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In this lecture, we will introduce informally the hypergraph container theorem and give an
application of it on counting maximal triangle-free graphs.

1 Hypergraph container

The hypergraph container method, developed recently by Balogh-Morris-Samotij, and inde-
pendently Saxton-Thomason, extends the graph container theorem of Kleitman and Winston
to hypergraph settings. It had quickly become an important tool in extremal and probabilistic
combinatorics. The method has been also applied in other areas such as discrete geometry,
number theory etc. The formal statement is technical; for the first encounter, the following
informal one is more illuminating. As in the graph case, it says that we can group independent
sets in certain hypergraphs into ‘few’ containers, each of which is nearly independent.

Theorem 1.1 (Hypergraph container theorem (Informal)). Let H be a uniform hypergraph. If
its edges are evenly distributed, then there are a family of containers C ⊆ 2V (G) such that

• for every independent set I in H, there exists C ∈ C s.t. I ⊆ C;

• the number of containers C ∈ C is small;

• each container C ∈ C is almost independent, i.e. e(H(C)) is small.

At a first glance, it is not easy to see how we can use such a statement. In fact, many
problems can be rephrased as one about independent sets in hypergraphs.

1.1 Containers for triangle-free graphs

Consider the 3-uniform hypergraph H = (V,E) where

- vertices in H are edges in Kn: V = E(Kn); and

- each triangle in Kn gives rise to an edge in H.

Then independent sets in H are precisely the family of triangle-free graphs on [n]. If we tailor
Theorem 1.1 for this hypergraph, we obtain the following.

Theorem 1.2 (Containers for triangle-free graphs). There are a family of graphs F ⊆ 2([n]
2 )

satisfying the following:

• for every triangle-free graph G on [n], there exists F ∈ F containing G as subgraph: G ⊆ F ;

• there are at most 2n
3/2+o(1)

graphs in F ;

• each graph F ∈ F is almost triangle-free, it has at most o(n3) triangles.

Recall that the triangle removal lemma states that if an n-vertex graph has o(n3) triangles,
then it can be made triangle-free by removing o(n2) edges. As each container is almost triangle-
free, by triangle removal lemma and Mantel’s theorem, we see that

• each container F ∈ F for triangle-free graphs has at most (14 + o(1))n2 edges.
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Figure 1: Lower bound contruction for maximal triangle-free graphs.

2 Counting maximal triangle-free graphs

How many triangle-free graphs on vertex set [n] are there1? Here is an easy way to generate many
triangle-free graphs: take a balanced complete bipartite graph Kn/2,n/2; as all of its subgraphs

are triangle-free, we get 2n
2/4 triangle-free graphs. A classical result of Erdős, Kleitman and

Rothschild in the 70s shows that this bound is optimal up to an exponential error: there are
2(1/4+o(1))n

2
triangle-free graphs on [n]. They further determined the typical structure, that is,

almost all of the triangle-free graphs are bipartite.
As a warm up, let us see how to use container theorem to get the Erdős-Kleitman-Rothschild

bound. Take the family of containers F for triangle-free graphs in Theorem 1.2. As every
triangle-free graph is a subgraph of some container, we can bound the number of triangle-free
graphs from above by the total number of subgraphs in all containers:∑

F∈F
2e(F ) ≤ |F| · 2(1/4+o(1))n2 ≤ 2cn

3/2 logn · 2(1/4+o(1))n2
= 2(1/4+o(1))n

2
.

A triangle-free graph G is maximal triangle-free if it is no longer triangle-free after adding
any non-edge. Notice that the triangle-free graphs we obtain above are subgraphs of Kn/2,n/2,
and thus not maximal triangle-free. It is then natural to wonder if there are a lot fewer maximal
triangle-free graphs.

Problem 2.1 (Erdős). Estimate the number of maximal triangle-free graphs.

Let us first describe a lower bound construction yielding 2n
2/8 maximal triangle-free graphs

on [n]. Assume that n is a multiple of 4.

- Start with a graph on a vertex set X ∪ Y with |X| = |Y | = n/2 such that X induces a
perfect matching and Y is an independent set (see Figure 1).

- For each pair of a matching edge x1x2 in X and a vertex y ∈ Y , add exactly one of the
edges x1y or x2y. Since there are n/4 matching edges in X and n/2 vertices in Y , we
obtain 2n

2/8 triangle-free graphs.

- These graphs may not be maximal triangle-free, but since no further edges can be added
between X and Y , all of these 2n

2/8 graphs extend to distinct maximal ones.

Balogh and Petř́ıčková recently proved a matching upper bound.

Theorem 2.2. The number of maximal triangle-free graphs on vertex set [n] is

2n
2/8+o(n2).

1We are counting labeled graphs here.
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Figure 2: Lower bound contruction for maximal K4-free graphs.

This result was then extended by Balogh-Liu-Petř́ıčková-Sharifzadeh as follows, showing that
a typical maximal triangle-free graph looks like the one in the construction above.

Theorem 2.3. For almost every maximal triangle-free graph G on [n], there is a vertex partition
X ∪ Y such that G[X] is a perfect matching and Y is an independent set.

We end this section with an open problem.

Conjecture 2.4. For each r ≥ 2, the number of maximal Kr+1-free graphs on vertex set [n] is

2
1
2
ex(n,Kr+1)+o(n2).

Even the case of maximal K4-free is open. Here is a construction giving the lower bound in
the above conjecture. Assume that n is a multiple of 2r.

- Partition the vertex set [n] into r equal classes X1, . . . , Xr−1, Y , and place a perfect match-
ing into each of X1, . . . , Xr−1 and leave Y empty (see Figure 2 for r = 3 case).

- Between the vertices of two matching edges from different classes Xi and Xj place exactly
three edges, and between a vertex in Y and a matching edge in Xi put exactly one edge.
Then extend each graph to a maximal one.

3 Proof of Theorem 2.2

We will present a proof of Theorem 2.2 using Theorem 1.2. We need also the following result
of Hujter and Tuza. Note that the bound below is optimal by considering the graph consists of
disjoint edges.

Theorem 3.1. Every an n-vertex triangle-free graph has at most 2
n
2 maximal independent sets.

Proof of Theorem 2.2. Let F be the family of containers for triangle-free graphs as in The-
orem 1.2. As there are only 2o(n

2) containers, it suffices to prove that any F ∈ F contains at
most 2n

2/8+o(n2) maximal triangle-free graphs.
Fix an arbitrary F ∈ F . As F is almost triangle-free, by triangle removal lemma, we can

partition F = A ∪ B so that A is triangle-free (thus e(A) ≤ n2/4) and e(B) = o(n2). We can
build a maximal triangle-free graph in the following two steps:

1. choose its (triangle-free) intersection say B′ with B;

2. extend B′ in A to a maximal triangle-free graph.
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Note that the number of choices for Step 1 is at most 2e(B) = 2o(n
2). It thus suffices to show

that for a fixed B′ ⊆ B, the number of ways in Step 2 to add edges in A to B′ to get a maximal
triangle-free graphs is at most 2n

2/8+o(n2).
For bound the number of such extensions, build an auxiliary graph Γ with vertex set E(A)

in which two vertices are adjacent if they form a triangle with some edges in B′. A crucial
observation is that the number of extensions in Step 2 is at most the number of maximal
independent sets in Γ .

We claim that Γ is triangle-free. This would finish the proof, as then the number of extensions
is, by Theorem 3.1, at most

2|Γ |/2 = 2e(A)/2 ≤ 2n
2/8.

Suppose then there is a triangle xyz in Γ . Note that x, y, z being pairwise adjacent in Γ
means that they, as edges in A, have to pairwise share an endpoint. This is only possible if x, y, z
form a triangle-free or a star in A. In the former case, x, y, z should have been an independent
set in Γ . In the latter case, say the star has center u and leaves v1, v2, v3. Then by the definition
of Γ , v1, v2, v3 form a triangle in B′, a contradiction.
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