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In this lecture, we will go over the graph container lemma of Kleitman and Winston, and
present an application of it on counting intersecting families.

1 Graph container lemma

The following graph containers theorem provides a way to bound the number of independent
sets in a graph. Roughly speaking, it states that given a graph with certain local denseness
condition (inequality (2) below), we can find a relatively small collection of containers (Ci),
each having not too large size, such that every independent set of G is contained in one of these
containers.

Theorem 1.1. Let G be a graph on N vertices, let R, q ∈ N, and take real 0 < β < 1. Then,
provided

e−βqN ≤ R, (1)

and, for every subset S ⊂ V (G) of at least R vertices, we have

eG(S) ≥ β
(
|S|
2

)
, (2)

there is a collection of sets Ci ⊂ V (G), 1 ≤ i ≤
(
N
q

)
, such that |Ci| ≤ R+ q for every i and, for

every independent set I ⊂ V (G), there is some i satisfying I ⊂ Ci. In particular, the number of
independent sets of size m, for every m ≥ q, is at most(

N

q

)(
R

m− q

)
.

The idea is that when the graph is locally dense, we can group independent sets up efficiently
using small fingerprints (the set S in the proof below, which is of size at most q). We need a
definition for the proof. Given a graph G and a vertex subset A ⊆ V (G), the max-degree
ordering of A is the ordering obtained by iteratively picking out highest degree vertices, that is
(v1, . . . , v|A|) such that for each 1 ≤ i ≤ |A|, vi is a maximum-degree vertex in the subgraph of
G induced on A \ {v1, . . . , vi−1}.

Proof. Let I be an independent set in G. Run the following algorithm.
Input: G and I. Set initially A = V (G) (active set) and S = ∅ (selected ones). For the i-th

iteration, i = 1, . . . , q, do the following:

Step 1. Select the next I-vertex. Take the max-degree ordering of A, say (v1, . . . , v|A|). Let vti be
the first (i.e. minimum index) vertex lying in I. Move vti from A to S.

Step 2. Update A. Delete {v1, . . . , vti−1} ∪ (NG(vti) ∩A) from A.

Output: S = (vt1 , . . . , vtq) and A.
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Claim 1.2. The final A is small: |A| ≤ R.

Proof of claim. This follows from local denseness of G. For each vertex we select in Step 1, A
gets shrunk by a constant factor in Step 2.

For each i ∈ [q], let Ai be the active set prior to the i-th iteration (so A1 = V (G) and
Aq+1 = A). Suppose to the contrary that |A| > R. Let A′ = Ai \ {v1, . . . , vti−1}. Then

|A′| ≥ |A| > R and by (2), eG(A′) ≥ β
(|A′|

2

)
. Thus, the chosen vertex vti has degree at least

2eG(A′)/|A′| = β(|A′| − 1)

in G[A′]. Consequently, at least

ti + β(|A′| − 1) = ti + β((|Ai| − ti + 1)− 1) = ti + β(|Ai| − ti) ≥ β|Ai|

are deleted from Ai at the i-th iteration. Hence, the active set shrinks by a factor of (1 − β)
after each iteration, and so by (1) the final A has size at most

(1− β)q ·N ≤ e−βqN ≤ R,

a contradiction. �

Here are some key observations of the algorithm:

• S ⊆ I and I \ S ⊆ A;

• the final active set A = A(S) depends only on S, not on the independent set I! Indeed,
given G, we always know the max-degree ordering, then knowing what S is, we can run
the above algorithm to recover A.

Thus, C := A∪ S ⊇ I and by the above claim |C| ≤ R+ q. As A is completely determined, the
number of such containers C is at most the number of choices of S, which is at most

(
N
q

)
.

2 Counting intersecting families

We combine spectral methods with the graph contain theorem to count intersecting famil-
ies/hypergraphs. The following result is due to Balogh, Das, Delcourt, Liu and Sharifzadeh.

Theorem 2.1. For k ≥ 3 and n ≥ 2k+1, let I(n, k) denote the number of intersecting k-uniform
hypergraphs on [n]. Then

I(n, k) = 2(1+o(1))(
n−1
k−1).

For this, we shall formulate intersecting hypergraphs as independent sets in Kneser graphs.

2.1 Supersaturation for Kneser graph

The Kneser graph KG(n, k) is a graph with vertex set
([n]
k

)
and an edge between vertices

F1, F2 ∈
([n]
k

)
if and only if F1∩F2 = ∅. This graph has N =

(
n
k

)
vertices and is D-regular, where

D =
(
n−k
k

)
. Moreover, subsets of vertices of KG(n, k) correspond to k-uniform hypergraphs on

[n], and independent sets correspond directly to intersecting hypergraphs. Our problem thus
reduces to counting the number of independent sets in KG(n, k).

The supersaturation condition of (2) in Theorem 1.1 requires large vertex subsets to induce
subgraphs of positive density. We use spectral methods to show that the Kneser graph satisfies
this property. The following version of expander-mixing lemma, due to Alon and Chung, relates
the eigenvalues of a graph to its distribution of edges.
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Theorem 2.2 (Alon–Chung). Let G be a D-regular graph on N vertices, and let λ be its
minimum eigenvalue. Then for all S ⊆ V (G),

e(G[S]) ≥ D

2N
|S|2 +

λ

2N
|S| (N − |S|) .

To employ this result, we require the spectrum of the Kneser graph, which was determined
by Lovász in 1979. In particular, the minimum eigenvalue of the Kneser graph KG(n, k) is
λ = −

(
n−k−1
k−1

)
= − k

n−kD. Combined with Theorem 2.2, this gives the following supersaturation
bound.

Proposition 2.3. Given ε > 0, any set S of at least (1 + ε)
(
n−1
k−1
)

vertices in the Kneser graph

KG(n, k) induces at least
(

1− 1
1+ε

)
Dn

N(n−k)
(|S|

2

)
edges.

Proof. Given a vertex set S with |S| ≥ (1 + ε)
(
n−1
k−1
)

= (1 + ε) kNn , we apply Theorem 2.2 and

the fact that λ = − k
n−kD to find

e(G[S]) ≥ D

2N
|S|2 +

λ

2N
|S| (N − |S|) ≥

(
D − λ
N

+
λ

|S|

)(
|S|
2

)
≥
(

1− 1

1 + ε

)
Dn

N(n− k)

(
|S|
2

)
.

We remark that the bound on size of S is tight, as by Erdős-Ko-Rado, Kneser graph has an
independent set of size

(
n−1
k−1
)

We can now use Theorem 1.1 to find a small set of containers for independent sets in the
Kneser graph.

Proposition 2.4. For ε > 0 and 2 ≤ k ≤ n−1
2 , let R = (1 + ε)

(
n−1
k−1
)

and

q =
1 + ε

ε
·

(n− k)
(
n
k

)
n
(
n−k
k

) ln
n

(1 + ε)k
.

Then there exist k-uniform hypergraphs Fi on [n], 1 ≤ i ≤
((nk)
q

)
, each of size at most R + q,

such that every intersecting k-uniform hypergraph F on [n] is a subhypergraph of Fi for some i.

Proof. We apply Theorem 1.1 to the Kneser graph KG(n, k). By Proposition 2.3, condition (2)
is satisfied by taking

β =

(
1− 1

1 + ε

)
Dn

N(n− k)
,

where D =
(
n−k
k

)
and N =

(
n
k

)
. In order to satisfy (1), we take

q =
1

β
ln
N

R
=

1

β
ln

n

(1 + ε)k
=

1 + ε

ε
·

(n− k)
(
n
k

)
n
(
n−k
k

) ln
n

(1 + ε)k
.

Applying Theorem 1.1, the result follows by taking Fi to be the hypergraph with edges Ci ⊂
([n]
k

)
,

since every intersecting hypergraph is an independent set of KG(n, k).
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2.2 Proof of Theorem 2.1

Since there is an intersecting hypergraph of size
(
n−1
k−1
)
, and each of its subhypergraphs is also

intersecting, we have a lower bound log I(n, k) ≥
(
n−1
k−1
)
. We therefore need to show that

log I(n, k) ≤ (1 + o(1))
(
n−1
k−1
)
. Using Proposition 2.4, we will show that for any small ε > 0,

log I(n, k) ≤ (1 + 2ε)
(
n−1
k−1
)
, provided n ≥ 2k + 1 is sufficiently large with respect to ε.

We know that every intersecting hypergraph is contained in one of
(
N
q

)
containers, each of

size at most R + q, where R and q are as in the statement of the proposition. Thus, the total
number of intersecting hypergraphs is at most

(
N
q

)
2R+q. Therefore, since N =

(
n
k

)
,

log I(n, k) ≤ R+ q + q log
Ne

q
= R+ q log

2e
(
n
k

)
q

.

Because R = (1 + ε)
(
n−1
k−1
)
, it is enough to show that q log

2e(nk)
q ≤ ε

(
n−1
k−1
)
. We have

q =
(1 + ε)(n− k) ln n

(1+ε)k

εk
(
n−k
k

) (
n− 1

k − 1

)
≤

2nk ln n
k

ε
(
n−k
k

) (n− 1

k − 1

)
,

and, provided ε < 1
20 ,

log
2e
(
n
k

)
q

= log

(
2εen

(1 + ε)(n− k) ln n
(1+ε)k

·
(
n− k
k

))
≤ log

(
n− k
k

)
.

Hence it suffices to have 2nk ln n
k ≤ ε2

(
n−k
k

)
/ log

(
n−k
k

)
. If n = 2k + 1, the left-hand side is

constant, while the right-hand side is Ω(n/ log n). If n ≥ 2k+ 2, the left-hand side is O(n log n),
while the right-hand side is Ω(n2/ log n), and thus the inequality holds for large enough n.

Letting ε→ 0, we have log I(n, k) ≤ (1 + o(1))
(
n−1
k−1
)
. This completes the proof.

Remark 2.5. The n ≥ 2k+ 1 bound in Theorem 2.1 is best possible. When n = 2k, the k-sets
in [n] come in 1

2

(
n
k

)
=
(
n−1
k−1
)

complementary pairs, and a hypergraph is intersecting if and only

if it does not contain both edges from a single pair. We thus have I(n, k) = 3(n−1
k−1) when n = 2k.

For n < 2k, the complete hypergraph
([n]
k

)
is itself intersecting, and thus I(n, k) = 2(nk).

4


	Graph container lemma
	Counting intersecting families
	Supersaturation for Kneser graph
	Proof of Theorem 2.1


