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We prove an asymptotically tight bound on the extremal density guaranteeing sub-

divisions of bounded-degree bipartite graphs with a mild separability condition. As

corollaries, we answer several questions of Reed and Wood on embedding sparse

minors. Among others,

• (1 + o(1))t2 average degree is sufficient to force the t × t grid as a topological

minor;

• (3/2 + o(1))t average degree forces every t-vertex planar graph as a minor,

and the constant 3/2 is optimal, furthermore, surprisingly, the value is the

same for t-vertex graphs embeddable on any fixed surface;

• a universal bound of (2+o(1))t on average degree forcing every t-vertex graph

in any nontrivial minor-closed family as a minor, and the constant 2 is best

possible by considering graphs with given treewidth.

1 Introduction

Classical extremal graph theory studies sufficient conditions forcing the appearance of

substructures. A seminal result of this type is the Erdoős–Stone–Simonovits theorem

[10, 11], determining the asymptotics of the average degree needed for subgraph

containment. It reads as

d⊇(H) := lim
n→∞

inf{c : |G| ≥ n and d(G) ≥ c|G| ⇒ G ⊇ H} = 1 − 1

χ(H) − 1
,
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2 J. Haslegrave et al.

where χ(H) is the chromatic number of H. We are interested here in the analogous

problem of average degree conditions forcing H as a minor. A graph H is a minor of

G, denoted by G ≻ H, if it can be obtained from G by vertex deletions, edge deletions

and contractions.

The study of such problems has a long history. An initial motivation was

Hadwiger’s conjecture that every graph of chromatic number t has Kt as a minor,

which is a far-reaching generalisation of the four-colour theorem. Since every graph

of chromatic number k contains a subgraph of average degree at least k − 1, a

natural angle of attack is to find bounds on the average degree which will guarantee

a Kt-minor. The first upper bound for general t was given by Mader [22, 23], who

subsequently improved this bound to O(t log t). In celebrated work of Kostochka [20] and,

independently, Thomason [38], it was improved to the best possible bound O(t
√

log t),

Thomason subsequently determining the asymptotic [39]. Denoting

d≻(H) := inf{c : d(G) ≥ c ⇒ G ≻ H},

he proved that d≻(Kt) = (α+ot(1))t
√

log t, where α = 0.6382 . . . is explicitly defined. This

remained the best order of magnitude bound even for the chromatic number question

until very recent breakthrough by Norin, Postle, and Song [29] and by Postle [30].

For more general minors, Myers and Thomason [26] resolved the problem when

H is polynomially dense, that is, having |H|1+�(1) edges, showing that d≻(H) = (αγ (H) +
o(1))|H|

√

log|H| for α as above and some explicitly defined γ (H). However, for sparse

graphs, their results only give d≻(H) = o(|H|
√

log|H|), similar to the way that the

Erdoős–Stone–Simonovits theorem only gives d⊇(H) = 0 for bipartite H, and so it is

natural to ask for stronger bounds in this regime.

Reed and Wood [31] considered sparser graphs and, in particular, showed

that for sufficiently large average degree d(H), we have d≻(H) < 3.895|H|
√

log d(H).

They also obtain bounds linear in e(H), which are better in the very sparse case of

bounded average degree. Reed and Wood asked several interesting questions about

the asymptotics of d≻(H) for sparse H. Among sparse graphs, grids play a central

role in graph minor theory [6, 32, 36]. Indeed, Reed and Wood raised the question of

determining d≻(Gt,t), where Gt,t is the t × t grid. That is, what is the minimum β > 0

such that every graph with average degree at least βt2 contains Gt,t as a minor. Trivially

β ≥ 1 in order for the graph to have enough vertices, and their results give a bound of

β ≤ 6.929.
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Extremal Density for Sparse Minors and Subdivisions 3

This question provides the motivating example for our results. However, we

shall focus on a special class of minors: subdivisions or topological minors. A sub-

division of H is a graph obtained from subdividing edges of H to pairwise internally

disjoint paths. The name of topological minor comes from its key role in topological

graph theory. A cornerstone result in this area is Kuratowski’s theorem from 1930 that a

graph is planar if and only if it does not contain a subdivision of K5 or K3,3. Again, it is

natural to ask what average degree d will force Kt as a topological minor, and we define

analogously

dT(H) := inf{c : d(G) ≥ c ⇒ G contains H as a topological minor}.

Clearly, for any H, d≻(H) ≤ dT(H). By considering complete bipartite graphs it is easy

to see that dT(Kt) = �(t2). Komlós and Szemerédi [19] and, independently, Bollobás

and Thomason [2] gave a matching upper bound of dT(Kt) = O(t2). Note that clique

topological minors are harder to guarantee than clique minors, as evidenced by the

significant gap between this result and that of Kostochka and of Thomason for the

latter. Furthermore, the leading coefficient of the quadratic bound on dT(Kt) is still

unknown. Much less is known for bounds on average degree guaranteeing sparse graphs

as topological minors.

1.1 Main result

We study in this paper the problem of finding subdivisions of a natural class of sparse

bipartite graphs. In particular, our main result offers the asymptotics of the average

degree needed to force subdivisions of such graphs, showing that a necessary bound is

already sufficient. It reads as follows.

Theorem 1.1. For given ε > 0 and 1 ∈ N, there exist α0 and d0 satisfying the following

for all 0 < α < α0 and d ≥ d0. If H is an α-separable bipartite graph with at most (1−ε)d

vertices and 1(H) ≤ 1, and G is a graph with average degree at least d, then G contains

a subdivision of H.

Here, a graph H is α-separable if there exists a set S of at most α|H| vertices such

that every component of H − S has at most α|H| vertices. Graphs in many well-known

classes are o(1)-separable. For example, any large graphs in nontrivial minor-closed

family of graphs is o(1)-separable [1, 24].
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4 J. Haslegrave et al.

As an immediate corollary, our main result answers the above question of Reed

and Wood in a strong sense by showing that any β > 1 is sufficient to force the k-

dimensional grid Gk
t,...,t not only as a minor but as a topological minor, and so

dT(Gk
t,...,t) = d≻(Gk

t,...,t) = (1 + ot(1))tk.

We remark that the optimal constant 1 in Theorem 1.1 is no longer sufficient if

H is not bipartite. Indeed, if for example H is the disjoint union of triangles, then the

Corrádi–Hajnal theorem [5] implies that d≻(H) = 4
3 |H| − 2. We shall elaborate more on

the leading constant in the next section.

Our proof utilises both pseudorandomness from Szemerédi’s regularity lemma

and expansions for sparse graphs. The particular expander that we shall make use of

is an extension of the one introduced by Komlós and Szemerédi, which has played an

important role in some recent developments on sparse graph embedding problems, see

for example, [14, 21].

Organisation. Applications of our main result will be given in Section 2. Prelim-

inaries on expanders and basic building blocks are given in Section 3. In Section 4, we

outline the strategies for proving Theorem 1.1. Its proof is then given in Sections 5–7.

Lastly, concluding remarks and some open problems are given in Section 8.

2 Applications

Reed and Wood [31] raised several interesting questions on the average degree needed

to force certain sparse graphs as minors. As corollaries of our main results, we answer

many of these questions, and some others, with asymptotically optimal bounds.

2.1 Planar graphs

Problem A [31]. What is the least constant c > 0 such that every graph with average

degree at least ct contains every planar graph with t vertices as a minor?

Since a planar graph has average degree at most 6, their results imply that

c ≤ 14.602. We can deduce the asymptotic answer to their question; in fact, rather

surprisingly, the value is the same for graphs of any fixed genus, not just planar graphs.

We find it convenient to use the following notation. The above problem basically

asks for the maximum of d≻(F) over all graphs in some family F with at most t vertices.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab154/6311545 by Korea Advanced institute of Science and Technology user on 21 O

ctober 2021



Extremal Density for Sparse Minors and Subdivisions 5

Define

d≻(F , t) := inf{c : d(G) ≥ c ⇒ G ≻ H, ∀H ∈ F with |H| ≤ t}.

Theorem 2.1. For any ε > 0 and any g ≥ 0, there exists t0 such that for every t ≥ t0 the

following hold:

• every graph with average degree at least (3/2 + ε)t contains every graph of

genus at most g with t vertices as a minor, but

• there exists a graph of average degree 3t/2 − O(1), which does not contain

every planar graph with t vertices as a minor.

That is, writing Fg for the family of all graphs with genus g, we have d≻(Fg, t) =
(3/2 + o(1)) t.

Proof. We first prove the second statement. Take any planar graph H∗ on t vertices

containing ⌊t/4⌋ disjoint copies of K4. It is easy to verify that K2,n is a series-parallel

graph for any n, and so does not contain K4 as a minor (see [8]). Therefore, any bipartite

graph that does contain K4 as a minor is not a subgraph of K2,n for any n, and so must

have at least 3 vertices in each part. If G is a bipartite graph that contains H∗ as a minor,

then G must contain at least 3 vertices in each part for each of the ⌊t/4⌋ copies of K4,

so must contain at least 3⌊t/4⌋ vertices in each part. Therefore, the complete bipartite

graph with parts of order 3⌊t/4⌋ − 1 and n does not contain H∗ as a minor. This graph

has average degree at least 6⌊t/4⌋ − 3 if n is sufficiently large.

Next, we deduce the first statement from Theorem 1.1. It is sufficient to prove

the case ε < 1. Let 1 = ⌊20/ε⌋ ≥ 20, and fix α ≤ α0(ε/2, 1). Let H be an arbitrary t-vertex

graph of genus at most g. If H has a vertex of degree k > 1, replace it with two adjacent

vertices of degrees k − (1 − 1) and 1; when doing this, allocate the neighbours of the

original vertex to the two vertices in such a way as to preserve the genus. Continue until

no vertices with degree bigger than 1 remain. Thus, we obtain a graph H ′ of genus at

most g with at most t +
∑

v∈V(H)
d(v)
1−1 ≤ t + (6t + O(1))/(1 − 1) ≤ (1 + ε/3)t vertices which

contains H as a minor.

Let A and B be two independent sets in H ′, chosen so that |A| + |B| is as large

as possible. If g = 0 (i.e., H ′ is planar), then considering the two largest classes of a

four-colouring of H ′ shows that |A| + |B| ≥ |H ′|/2. If g > 0, using a result of Djidjev [7],

we may find a planar induced subgraph on |H ′| − O(
√

|H ′|) vertices, and considering a

four-colouring of this subgraph shows that |A| + |B| ≥ |H ′|/2 − o(t). So, in either case, we

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab154/6311545 by Korea Advanced institute of Science and Technology user on 21 O

ctober 2021



6 J. Haslegrave et al.

have |V(H ′) \ (A ∪ B)| ≤ (1 + ε)t/2 for t sufficiently large. Note that our choice of A and B

ensures that every other vertex has neighbours in both A and B.

We define a bipartite graph H ′′ as follows. Vertices in A ∪ B, and edges between

them, are unchanged. For each vertex v ∈ V(H ′) \ (A ∪ B), H ′′ has two vertices vA, vB with

an edge between them. Every edge of H ′ of the form uv with u ∈ A and v ∈ V(H ′) \ (A∪B)

becomes an edge uvB, and every edge of the form uv with u ∈ B and v ∈ V(H ′) \ (A ∪ B)

becomes an edge uvA. For every edge vw with v, w ∈ V(H ′) \ (A ∪ B), choose an ordering

v, w arbitrarily and add the edge vAwB. In the resulting graph H ′′, every vertex has

degree at most that of the corresponding vertex in H ′, and, by contracting every edge of

the form vAvB, H ′′ contains H ′ as a minor.

The genus of H ′′ may be greater than g, but the bounded genus of H ′ ensures

that H ′ is α/2-separable for t sufficiently large. Since any subset of V(H ′) of size at most

α|H ′|/2 corresponds to a subset of V(H ′′) of size at most α|H ′′|, H ′′ is α-separable. Now,

H ′′ is a bipartite graph with at most (3/2 + ε)t vertices, so by Theorem 1.1, we can find

a subdivision of H ′′, which in turn contains H as a minor, in any graph with average

degree at least (3/2 + ε)t provided t is sufficiently large. �

2.2 A universal bound for nontrivial minor-closed families

Many important classes of graphs are naturally closed under taking minors, for

example, graphs embeddable on a given surface considered in Theorem 2.1. The seminal

graph minor theorem of Robertson and Seymour (proved in a sequence of papers

culminating in [34]) shows that every minor-closed family can be characterised by

a finite list of minimal forbidden minors. For example, the linklessly embeddable

graphs are defined by a minimal family of seven forbidden minors, including K6 and

the Petersen graph [37]. The existence of a forbidden minor characterisation has far-

reaching algorithmic implications, since for any fixed graph F there exists an algorithm

to determine whether an n-vertex graph contains F as a minor in O(n3) time [33],

and hence there is a cubic-time algorithm (since improved to quadratic [13]) to check

for membership of any given minor-closed family; prior to these results, it was not

even known that the property of having a linkless embedding was decidable. However,

the constants concealed by the asymptotic notation are typically prohibitively large.

Furthermore, for many families a complete forbidden minor classification, and hence

a specific algorithm, is not known, and the number of minimal forbidden minors can

be extremely large, even for families that may be very naturally and simply defined.

For example, there are over 68,000,000,000 minimal forbidden minors for the class of

Y1Y-reducible graphs [41].
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Extremal Density for Sparse Minors and Subdivisions 7

We can extend the methods of the previous subsection to minor-closed families

more generally. For each k ∈ N, define αk(G) := max{|U| : U ⊆ V(G), χ(G[U]) = k}. So,

α1(G) is the usual independence number, and α2(G) is the maximum size of the union of

two independent sets.

Theorem 2.2. Let F be a nontrivial minor-closed family. For each F ∈ F with t vertices,

we have

2t − 2α(F) − O(1) ≤ d≻(F) ≤ 2t − α2(F) + o(t).

Proof. It is well known that the t-vertex graphs in F are o(1)-separable with at most

CF t edges for some constant CF [1].

To prove the upper bound, take two disjoint independent sets A and B with

α2(F) = |A ∪ B|. By the same argument as in Theorem 2.1, we can define a bipartite

graph F ′′ containing F as a minor with 2t−α2(F)+o(t) vertices having bounded maximum

degree. Apply Theorem 1.1 to F ′′ to obtain the upper bound.

To prove the lower bound, consider Ks,n−s where s = t − α(F) − 1. If it contains

an F-minor, let V1, . . . , V|F| be the vertex sets corresponding to the vertices of F. By our

choice of s, it is easy to see that at least α(F) + 1 of them have to completely reside in

the independent set of size n − s in Ks,n−s, which is impossible. Thus, Ks,n−s does not

contain an F-minor. By choosing large n, we have d(Ks,n−s) ≥ 2t − 2α(F) − O(1). �

Theorem 2.2 yields the following universal bound for all nontrivial minor-closed

families.

Corollary 2.3. For any nontrivial minor-closed family F , we have

d≻(F , t) ≤ (2 + o(1))t.

We remark that the constant 2 above cannot be improved as we shall see in

Corollary 2.4.

2.3 Graphs with given treewidth or clique minor

Reed and Wood asked the following questions for specific minor-closed families.

Problem B [31]. What is the least function g1 such that every graph with average degree

at least g1(k) · t contains every graph with t vertices and treewidth at most k as a minor?
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8 J. Haslegrave et al.

Problem C [31]. What is the least function g2 such that every graph with average degree

at least g2(k) · t contains every Kk-minor-free graph with t vertices as a minor?

Graphs with treewidth at most k are k-degenerate, and hence have at most kt

edges, and graphs without a Kk-minor have average degree O(k
√

log k). Consequently,

the result of Reed and Wood [31] showed that gi(k) = O(
√

log k) for i ∈ {1, 2}. As a

corollary of Theorem 2.2, we get the following optimal bound of gi(k) = 2 + ok(1),

showing that somewhat surprisingly, when k is sufficiently large, both the treewidth

and the size of a largest clique minor play negligible roles in the leading coefficient.

Corollary 2.4. Every graph with average degree (2 + ok(1))t contains every graph with

t vertices, which either has treewidth at most k or is Kk-minor-free, as a minor.

Proof. The upper bound follows immediately from Theorem 2.2. Note that a disjoint

union of copies of Kk+1 has treewidth k. Then, the unbalanced complete bipartite graph

K(1−1/(k+1))t−1,n provides the matching lower bound 2(1 − 1/(k + 1))t = (2 + ok(1))t.

For graphs without Kk-minor, consider instead a disjoint union of copies

of Kk−1. �

2.4 Beyond minor-closed classes

In Section 2.2, the two properties of minor-closed families that we needed were o(1)-

separability and bounded average degree. Many other sparse graph classes have these

properties. In particular, any class which obeys a strongly sublinear separator theorem

is o(1)-separable, see [24].

A k-shallow minor of a graph G is a minor for which each contracted subgraph

has radius at most k. We say that a graph class C has bounded expansion if the average

degree of k-shallow minors of graphs in C is bounded by a function of k; in particular,

since 0-shallow minors are just subgraphs, C itself has bounded average degree. If

the bound is a polynomial function, we say that C has polynomial expansion. These

definitions were introduced by Nešetřil and Ossona de Mendez [27].

Classes of polynomial expansion have strongly sublinear separator theorems,

and for hereditary classes the two notions are equivalent [9]. Thus, we may extend

Theorem 2.2 to classes of polynomial expansion. Such classes include the 1-planar

graphs, that is, the graphs which may be embedded in the plane with each edge crossing

at most one other edge once [28], and intersection graphs of systems of balls with only

a bounded number meeting any point [25].
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Extremal Density for Sparse Minors and Subdivisions 9

Polynomial expansion is a much weaker property than being minor-closed. It

is easy to see, for example, that any graph can be suitably subdivided to obtain a

1-planar graph. However, Borodin [3] showed that all 1-planar graphs are 6-colourable,

and since they include disjoint unions of K6, we obtain the following tight result from

the extension of Theorem 2.2 to classes of polynomial expansion.

Corollary 2.5. The class P1 of 1-planar graphs satisfies d≻(P1, t) = (5/3 + ot(1))t.

3 Preliminaries

For n ∈ N, let [n] := {1, . . . , n}. Given a set X and k ∈ N, let
(X

k

)

be the family of all k-sets

in X. For brevity, we write v for a singleton set {v} and xy for an unordered pair {x, y}.
If we claim that a result holds whenever we have 0 < a ≪ b, c ≪ d < 1, it means that

there exist positive functions f , g such that the result holds as long as a < f (b, c) and

b < g(d) and c < g(d). We will not compute these functions explicitly. In many cases, we

treat large numbers as if they were integers, by omitting floors and ceilings if it does

not affect the argument. We write log for the base-e logarithm.

3.1 Graph notation

Given graphs H and G, and a copy of an H-subdivision in G, we call the vertices that

correspond to V(H) the anchor vertices of the subdivision. For a given path P = x1 . . . xt,

we write Int(P) = {x2, . . . , xt−1} to denote the set of its internal vertices. Given a graph H,

a set of vertices S ⊆ V(H) and a set of edges F ⊆ E(H), denote by H − S = H[V(H) \ S] the

subgraph induced on V(H) \ S and by H − F the spanning subgraph obtained from H by

removing edges in F.

Given a graph G, denote its average degree 2e(G)/|G| by d(G). For two sets X, Y ⊆
V(G), the (graph) distance between them is the length of a shortest path from X to Y.

For two graphs G, H, we write G ∪ H to denote the graph with vertex set V(G) ∪ V(H) and

edge set E(G) ∪ E(H). A k-star denotes a copy of K1,k, which is a star with k edges. Given

a collection of graphs F = {Fi : i ∈ I}, we write V(F) =
⋃

i∈I V(Fi) and |F | = |I|. For path

P and a vertex set U, we write P|U for the induced subgraph of P on vertex set V(P) ∩ U.

We say that G is a graph with a vertex partition V1, . . . , Vs if V(G) = V1 ∪ · · · ∪ Vs and

V1, . . . , Vs are pairwise disjoint.

For a set of vertices X ⊆ V(G) and i ∈ N, denote by

Ni(X) := {u ∈ V(G) : the distance betweenX andu is exactlyi}
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10 J. Haslegrave et al.

the ith sphere around X, and write N0(X) = X, N(X) := N1(X), and for i ∈ N ∪ {0}, let

Bi(X) =
⋃i

j=0 Nj(X) be the ball of radius i around X. We write ∂(X) for the edge-boundary

of X, that is, the set of edges between X and V(G) \ X in G. Given another set Z ⊆ V(G),

we write N(X, Z) = N(X) ∩ Z for the set of neighbours of X in Z.

3.2 Robust expander

To define the robust graph expansion, we need the following function. For ε1 > 0 and

t > 0, let ρ(x) be the function

ρ(x) = ρ(x, ε1, t) :=







0 ifx < t/5,

ε1/ log2(15x/t) ifx ≥ t/5,
(1)

where, when it is clear from context, we will not write the dependency on ε1 and t of

ρ(x). Note that when x ≥ t/2, ρ(x) is decreasing, while ρ(x) · x is increasing.

Komlós and Szemerédi [18, 19] introduced a notion of expander G in which any

set X of reasonable size expands by a sublinear factor, that is, |NG(X)| ≥ ρ(|X|)|X|. We

shall extend this notion to a robust one such that similar expansion occurs even after

removing a relatively small set of edges.

Definition 3.1. (ε1, t)-robust-expander: A graph G is an (ε1, t)-robust-expander if for

every subset X ⊆ V(G) of size t/2 ≤ |X| ≤ |G|/2, and every subset F ⊆ E(G) with |F| ≤
d(G) · ρ(|X|)|X|, we have

|NG−F(X)| ≥ ρ(|X|)|X|.

We shall use the following version of expander lemma, stating that every graph

contains a robust expander subgraph with almost the same average degree.

Lemma 3.2. Let C > 30, ε1 ≤ 1/(10C), ε2 < 1/2, d > 0 and ρ(x) = ρ(x, ε1, ε2d) as in (1).

Then every graph G with d(G) = d has a subgraph H such that

• H is an
(

ε1, ε2d
)

-robust-expander;

• d(H) ≥ (1 − δ)d, where δ := Cε1
log 3 ;

• δ(H) ≥ d(H)/2;

• H is νd-connected, where ν := ε1

6 log2(5/ε2)
.
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Extremal Density for Sparse Minors and Subdivisions 11

We remark that, though almost retaining the average degree, the robust

expander subgraph H in Lemma 3.2 could be much smaller than G. For instance, if

G is a union of many vertex disjoint small cliques, then H could be just one of those

cliques. This drawback often makes it difficult to utilise expanders iteratively within

graphs. We include the proof of the robust expander lemma, Lemma 3.2, in the appendix

of the online version [12].

A key property of the robust expanders that we shall use is that they have small

(logarithmic) diameter.

Lemma 3.3. [19] Corollary 2.3. If G is an n-vertex (ε1, t)-robust-expander, then for any

two vertex sets X1, X2 each of size at least x ≥ t/2, and a vertex set W of size at most

ρ(x)x/4, there exists a path in G − W between X1 and X2 of length at most

2

ε1

log3

(

15n

t

)

.

3.3 Exponential growth for small sets

In an (ε1, t)-robust-expander graph, for a set X with size at least t/2, the ball Bi(X) grows

with the radius i. For our purpose, we need to quantify how resilient this growth is to

deletion of some thin set around X.

Definition 3.4. For a set X ⊆ W of vertices, the paths P1, . . . , Pq are consecutive

shortest paths from X within W if the following holds. For each i ∈ [q], Pi|W is a shortest

path from X to some vertex vi ∈ W \ X in the graph restricted to W \
⋃

j∈[i−1] V(Pj).

In particular, the following proposition shows that the rate of expansion for

small sets is almost exponential in a robust expander even after deleting a few

consecutive shortest paths.

Proposition 3.5. Let 0 < 1/d ≪ ε1, ε2 ≪ 1. Suppose G is an n-vertex (ε1, ε2d)-robust-

expander and X, Y are disjoint sets of vertices with |X| = x ≥ ε2d and |Y| ≤ 1
4 · ρ(x) · x.

Let P1, . . . , Pq be consecutive shortest paths in G − Y from X within Br
G−Y(X), where

1 ≤ r ≤ log n and q < x log−8 x, and let P =
⋃

i∈[q] V(Pi). Then for each i ∈ [r], we have

|Bi
G−P−Y(X \ P)| ≥ exp(i1/4).
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12 J. Haslegrave et al.

Proof. For each i ≥ 0, let Zi = Bi
G−P−Y(X\P). As P1, . . . , Pq are consecutive shortest paths

from X, for each i ≥ 0, each path Pj, j ∈ [q], can intersect with the set NG−Y(Zi) on at most

i + 2 vertices. Indeed, otherwise, we can replace the initial segment of Pj with a path in

Zi ∪ NG−Y(Zi) of length i + 1 to get a shorter path in G − Y −
⋃

k∈[j−1] V(Pk), contradicting

the choice of Pj. Thus, |NG−Y(Zi) ∩ P| ≤ (i+2)q. Consequently, the expansion of G implies

for each i ≥ 0 that

|Zi+l| = |Zi| + |NG(Zi) \ (Y ∪ P)| ≥ |Zi| + ρ(|Zi|)|Zi| − |Y| − |NG−Y(Zi) ∩ P|

≥ |Zi| + 3

4
ρ(|Zi|)|Zi| − (i + 2)q. (2)

Let

f (z) = exp
(

z1/4
)

and g(z) := x + 1

2
ρ(x)xz.

We first use induction on i to show that for each 1 ≤ i ≤ log4 x, |Zi| ≥ g(i). Since X

contains one vertex from each path, |Z0| = x − q. Applying (2) with i = 0 gives

|Z1| ≥ x − q + 3

4
ρ(x − q)(x − q) − 2q ≥ x + 3

4
xρ(x) − 4q,

and since q < x log−8 x, this is at least x + 1
2xρ(x) as required.

Now, for 1 ≤ i ≤ log4 x, we use (2) together with the induction hypothesis and

the facts that ρ(z)z is increasing when z ≥ x and 1
4ρ(x)x ≥ (i+2)x

log8 x
> (i + 2)q to obtain

|Zi+l| ≥ |Zi| + 3

4
ρ(|Zi|)|Zi| − (i + 2)q ≥ |Zi| + 1

2
ρ(x)x = |Zi| + g(i + 1) − g(i) ≥ g(i + 1).

We may then assume i > log4 x, as f (i) ≤ g(i) ≤ |Zi| when i ≤ log4 x. Now, as

i > log4 x,
f (i)

i7/4 ≥ f (log4 x)

(log4 x)7/4
= x

log7 x
and so
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Extremal Density for Sparse Minors and Subdivisions 13

Fig. 1. A (2a, b)-sun with a = 5 and b = 3.

(i + 2)q < i · 2x

log8 x
≤ i · f (i)

i7/4
= f (i)

i3/4
.

Also note that f (i + 1) − f (i) ≤ f (i)

i3/4 and ρ(|Zi|)|Zi| ≥ ρ(f (i))f (i) ≥ ε1f (i)

i1/2 . Thus, we have

|Zi+l| ≥ |Zi| + 3

4
ρ(|Zi|)|Zi| − (i + 2)q ≥ |Zi| + 3ε1f (i)

4i1/2
− f (i)

i3/4

≥ |Zi| + f (i)

i3/4
≥ |Zi| + f (i + 1) − f (i) ≥ f (i + 1),

as desired. �

3.4 Basic building structures

The following structures will serve as basic building blocks for our constructions of

subdivisions.

Definition 3.6. (2a, b)-Sun For integers a ≥ b ≥ 0, a (2a, b)-sun is a bipartite graph

consisting of a cycle x1, . . . , x2a and leaves y1, . . . , yb, where for each i ∈ [a] the vertex x2i

is adjacent to at most one leaf, and for each i ∈ [b] the leaf yi is adjacent to a vertex x2j

for some j ∈ [a]. See Figure 1.

Note that a (2a, 0)-sun is just an even cycle of length 2a.

Definition 3.7. (h1, h2, h3)-unit For h1, h2, h3 ∈ N, an (h1, h2, h3)-unit is a tree F with a

distinguished vertex u (the core vertex of F), which consists of
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14 J. Haslegrave et al.

Fig. 2. A (4, s, r, τ)-nakji (Definition 3.9).

• a collection of h1 disjoint stars {Sxi
: i ∈ [h1]}, with Sxi

having central vertex

xi and h2 leaves, together with

• a collection {Pi : i ∈ [h1]} of paths from u to xi respectively, each of length at

most h3, which are pairwise disjoint except at u.

Define the exterior Ext(F) to be the set of leaves of F, and the interior Int(F) := V(F) \
Ext(F). For every vertex w ∈ Ext(F), let P(F, w) be the unique path from the core vertex u

to w in F.

Definition 3.8. (h0, h1, h2, h3)-web For h0, h1, h2, h3 ∈ N, an (h0, h1, h2, h3)-web is a tree

W with a distinguished vertex v (the core vertex of W), which consists of

• a collection of h0 disjoint (h1, h2, h3)-units {Fui
: i ∈ [h0]}, with Fui

having core

vertex ui, together with

• a collection {Qi : i ∈ [h0]} of paths from v to ui respectively, each of length

at most h3, which are pairwise disjoint except at v, and with each Qi disjoint

from
⋃

j∈[h0] V(Fuj
) except at ui.

Define the exterior Ext(W) :=
⋃

i∈[h0] Ext(Fui
), interior Int(W) := V(W)\Ext(W) and centre

Ctr(W) :=
⋃

i∈[h0] V(Qi). For every vertex w ∈ Ext(W), let P(W, w) be the unique path from

the core vertex v to w in W. See Figure 3.

Definition 3.9. (t, s, r, τ)-nakji Given t, s, r, τ ∈ N, a graph N is a (t, s, r, τ)-nakji1 in G if

it contains vertex disjoint sets M and D1, . . . , Dt, each having size at most s, and paths

P1, . . . , Pt, such that for each i ∈ [t]
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Extremal Density for Sparse Minors and Subdivisions 15

Fig. 3. An (h0, h1, h2, h3)-web.

• Pi is an M, Di-path with length at most 10r, and all paths Pi, i ∈ [t], are

pairwise internally disjoint;

• Di has diameter at most r, and all Di, i ∈ [t], are a distance at least τ in G

from each other and from M, and they are disjoint from internal vertices of
⋃

i∈[t] Pi.

We call M the head of the nakji and each Di, i ∈ [t], a leg. See Figure 2.

4 Outline of the Proofs

To prove Theorem 1.1, we first use Lemma 3.2 to pass to a robust expander subgraph

without losing much on the average degree. Depending on the density of the expander,

we use different approaches. Roughly speaking, when the expander has positive edge

density, we will utilise pseudorandomness via the machinery of the graph regularity

lemma and the blow-up lemma (Lemma 4.1), whereas if the expander is not dense, then

we exploit its sublinear expansion property (Lemmas 4.2 and 4.3).
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16 J. Haslegrave et al.

Lemma 4.1. Let 0 < 1/d, α ≪ δ, η, 1/1 < 1 and δ ≪ ε, let H be a graph with at most

(1−ε)d vertices such that 1(H) ≤ 1, and let G be an n-vertex graph. Suppose that d > ηn

and H is bipartite and α-separable. If d(G) ≥ (1 − δ)d, then G contains H as a subgraph.

Lemma 4.2. Let 0 < 1/d ≪ η ≪ ε1, ε2 ≪ ε, 1/1 < 1, let H be a graph with at most

(1 − ε)d vertices such that 1(H) ≤ 1, let G be an n-vertex graph, and write m =
2
ε1

log3
(

15n
ε2d

)

. Suppose G is an (ε1, ε2d)-robust-expander with d(G) ≥ ε2d. If m100 ≤ d ≤
ηn, then G contains an H-subdivision.

Lemma 4.3. Let 0 < 1/d ≪ ν, δ ≪ ε1, ε2 ≪ ε, 1/1 < 1, let H be a graph with at most (1−
ε)d vertices such that 1(H) ≤ 1, let G be an n-vertex graph, and write m = 2

ε1
log3

(

15n
ε2d

)

.

Suppose H is bipartite and G is an (ε1, ε2d)-robust-expander with d(G) ≥ (1 − δ)d and

δ(G) ≥ d(G)/2. If d < m100, then G contains an H-subdivision.

Our main theorem readily follows, assuming these three lemmas.

Proof. Proof of Theorem 1.1. For given ε, let η, ν, δ, ε1, ε2, α0, 1/d0 be small enough so

that Lemmas 4.1–4.3 holds for all α ≤ α0 and d > d0. We apply Lemma 3.2 to G to obtain

a subgraph G′, which is an n′-vertex (ε1, ε2d)-robust-expander and d(G′) ≥ (1 − δ)d.

If d ≥ ηn′, then as H is α-separable, Lemma 4.1 implies that H ⊆ G′. If d < ηn′,

then Lemmas 4.2 and 4.3 imply that G contains an H-subdivision. This proves the

theorem. �

In the rest of this section, we outline the ideas in our constructions. Let G be an

expander and H be the bounded-degree bipartite graph whose subdivision we want to

embed in G.

4.1 Embeddings in dense graphs

The regularity lemma essentially partitions our graph G into a bounded number of

parts, in which the bipartite subgraphs induced by most of the pairs of parts behave

pseudorandomly. The information of this partition is then stored to a (weighted) fixed-

size so-called reduced graph R that inherits the density of G.

We seek to embed H in G using the blow-up lemma, which boils down to

finding a ‘balanced’ bounded-degree homomorphic image of H in R. This is where the

additional separable assumption on H kicks in. The separability of H (in the form of
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Extremal Density for Sparse Minors and Subdivisions 17

sublinear bandwidth) enables us to cut H into small pieces to offer suitable ‘balanced’

homomorphic images.

Now, if the reduced graph R has chromatic number at least three, the density of

R inherited from G is just large enough to guarantee an odd cycle long enough in R to

serve as our bounded-degree homomorphic image of H.

It is, however, possible that R is a bipartite graph, hence all cycles within

are even cycles, which might not be long enough for our purpose. Indeed, in the worst

case scenario that H is an extremely asymmetric bipartite graph, an even cycle has to

be twice as long as an odd one to be useful. This is because in the odd cycle we can

circumvent the asymmetry of H by ‘breaking the parity’ via wrapping around the odd

cycle twice.

To handle the case when R is bipartite, instead of cycles, we will make use of

the sun structure (Definition 3.6), in which the leaves attaching to the main body of the

sun help in balancing out the asymmetry of H.

4.2 Embeddings in robust expanders with medium density

The robust expansion underpins all of our constructions of H-subdivisions when the

graph G is no longer dense. At a high level, in G, we anchor on some carefully chosen

vertices and embed paths between anchors (corresponding to the edge set of H) one at a

time.

As these paths in the subdivision need to be internally vertex disjoint, to realise

this greedy approach, we will need to build a path avoiding a certain set of vertices. This

set of vertices to avoid contains previous paths that we have already found and often

some small set of ‘fragile’ vertices that we wish to keep free.

To carry out such robust connections, we use the small-diameter property of

expanders (Lemma 3.3). Let m be the diameter of G. Recall that H is of order at most d

with bounded degree and we need to embed e(H) = O(d) paths. Thus, all in all, the set

of vertices involved in all connections, say W, is of size O(dm). To enjoy Lemma 3.3, we

want to anchor at vertices with large ‘boundary’ compared with W, that is, being able

to access many (dm10 say) vertices within short distance.

With that being said, if there are now d vertices of high degree (at least dm10),

we can easily finish the embedding anchoring on these high degree vertices. This almost

enables us to view G as if it is a ‘relatively regular’ graph. In reality, what happens is

that we can assume the set of high degree vertices, L, is small: |L| < d; and deduce from
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18 J. Haslegrave et al.

the robust expansion property that G − L is still dense. It is worth pointing out that this

is where we need to extend the original notion of expander to this robust one.

Without high degree vertices, we turn to the web structure (Definition 3.8), in

which the core vertex has a large ‘boundary’ (the web’s exterior) of size about dm9. If

there are d webs of suitable size, we can then anchor on their core vertices and connect

pairs via the exteriors of the corresponding webs. One thing to be careful about is that

a web will become useless if the (few) vertices in its centre are involved in previous

connections. To prevent this, when constructing paths between exteriors, we protect

the ‘fragile’ centres of all webs.

Lastly, as G is ‘relatively regular’, we can pull out many large stars (size roughly

d) and link them up to find the webs one by one. The construction of webs is one of the

places we require G to be not too sparse (d being a large power of m suffices).

4.3 Embeddings in sparse robust expanders

The current way of building and connecting webs breaks down if the expander is too

sparse, say with average degree at most log log n. We will have to rely on other structures

to build subdivisions in this case.

Let us first look at the easier problem of finding H-minors, in which case

we just need to find d large balls (and contract them afterwards) and find O(d)

internally disjoint paths between them. Note that now |L| < d ≤ m100 is quite

small. Suppose additionally that G − L has average degree �(d) and within it we

can find d vertices, v1, . . . , vd, pairwise a distance
√

log n apart, such that for each

vi, the ball Bi of radius say (log log n)20 around it has size at least m200. So each

Bi is large enough to enjoy exponential growth (Proposition 3.5) avoiding all paths

previously built. Now to get, say, a vi, vj-path, we first expand Bi, Bj to larger balls

with radius say (log n)1/10. These larger balls are so gigantic that we can connect

them avoiding all the smaller balls
⋃

i∈[d] Bi. It is left to find such vi and Bi. We can

find them one by one, by collectively growing a set U of pairwise far apart vertices

past L and using an averaging argument to locate the next vi that expands well in

G − L.

Coming back to embedding H-subdivisions, we shall follow the general strategy

as that of finding minors. However, an immediate obstacle we encounter is the

following. To get a subdivision instead of a minor, we need to be able to lead up to

1(H) = O(1) many paths arriving at Bi disjointly to vi. In other words, each anchor

vertex vi has to expand even after removing O(1) disjoint paths starting from itself.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab154/6311545 by Korea Advanced institute of Science and Technology user on 21 O

ctober 2021



Extremal Density for Sparse Minors and Subdivisions 19

Here comes the problem: in the minor case, we just need to expand U ignoring a smaller

set L; whereas now U is asked to expand past a larger set of 2(|U|) vertices that

are used in the previous connections. Our expansion property is simply too weak for

this.

This is where the nakji structure (Definition 3.9) comes into play. It is designed

precisely to circumvent this problem by doing everything in reverse order. Basically,

instead of looking for anchor vertices that expand robustly, we rather anchor on nakjis

and link them via their legs first and then extend the paths from the legs in each nakji’s

head using connectivity.

Why do we require that the head and legs of a nakji are stretched far apart?

This is so that, before linking nakjis together to a subdivision, we can expand each leg

without bumping into any other part to an enormous size, so that each connection made

leaves irrelevant structures untouched.

The remaining task is then to find many nakjis in G − L. This is done essentially

by linking small subexpanders within G − L. A subtlety here worth pointing out is

that we only have |L| < d, while each of the subexpanders, though having size �(d),

could be smaller than L. This keeps us from expanding and linking each subexpander

in G − L. Intuitively, given that L is not large, one would like to take a huge set of

subexpanders, whose union is so large and thus grows easily past L. However, as the

expanding function ρ(·) is sublinear, if there are too many subexpanders to begin with,

after averaging, the expansion rate of each subexpander in G − L is too weak to be

useful. To overcome this difficulty, instead, we shall average over a set of subexpanders

of appropriate size that is just big enough to ignore L and on the other hand just small

enough that ρ(·) does not decay too much.

5 Separable Bipartite Graphs in Dense Graphs

In this section, we prove Lemma 4.1. We will use Szemerédi’s regularity lemma; for a

detailed survey of this lemma and its numerous applications, see [16, 17]. Let dG(A, B) :=
e(G[A,B])

|A||B| be the density of a bipartite graph G with vertex classes A and B. For a positive

number ε > 0, we say that a bipartite graph G with vertex classes A and B is ε-regular

if every X ⊆ A and Y ⊆ B with |X| ≥ ε|A| and |Y| ≥ ε|B| satisfy |dG(A, B) − dG(X, Y)| ≤ ε.

We say that it is (ε, δ+)-regular if it is ε-regular and dG(A, B) ≥ δ.

The following lemma is a version of the regularity lemma suitable for our

purpose. The discussion before Theorem 1.10 in [17] shows that the following lemma

can be easily derived from the usual regularity lemma.
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20 J. Haslegrave et al.

Lemma 5.1. Suppose 0 < 1/n ≪ 1/r1 ≪ ε ≪ τ < 1 with n ∈ N and let G be an n-vertex

graph with d(G) ≥ dn for some d ∈ (0, 1). Then, there is a partition of the vertex set of

G into V1, . . . , Vr and a graph R on the vertex set [r] such that the following holds:

1. 1/ε ≤ r ≤ r1;

2. for each i ∈ [r], we have (1−ε)n
r ≤ |Vi| ≤ (1+ε)n

r ;

3. d(R) ≥ (d − 2τ)r;

4. for all ij ∈ E(R), the graph G[Vi, Vj] is (ε, τ+)-regular.

The graph R above is often called the reduced graph of G (with respect to the

partition V1, . . . , Vr). One of the reasons why the regularity lemma is useful is that it

can be combined with the blow-up lemma of Komlós, Sárközy and Szemerédi (see [15,

Remark 8]). Here, we only need the following weaker version of the blow-up lemma

which only yields a non-spanning subgraph in a given graph.

Theorem 5.2. Suppose 0 < 1/n ≪ ε ≪ τ , 1/1 < 1 and 1/n ≪ 1/r with r, n ∈ N. Suppose

H is a graph with 1(H) ≤ 1 having a vertex partition X1, . . . , Xr, G is a graph with a

vertex partition V1, . . . , Vr, and R is a graph on the vertex set [r] with 1(R) ≤ 1. Suppose

further that the following hold.

1. For each i ∈ [r], Xi is an independent set in H and |Xi| ≤ (1 − ε1/2)|Vi|.
2. For each ij ∈ E(R), the graph G[Vi, Vj] is (ε, τ+)-regular.

3. For each
({i,j}∈

[r]2

)

with ij /∈ E(R), the graph H contains no edges from Xi to Xj.

Then G contains H as a subgraph.

5.1 Balanced homomorphic image of H

We now show how to find a suitable partition of H to invoke the blow-up lemma. This

will use the separability property; however, we find it more convenient to work with

bandwidth. A graph H has bandwidth b if we can order its vertices x1, . . . , x|H| such that

xixj /∈ E(H) for |i − j| > b. In general, small bandwidth is a stronger notion than small

separability. However, the following result of Böttcher, Pruessmann, Taraz and Würfl

shows that for bounded-degree graphs the two notions are roughly equivalent.

Lemma 5.3. [4, Theorem 5] Suppose 0 < 1/d ≪ α ≪ β ≪ 1/1 ≤ 1. If H is an α-

separable graph with at most d vertices and 1(H) ≤ 1, then H has bandwidth at most

βd.
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Extremal Density for Sparse Minors and Subdivisions 21

We want to partition H into almost equal-sized sets X1, . . . , Xr for an appropriate

r such that all edges of H lie between two consecutive sets Xi and Xi+1, where we write

Xr+1 = X1. In other words, we want to find a ‘balanced’ homomorphism from H into Cr.

Later we will apply the regularity lemma to G and find a cycle C in the reduced

graph we obtain, then apply the blow-up lemma with the above partition of H where

r = |C|. If |C| is odd, then the value r is large enough for us to fit H into G[
⋃

i∈C Vi].

However, if |C| is even and H is an unbalanced bipartite graph, then that strategy does

not work. For such a case, we need to consider a sun instead.

The following two lemmas provide partitions of H suitable for our purpose. The

first finds a ‘balanced’ homomorphism of H into an odd cycle Cr and the second finds

a ‘balanced’ homomorphism of H into a suitable sun. As the two proofs are similar, we

omit the proof of the first lemma here. It will be available in the appendix of the online

version [12].

Lemma 5.4. Suppose 0 < 1/d ≪ β ≪ 1/r, δ ≪ 1/1 < 1 and r is an odd integer. If H

is a bipartite graph with at most (1 − δ)d vertices and bandwidth at most βd satisfying

1(H) ≤ 1, then we can find a partition X1, . . . , Xr such that the following hold.

• For each i ∈ [r], we have |Xi| ≤ d
r .

• Every edge of H is between Xi and Xi+1 for some i ∈ [r] (taking Xr+1 = X1).

Lemma 5.5. Suppose 1/d ≪ β ≪ 1/r, δ ≪ ε, 1/1 ≤ 1 and R0 is a (2s, q)-sun with

r = s + q and q ≤ s. Suppose that H is a bipartite graph having at most (1 − δ)d vertices

and bandwidth at most βd, with 1(H) ≤ 1. Then, we can find a partition {Xu : u ∈ V(R0)}
of V(H) as follows.

• For each u ∈ V(R0), we have |Xu| ≤ d
r .

• Every edge of H is between Xu and Xv for some uv ∈ E(R0).

Proof. As H has bandwidth at most βd, there exists an ordering x1, . . . , x|H| of V(H)

such that xixj ∈ E(H) implies |i − j| ≤ βd. Write A ∪ B, where |A| ≥ |B|, for the bipartition

of H, and set γ = |B|/|A|; note that 1/1 ≤ γ ≤ 1. We label the vertices of R0 as follows.

Let u1, . . . , u2s be the vertices of the cycle in order, let p1, . . . , pq be the indices for which

upi
has a leaf neighbour (where each pi is even), and let the leaf neighbour of upi

be vpi

for each i ∈ [q]. We will first find a partition {Xi : i ∈ [r]} ∪ {X ′
pℓ

: ℓ ∈ [q]} of V(H) and later

we convert this to a desired partition {Xu : u ∈ V(R0)}. We consider all indices in the sun
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22 J. Haslegrave et al.

(respectively in the partition of H) up to the congruence modulo 2s (respectively r), that

is, ua+2s = ua and Xa+r = Xa for all a ∈ N.

Let t = ⌈(2β)−1/2 + 1⌉. We divide the vertices of H according to the ordering as

follows: for each i ∈ [t2], let

YA
i = {xj ∈ A : (2i − 3)βd < j ≤ (2i − 1)βd} and

YB
i = {xj ∈ B : (2i − 2)βd < j ≤ 2iβd}.

Note that this guarantees that no edge of H is between YA
i and YB

j with j /∈ {i − 1, i} and

V(H) =
⋃

i∈[t2](Y
A
i ∪ YB

i ). For each i ∈ [t] and C ∈ {A, B}, let

WC
i =

⋃

j∈[s]

YC
(i−1)t+j and ZC

i =
⋃

j∈[t]\[s]

YC
(i−1)t+j.

In the claim below, we will decide to which part Xℓ we assign the vertices in

ZC
i . To make such an assignment possible while keeping the edges only between two

consecutive parts, we allow the vertices in WC
i to be assigned to some other parts. As

each set WC
i is much smaller than ZC

i , the uncontrolled assignments of WC
i will not harm

us too much. Indeed, the set W =
⋃

i∈[t](W
A
i ∪ WB

i ) has size at most s · t · 2βd < 2rβ1/2d <

δ2d/r.

Now, we decide to which part Xu we assign ZC
i . For this, we partition the set

[t] into I1, . . . , Is, J1, . . . , Jq as in the following claim. If i ∈ Iℓ, then we will later assign

the vertices in ZA
i and ZB

i to Xu2ℓ−1
and Xu2ℓ

, respectively. If i ∈ Jℓ′ , then we will later

assign the vertices in ZA
i and ZB

i to Xvp
ℓ′

and Xup
ℓ′

, respectively. As we do not know how

unbalanced the two sets ZA
i and ZB

i are for each i, we prove the following claim using

random assignments.

Claim 5.6. There exists a partition I1, . . . , Is, J1, . . . , Jq of [t] satisfying the following.

• For each ℓ ∈ [s] and C ∈ {A, B}, we have |
⋃

i∈Iℓ
ZC

i | ≤ (1−δ2)d
r .

• For each ℓ′ ∈ [q], we have |
⋃

i∈Jℓ′
ZA

i | ≤ (1−δ2)d
r and |

⋃

i∈Jℓ′
ZB

i ∪
⋃

i∈Ip
ℓ′

ZB
i | ≤

(1−δ2)d
r .

Proof of claim. We add each ℓ ∈ [t] independently to one of I1, . . . , Is, J1, . . . , Jq uniformly

at random. Note that for each set, ℓ is in the set with probability 1/(s + q) = 1/r.

Standard concentration inequalities (e.g., Azuma’s inequality) easily show that, with
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positive probability, we can ensure that for each ℓ ∈ [s] and ℓ′ ∈ [q] we have

|
⋃

i∈Iℓ

ZA
i |, |

⋃

i∈Iℓ

ZB
i |, |

⋃

i∈Jℓ′

ZA
i | ≤ |A|

r
+ β1/5d ≤ (1 − δ)d

(1 + γ )r
+ β1/5d ≤ (1 − δ2)d

r
,

|
⋃

i∈Ip
ℓ′

ZB
i ∪

⋃

i∈Jℓ′

ZB
i | ≤ 2|B|

r
+ β1/5d ≤ 2γ (1 − δ)d

(1 + γ )r
+ β1/5d ≤ (1 − δ2)d

r
.

Here, we used |H| = (1 + γ )|A| ≤ (1 − δ)d and β1/5 < δ2/(10r) and 2γ /(1 + γ ) ≤ 1 as

γ ≤ 1. �

With these sets I1, . . . , Is, J1, . . . , Jq, we can distribute the vertices as planned.

Assume we have already distributed vertices in
⋃

i∈[kt] Yi to X1, . . . , X2s and X ′
p1

, . . . , X ′
pq

in such a way that for some ℓ′ ∈ [s] every vertex in YB
kt is in X2ℓ′ . If k = 0, then we assume

ℓ′ = 0.

If k + 1 ∈ Iℓ, choose ℓ∗ ∈ [s] such that ℓ′ + ℓ∗ ∈ {ℓ, ℓ + s}. We allocate vertices in

YA
kt+1, YB

kt+1, YA
kt+2, . . . , YB

kt+ℓ∗ to X2ℓ′+1, X2ℓ′+2, . . . , X2ℓ−1, X2ℓ, respectively, and we allocate

the remaining vertices in WA
k+1 ∪ ZA

k+1 to X2ℓ−1 and the remaining vertices in WB
k+1 ∪ ZB

k+1

to X2ℓ.

If k + 1 ∈ Jℓ for some ℓ ∈ [q], choose ℓ∗ ∈ [s] such that ℓ′ + ℓ∗ = pℓ. We allocate

vertices in YA
kt+1, YB

kt+1, YA
kt+2, . . . , YB

kt+ℓ∗ to X2ℓ′+1, X2ℓ′+2, . . . , Xpℓ−1, Xpℓ
, respectively and

we allocate the remaining vertices in WA
k+1 ∪ ZA

k+1 to X ′
pℓ

and the remaining vertices in

WB
k+1 ∪ ZB

k+1 to Xpℓ
.

By repeating this for k = 0, . . . , t, we distribute all vertices. For each i ∈ [s] and

j ∈ [q], let Xui
= Xi and Xvpj

= X ′
pj

. Then, by the bandwidth condition, all edges of H

meeting YA
i are between YA

i and YB
i−1 ∪ YB

i , so we know that each edge of H is between

Xu and Xv for some uv ∈ E(R0). As |W| < δ2d/r, for each u = u2ℓ−1, v = vpℓ′
∈ V(R0) the

above distribution ensures that

|Xu| ≤ |
⋃

i∈Iℓ

ZA
i | + |W| ≤ d

r
and |Xv| ≤ |

⋃

i∈Jℓ′

ZA
i | + |W| ≤ d

r
.

Again, as |W| < δ2d/r, for each u = u2ℓ, u′ = upℓ′
∈ V(R0) where 2ℓ /∈ {p1, . . . , pq}, we

have

|Xu| ≤ |
⋃

i∈Iℓ

ZB
i | + |W| ≤ d

r
, and |Xu′ | ≤ |

⋃

i∈Ip
ℓ′

ZB
i ∪

⋃

i∈Jℓ′

ZB
i | + |W| ≤ d

r
.

This proves the lemma.
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24 J. Haslegrave et al.

5.2 Proof of Lemma 4.1

The last ingredient for the dense case is the following result of Voss and Zuluaga

providing a long cycle in 2-connected graphs.

Lemma 5.7. [40] Suppose that a graph R is a 2-connected graph on at least 2d vertices

with δ(G) ≥ d. If R is a bipartite graph with vertex partition A ∪ B, then R has an even

cycle of length at least min{2|A|, 2|B|, 4d − 4}. If R is not a bipartite graph, then it has an

odd cycle with length at least min{|R| − 1, 2d − 1}.

Proof of Lemma 4.1. Let d′ := d/n > η. We can choose numbers r1 ∈ N and β, ε′, τ > 0

such that

0 < 1/d ≪ α ≪ β ≪ 1/r1 ≪ ε′ ≪ τ ≪ η, δ, ε < 1.

We apply Lemma 5.1 to G with ε′, τ , d′ playing the roles of ε, τ , d to obtain a

partition V1, . . . , Vr of V(G) and a corresponding reduced graph R with V(R) = [r], 1/ε′ ≤
r ≤ r1, such that (1−ε′)n

r ≤ |Vi| ≤ (1+ε′)n
r for each i ∈ [r], G[Vi, Vj] is (ε′, τ+)-regular for each

ij ∈ E(R), and d(R) ≥ (d′ − 2τ)r.

As d(R) ≥ (d′ − 2τ)r, we can find a 2-connected subgraph R′ of R with

d(R′) ≥ (d′ − 3τ)r and δ(R′) ≥ 1

2
(d′ − 3τ)r.

One easy way to see such a graph R′ exists is to apply Lemma 3.2 to R to obtain R′ with

τ , 1/4 playing the roles of ε1, ε2.

Let r0 := (d′ − 4τ)r. Now, we will find a graph R0 in R′, which is either an odd

cycle of length at least r0 or a (2a, b)-sun with a + b ≥ r0. This will provides a structure

in G suitable for us to use the blow-up lemma.

If R′ is not a bipartite graph, we let R0 be an odd cycle of length at least min{|R′|−
1, 2δ(R′) − 1} ≥ r0 in R′, as guaranteed by Lemma 5.7.

If R’ is bipartite with vertex bipartition A ∪ B and |A| ≤ |B|, then we let R0 be a

(2a, b)-sun in R′ for some a, b with a+b ≥ r0. We claim that such a sun exists. If |A| ≥ r0,

then Lemma 5.7 yields an even cycle C of length at least min{2|A|, 4δ(R′) − 4} ≥ 2r0 in

R′. This is a (2r0, 0)-sun as claimed.
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If |A| < r0, then let p = r0 − |A|. As |A| ≤ |B|, we have

(d′ − 3τ)r ≤ d(R′) = 2e(R′)

|R′| ≤ 2|A||B|
|A| + |B| ≤ min{2|A|, |B|}.

Thus, we have p ≤ r0
2 = 1

2 (d′ − 4τ)r and r0 ≤ (d′ − 3τ)r ≤ |B|. Now, as |A| = r0 − p, we

use Lemma 5.7 to find an even cycle C of length at least min{2|A|, 4δ(R′) − 4} ≥ 2|A| in

R′, which contains all vertices in A. Then |B \ V(C)| = |B| − |A| > p. As each vertex in

B \ V(C) has at least δ(R′) ≥ 1
2 (d′ − 3τ)r > p neighbours in A, we can find a matching

of size at least min{|B \ V(C)|, p} ≥ p in R′[A, B \ V(C)]. This matching together with the

cycle C forms a (2|A|, p)-sun with |A| + p = r0 as claimed.

Now, using Lemma 5.4 or Lemma 5.5 with ε′, R0, (1 − ε/2)d playing the roles of

δ, R0, d, respectively, we can partition V(H) into {Xu : u ∈ R0} where for each i ∈ [p] we

have

|Xi| ≤ (1 − ε/2)d

r0

≤ (1 − ε/3)
n

r
≤ (1 − ε′)|Vi|,

and every edge of H is between Xu and Xv for some uv ∈ E(R0). Hence, 1–3 in

Theorem 5.2 are all satisfied with ε′, τ , R0 playing the roles of ε, τ , R0, respectively, and

we conclude that G contains H as a subgraph. This proves the lemma. �

6 Subdivisions in Robust Expanders with Medium Density

In this section, our goal is to prove Lemma 4.2, which finds an H-subdivision in a robust

expander with medium density.

We first prove the following lemma, which bounds the number of high degree

vertices in our expanders.

Lemma 6.1. Let 0 < 1/d ≪ ε1, ε2 ≪ ε, 1/1 < 1, let H be a graph with at most (1 − ε)d

vertices satisfying 1(H) ≤ 1, and let G be an n-vertex graph. Define

m := 2

ε1

log3

(

15n

ε2d

)

, and L := {v ∈ V(G) : dG(v) ≥ dm10}.

Suppose G is an (ε1, ε2d)-robust-expander. If |L| ≥ d, then G contains H as a subdivision.

Proof. Let V(H) = {x1, . . . , xh} with h ≤ (1 − ε)d and let xa1
xb1

, . . . , xah′ xbh′ be an

arbitrary enumeration of E(H) with h′ = e(H) ≤ 1(1 − ε)d.
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Take a set Z = {v1, . . . , vh} of h distinct vertices in L. Then, for each i ∈ [h], the

set Xi := N(vi) has size at least dm10. Assume that we have pairwise internally disjoint

paths P1, . . . , Pℓ with 0 ≤ ℓ < h′ where Pj is a path between vaj
and vbj

of length at most

2m.

Let Wℓ =
⋃

j∈[ℓ] Int(Pj) be the union of the interior vertices of the paths. As

|Wℓ| + |Z| ≤ h′ · 2m + h ≤ 41dm ≤ ρ(dm10) · dm10/4, we can apply Lemma 3.3 to

get an Xaℓ+1
, Xbℓ+1

-path P avoiding Wℓ ∪ Z of length at most m. Extending P, we obtain a

vaℓ+1
, vbℓ+1

-path Pℓ+1 of length at most m+2 ≤ 2m. By repeating this for ℓ = 0, 1, . . . , h′−1

in order, we obtain
⋃

j∈[h′] Pj, which is an H-subdivision, in G. �

Proof of Lemma 4.2. As d
n ≤ η ≪ ε1, ε2, we have that m100 =

(

2
ε1

log3
(

15n
ε2d

) )100
< n

d
.

Hence

dm100 < n. (3)

To derive a contradiction, we assume that G does not contain an H-subdivision. Then by

Lemma 6.1, we have

|L| < d. (4)

For a contradiction, we will find an H-subdivision in G − L. For this purpose, we

need not only that L is small, but also that the graph G − L is still relatively dense to

ensure an H-subdivision. We claim that

d(G − L) ≥ d

m2
. (5)

This follows essentially from the robust expansion property of G. Indeed,

otherwise a random vertex set X of size dm2 chosen uniformly at random from G − L

has expected degree sum E[
∑

x∈X dG−L(x)] ≤ d
m2 · |X|. Hence, there exists a set X ⊆

V(G − L) of size dm2 with
∑

x∈X dG−L(x) ≤ d
m2 · |X|. Then, F = ∂G−L(X) has at most

d
m2 |X| ≤ d(G)ρ(|X|)|X| edges as d(G) ≥ ε2d, and ρ(dm2) ≥ ρ(n) > 1

m > 1
ε2m2 due to

ε1 ≪ ε. Note that, by definition of F, once we delete the edges of F from G, the external

neighbourhood of X lies entirely in L, that is, NG\F(X) ⊆ L. However, this implies

|NG\F(X)| ≤ |L| (4)
< d ≤ ρ(dm2) · dm2 = ρ(|X|) · |X|,

contradicting that G is an (ε1, ε2d)-robust-expander. Hence, we have (5).
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Now that G − L is still relatively dense and no vertex in G − L has too large a

degree, as 1(G − L) ≤ dm10, we can find many webs with disjoint interiors in G − L.

Claim 6.2. The graph G − L contains (m2, m10, d/m3, 4m)-webs W1, . . . , W2d where the

interiors of the webs are pairwise disjoint.

To find such webs, we follow the strategy of [14, Lemma 5.7]. We include the

proof in the online appendix [12].

Let W1, . . . , W2d be the (m2, m10, d/m3, 4m)-webs guaranteed by the claim. For

each i ∈ [2d], let wi be the core vertex of the web Wi and let C =
⋃

i∈[2d] Ctr(Wi) ∪ L, and

so

|Ext(Wi)| = dm9 and |C| ≤ 2d(m2 · 4m + 1) + d ≤ 10dm3.

Before moving on, we set up some notation. For a path Q with endvertices a ∈
Ext(Wi) and b ∈ Ext(Wj), for some distinct i, j ∈ [2d] such that Q ∩ (Int(Wi) ∪ Int(Wj)) = ∅,

we let Q∗ = Q ∪ P(Wi, a) ∪ P(Wj, b) be the wi, wj-path extending Q in Wi ∪ Wj.

For a given set Z, we say a web W is Z-good if |Int(W) ∩ Z| ≤ m12/2. We define

(X, I, I ′,A,Q, f ) be a good path system if the following hold.

A1 X ⊆ V(H) and f : X → [2d] is an injective map with f (X) = I.

A2 For each x ∈ X, writing y1, . . . , ys for the neighbours of x in H[X], A contains

distinct vertices af (x),f (yi)
∈ Ext(Wf (x)) for i ∈ [s].

A3 Q is a collection of paths Qij indexed by unordered pairs
( ij∈
[2d]2

)

, such

that for each edge xy ∈ E(H[X]) Q contains a path Qf (x)f (y) of length at

most m with endpoints af (x),f (y) and af (y),f (x), and furthermore Qf (x)f (y) ∩
(

Int(Wf (x)) ∪ Int(Wf (y))

)

= ∅.

A4 For each x ∈ X, writing y1, . . . , ys for the neighbours of x in H[X], the paths

P(Wf (x), af (x),f (y1)), . . . , P(Wf (x), af (x),f (ys)
)

are pairwise disjoint except at wf (x).

A5 {Q∗
ij −C : Qij ∈ Q, ij ∈ [2d]2} is a collection of pairwise disjoint paths in G−C.

A6 I ′ = {i′ ∈ [2d] : Wi′ is notV(Q)-good} ⊆ [2d] \ I.

We shall show that there is a good path system with X = V(H), which would

finish the proof as by A1–A5,
⋃

e∈E(H) Q∗
e is an H-subdivision.
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We proceed as follows (see Figure 4 for an example).

Step 0. Fix an arbitrary ordering σ on V(H), say the first vertex is x1. Let X1 = {x1},
f (x1) = 1, I1 := {1}, I ′

1 := ∅, A1 = ∅ and Q1 = ∅. Then,(X1, I1, I ′
1,A1,Q1, f ) is a good path

system. Proceed to Step 1.

Step i, i ≥ 1. Stop if either Xi = V(H), or Ii ∪ I ′
i = [2d].

• Add a new vertex.

Let x be the first vertex in σ on V(H) \ Xi. Choose an unused V(Qi)-good

web Wi∗ with i∗ ∈ [2d] \ (Ii ∪ I ′
i) and let f (x) = i∗.

Find vertices af (x),f (y1), . . . , af (x),f (ys)
and af (y1),f (x), . . . , af (ys),f (x), together

with paths Qf (x)f (y1), . . . , Qf (x)f (ys)
, satisfying A2–A5 with respect to Xi ∪

{x}, and add these vertices to Ai and paths to Qi to obtain Ai+1 and Qi+1.

• Update bad webs.

– Let I ′
i+1 = {i′ ∈ [2d] : Wi′ is notV(Qi+1)-good}.

– Set Ii+1 = Ii ∪ {i∗} \ I ′
i+1 and Xi+1 = f −1(Ii+1).

– Replace f with its restriction f |Xi+1
on Xi+1.

Proceed to Step (i + 1) with the new good path system (Xi+1, Ii+1, I ′
i+1,Ai+1,Qi+1, f ).

The above process must terminate in at most 2d steps, since at each step

Ii+1 ∪ I ′
i+1 is a strict superset of Ii ∪ I ′

i. Let (X, I, I ′,A,Q, f ) be the final good path system

obtained. Note that the sequence |X1|, |X2|, . . . might not be an increasing sequence, as

we may delete some elements when updating the list of bad webs in each step. However,

we will show that eventually X = V(H) as desired.

First, we claim that |I ′| ≤ d/m. Note that Q might contain some paths which

connect Wi with i ∈ I ′. However, as at most 1(H) ≤ 1 paths are added at each step,

|V(Q)| ≤ 2d · 1(m + 1) ≤ dm2.

Recall that {Int(Wj) : j ∈ [2d]} are pairwise disjoint and so, by definition of I’, |I ′|·m12/2 ≤
|V(Q)|. Thus, |I ′| ≤ |V(Q)|

m12/2
< d/m as claimed.

Now since |Ii ∪ I ′
i| ≤ |H| + |I ′| < 2d, the process must terminate with X = V(H).

To finish the proof, it only remains to show that all connections in each step, that is,

vertices in Ai+1 \Ai and paths in Qi+1 \Qi, can indeed be constructed to keep the process

running.

Let x, i∗ = f (x) and {y1, . . . , ys} = NH(x) ∩ (Xi ∪ {x}) be as in Step i, for some i ≥ 1.

Consider now j ∈ Ii∪{i∗} = f (Xi∪{x}). Note that as (Xi, Ii, I ′
i,Ai,Qi, f ) is a good path system

at the beginning of this step, by A6, Wj is V(Qi)-good. Also, as V(Qi) is disjoint from C
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Extremal Density for Sparse Minors and Subdivisions 29

Fig. 4. An example for H = K1,1,2 (the diamond graph).

by A3 and A5, at most 1(H) ≤ 1 paths in Ctr(Wj) are involved in previous connections

Q∗
i := {Q∗ : Q ∈ Qi}. Thus, there are at least (m2 − 1)m10 − m12/2 ≥ m12/4 available

paths in Int(Wj) \ Ctr(Wj) (and their corresponding paths in Ctr(Wj)) disjoint from V(Q∗
i );

let Aj ⊆ Ext(Wj) be the union of the leaves of the stars corresponding to these available

paths. Then |Aj| ≥ a := dm9/4.

Now, for each j ∈ [s], since

|C ∪ Int(Wi∗) ∪ Int(Wf (yj)
) ∪ V(Q∗

i )| ≤ 10dm3 + 20m · m12 + 30m|Q| ≤ dm4 ≤ ρ(a)a/4,

using Lemma 3.3, we can find the desired path Qi∗f (yj)
, with length at most m,

connecting Ai∗ and Af (yj)
while avoiding C ∪ Int(Wi∗)∪ Int(Wf (yj)

)∪ V(Q∗
i ), and take ai∗,f (yj)

and af (yj),i
∗ to be its endpoints.

This finishes the proof of Lemma 4.2. �
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7 Subdivisions in Sparse Robust Expanders

In this section, we prove Lemma 4.3. First, we show in Section 7.1 that we cannot have

too many edges sticking out of a small set of vertices, for otherwise we can obtain H

even as a subgraph in G. In particular, G − L is still dense (Claim 7.1), and consequently

it must contain a subexpander F with d(F) = �(d).

Note that this subexpander could be a lot smaller and hence we have no control

on its density. Suppose for a moment that F is sparse, and additionally F is large, then it

inherits the ‘bounded’ maximum degree from G − L. This case is handled in Section 7.2.

For such an ‘almost regular’ sparse expander, we can work entirely within it to find an

H-subdivision (Lemma 7.3).

Now, if F has medium edge density, then we can invoke Lemma 4.2 on F and we

are done. Therefore, F must either be sparse and small, or very dense. In both cases, F is

small in order. To this end, we may assume that all subexpanders in G − L are small. In

Section 7.3, we shall iteratively pull out many small expanders in G−L that are pairwise

far apart (C1–C4), most of which expand well inside G − L (Claim 7.4).

We then in Section 7.4 link these nicely expanding small expanders to construct

nakjis (Claim 7.5). The strategy here is to extract nakjis iteratively. Every time, we step

far away in G − L from previously built nakjis and expand an appropriate collection of

expanders to find the next one.

Finally, the finishing blow is delivered in Section 7.5, in which we anchor on the

nakjis and connect them to build an H-subdivision.

7.1 G − L still dense

As d < m100 =
(

2
ε1

log3
(

15n
ε2d

))100
and 1/d ≪ 1/1, we have n > 101d1. Suppose to the

contrary that G does not have any H-subdivision. Then by Lemma 6.1, |L| < d.

We first establish the following claim, stating that the density does not drop

much upon removing a small set of vertices. The idea is that if lots of edges are incident

to a small set, then we will see a dense and skewed bipartite subgraph, which contains

a copy of H.

Claim 7.1. For any set U ⊆ V(G − L) of size at most n/m200, we have d(G − L − U) ≥ εd/6.

Proof of claim. Let

Z := {v ∈ V(G − L) : |NG(v, L)| > (1 − ε)d/2}.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab154/6311545 by Korea Advanced institute of Science and Technology user on 21 O

ctober 2021
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Suppose that |Z| > 1d1. For a given function f : Z →
(L
1

)

, we let

t(f ) :=
∑

Y∈(L
1)

min{|f −1(Y)|, 1}.

Let f : Z →
(L
1

)

be a function with maximum t(f ) among all functions satisfying f (v) ⊆
NG(v, L) for every v ∈ Z. As |NG(v, L)| ≥ 1, such a function f must exist. However, as

|Z| > 1d1 > 1
(|L|

1

)

, there exist 1 + 1 vertices u1, . . . , u1+1 ∈ Z with f (u1) = · · · = f (u1+1).

Let X = NG(u1, L). If any set Y ∈
(X
1

)

satisfies |f −1(Y)| < 1, then we can redefine f (u1)

to be Y to increase t(f ). Hence, by the maximality of f , for every set Y ∈
(X
1

)

, there are

1 distinct vertices v1
Y , . . . , v1

Y ∈ Z such that Y ⊆ N(vi
Y , L) for each i ∈ [1] and vi

Y 6= v
j
Y ′

for all Y 6= Y ′ ∈
(X
1

)

and i, j ∈ [1]. It is easy to see that X together with the vertices

{vi
Y : Y ∈

(X
1

)

, i ∈ [1]} induces a graph containing any (1−ε)d-vertex bipartite graph with

maximum degree at most 1. Hence,G contains H as a subgraph, a contradiction. Thus,

|Z| ≤ 1d1.

As n ≥ 101d1 and |Z ∪ L| < 21d1, at least 4n/5 vertices in V(G) − L − Z have

δ(G)− 1
2 (1 − ε)d ≥ εd/4 neighbours in G − L. Hence, e(G − L) ≥ 1

2 (4n/5) · (εd/4) ≥ εdn/10.

Then, G − L − U has at least e(G − L) − 1(G − L)|U| ≥ εdn/10 − dm10 · (n/m200) ≥ εdn/12

edges. �

From this point on, we will work with G′ := G − L. Recall that

1(G′) ≤ dm10 ≤ m110. (6)

7.2 ‘Bounded’ degree sparse expander

As outlined at the start, since G − L is still dense, it contains a subexpander F at our

disposal. We first take care of the case when this subexpander is sparse and ‘almost

regular’.

We will use the following proposition to take many vertices that are pairwise

far apart ([21, Proposition 5.3] taking s = 2000).

Proposition 7.2. Suppose that F is an n-vertex graph with 1(F) ≤ log50000 n, and n

sufficiently large. Then there is a set of at least n1/5 vertices pairwise having distance

at least
log n

100000 log log n
.
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Lemma 7.3. Let 0 ≪ 1/d ≪ ε1, ε2 ≪ ε, 1/1 < 1 and let H be a graph with at most d

vertices and 1(H) ≤ 1. Suppose F is an n-vertex (ε1, ε2d)-robust-expander with δ(F) ≥
ε2d. If 1(F) ≤ log30000 n, then F contains an H-subdivision.

Proof. Let

r := (log log n)5 and r′ =
√

log n.

As d ≤ δ(F)/ε2 ≤ 1(F)/ε2 ≤ log30001 n, Proposition 7.2 implies that we can find vertices

v1, . . . , vh, where h = |H| ≤ d, such that the distance between any two of them is at least

2r + 2r′. Let x1, . . . , xh be the vertices of H and e1 = xa1
xb1

, . . . , eh′ = xah′ xbh′ be the edges

of H where h′ = e(H) ≤ 1d/2.

Suppose that we have Q1, . . . , Qℓ for some 0 ≤ ℓ < h′ such that:

B1 for each i ∈ [ℓ], Qi is a vai
, vbi

-path with length at most 2 log4 n;

B2 for distinct i, j ∈ [ℓ], the paths Qi and Qj are internally vertex disjoint;

B3 for each i ∈ [h], for the edges {ek1
, . . . , eks

} = {ekj
: kj ∈ [ℓ], xi ∈ ekj

} with

k1 < · · · < ks, the paths Qk1
, . . . , Qks

form consecutive shortest paths from

N(vi) within Br(vi) \ {vi}; and

B4 for any i ∈ [h] and j ∈ [ℓ] with xi /∈ ej, Br(vi) and V(Qj) are disjoint.

Let

W1 =
⋃

i∈[ℓ]

Int(Qi), W2 :=
⋃

i∈[h]: xi /∈eℓ+1

Br(vi) and W = W1 ∪ W2.

Note that v1, . . . , vh are pairwise a distance at least 2r + 2r′ apart, so by B4 we have

|Br
F−W(vkℓ+1

)| = |Br
F−W1

(vkℓ+1
)| = |Br−1

F−W1
(B1

F−W1
(vkℓ+1

))|

for each k ∈ {a, b}. Note that |B1
F−W1

(vkℓ+1
)| ≥ ε2d − 1 ≥ ε2d/2 by B3 and B4. By B3, we

can apply Proposition 3.5 with B1
F−W1

(vkℓ+1
), W1,∅, 1 playing the roles of X, P, Y, q, and

then for each k ∈ {a, b} we have

|Br
F−W(vkℓ+1

)| = |Br
F−W1

(vkℓ+1
)| ≥ exp((r − 1)1/4) ≥ d log8 n,

where the last inequality follows from d ≤ log30001 n. This implies that

|W1| ≤ h′ · 2 log4 n ≤ 1d log4 n <
1

4
ρ(|Br

F−W(vkℓ+1
)|) · |Br

F−W(vkℓ+1
)|.
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Hence, by applying Proposition 3.5, now with Br
F−W(vkℓ+1

),∅, W1 playing the roles of

X, P, Y for each k ∈ {a, b}, we similarly have

|Br+r′
F−W(vkℓ+1

)| = |Br+r′
F−W1

(vkℓ+1
)| ≥ exp((r′)1/4) ≥ exp( 9

√

log n).

As 1(F) ≤ log30000 n and d ≤ log30001 n, we then have

|W| ≤ |W1| + |W2| ≤ 1d log4 n + d · 2(log30000 n)r <
1

4
ρ

(

exp( 9
√

log n)

)

exp( 9
√

log n).

Therefore, by Lemma 3.3, there is a path in F − W of length at most log4 n between

Br+r′
F−W(vaℓ+1

) and Br+r′
F−W(vbℓ+1

). So, we can take Qℓ+1 to be a shortest path between vaℓ+1

and vbℓ+1
in F−W, which has length at most log4 n+2r+2r′ ≤ 2 log4 n. Hence, Q1, . . . , Qℓ+1

satisfy B1–B4. Repeating this for ℓ = 0, 1, . . . , h′ − 1, then the union of all paths
⋃

i∈[h′] Qi

is an H-subdivision. �

7.3 Many small subexpanders

With Lemma 7.3 at hand, we can now proceed to show that all subexpanders in G′ = G−L

must be small and that we can find many of them pairwise far apart.

Let F be a maximal collection of subgraphs of G′ satisfying the following.

C1 For each F ∈ F , F is an (ε1, ε2d)-expander with d(F) ≥ εd/10 and δ(F) ≥
εd/20 and F is ε2νd−connected.

C2 For distinct F, F ′ ∈ F , we have B

√
log n

G′ (V(F)) ∩ B

√
log n

G′ (V(F ′)) = ∅.

For each F ∈ F , let

nF = |F|, mF = 2

ε1

log3

(

15nF

ε2d

)

and U =
⋃

F∈F
B

2
√

log n

G′ (V(F)).

If some F ∈ F satisfies m100
F < d(F) <

√
nF , then F satisfies the conditions on

Lemma 4.2. Hence, Lemma 4.2 yields an H-subdivision in F, a contradiction. Thus, either

nF ≤ d(F)2 ≤ 1(G′)2
(6)
≤ m220 or d(F) ≤ m100

F .

If the latter case holds, we claim that nF ≤ exp( 50
√

log n). Indeed, if nF > exp( 50
√

log n)

holds, then we have

1(F) ≤ 1(G′)
(6)
≤ m110 ≤ log30000 nF .
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34 J. Haslegrave et al.

So, we can apply Lemma 7.3 on F to get an H-subdivision, a contradiction. Thus, we

have

C3 for each F ∈ F , nF ≤ max{m220, exp( 50
√

log n)} = exp( 50
√

log n).

Moreover, if |F | < n0.99, then by (6) this implies that

|U| ≤ n0.99 · exp( 50
√

log n) · 21(G′)2
√

log n ≤ n

m200
.

Hence, Claim 7.1 implies that G′ − U has average degree at least εd/6. Thus Lemma 3.2

finds another expander F satisfying C1 in G′ − U. Then C2 also holds, contradicting the

maximality of F . Hence, we have

C4 |F | ≥ n0.99.

Furthermore, the following claim states that most of the expanders in F expand

well in G′.

Claim 7.4. There exist at least |F |−d log n graphs F in F such that for each 1 ≤ r ≤ log n,

|Br
G′(V(F))| ≥ 1

d
exp(r1/4).

Proof of claim. Fix a choice of 1 ≤ r ≤ log n and consider a set I ⊆ F with |I| = d

and let X =
⋃

F∈I V(F). Note that by C1, |X| ≥ εd2/10, and so |L| < d ≤ 1
4ρ(|X|)|X|. By

Proposition 3.5 with L playing the role of Y, we have

|Br
G′(X)| ≥ exp(r1/4).

Then by the pigeonhole principal, there exists F ∈ I such that

|Br
G′(V(F))| ≥ 1

d
exp(r1/4).

Therefore, whenever there are d members left in F , we can keep picking out one, the

r-ball around which expands nicely in G′. Now varying r, we see that there are at least

|F | − d log n graphs F in F as claimed. �

By losing a factor of 2 in size, that is, instead of C4, |F | ≥ n0.99/2, we may assume

now every member in F expands well in G’ as in Claim 7.4
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7.4 Linking subexpanders to nakjis

We will now connect these far apart nicely expanding subexpanders in F to obtain d

separate (1, exp( 50
√

log n), m, 2
√

log n)-nakjis to anchor.

More precisely, take the following collections with maximum possible p ∈ N.

D1 C := {Ci,j : i ∈ [p], 0 ≤ j ≤ 1} is a collection of vertex sets of distinct graphs

in F .

D2 For each (i, j) ∈ [p]×[1], we have a vertex set Si,j with Ci,j ⊆ Si,j ⊆ B
10
√

log n

G′ (Ci,j)

with |Si,j| = exp( 50
√

log n) and G[Si,j] is connected.

D3 {Pi,j : (i, j) ∈ [p] × [1]} is a collection of pairwise vertex disjoint paths, each

of length at most 10m, such that Pi,j is a ui,j, vi,j-path where ui,j ∈ Ci,0 and

vi,j ∈ Si,j and the internal vertices of Pi,j are not in Ci,0 ∪ Si,j.

D4 For distinct (i, j), (i′, j′) ∈ [p] × [1], Pi,j is disjoint from Si′,j′ and
⋃

i′′∈[p]\{i} Ci′′,0.

So, by C1 and D1–D4, we see that for each i ∈ [p],
⋃

0≤j≤1 Ci,j and
⋃

j∈[1] Pi,j form

a (1, exp( 50
√

log n), m, 2
√

log n)-nakji, in which Ci,0 is the head and each Ci,j, j ∈ [1], is a

leg.

Claim 7.5. We have p ≥ d.

Proof of claim. Suppose to the contrary that p < d. Let W be the set of vertices involved

in C and all the paths Pi,j, and W ′ be a
√

log n-ball in G′ around W. That is,

W =
⋃

(i,j)∈[p]×[1]

V(Pi,j) ∪
⋃

C∈C
V(C), and W ′ = B

√
log n

G′ (W).

Then, by D1–D3 and (6), we see that

|W| ≤ (1 + 1)d ·
(

exp
(

50
√

log n
)

+ 20m
)

≤ exp
(

49
√

log n
)

,

and

|W ′| ≤ exp
(

49
√

log n
)

· 21(G′)
√

log n ≤ n0.1.

We shall find a nakji in G′ − W ′, which will lead to a contradiction to the maximality of

p.

As |F | − |W ′| > n0.98, we can choose two disjoint collections F0,F ′ ⊆ F ,

containing subexpanders disjoint from W ′, with |F0| = d and |F ′| = n0.97. Let X =
⋃

F∈F0
V(F), then by C1, we have |X| ≥ εd2

10 .
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36 J. Haslegrave et al.

Now assume that, for some 0 ≤ ℓ ≤ 1d, we have pairwise vertex disjoint paths

Q1, . . . , Qℓ in G′ satisfying the following for each i ∈ [ℓ].

E1 Qi is a path of length at most 10m from X to F ′
i ∈ F ′.

E2 Q1, . . . , Qℓ are consecutive shortest paths from X within B

√
log n

G′ (X).

E3 Qi is disjoint from W ∪
⋃

j∈[ℓ]\{i} B
10
√

log n

G′ (V(F ′
j)) and it is a shortest path from

V(F ′
i) in B

10
√

log n

G′ (V(F ′
i)).

Let

Q =
⋃

i∈[ℓ]

V(Qi), Q′ = B
10
√

log n

G′ (Q) and W∗ =
⋃

i∈[ℓ]

B
10
√

log n

G′ (V(F ′
i)),

then we have by C3 and (6) that

|Q| ≤ d2m, |Q′| ≤ d2m · 21(G′)
10
√

log n ≤ exp
(

9
√

log n
)

and

|W∗| ≤ ℓ exp
(

50
√

log n
)

· 21(G′)
10
√

log n ≤ exp
(

9
√

log n
)

.

Let F ′′ be the graphs in F ′ \ {F ′
1, . . . , F ′

ℓ}, which do not intersect with Q′. Then, letting

U =
⋃

F∈F ′′ V(F), we have

|U| ≥ |F ′| − ℓ − |Q′| ≥ n0.97 − d2 − exp( 6
√

log n) ≥ n0.9.

We shall connect X and U. First we expand X as follows. As |X| ≥ εd2/10, |L| ≤ d

and ℓ ≤ 1d ≤ |X|
log8|X| , E2 implies that we can apply Proposition 3.5 with X, Q, L playing

the roles of X, P, Y to obtain that

|B
√

log n

G′−Q−W−W∗(X)| = |B
√

log n

G′−Q (X)| ≥ exp( 8
√

log n),

where the first equality follows from X being far from W ∪ W∗ owing to X ∩ W ′ = ∅ and

C2.

As

|L ∪ Q ∪ W ∪ W∗| ≤ 2 exp( 9
√

log n) <
1

4
ρ(exp( 8

√

log n)) · exp( 8
√

log n)

and |U| ≥ n0.9, Lemma 3.3 implies that there exists a path of length at most m between

the sets U and B

√
log n

G′−Q−W−W∗(X) avoiding L ∪ Q ∪ W ∪ W∗. Let Q′
ℓ+1 be a shortest such

path with endvertices say v ∈ B

√
log n

G′−Q−W−W∗(X) and u ∈ U (see Figure 5). Let F ′
ℓ+1 ∈ F ′′ be
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Fig. 5. The proof of Claim 7.5.

the graph containing u. Appending a shortest path in G′ − Q from a vertex of X to v in

B

√
log n

G′−Q (X) to the path Q′
ℓ+1, let the resulting path be Qℓ+1. The choices of W∗, F ′

ℓ+1 and

the path Qℓ+1 ensure that E1–E3 hold for Q1, . . . , Qℓ+1.

Repeating this for ℓ = 0, . . . , d1, we obtain paths Q1, . . . , Qd1. Recall that |F0| =
d and so by the pigeonhole principle, there exists a graph F0 ∈ F0 such that at least

1 paths among {Q1, . . . , Q1d} are incident to F0. Relabelling and keeping the relative

ordering, let those paths be Q1, . . . , Q1 connecting F0 and F ′
1, . . . , F ′

1 ∈ F ′′. Let Cp+1,0 = F0

and Cp+1,i = F ′
i for each i ∈ [1].

Now fix i ∈ [1]. By E3 and the definition of F ′′ ∋ F ′
i, B

10
√

log n

G′ (V(F ′
i)) is disjoint

from Q\V(Qi) and W, and furthermore, by Claim 7.4, we can find a connected subgraph

Sp+1,i ⊆ B
10
√

log n

G′ (V(F ′
i)) containing V(F ′

i), which satisfies D2. Let vp+1,i ∈ Sp+1,i be its

first contact point with Qi, and let Pp+1,i = Qi − Sp+1,i \ {vp+1,i} be the truncated path. It

is routine to check that D1–D4 still hold with the additions of Cp+1,0, and Cp+1,i ⊆ Sp+1,i

and Pp+1,i, i ≤ [1]. This contradicts the maximality of p. Hence, we have p ≥ d, proving

the claim. �
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Fig. 6. Connecting nakjis

7.5 The finishing blow

It is time now to complete the game: we will wire nakjis together to build an H-

subdivision.

Enumerate the vertices of H as x1, . . . , xh and edges of H as e1 = xs1
xt1

, . . . , eh′ =
xsh′ xth′ . Each of the nakjis guaranteed in Claim 7.5 corresponds to a vertex of H. We also

give an ordering on each nakji’s 1 legs: let fx, x ∈ V(H), be such that

{

fx(e) : e ∈ E(H), x ∈ e
}

= [dH(x)].

Assume we have pairwise disjoint paths R1, . . . , Rℓ for some 0 ≤ ℓ < h′ satisfying

the following for each i ∈ [ℓ], where (i′, j′) = (si, fsi
(ei)) and (i′′, j′′) = (ti, fti

(ei)).

F1 Ri is a path between vi′,j′ and vi′′,j′′ with length at most 10m.

F2 Ri does not intersect with any Ci∗,0 for i∗ ∈ [h] and does not intersect with

any Si∗,j∗ ∪ Pi∗,j∗ for (i∗, j∗) ∈ [h] × [1] \ {(i′, j′), (i′′, j′′)}.
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Let (i⊢, j⊢) = (sℓ+1, fsℓ+1
(eℓ+1)) and (i⊣, j⊣) = (tℓ+1, ftℓ+1

(eℓ+1)). Let

Y =
⋃

(i,j)∈[h]×[1]\{(i⊢,j⊢),(i⊣,j⊣)}
Si,j ∪

⋃

i∈[h]

Ci,0.

Then by C3, D2 and d ≤ m100, we have |Y| ≤ (1 + 1)d exp( 50
√

log n) ≤ exp( 49
√

log n). Let

Z =
⋃

(i,j)∈[h]×[1]

V(Pi,j) ∪
⋃

i∈[ℓ]

V(Ri), X = B
1
2

√
log n

G′−Z (Si⊢,j⊢) and X ′ = B
1
2

√
log n

G′−Z (Si⊣,j⊣).

As |Z ∪ L| ≤ dm2, by D2 we can apply Proposition 3.5 to X and X ′, with Z ∪ L playing the

role of Y to obtain that

|X|, |X ′| ≥ exp( 10
√

log n).

By C2 and D1, D2, we know that X, X ′ does not intersect with Y. As |Y ∪ Z ∪ L| ≤
2 exp( 49

√

log n) < 1
4ρ(|Z|)|Z| for each Z ∈ {X, X ′}, by Lemma 3.3, we can find a path R

from X to X ′ in G′ − Y − Z with length at most m. As Si,j ⊆ B
10
√

log n

G′ (Ci,j), we know G[Si,j]

is connected due to D2, and Ci,j is an (ε1, ε2d)-robust-expander with diameter at most

m due to C1 and D1, using the definition of X, X ′, we can extend Z inside X, X ′ to get

a path from vi⊢,j⊢ to vi⊣,j⊣ satisfying F1 and F2 (see Figure 6). Repeating this for each

ℓ = 0, . . . , h′ − 1, we obtain paths R1, . . . , Rh′ satisfying F1 and F2.

Note that for each i ∈ [h′] and (i′, j′) = (si, fsi
(ei)), (i

′′, j′′) = (ti, fti
(ei)), the path Ri

and Pi′,j′ ∪ Pi′′,j′′ might intersect at their interiors. However, Ri ∪ Pi′,j′ ∪ Pi′′,j′′ contains a

path P∗
ei

from vi′,j′ to vi′′,j′′ .

Moreover, D3 and F2 imply that each P∗
ei

only intersects Csi,0
and Cti,0

at ui′,j′ and

ui′′,j′′ respectively, and P∗
e1

, . . . , P∗
eh′ are all pairwise vertex disjoint. Let P∗ =

⋃

i∈[h′] V(P∗
ei

).

Now, for each i ∈ [h], we consider Ci,0 and set di = dH(xi). Note that Ci,0 intersects

with P∗ only at the distinct vertices ui,1, . . . , ui,di
. We choose a vertex ui,0 ∈ Ci,0 \

{ui,1, . . . , ui,di
}. As G′[Ci,0] is ε2νd-connected with ε2νd > 1, we can find a subdivision

of K1,di
inside Ci,0, where ui,0 corresponds to the centre of the star and the leaves

correspond to ui,1, . . . , ui,di
. These subdivisions of stars together with the paths P∗

ei
all

together yield a subdivision of H in G. This provides a final contradiction and completes

the proof.
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8 Concluding Remarks

8.1 Bounded degree planar graphs as subdivision

We might ask whether we can in fact guarantee subdivisions rather than minors in

Theorem 2.1. Our methods for finding subdivisions only cover bounded-degree graphs,

however. So a natural question might be: what is the best constant c such that every

graph of average degree (c + o(1))t contains a subdivision of every bounded-degree

planar graph of order t?

First, it is easy to see that we can achieve c = 5/2: a planar graph with t vertices

has fewer than 3t edges, and any graph has a bipartite subgraph with at least half the

edges, so after subdividing at most 3t/2 edges we obtain a bipartite subdivision with at

most 5t/2 vertices. Theorem 1.1 then allows us to find a subdivision of this subdivision

in any graph of average degree (5/2 + o(1))t. In fact we can do better.

Lemma 8.1. Any planar graph H on t vertices has a bipartite subdivision with at most

2t − 2 vertices.

Proof. We may assume H is maximal planar, so every face is a triangle and there are

2t − 4 faces. Consider the dual graph H∗. This is a 2-connected 3-regular graph, and so,

by Petersen’s theorem, has a 1-factor. Each edge of this 1-factor corresponds to an edge

of the original graph H. We subdivide each of these edges once. Suppose there is an odd

cycle C in the original graph H. By double-counting edges bordering faces surrounded

by C, there are an odd number of such faces. Thus, the 1-factor in H∗ contains an odd

number of edges crossing C. Thus, we have subdivided an odd number of edges of C, so

C becomes an even cycle in the subdivision. By exactly the same argument, we can see

that any even cycle in H remains even in the subdivision, so the subdivision is bipartite.

It has exactly |H| + |H∗|/2 = 2t − 2 vertices, as required. �

Lemma 8.1 is best possible, since in any maximal planar graph we must

subdivide at least one edge of each face, and this requires at least t − 2 extra vertices.

Together with Theorem 1.1, it immediately gives the following.

Proposition 8.2. For given ε > 0 and 1 ∈ N, there exists d0 such that if d ≥ d0 and H

is a planar graph with at most (1 − ε)d vertices and 1(H) ≤ 1, and G is a graph with

average degree at least 2d, then G contains a subdivision of H.
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Our lower bound from Theorem 2.1 shows only that we cannot improve the

constant 2 in Proposition 8.2 below 3/2. However, no similar example will give a

stronger lower bound, for the following reason. Any t-vertex planar graph H has a

bipartite subdivision with at most 3t/4 vertices in one part (to see this, take a largest

independent set X and subdivide all edges which do not meet X; this is bipartite with

one part being V(H) \ X, which has size at most 3t/4 by the four-colour theorem), and

this subdivision is a subgraph of K3t/4,n for sufficiently large n.

Problem D. What is the right value for the constant in Proposition 8.2? Is it 2, 3/2, or

something in between?

Problem E. What can we say about dT(H) for k-degenerate graphs H for general k ∈ N?

8.2 Better bounds for minor-closed families

As α2(F) ≥ 2t/χ(F), writing χ(F) = max{χ(F) : F ∈ F}, Theorem 2.2 implies the

following Erdoős–Simonovits–Stone type bound for any minor-closed family F :

d≻(F , t) ≤ 2

(

1 − 1

χ(F)
+ o(1)

)

t. (7)

However, this is in general not tight. It is sharp for the disjoint union of cliques of order

χ(F), if such a graph is in F .

Problem F. Determine d≻(F , t) for the nontrivial minor-closed family F . If F is closed

under disjoint union, do we have d≻(F , t) = 2(1 − 1/χ(F) + o(1))t?

In fact, the Hadwiger conjecture would imply d≻(F , t) = 2(1−1/χ(F)+o(1))t for

F closed under disjoint union. To see this, consider the maximum s such that Ks ∈ F .

Then, the Hadwidger conjecture would give χ(F) = s. As the disjoint union of Ks belongs

to F , the above discussion implies d≻(F , t) = 2(1 − 1/χ(F) + o(1))t. However, a minor-

closed family does not have to be closed under disjoint union (e.g., the class of graphs

embeddable in a fixed surface other than the plane), and for such families we may have

d≻(F , t) < 2(1 − 1/χ(F) − c)t for some absolute constant c > 0, as we have seen in

Theorem 2.1.

Another interesting question is to see when the upper and lower bounds arising

from Theorem 2.2 coincide, which motivates the following problem.

Problem G. For which graphs G do we have |2α(G) − α2(G)| = o(|G|)? For which graphs

G do we have |α(G) − |G|
χ(G)

| = o(|G|)? Do all minor-closed families F contain sufficiently

large graphs with this property?
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The case k = 6 of the Hadwiger conjecture, proved by Robertson, Seymour,

and Thomas [35], gives the above conclusion for any minor-closed family for which the

minimal forbidden minors are all connected and include K6. In particular, this applies

to the linklessly embeddable graphs discussed in Section 2.2.

Corollary 8.3. The class L of linklessly embeddable graphs satisfies d≻(L, t) = (8/5 +
o(1))t.

Since the Y1Y-reducible graphs form a subfamily of L containing the extremal

example rK5, the corollary also applies to this class.
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