ad, tgy on Uy,NUs.
Then D’ﬁ — D! = %ad*/d’ﬂa where

1 —exp (—ady tap)
ad* taﬂ

Iﬁa = Tﬂdﬂa - Z/Tg o < > o Dataﬁ-

PROOF  Since, for any (local) derivation D and any (locally defined) ¢ € N[v], one has
Doad,t = ad,(Dt) + ad, t o D so that inductively

n—1
Doadlt=ad/toD+ ) aditoad,(Dt)oad!™' "t
i=0
and
—ad«t ad ¢ —ad«t d ad« (t+sDt)
e ““fToDoe™™" = D+e "'— '
ds |,
1— e ad(ad« t)
= D ——— Jad, Dt
+< ad(ad, t) )a

1_ - *
- D+ad*<< exp (— ad t)>Dt>.
ad, ¢
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One gets:

Dy—D, = TgoDgoTy' —TaoDgoT,"

= Tso(Ds— (TngQ) oD, o (T;ng)) o Tgl

1 —exp (—ad, tap)

= TgO(Dg—Da)OTﬂI—TgO<ad* |:<

)ow)

1 1-— —ad, t,
= Tpoad, <—dﬂa - ( exXp(—a 5)
v ad* taﬂ

1
= ad*: ;dlﬁa.

for the above defined dj,,.
Notice that di,; = —dj,. Indeed,

1 —exp (—ad, tga)

‘s = Tudag — VT,
af 8 v ° < ad* tﬁa

) o) Dgtga

1 —exp (—ad, t34)

= Todap — vT3(Ty 'Ty) 0 (

o Dgtgg
ad*tﬂa ) pte

ditge) — 1
= Tadaﬂ — UTﬂ <exp (a b ) ) D/gt/ga

ad* tﬂa

1 —exp (—ads tap)

= Tadaﬂ—l—l/Tg< adtg

1 —exp (—ads tap)

+Z/T5 < ad 1 5

Since v(Dg — Dy )tap = ad, dgatap = — ads tapdsa, the above gives

1 — exp (— ad, t4p)

'y = Tad, T,
af Gy < ad. fug

= —d ot Tadag + TﬂTngadﬂa = — Iﬁa'

Lemma 5.8 In the situation of the lemma above and with the same notation

!

ProOF We shall use the formula for the derivative of the exponential map:

d

> (Ds = Da)tas

0
B — To(dypa + VQ%t'yﬂa)

1 —exp (—ad, a)

p (—a) o, (a+th) =

This also yields

a
dt

0

24

0 ad, a

1 —exp (—ad,a)

(co. —a) o, (a+th) o, (—c) =exp ad, ¢

oT/;1

) Dataﬂ — Tﬂdga + Tﬂ exp (ad* tga)dga



Remark that if D is any (locally defined) derivation, one has

d
— « (b+sDb
(@ (b sDD

0

d
D(ao,b) = %(a + sDa) o, b

It follows that

0
va tisa = Dyltay 0utys o tsa)
d

ds

d
((tar + 5Dtar) 04 b5 04 t30) + -
0

(tav O (tvﬂ + Sth'yﬂ) 04 tga)
0

(tow Oy Tyg Ox (tﬂa + SthBa))
0

L
ds

1 —exp (—ad, ta,y) 1 —exp (—ad, t4p)

D.to, +exp ad, t 22Dt

ad, to, ylay p ap ad, £ lys

1 —exp (—ad, tga)
ad* tﬁa

1 —exp (—ad, ty,) . 1 —exp (— ad. t4p)
= Doty +T T, Dt
( ad, tra ylay T 1o g ad, tys v4vB

1 —exp (—ad, tga) 1 —exp (—ad, tga)
Djt s, D, — Dg)ts,.
+ < ad. 1 stga + a1 (Dy — Dp)ts

= exp ad, oy

l)vtﬁa

On the other hand

1 —exp (—ad, tga)
ad* tga

1 —exp (—ad, t,p)
ad* tyg

1 —exp (—ad, tya)
ad, tyq

d:ry — dlﬁ,y — d:m = —Tadaﬁ + VTa < ) Dﬁtﬁa

—Tﬁd@y + l/Tﬂ ( ) D,yt,yﬂ

+Todyy — VT, < > Dyt

Hence

T, (v %twa) — Todas — Tadgy + Today + To(1 = T Ts)d5

0
— Ta(l/Q%t,yga + do,y + dga + d,yg).

! ! ! _
dva o dﬂv o daﬁ -

This proves the Theorem:

Theorem 5.9 The relative and intrinsic derivation-related classes of two differentiable star

products * and x' are related by

2 a i _ !
v %t(* cx) = d(x') — d(%). (10)
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6 The Characteristic Class

Formula (10) of Theorem 5.9 gives the relation between the relative and intrinsic derivation-
related classes of two differential star products * and *’. It shows that the information which
is “lost” in d(*') — d(x) corresponds to the zeroth order term in v of ¢(x', ). We compute
below what is this missing part.

Take two differential star products

uxv = uv+ vOi(u,v) +12Cyu,v) + - -
ux'v = ww+vC (u,v)+ v*Chu,v) + -

Since, by associativity at order 1, C'} — C} is a symmetric Hochschild 2-cocycle, we write
Ci(u,v) = Cy(u,v) —u.Ey(v) — Ey(u).v + By (u.v)

where F; is a differential operator on N defined up to a vector field. Then, by associativity

at order 2 and 3 of the two star products:
, _ 1
C 2 (U, U) - CQ (U, U) = —5[{U, El(v)} + {El(u)a 7)} - El({u: U})] + A(XUJ XU)

where A is a closed 2-form on M. Notice that the de Rham class [A] of A does not depend
on the choice of E;. We write
[A] = (C"y - C)*.

A local equivalence T, on U, so that
ux v|g, = To(T, 'ux T, 'v)
is given by T,, = Id +vE, + - - - where
E.(u) = Ei(u) + By (X,)

with A = —1dB, on U,. The Cech class corresponding to [A] is calculated from 1-forms
F, on U, with A =dF, on U,. If Fg — F,, = dfs, on U, NUp then a,g0 = foy + f15 + f5a
is constant on U, N Us N U, and [A] = [a,4,]. Here we can take F, = —1B,. So

expad, tg, = TgloTa
= 1d4v(Ey — Eg) + -
= Id+v(B, — Bg) +---
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hence
{t%a’u} = 2(Fﬁ_Fa)(Xu)
= 2dfga(Xu)
= _Q{fﬁaau}

and finally
[t2,.] = —2[A].

7Ba

Remark 6.1 In [14, 9] it was shown that any bidifferential operator C, vanishing on
constants, which is a 2-cocycle for the Chevalley cohomology of (NV,{ , }) with values in

N associated to the adjoint representation (i.e. such that
Suvwl{u, Clv,w)} — C({u,v},w)] =0
where S, , ., denotes the sum over cyclic permutations of u, v and w) can be written as
C(u,v) = aSE(u,v) + A(X,, X,) + [{u, Bv} + {Eu,v} — E({u,v})]

where a € R, where S3 is a bidifferential 2-cocycle vanishing on constants which is never a
coboundary and whose symbol is of order 3 in each argument, where A is a closed 2-form

on M and where F is a differential operator vanishing on constants. Hence

2
HChev,nc

(N,N) =R@& H*(M;R)
and the # operator is the projection on the second factor relative to this decomposition.

The results above can be reformulated as

Proposition 6.2 Given two differential star products * and %', the zeroth order term of

Deligne’s relative class t(x', %) = 32 g v"t" (¥, %) is given by
(', %) = =2(C"y)* +2(Cy) %

It follows from what we did before that the association to a differential star product of
(C5)* and d(*) completely determines its equivalence class. Let us recall that d°(x) = [w]
and d'(*) = 0 and let us observe that if C, is just half the Poisson bracket, then C5 (u,v) =
A(X,, X,) where A is a closed 2-form and (C;)# = [A] so it “is” the skewsymmetric part
of C.

We want now to define a class ¢(x)(v) which will determine the equivalence class of x
and be equivariant with respect to a change of parameter. By this, we mean the following:
consider a star product x defined by

Ux U= U+ ZZ/TCT(U, v)

r>1
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where C} (u,v) = 5{u, v} and consider its class c(x)(v).
Consider a change of parameter f(v) = v+ ., V" f, where f, € R and let «’ be the

star product obtained from * by this change of parameter, i.e.

u*v—uv—i—z C,r(u,v) = uw + v0y(u,v) + v*(Cy(u, v) + foCy(u,v)) + ..

Equivariance is the requirement that

(') (v) = c(¥)(f(v))-

Remark that if

0
D, = 1/5 +Lx, + D}l(u)

is a local derivation of %, then
DI — f(l/) g
“ fl(v)ov
is a local derivation of %’. Hence a local v-Euler derivation of " is given by

0
P = Ve T 5w

since "J{(()) =1+ fov + ---. With this choice, if (Dg — D,)(v) = Lad.dga(v), one has:

+ Lx, + Do(f(v))

[Lx, + Da(f(v))]

(Ds = Da)(v) =

with dg,(v) = %dga(f(u)). From this, we get:

d(+)(f (). (11)

Let us suppose that ¢(x) is a solution of

0 _d(%)
EC(*)(U) = —

This defines ¢(x) up to its zeroth order term:

A)0) = g ) (o) 4 T )
and the equation (11) becomes: Zc(')(v) = L (c(+)(f(v)).



c(x)(f(v) = ) + (%) + f(v)d? (%) +
- _Lw] (1= fov+ (fs = fa)” + ) + () + vd(x) + - --
- —Vw] + folw] + e(¥)° + v(d® (%) + (fs — fH[w]) + - -

0

we shall have equivariance of ¢(*) under a change of parameter if and only if ¢(x')
c(*)? + folw]. Since O’y = Cy — 2[w] (indeed, {u,v} = —w(X,, X,)), this is achieved for
c(*)? = —2(Cy)*.

Definition 6.3 The characteristic class ¢(x) of a differential star product * on (M, w)
is the element of the affine space # + H*(M;R)[V] defined by

o)) = —2(Cp)*
0

1
Ze()(v) = —d(x)
Theorem 6.4 The characteristic class has the following properties:

o The relative class is given in terms of the characteristic class by
t(+ ) = c(+) — (%) (12)

e The map C from equivalence classes of star products on (M,w) to the affine space

% + H?(M;R)[v] mapping [*] to c(x) is a bijection — provided one knows that there

exists a differential star product on (M,w).

o Ifi): M — M' is a diffeomorphism and if x is a star product on (M,w) then u«"v =
(V=) (Y uxip*v) defines a star product +' = (¢=1)*x on (M', ") where W' = (Yv~1)*w.

The characteristic class is natural relative to diffeomorphisms:
(1)) = (1) e(x). (13)

e Consider a change of parameter f(v) =, V" f, where f, € R and fi # 0 and let
' be the star product obtained from x by this change of parameter, i.e. u*'v = u.v +

> o1 (W) Crlu,v) = wv+ fivCi(u,v) + v ((f1)*Cou, v) + f2C1 (u,v)) + ... Then
' is a differential star product on (M,w') where w' = %w and we have equivariance

under a change of parameter:

(') (v) = c(¥)(f(¥))- (14)



Remark 6.5 It is shown in Deligne [6] that ¢(x) is the characteristic class introduced by
Fedosov as the de Rham class of the curvature of a generalised connection (up to a sign
and factors of 2 coming from the assumption that the skewsymmetric part of Cy is taken
here to be half the Poisson bracket). The fact that d(x) and (C, )# completely characterise

the equivalence class of a star product is also proven by Cech methods in De Wilde [7].

7 The Existence of Deformations

The method of De Wilde and Lecomte [8] for proving the existence of a star product on any
symplectic manifold employs the same techniques that we have been using in the previous

sections. For completeness we include a proof here as refined by De Wilde in [7].

Theorem 7.1 Given a class c € H?*(M;R)[v] there exists a star product * with c(x) = c.

PROOF Given a characteristic class ¢ = ) ., "¢, we recursively build a star product

with C given by half the Poisson bracket and C;# = —1¢g such that its intrinsic derivation-

related Deligne class is d = Z/Q%C. The method consists in building, at the same time, a
family of local v-Euler derivations D, of this star product on the open set U,
D, = u3 +X,+ D!
ov @
where X, is a chosen conformal vector field on U, (Lx,w = w), and D! is a formal
differential operator vanishing on constants of the form Zr21 v"D,,. We have assumed —

to be in the correct equivalence class — that
1
Ci(u,v) = §{u,v}, Cy(u,v) — Cy(v,u) = A(Xy, Xy)

where A is a closed 2-form in a given de Rham class (minus the 0-term in the characteristic

class) and that, on U, N Us, we have
1
Dﬁ — Da = ; ad* dﬂa

where dg, € Nog[v] are such that on U, NUg NU, doy + dyg + dga = dypa € R[V] is
defining a 2-cocycle whose Cech class [d.g,] € H*(M;R)[v] is the class d.

The construction is done inductively.

Suppose we have a star product at order K, i.e. uxv = 3 _p v"Cy(u, v) with (uxv)*w =
ux (vxw) at order K, with Cy(u,v) = uv, Cy(u,v) = 3{u, v}, and the skewsymmetric part
of Cy given as above in terms of A. Suppose also that we have a family of local derivations
on U, at order K — 1 given by

Dq = ua% +Xo+ > VDo,

1<r<K-—1
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such that, at order K — 1 on U, N Ug
1 (K2}
Dsg— D, =—ad,d 15
B v a Pa ( )

where dé{iﬂ} is the truncation at order K — 2 of dg,, i.e. dé{iﬂ} = o<r<i 2V dp,. Note
that, for this induction, we can assume K > 3. Indeed, choose a symplectic connection V
(V is torsion-free and Vw = 0) and define

1 1 1
Uk v =uv—+ Eu{u, v} + v <§P2(u, v) + §A(Xu, Xv)>

2 . . . . oy Yo 7 2 2
where P is the covariant square of the Poisson bracket given by A"/'A™72VZ, uV? . v.

Then = is a star product at order 2. It can always be extended to order 3 (see below;
the skew part of F3 vanishes since P? is symmetric and A is closed). On the other hand
Lx. P?>= Lx, P? on U,NUj since X, — X5 is symplectic and one can find (again, see below;
the corresponding A, is symmetric) a differential operator R such that OR = Lx_ P*+2P?
Do =vL+ Ly, +vD,+ 2R is a derivation at order 2 (where D} (u) = A(X,, X,)) which
satisfies
Da - Dﬁ == ‘CXa + UD; - EXﬁ - Z/Dé
= {dgzﬂa } + VA(ngﬂ: X)

at order 2.

Define, in this setting,
E(u,v,w) = (uxv)*w —u* (v+*w) (16)

and write E(u,v,w) = >, V' E.(u,v,w) Yu,v,w € N. The fact that we have a star
product at order K means that F, = 0, Vr < K. Define also

An(u,v) = Daux v+ u* Dav — Dy(u * ). (17)

and write similarly A, (u,v) = > v"As VYu,v € N,. The fact that the D, are local
derivations at order K — 1 means that A,, =0, Vr < K — 1.
We have

ux E(v,w,x) — E(u*xv,w,z) + E(u,v*w,x) — E(u,v,wx2x) + E(u,v,w) *x =0 (18)
and

ux Ag(v,w) — Ag(uxv,w)+ Ay(u, v+ w) — Ag(u,v) x w

= D.E(u,v,w) — E(Dyu,v,w) — E(u, Dyv,w) — E(u,v, Dyw). (19)
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Relation (18) at order K + 1 implies that Ex; is a Hochschild 3-cocycle for N (with the

associative structure given by the usual product of functions) so
EK_|_1(U, v, ’U)) == BK—l—l(Xua Xv, Xw) + 6CK+1(U, v, ’U))

where Bgq is a 3-form on M and where 0 denotes the Hochschild coboundary operator

on N. The total skewsymmetrization of relation (18) at order K + 2 yields
dBg1 = 0. (20)
Relation (19) at order K gives 0A,x = 0 so
Ank (u,v) = Gog (Xu, Xy)) + 0Dok (u, v),
where G,k is a 2-form on U,, and the skewsymmetrization at order K + 1 yields
dGox =3((K +1—=3)Bgy1 + Lx,Bri1) (21)
using Lx, Xy, = X, o — Xy Relation (15) implies that
v(Ag(u,v) — A (u,v)) = E(dga, u,v) — E(u, dgqa, v) + E(u, v, dga),
so its skew symmetric part at order K + 1 gives
(Gor = Gar)(Xu, Xo) = 3Bri1 (Xgy , Xu, Xo)
which can be reformulated as
Gsrx — Garx = 1(X5 — Xo)3Bk 1. (22)
This last formula (22) shows that there is a well-defined 2-form on M
Grx = Gox — i1(X4)3Bg 1.
The relation (21) can be reformulated as
dGg = 3(K — 2)Bg 1. (23)
Hence, Bk 1 is an exact 2-form; modifying accordingly the cochain Ck to
Cr(u,v) = Cx(u,v) + ﬁGK(XU,Xv) + Fg (X, X,)

where F is any closed 2-form on M, we still have a star product at order K but now the

corresponding Y, is given by Ef . (u,v,w) = Ex41(u,v,w) +3({(Ck — Ck)(u,v), w} +
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(Cle —Cr)({u, v}, w)—{u, (Cy —Ck)(v,w)} = (C)y — Ck)(u, {v,w})) so that the vanishing

of its skewsymmetric part gives

1 1
— 4Gy — =dFx =0.
3(K—2) © 37K

Hence Ey ., is a Hochschild coboundary and there exists a C_; so that

ux' v= Z V' Cr(u,v) + v Ol (u,v) + v Cley (u, v)
r<K-1

I JR—
Byi1 = Bri1 —

is a star product at order K + 1. Modifying D,x_1 by a 1-differential cochain we get new

local derivations at order K — 1 on U,,
D! (u) = Dy(u) + v* 1R, (X,).

Now the corresponding A . is given by

Aigeus) = Aureuso) = (K = 2) (s G+ Fie) (X X0

b
(K —2)
1 1
- —_— F X, X — X, X
EXQ ((K_2)GK+ K)( uy v)+2dRa( uy v)a

so that, choosing
1 1
—R, =1i(X,)F (Xa)G K -2)f,
5 U(Xa)Fi + 22 1(Xa) G + ( ) fax
where fox are 1-forms on U, chosen in such a way that dfox = Fk|,_, the skewsymmetric

part of A . vanishes

Q. = GQK—(K—2)< 1

(K —-2)
1

= —(K = 2)Fy = Lx, Fic + 5dRa -

= 0.

1
(K —2)

di(X,)Gx

GK+FK> _[’Xa <

1
K -2

Gk —|—FK> +dR,

Hence A/ j is a Hochschild coboundary and there exists a D! ;- so that

)
Dy = v+ X+ > VDay + v Dl + 0Dl

is a family of local derivations at order K of our new star product.

Notice furthermore that at order K — 1 on U, N Ug we have:
1 _
(D = D)) =~ adudbs ™ (u) = v (Cle = Coc) (d, 0) + V5 (Cle = Coe), )
+ 8 (Digge 1 = D1 = Dy + Dar—1)(u)

= Zad,d! —2
v a Ba (U) v (K _ 2)

Gil(Xg, X) + FielXg, X))
+v* (R — Ry)(X4))
= L adu dff ) 4 /52K~ 2) o — o) (X0)

1 _
- ;ad*, dég 1}(u)
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if we choose

1 _
fox — fax = —mddga g
i.e. the Cech representation of F is —Q(K—{Q)d%j. Hence, at order K, we have

1 K-1
D’B - D!, = - ad, déa by VKSga

where Sg, is a 1-differential 1-cochain on N,g. Remark that Sz, + Say + S5 = 0 hence we
can define the 1-differential 1-cochain S, on N, by S, (u) = 27 6, Say so that Sz, = Sg—5,.
Modifying D!, by D! — v¥S,, we still have a derivation of * up to order K which now
satisfies, at order K,
1 {K-1}
Dlﬂ_D’a: ;ad*/ dﬂa .

Hence the induction can proceed. O

8 Hochschild cohomology of a star-deformed algebra

A differential star product on M defines on C*(M)[v] the structure of an associative
algebra A = (C*°(M)[v], *). As such can it be considered either as an R- or as an R[v]-
algebra. In this section, we study the first and second differential Hochschild cohomology of
A viewed as an R[v]-algebra. The consideration of A as an R-algebra is more complicated
and will be looked at in the next section. p-cochains C' for A are linear in v and hence

determined by p-multilinear maps from N to A, so by a series of p-cochains for N

Cluy, ... up) = Zyrcr(ul, ey Up).

r>0

Definition 8.1 We say a p-cochain for the R[v]-algebra A = (N[v], *) is differential if
each of the C) is a differential p-cochain on N. We denote the Hochschild coboundary for

A by 0, and the corresponding cohomology groups computed from differential cochains by
HP(AA).

In this setting Proposition 3.5 can be reformulated as:

Proposition 8.2 H.(A, A) is isomorphic to Z'(M;R) & vH'(M;R)[v] where Z'(M;R)

denotes the space of closed 1-forms on M.

To obtain a similar result for the second cohomology group we refine the relationship
between the characteristic class and the equivalence class of a star product at a given order

in v to a relationship between a representing 2-form and the cochains of the star product.
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Lemma 8.3 Given a differential star product x on (M,w), a closed 2-form F on M and an
integer k > 0, one can build a star product ¥' with c(¥') = c(*)+v*[F], such that ' coincides
with % up to order k+1 and such that their difference at order k+2 is —%F(Xu, X,). This
' is unique up to an equivalence of the form T = I + v**2Lx + --- where X is a vector
field on M.

ProOF We fix, as before, a locally finite contractible open cover U = {U, },e; and choose
F =da, on U,, ag — aq = dag, on U, N U and a4 = Gay + a5 + age on U, N Ug N U,
so that {a,s,} is a representative of the Cech class corresponding to [F].
A corollary of the proof of Proposition 4.5 is that we can find differential operators T,
on U, with
To(u) = u+ vFa, (X,) + -

so that Tﬂ_1 o T, = exp ad, tz, where the 15, € Nys[v] are of the form
PR
Ba = U aﬁa + “ e

and satisfy
AyBa = tay Ox lyg Ox Lga-

The differential star product *” defined on U, by
ur"v=Ty(T; 'uxT, v)

coincides with * at order £+ 1 and the skewsymmetric part of their difference at order £+ 2
is given by —%F(Xu, X,). Combining with an equivalence T = I + v**2F if the symmetric
part of their difference at order k + 2 is OF, we get a ' as stated in the lemma.

Now two such star products are equivalent since they have the same characteristic class.
Let T =)

at order j shows that Tj is a vector field and the antisymmetric part of the terms of degree

»>; V" T be an equivalence between them. If j < £+ 1, the equivalence relation
j + 1 show that it is a Hamiltonian vector field T}(u) |, = {ha,u} for some locally defined
function h,. Then v~'ad, h, is globally defined and (exp —27~'ad, hy) o T = Id +O (v’ *)
is again an equivalence between our two star products. By induction on j, we can assume
that the equivalence is of the form T = I + v**2Ly + - -- where X is a vector field on M.
(Il

Given a differential star product * on (M, w) and a formal series of closed 2-forms on M
F =vFF+>",., V' F, (k integer > 0), one can build as above a family #* of differential star
products, depending smoothly on s, such that ¢(x*) = ¢(x) + s[F, such that %* coincides
with % at order £ + 1 in v for all s and such that their difference at order £ + 2 in v is
—35F( Xy, Xy).
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Define

This is a 2-cocycle for the v-linear Hochschild cohomology of A. Tts lowest order term is
—2VFF(X,, X,). The class of this Hochschild 2-cocycle does not depend on the choice of

the smooth family of star products *® since any other choice corresponds to
ux’v = To(T;  u +* T M)

with T, = I + v**2Lx + -+ and

where

This yields a map D: Z2(M;R)[v] — HZ2(A, A).

Let D be a v-linear differential 2-cocycle for the Hochschild cohomology of A. It is
determined by its values on N x N. Assume its lowest order term is v*D,. Looking at
0, D = 0 at order k and its skewsymmetric part at order £+ 1 shows that there is a closed
2-form F on M such that Dg(u,v) = F(X,, X,)+S(u,v) where S is a symmetric cocycle for
the Hochschild cohomology of N. Hence S is a coboundary in that cohomology, S = OR,
and v*0,R has lowest order term v*S. So D is cohomologous to D_ypm + D', with Dp
as before for any F' = v*F + ... and D’ with lowest order term of degree k + 1. If the
closed 2-form is exact, F' = dB, and if k > 0, then D — 0,E where E(u) = v* ' B(X,) has
lowest order term of degree k& which is symmetric, hence can be removed by adding another
coboundary. If D is a coboundary and has lowest order term v*(F(X,, X,) +S(u,v)), then
either k =0 and FF =0, or k£ > 1 and F is exact. This yields:

Proposition 8.4 H2(A, A) is canonically isomorphic to Z*(M;R) @ vH?(M;R)[v] where
Z%*(M;R) denotes the space of closed 2-forms on M. The isomorphism associates to the
class of F' = Y gv"F, where F, € Z*(M;R) the class of the 2-cocycle Dp(u,v) =

d
v=2—| u** v where x* is any family of differential star products, depending smoothly

ds|,
in s, such that c(x*) = c(x) + s[F], such that *° coincide with * at order 1 in v for all s

and such that their difference at order 2 in v is —%SFO(XH,Xv).

Remark 8.5 If we replace R[v] by the ring of formal Laurent polynomials Rz, ] then
we can also subtract an exact term from the leading closed 2-form and we obtain the result
of Weinstein and Xu, [25] that H2(N[v~',v], N[v~',v]) is isomorphic to H*(M;R)[v~", v].
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Remark 8.6 Proposition 8.4 is still true if x* is any family of differential star products
depending smoothly on s such that c(x}) = ¢(x) and %‘0 c(x*) = [F], such that at order 1
x% coincides with x for all s and at order 2 their difference is —%SF(XU, X,). In particular,
if (ux*v)(v) = (uxv)(fs(v)) with fo(v) = v and £| f(v) = v? then | u*®v corresponds
to w+ >, vidy if d(x) = [w] + >, vFdy.

9 Derivations and automorphisms of a star product

In this section, we consider a star-deformed algebra as a real algebra and we study its
derivations and its automorphisms. We assume throughout this section that the manifold
M is connected. The results presented here were obtained with one of our students, Daniel
Rauch [23].

Definition 9.1 A derivation of a differential star product * on (M,w) is an R-linear
map D: N[v] — N[v], continuous in the v-adic topology (i.e. D(>, v"u,) is the limit of
> ren D(¥"u;) ), such that

D(u*v) = Duxv+ ux* Dv.
Note that
D(v)xu=D(v+*u)—v+*D(u)=D(uxv)— D(u) v =ux* D(v)

so that D(v) must be central and thus D(v) € R]v]. Hence D restricted to R[v] is a
derivation D(g(v) = f(u)a%g(y) where f(v) € R[v]. Hence D(g(v)u) = f(y)a%g(u)u +
¢(v)D(u). The term of order zero in v of the derivation relation implies that f(v) = vf(v).

Combining this with some previous results:

Proposition 9.2 Any local derivation of a differential star product (on a contractible open
set U, ) is of the form
D, = f(V)D:x+DZ

where D! is a v-linear local derivation of *, i.e.
1
DI = —ad, d, do € No[V]
v

where f(v) € R[v] and where D!, is a chosen local v-Euler derivation.

Definition 9.3 An isomorphism from a differential star product * on (M,w) to a differ-
ential star product " on (M’,w') is an R-linear bijective map A: N[v] — N'[v], continuous

in the v-adic topology, such that

Au*v) = Au " Av.
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Notice that if A is such an isomorphism, then A(v) is central for ¥ so that A(v) = f(v)

where f(v) € R[v] is without constant term to get the v-adic continuity. Let us denote by

1

' the differential star product on (M,w; = 1

w) obtained by a change of parameter
n _ _ —1 —1
ux' v, =uxvpy = F(F ux F o)

for F: N[v] — N[v]:>, v"u, — > f(v)"u,. Define A" : N[v] - N'[v] by A= A'o F.

Then A’ is a v-linear isomorphism between *” and *’:
Al(u+"v) = Alux" A'v.

At order zero in v this yields
Ap(uw) = Agu.Ayv

so that there exists a diffeomorphism ¢ : M' — M with Aju = ¢*u. The skewsymmetric
part of the isomorphism relation at order 1 in v implies that ¢*w; = w'. Let us denote by
+" the differential star product on (M, w) obtained by pullback via 1 of «':

u >|</H v = (lb_l)*(@b*u >|</ 77b*v)

and define B : N[v] — N[v] so that A" = 1)* o B. Then B is v-linear, starts with the
identity and
B(u *" v) = Bu "' By

n

so that B is an equivalence — in the usual sense — between *” and *”’. Hence, we summarise:

Proposition 9.4 Any isomorphism between two differential star products is the combi-
nation of a change of parameter and a v-linear isomorphism. Any v-linear isomorphism
between two star products x on (M,w) and ' on (M', ') is the combination of the action
on functions of a symplectomorphism ¢ : M' — M and an equivalence between * and the
pullback via 1 of ¥'. In particular, it exists if and only if those two star products are equiv-
alent, i.e. if and only if (Yv~1)*c(¥') = c(x), where here (¢=1)* denotes the action on the

second de Rham cohomology space.

This implies immediately:

Corollary 9.5 Two star products * on (M,w) and " on (M',w") are isomorphic if and only
if there exist f(v) = >, 5, V" fr € R[v] with fi # 0 and : M" — M, a symplectomorphism,
such that (V=" e(+)(f(v)) = c(x)(v). In particular [13]: if H*(M;R) = Rw] then there

15 only one star product up to equivalence and change of parameter.

Remark 9.6 See also Omori et al. [21] who show that when reparametrisations are allowed

then there is only one star product on CP".
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In particular, Proposition 9.4 gives:

Corollary 9.7 A symplectomorphism ¢ of a symplectic manifold (M,w) can be extended

to a v-linear automorphism of a given differential star product on (M,w) if and only if
(V) e(x) = c(*).

Notice that this is always the case if ¢ can be connected to the identity by a path of
symplectomorphisms (Fedosov, [11]).

10 On Deligne’s definition of a deformation

In this section we fill in some of the steps to get from the definition of a deformation in

Deligne’s paper [6] to the usual one considered in the first part of these notes.

10.1 Deformations of C*(M)

We shall work just with real smooth functions on a manifold, the other cases considered by
Deligne can easily be handled in a similar manner. Denote by N the R-algebra of smooth
functions on a manifold and consider a pair (A, ¢) consisting of an R[r]-algebra A and a

surjective R-algebra homomorphism
p:A—> N

such that Ker p = vA.

N is commutative so ¢(a)p(b) = ¢(b)p(a) and hence ab — ba € vA. Thus there is
an element which we denote by v~!(ab — ba) in A which is unique up to an element of A
annihilated by ¢. We shall shortly assume that A is free over R[] so we feel free to abuse

notation for now.
Proposition 10.1 There is a unique Poisson structure on N such that
p(v™ (ab — ba)) = {p(a), p(b)}

PrROOF If u,v € N pick a,b € A such that ¢(a) = u, ¢(b) = v. Then define {u,v} =
@©(v~'(ab — ba)). This is well-defined since if p(a') = u and p(b') = v then and a — ' = ve
b—V =wvdso

(ab—ba) = (' +vc)(t' +vd)— (V' + vd)(a' + vc)
= dV —bd +v(ch —Ve+dd—dd)+ v*(cd— dc).
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Thus

o(v ' (ab—ba)) = @ ' (a'b —Vad)+cb —bc+add—dd +v(cd— dc))
= o Yd't - bd)).

The bracket {, } on N obviously satisfies the Bianchi identity. It is a Poisson bracket
since if p(a) = u, p(b) = v, p(c) = w then p(ab) = uv so

{uv,w} = (v~ (abc — cab))

= (v !(abc — acb + acb — cab))

= ¢(av ' (bc — cb) + v (ac — ca)b)

= gla)p(v (be — cb)) + p(v' (ac — ca))p(D)

= ufv,w}+ {u,w}o.

Definition 10.2 We say A is v-adically complete if, given any sequence a,, r > 0 of
elements of A, there is an element ¢ € A such that for each k& > 0 there is an element

bk+1 € A with
k

a— g Va, = V" by
r=0

a is denoted by > o, v a,.

Thus A is closed under taking formal power series in its elements. An example is, of
course, N[v].

In order that the algebra A looks like N[v] we assume that A is v-adically complete and
has an R-linear subspace mapped bijectively onto N by ¢ which, together with v, freely
generates A in the v-adic topology. In other words, we have an R-linear map p: N — A

with ¢ o p = Id and such that the map p: N[v] — A given by
; (z ) -3 )
r>0 r>0

induces a bijection of N[v] onto A (p exists from the v-adic completeness of A). In this

case, if u,v € N then there are functions C, (u,v) € N with

p(w)p(v) =Y v p(Cr(u,v)). (24)

r>0

We call such a map p a section of (A, ¢).
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Proposition 10.3 Given a section p
Co(u,v) = uv,
PRrROOF

Co(u,v)

and

and the C, as above then

Ci(u,v) — Cy(v,u) = {u,v}.

Ci(u,v) = Ci(v,u) = @(p(Ci(u,v)) = ¢(p(Ci (v, u))

= (v pu)p(v) = v~ p(v)p(u))

= {u,v}.

If we define po: N[v] — N by

2

then ¢ o p = ¢q.

( E VT’LLT) = ug
r>0

Fixing a section p we can transfer the algebra structure from A to N[v] using p and

denote the resulting multiplication by x:

~,

uxv=p"(pu)p(v)).

If we restrict this to elements u, v of N then

’LL*UZZZ/TCT(’LL,U), u,v € N.

r>0

In view of the previous Proposition, * is a star product on N given by the cochains C,.
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If p’ is a second section and *' the star product it defines

u*’szurC"r(u,v), u,v €N

r>0

where

then

for some sequence of functions 7T, (u). Applying ¢ to this equation we get

u = To(u)
so that

TO = Id
If we set

T(u)=u+>» v'T(u)
then _
ST ) ST w) = 3o S oL (v)

= D YD v p(Cy(Ti(u), Tu(v)))

so that

= Z V" Z VSP(TS(C’T (ua U)))

Comparing coefficients of powers of v we obtain

S L) = Y Y T, Tw)

r+s=t p+qg=tr+s=p

= Y Cy(Tr(u), Tu(v)).

r+s+q=t

A straightforward calculation now shows that

T(u+"v)=T(u)*T(v)
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so that %' and * are equivalent.

To obtain a differential star product we have to assume that there is a section p which
makes the C into bidifferential operators. We shall call such a p a differential section.
Two different sections p;, i = 1,2 give rise to equivalent star products. Theorem 2.22
says that if the two star products are differential then they are equivalent by a differential
operator. Thus if a deformation A gives rise to a differential star product, then all the

differential star products it gives rise to are in a single differential equivalence class.

Definition 10.4 A (formal, differential) deformation of a symplectic manifold (M, w)
is a pair (A, ) consisting of an R[r]-algebra A and an R-algebra epimorphism ¢: A — N =
C>°(M) such that

1. Ker ¢ = v A;

2. the Poisson bracket induced on N by Proposition 10.1 coincides with that coming

from the symplectic structure;

3. there are R-linear maps p: N — A (called sections of ) whose image freely generates

A as a v-adically complete R]v]-algebra;

4. the cochains C, (u, v) associated to such a section p by (24) are bidifferential operators

(p is a differential section).

In the usual definition of star product 1 is assumed to be an identity for the star

multiplication. This can be made to be the case here.

Proposition 10.5 Let ¢: A — N be a deformation then A has a unity 1,4 in ¢~ '(1). There

exist sections p with p(1) = 14.

PrROOF Pick a in A with ¢(a) = 1. Then left (or right) multiplication by a is a bijection
of A with itself. This follows easily by an induction after choosing a section p to represent
elements of A as formal power series. Thus a must be left multiplication of some element
14 by a: a = al4. Then any element b is ca for some ¢ so bl 4 = cal 4 = ca = b. Similarly
there is an element 1, with a = 1’;a. Then 1,6 = b for any b. Thus 1/, = 1,14 = 14 so
14 is a two-sided unity for A. Given any section p’' of ¢ then ¢ = p/(1) is invertible with

o(c) = p(c™t) = 1. Thus p(u) = ¢ 1p'(u) is a section with p(1) = 14. O
Remark 10.6 If we take a section p respecting unities then the cochains C) it defines
vanish on constants for > 1. The corresponding star product then satisfies 1xu = ux1 = u

for all u in N[v].

43



Definition 10.7 Two (A4;, ¢;), i = 1,2 deformations of N are said to be equivalent if

there is an R]v]-algebra isomorphism ¢: A; — A, continuous in the v-adic topology such

that s 09 = 1.

Here continuity means that ¢y commutes with taking formal power series:

Y (Z Z/Tar) = Z v'(ay).

r>0 r>0

Proposition 10.8 Fquivalent deformations of N induce the same Poisson bracket on N.

PROOF Let (A4;, i), i = 1,2 be two deformations of N with : A; — A an isomorphism
such that @9 01 = ¢4, and {, }; the induced Poisson brackets. If u,v € N, pick a;, b; € A;
with ¢;(a;) = u, p;(b;) = v then ¢(a1) — ay = ve, P(b) — by = vd. Thus (a1b; —
biay) = agshy — byay + ve for e = asd — dag + cby — byc + v(ed — de). Then @y(e) = 0
50 {u, v}y = @a(v ™ (agby — braz)) = wa(v™'P(arby — brar)) = @a(P(v~ " (a1by — biay))) =
o1(v™ " (arby — biay)) = {u, v} O

Given equivalent deformations (A;, ;), i = 1,2 of N with ¢: A; — A, such that
@9 01 = 1, if p; is a section of ¢, then p, = 1) o p; is a section of ¢,. Let (), i =1,2 be

the star products the two sections define with cochains C,Si). Then
ZVTPQ (052)(%”)) = pa(u)pa(v)
r>0
= U(p(u)p1(v))

- (Z Vi (Cﬁ”wv)))

r>0

= S (D)

r>0

so O = ™. If we had used a different section of 9 we would have obtained equivalent
cochains so equivalent deformations lead to equivalent star products. This suggests the

following theorem.

Theorem 10.9 Fquivalent deformations (A;, i), i = 1,2 of N induce equivalent star prod-
ucts on N[v]. This induces a bijection between the set of equivalence classes of deformations

and the set of equivalence classes of star products.

PrROOF What remains to be proved is that the map constructed in the previous paragraph
is bijective. To see this we take a star product * arising from sections p; of deformations
(Ai, i), i = 1,2 so that

YV pi(Crlu,0) = pilw)pi(v),  i=1.2

r>0
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Define : A; — Ay by ¢ = pr o py'. 4 is clearly a bijection from A; to Ay and if we define
¥0 (Zrzo Vrur) = ug then ¢; 0 p; = ¢o, i = 1,2 so

200 = a0 00, = poop = .

It remains to show that ¢ is an algebra isomorphism (it is R]v]-linear from the way
it is defined). But this follows since both algebras A; are isomorphic to (N[v],*) and

intertwines the two isomorphisms. O

10.2 Deformations of the sheaf Cj;

The fact that A = C°°(M) has differential sections allows us to localise elements of A on
M. More precisely, if p and p’ are two differential sections then p and p’ differ by a formal
differential equivalence T such that o = poT. If a = p (3,oo V" ur) =7 (3,50 V" ul) then
sV ur =T (Zrzo v'u). Thus all functions u, vanish on an open set U if and only if

all the u/. do. Hence we can unambiguously make the following definition:

Definition 10.10 We say that a € A vanishes on the open set U if there is a differential
section p such that a = ﬁ(Z@o Z/Tur) with all u,|y = 0. We say a = b on U if a— b vanishes
on U.

Definition 10.11 Given x € M we say a and b are equivalent at x if there is an open
set U containing x with a = b on U. The equivalence class of a at z is called the germ of

a at z and denoted by a[z]. A, denotes the set of germs of elements of A at z.

We claim that A, is an algebra over R[v] and has an R-algebra homomorphism ¢ onto
C°, the algebra of germs of smooth functions at . Here we use the fact that the sheaf of
smooth functions is soft (mou): every local germ is the germ of a globally defined smooth

function.

Lemma 10.12 If a vanishes on U and b € A then ab vanishes on U.

PROOF Picking a differential section p, the multiplication in A is given by a differential
star product and if one of the formal power series vanishes on an open set so does the

product since it is given by differential cochains. O

This allows us to define the product of two germs as the germ of the product of any
two elements in the germs and A, becomes an algebra as claimed. To construct a sheaf
we topologise the disjoint union A = U, A, by taking as a base for a topology the sets of

germs of elements a in A over open sets U in M. A is then a sheaf of algebras and we have
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a morphism ¢: A — C5) of sheaves of algebras which is clearly surjective. The kernel of
o: A, — C is found as follows: Suppose ¢(a[z]) = 0thena = p (Zrzo v u,) with uglz] = 0
If we set b = a — p(ug) then b has the same germ as a at x and b = vp (Zrzo VU y1) = V.
Thus a[z] = ve|z]. Hence Ker ¢ = vA.

If A is the sheaf associated to a differential deformation p: A — C°°(M), then consider

an element a of A. Taking the germ a[x] of a at each x € M, gives a global section @ of A.

Lemma 10.13 The map a — a, just defined, gives a bijection of A with T A.

ProoOF If @ = 0 then a is equivalent to 0 on a neighbourhood of each point of M. Pick a
differential section p, then a = ﬁ(Zrzo l/’"ur) with each u, vanishing on a neighbourhood
of each point. It follows that u, = 0, Vr > 0 and hence that a = 0 so that the map is
injective.

For surjectivity, fix a differential section p. Then given a section @ of A, it determines
a sequence of germs of functions u, at each point and varying the point we get a section of
the sheaf of germs of functions. This must come from a global smooth function and hence

from some element p (}°,., 7 u,) of a. This proves the surjectivity. O

These observations allow us to pass back and forth between the global algebras p: A —
C>®(M) to the corresponding sheaves of algebras p: A — C$9 (or their presheaves) in such

a way that the original algebras are the spaces of global sections.

References

[1] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation
theory and quantization, Lett. Math. Phys. 1 (1977) 521-530.

2] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz and D. Sternheimer, Deformation
theory and quantization, Ann. Phys. 111 (1978) 61-110.

[3] M. Bertelson, Equivalence de produits star, Mémoire de Licence U.L.B. (1995).

[4] M. Bertelson, M. Cahen and S. Gutt, Equivalence of star products, Class. Quan. Grav.
14 (1997) A93-A107.

[5] N. Bourbaki, Groupes et algebres de Lie, Eléments de Mathématique. Livre 9, Chapitre
2, §6.

[6] P. Deligne, Déformations de I’Algebre des Fonctions d’une Variété Symplectique: Com-
paraison entre Fedosov et De Wilde, Lecomte. Selecta Math. (New series). 1 (1995)
667-697.

46



[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

M. De Wilde, Deformations of the algebra of functions on a symplectic manifold: a
simple cohomological approach. Publication no. 96.005, Institut de Mathématique,
Université de Liege, 1996.

M. De Wilde and P. Lecomte, Existence of star-products and of formal deformations of
the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7 (1983)
487-496.

M. De Wilde, S. Gutt and P.B.A. Lecomte, A propos des deuxieme et troisieme espaces
de cohomologie de I'algebre de Lie de Poisson d’une variété symplectique. Ann. Inst.
H. Poincaré Sect. A (N.S.) 40 (1984) 77-83.

B.V. Fedosov, A simple geometrical construction of deformation quantization, J. Diff.
Geom. 40 (1994) 213-238.

B.V. Fedosov, Deformation quantization and index theory. Mathematical Topics Vol.
9, Akademie Verlag, Berlin, 1996

M. Gerstenhaber, On the deformation of rings and algebras. Ann. Math. 79 (1964)
59-103.

S. Gutt, Déformations formelles de [’algébre des fonctions différentielles sur une

variété symplectique. Theése, Université Libre de Bruxelles (1980).

S. Gutt, Second et troisieme espaces de cohomologie différentiable de I'algebre de Lie
de Poisson d’une variété symplectique. Ann. Inst. H. Poincaré Sect. A (N.S.) 33 (1980)
1-31.

G. Hochschild, B. Kostant and A. Rosenberg, Differential forms on regular affine al-
gebras, Trans. Amer. Math. Soc. 102 (1962) 383-406.

A. Karabegov, Cohomological classification of deformation quantisations with separa-
tion of variables. Lett. Math. Phys. 43 (1998) 347-357.

M. Kontsevich, Deformation quantization of Poisson manifolds, I. IHES preprint
q-alg/9709040, 1997.

A. Lichnerowicz, Déformations d’algebres associées a une variété symplectique (les
s,-produits), Ann. Inst. Fourier, Grenoble 32 (1982) 157-209.

O.M. Neroslavsky and A.T. Vlassov, Sur les déformations de I'algebre des fonctions
d’une variété symplectique, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981) 71-76.

47



[20] R. Nest, B. Tsygan, Algebraic index theorem for families, Advances in Math. 113
(1995) 151-205.

[21] H. Omori, Y. Maeda and A. Yoshioka, The uniqueness of star-products on P, (C), Dif-
ferential geometry (Shanghai, 1991). pp 170-176. World Sci. Publishing, River Edge,
NJ, 1993

[22] M.J. Pflaum, On continuous Hochschild homology and cohomology groups, Lett. Math.
Phys. 44 (1998) 43-51.

[23] D. Rauch, Equivalence de produits star et classes de Deligne, Mémoire de Licence
U.L.B. (1998).

[24] J. Vey, Déformation du crochet de Poisson sur une variété symplectique, Comment.
Math. Helvet. 50 (1975) 421-454.

[25] A. Weinstein and P. Xu, Hochschild cohomology and characteristic classes for star-
products. Preprint q-alg/9709043.

48



