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A proof of Frankl’s conjecture on cross-union families

Stijn Cambie∗ Jaehoon Kim† Hong Liu∗ Tuan Tran‡

Abstract

The families F0, . . . ,Fs of k-element subsets of rns :“ t1, 2, . . . , nu are called cross-union if
there is no choice of F0 P F0, . . . , Fs P Fs such that F0Y . . .YFs “ rns. A natural generalization of
the celebrated Erdős–Ko–Rado theorem, due to Frankl and Tokushige, states that for n ď ps`1qk
the geometric mean of |Fi| is at most

`

n´1

k

˘

. Frankl conjectured that the same should hold for the
arithmetic mean under some mild conditions. We prove Frankl’s conjecture in a strong form by
showing that the unique (up to isomorphism) maximizer for the arithmetic mean of cross-union

families is the natural one F0 “ . . . “ Fs “
`

rn´1s
k

˘

.

1 Introduction

The most natural operations on sets are intersections and unions. These two seemingly simple
operations provide surprisingly many exciting theory over collections of sets. The most famous such
instances in extremal set theory are the theory on intersecting families and the theory of hypergraph
matchings. The Erdős-Ko-Rado theorem is arguably the most foundational result in the former
regime, while the Erdős matching conjecture is the most central theme in the latter. In this paper,
we consider a problem of Frankl which has deep connections to both of these intricate theories.

Let us start by recalling the cornerstone Erdős-Ko-Rado theorem. We say a family F of sets is
intersecting if A X B ‰ ∅ for any A,B P F .

Theorem 1.1 ([6]). Let n and k be two positive integers with n ě 2k. Suppose that F Ă
`rns

k

˘

is an

intersecting family, then |F| ď
`

n´1
k´1

˘

.

This concept of intersecting family further generalizes to ps`1q-cross-intersecting families, which
is a collection F0, . . . ,Fs of families of sets where

Ş

0ďiďs
Ai ‰ H for any choice of Ai P Fi for all

0 ď i ď s. There have been numerous interesting generalizations of the Erdős-Ko-Rado theorem to
cross-intersecting families. The maximum value of

ś

0ďiďs
|Fi| was considered in, e.g. [21, 20, 15, 3]

and the maximum value of
ř

0ďiďs
|Fi| was considered in [16, 4].

In the case of ps ` 1q-cross intersecting families, if n ă ps ` 1qk{s, then trivially F0 “ ¨ ¨ ¨ “ Fs “
`

rns
k

˘

provides the maximum possible collection. Otherwise, the most natural extremal example for

maximum product is the collection with Fi “ tA P
`

rns
k

˘

: 1 P Au, and this indeed is the extremal
example as shown in [15]. For the sum version, it is more delicate, as certain relations of s, k, n might
yield a different maximum as in the case of e.g. [16, 4]. For a simple example, when s “ 1 and

n ą 2k ě 4, a very asymmetric collection F0 “ trksu and F1 “ tA P
`rns

k

˘

: A X rks ‰ ∅u provides
a maximum sum. To better illustrate the relations between s, k, n, it is much more convenient to
consider the complements of the sets rather than the sets itself.
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By considering complements of the sets in an ps ` 1q-cross-intersecting family, we obtain the
following notion.

Definition 1.2. A collection F0, . . . ,Fs of families of nonempty sets in
`rns

k

˘

is ps ` 1q-cross-union
(or simply cross-union) if

Ť

0ďiďs
Ai ‰ rns for any choice of Ai P Fi for all 0 ď i ď s.

Here, we only consider the case where the families are nonempty. With this definition, we are
interested in values of pn, k, sq which ensures that F0 “ ¨ ¨ ¨ “ Fs “

`rn´1s
k

˘

is (the unique up to
isomorphism) cross-union collection maximizing the sum

ř

0ďiďs
|Fi|. Indeed, Frankl proposed the

following conjecture in [12].

Conjecture 1.3 (Frankl, [12]). Let n “ sk ` ℓ with 1 ď ℓ ď k and s ě 2, k ě 2. Suppose that

F0,F1, . . . ,Fs Ă
`rns

k

˘

are non-empty and cross-union. Then there exists s0 “ s0pℓq such that the
following holds for all s ě s0:

|F0| ` |F1| ` . . . ` |Fs|

s ` 1
ď

ˆ

n ´ 1

k

˙

.

Here, the assumption that n ď ps ` 1qk is necessary as otherwise the union of ps ` 1q sets of size
k is never equal to rns. On the other hand the assumption n ą sk is also very natural. Indeed, note
that F0, . . . ,Fs`1 being cross-union implies that F0, . . . ,Fs is also cross-union. Hence, assuming
Fs`1 being the smallest among the families F0, . . . ,Fs`1, we can always obtain that

|F0| ` |F1| ` . . . ` |Fs`1|

s ` 2
ď

|F0| ` |F2| ` . . . ` |Fs|

s ` 1
.

Hence, proving the above conjecture for s “ tn
k

u yields the results on all larger values of s, hence the
condition sk ă n ď ps ` 1qk in Conjecture 1.3 is sensible.

We further remark that the condition s ě s0pℓq in Conjecture 1.3 is also necessary. Indeed,
for small values of s, the conclusion of Conjecture 1.3 does not always hold. For example, Hilton-
Milner [16] proved that for s “ 1, the maximum of 1

s`1

ř

0ďiďs
|Fi| is not

`

n´1
k

˘

. Moreover, the
following example shows that the value s0 must depend on ℓ.

Example 1.4. For k “ ℓ`c, s ě 2, c ě 1, the families F0 “ trksu, F1 “ tA P
`rns

k

˘

: |AXrks| ě c`1u

and F2 “ ¨ ¨ ¨ “ Fs “
`rns

k

˘

are cross-union.

In fact, this example shows that s0 “ Ωp ℓ

log ℓ
q is necessary. For fixed c and s, we know that

`

k

ďc

˘

ď pc ` 1qkc and
`

n´1
k

˘

“ n´k

n

`

n

k

˘

. If s ă k

pc`2q log k ´ 1, where k ě 3, then
pn´k

k
q

pn
k
q

ď
`

n´k

n

˘k
ď

´

s

s`1

¯k

ă e´k{ps`1q ď 1
kc`2 ď 1

pc`2qnkc . Hence, in this case, Example 1.4 satisfies

ÿ

0ďiďs

|Fi| ě 1 ` s

ˆ

n

k

˙

´

ˆ

k

ď c

˙ˆ

n ´ k

k

˙

ě s

ˆ

n

k

˙

´ pc ` 1qkc
ˆ

s

s ` 1

˙k ˆ

n

k

˙

ą
´

s ´
c

n

¯

ˆ

n

k

˙

“ ps ` 1q
n ´ k

n

ˆ

n

k

˙

“ ps ` 1q

ˆ

n ´ 1

k

˙

.

Towards Conjecture 1.3, Frankl [11] proved sporadic cases. The main result in this paper is the
following theorem verifying a strong form of Conjecture 1.3, yielding the uniqueness of the extremal
example.

Theorem 1.5. Let n “ sk ` ℓ with 1 ď ℓ ď k and s ě 4ℓ. Suppose that F0,F1, . . . ,Fs Ă
`rns

k

˘

are
non-empty and cross-union. Then

|F0| ` |F1| ` . . . ` |Fs|

s ` 1
ď

ˆ

n ´ 1

k

˙

.

Furthermore, equality is attained only if F0 “ . . . “ Fs “
`

rnsztiu
k

˘

for some i P rns.
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In view of Example 1.4, the linear bound s ě 4ℓ above is best possible up to a logarithmic factor.
We remark that Conjecture 1.3 has a clear connection with the Erdős matching conjecture. A

collection of s sets in rns is a matching of size s if they are pairwise disjoint.

Conjecture 1.6 (The Erdős matching conjecture). Let n ě kps` 1q and F Ă
`rns

k

˘

has no matching
of size s ` 1. Then

|F| ď max

"ˆ

n

k

˙

´

ˆ

n ´ s

k

˙

,

ˆ

kps ` 1q ´ 1

k

˙*

.

The Erdős matching conjecture is known to be true for n sufficiently large in terms of s and k

since the publication of Erdős work [5], as well as in a small range where n “ kps ` 1q ` ℓ for some
ℓ “ εpkqps ` 1q by Frankl [10]. There has been many interesting works [2, 17, 9, 13] improving the
bound on n where this conjecture holds.

In the case of n “ kps ` 1q and F0 “ ¨ ¨ ¨ “ Fs “ F , this family being cross-union is the same
as F having no matching of size s ` 1. From this, one can naturally consider several ‘cross’ versions
of the Erdős matching conjecture. We will discuss some variants of the ‘cross’ version of the Erdős
matching conjecture at the concluding remarks.

2 Preliminaries

For a set family F , the shadow of F at level s is defined by

σspFq “ tG : |G| “ s, DF P F with G Ă F u.

The following theorem by Frankl will be useful for us. A family F is r-wise union if
Ť

0ďiďs
Ai ‰ rns

for any choice of Ai P F for all 0 ď i ď s.

Theorem 2.1 ([7]). Let n, k and r be positive integers with r ě 2 and n ď rk. Suppose that F Ă
`rns

k

˘

is an r-wise union family. Then |F| ď
`

n´1
k

˘

.

2.1 Combinatorial lemmas

In this section we collect several combinatorial results that are needed for the proof of Theorem 1.5.
A basic result of Frankl [8] (see Lemma 2.2 below) allows us to restrict ourself to shifted families. We

say that a family F Ă
`rns

k

˘

is shifted if for any F “ tx1, . . . , xku P F and any G “ ty1, . . . , yku Ă rns

such that yi ď xi for every 1 ď i ď k, we have G P F . It is easy to see that if F Ă
`rns

k

˘

is non-empty
and shifted, then rks P F .

Lemma 2.2. Suppose that the families F0, . . . ,Fs Ă
`rns

k

˘

are cross-union. Then there exist shifted

and cross-union families F 1
0, . . . ,F

1
s Ă

`

rns
k

˘

such that |Fi| “ |F 1
i
| for 0 ď i ď s.

The second lemma is another result of Frankl [12, Lemma 2.4], which is a probabilistic version of
Katona’s circle method. We give its proof for completeness.

Lemma 2.3. Let k0, k1, . . . , ks, n be positive integers with k0 ` k1 ` . . . ` ks ě n. Suppose that the
families Gi Ă

`rns
ki

˘

, 0 ď i ď s, are cross-union. Then

s
ÿ

i“0

|Gi|
`

n

ki

˘ ď s.
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Proof. Fix s ` 1 sets A0, . . . , As satisfying |A0| “ k0, . . . , |As| “ ks and A0 Y . . . Y As “ rns. Choose
a permutation σ of rns uniformly at random. Let X denote the number of indices i with σpAiq P Gi.
Since PpσpAiq P Giq “ |Gi|{

`

n

ki

˘

, we have ErXs “
ř

s

i“0|Gi|{
`

n

ki

˘

, by the linearity of expectation.
On the other hand, the cross-union property implies X ď s, resulting in ErXs ď s. Therefore,
ř

s

i“0|Gi|{
`

n

ki

˘

ď s.

We will require the following slightly weaker version of the Kruskal–Katona theorem, due to
Lovász [19].

Theorem 2.4. If F Ă
`rns

k

˘

and |F | “
`

x

k

˘

with x ě k, then |σk´1pFq| ě
`

x

k´1

˘

.

2.2 Technical lemmas

The following two technical lemmas will be used.

Lemma 2.5. Let n “ ks ` ℓ with 1 ď ℓ ď k and s ě 4ℓ. The following holds.

(i) If k ě 2ℓ, then ps ` 1q
`

n´1
k

˘

´ s
`

n

k

˘

`
`

ks

k

˘

ě ℓ

k

`

n

k

˘

.

(ii) If k ă 2ℓ, then ps ` 1q
`

n´1
k

˘

´ s
`

n

k

˘

`
`

ks

k

˘

ě
`

p1´1{kqn`1
k

˘

.

Proof. (i) For x ě ks, we have

ˆ

x ´ 1

k

˙

“
x ´ k

x

ˆ

x

k

˙

ě

ˆ

1 ´
1

s

˙ ˆ

x

k

˙

.

By iterating this and noting that n ´ ks “ ℓ, we obtain
`

ks

k

˘

ě
`

1 ´ 1
s

˘ℓ `

n

k

˘

ě
`

1 ´ ℓ

s

˘ `

n

k

˘

. Since

n ě ks, we obtain
`

n´1
k

˘

ě
`

1 ´ 1
s

˘ `

n

k

˘

. Therefore,

ps ` 1q

ˆ

n ´ 1

k

˙

´ s

ˆ

n

k

˙

`

ˆ

ks

k

˙

ě

ˆ

1 ´
ℓ ` 1

s

˙ ˆ

n

k

˙

ě
ℓ

k

ˆ

n

k

˙

assuming k ě 2ℓ and s ě 4ℓ.
(ii) Since 2ℓ ě k ` 1 and s ě 4ℓ, we have n ě ks ě 2k2 ` 2k. Thus

`

n´1
k´1

˘

`

n´2k
k´1

˘ ď

ˆ

n ´ k ` 1

n ´ 3k ` 2

˙k´1

ď

ˆ

1 `
1

k

˙k´1

ď k.

It follows that

ps ` 1q

ˆ

n ´ 1

k

˙

´ s

ˆ

n

k

˙

`

ˆ

ks

k

˙

ě

ˆ

ks

k

˙

´

ˆ

n ´ 1

k ´ 1

˙

ě

ˆ

n ´ k

k

˙

´ k

ˆ

n ´ 2k

k ´ 1

˙

ě

ˆ

n ´ 2k

k

˙

ě

ˆ

p1 ´ 1{kqn ` 1

k

˙

,

where in the first line we used ps ` 1q
`

n´1
k

˘

“
`

s ´ k´ℓ

n

˘ `

n

k

˘

“ s
`

n

k

˘

´
`

n´1
k´1

˘

` ℓ

n

`

n

k

˘

, the third

inequality holds since
`

n´k

k

˘

´
`

n´2k
k

˘

“
ř

n´k´1
m“n´2k

`

m

k´1

˘

ě k
`

n´2k
k´1

˘

, and in the last inequality we used

n ě 2k2 ` 2k.
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Lemma 2.6. Let k, ℓ, n be integers with 1 ď ℓ ď k ă n. Let x0 P rk, n ´ 1s be a real number for
which

`

x0

ℓ

˘

`

n

ℓ

˘ ď
k

ℓ

`

x0

k

˘

`

n

k

˘ . (1)

Then
`

x0

ℓ

˘

`

n

ℓ

˘ ě

`

x0

k

˘

`

n

k

˘ `
k ´ ℓ

n
.

Proof. We write Apxq “
px
k
q

pn
k
q
and Bpxq “

px
ℓ
q

pn
ℓ
q
. Consider the function fpxq “ Bpxq ´ Apxq, where

x0 ď x ď n ´ 1. We wish to show fpx0q ě fpn ´ 1q “ k´ℓ

n
.

Notice first that

f 1pxq “ Bpxq

ˆ

1

x
`

1

x ´ 1
` . . . `

1

x ´ ℓ ` 1

˙

´ Apxq

ˆ

1

x
`

1

x ´ 1
` . . . `

1

x ´ k ` 1

˙

. (2)

By the assumption, Apx0q
Bpx0q ě ℓ

k
. Hence

Apxq

Bpxq
“

k´1
ź

i“ℓ

x ´ i

n ´ i
ě

k´1
ź

i“ℓ

x0 ´ i

n ´ i

“
Apx0q

Bpx0q
ě

ℓ

k
. (3)

As 1
x

ď 1
x´1

ď . . . ď 1
x´ℓ`1

ď . . . ď 1
x´k`1

, we see that

1

x
`

1

x ´ 1
` . . . `

1

x ´ k ` 1
ě

k

ℓ

ˆ

1

x
`

1

x ´ 1
` . . . `

1

x ´ ℓ ` 1

˙

. (4)

From (2), (3) and (4) we conclude f 1pxq ď 0 for every x P rx0, n´1s. Thus fpx0q ě fpn´1q “ k´ℓ

n
,

as desired.

3 Proof of Frankl’s conjecture

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. Suppose to the contrary that
ř

s

i“0|Fi| ą ps ` 1q
`

n´1
k

˘

, or equivalently,

s
ÿ

i“0

|Fi|
`

n

k

˘ ą
ps ` 1q

`

n´1
k

˘

`

n

k

˘ “ s ´
k ´ ℓ

n
. (5)

Claim 3.1. We can assume F0 Ă F1 Ă . . . Ă Fs.

Proof of claim. From Lemma 2.2 we can assume the families Fi ’s are non-empty and shifted. In
particular, rks P Fi for every 0 ď i ď s. For a fixed pair 1 ď u ă v ď n, replacing Fu and Fv by
Fu XFv and Fu YFv will preserve the nonemptiness, the cross-union property, and the sum

ř

s

i“0|Fi|.
Iterating this operation for all pairs 1 ď u ă v ď n will generate families F0, . . . ,Fs with desired
nested properties. �
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Since F0 Ă Fi for 1 ď i ď s, F0 is ps`1q-wise union. By Theorem 2.1, one must have |F0| ď
`

n´1
k

˘

.
So we can write |F0| “

`

x0

k

˘

for some k ď x0 ď n ´ 1.
Since the families F0,F1, . . . ,Fs are non-empty and cross-union, so are the families σℓpF0q,F1, . . . ,Fs.

Thus Lemma 2.3 applies. We conclude

|σℓpF0q|
`

n

ℓ

˘ `
s

ÿ

i“1

|Fi|
`

n

k

˘ ď s. (6)

Furthermore, as |F0| “
`

x0

k

˘

with x0 ě k, Theorem 2.4 implies

|σℓpF0q| ě

ˆ

x0

ℓ

˙

. (7)

From (5), (6) and (7), we see that
`

x0

ℓ

˘

`

n

ℓ

˘ ă
|F0|
`

n

k

˘ `
k ´ ℓ

n
“

`

x0

k

˘

`

n

k

˘ `
k ´ ℓ

n
. (8)

Hence, in order to get a contradiction, it suffices to show that x0 satisfies the conditions of Lemma 2.6.
As an intermediary step, we bound the size of F0 from below.

Claim 3.2. |F0| ą ps ` 1q
`

n´1
k

˘

´ s
`

n

k

˘

`
`

ks

k

˘

.

Proof of claim. As F0 is non-empty, it contains some F0 P
`rns

k

˘

. Fix an arbitrary subset X Ă rns

satisfying |X| “ ks and F0 Y X “ rns. For 1 ď i ď s, define Gi “ Fi X
`

X

k

˘

. Notice that the families
G1, . . . ,Gs are cross-union. Indeed, if Gi P Gi, 1 ď i ď s, satisfy G1 Y . . . Y Gs “ X, then adding
F0 P F0 we get a contradiction to the cross-union property of F0, . . . ,Fs.

Applying Lemma 2.3 to s families G1, . . . ,Gs Ă
`

X

k

˘

yields
ř

s

i“1|Gi| ď ps ´ 1q
`

ks

k

˘

. So

s
ÿ

i“1

|Fi| ď
s

ÿ

i“1

ˆ

|Gi| `

ˆ

n

k

˙

´

ˆ

ks

k

˙˙

ď s

ˆ

n

k

˙

´

ˆ

ks

k

˙

.

Together with (5) this entails |F0| ą ps ` 1q
`

n´1
k

˘

´ s
`

n

k

˘

`
`

ks

k

˘

, as desired. �

Claim 3.3. x0 meets the conditions of Lemma 2.6. In particular, x0 does not satisfy (8).

Proof of claim. We know that k ď x0 ď n ´ 1. It remains to show
px0

ℓ
q

pn
ℓ
q

ď k

ℓ

px0
k

q
pn
k
q
. In order to do this,

we distinguish two cases.

Case 1: k ě 2ℓ. It follows from Claim 3.2 and Lemma 2.5 (i) that
px0

k
q

pn
k
q

ě ℓ

k
. Moreover,

px0
ℓ

q
pn
ℓ
q

ď 1

for x0 ď n. Hence
px0

ℓ
q

pn
ℓ
q

ď k

ℓ

px0
k

q
pn
k
q
.

Case 2: k ă 2ℓ.
From Claim 3.2 and Lemma 2.5 (ii), we get x0 ě p1 ´ 1{kqn ` 1. Hence

`

x0

k

˘

`

n

k

˘ “

`

x0

ℓ

˘

`

n

ℓ

˘ ¨
k´1
ź

i“ℓ

x0 ´ i

n ´ i

ě

`

x0

ℓ

˘

`

n

ℓ

˘ ¨

ˆ

x0 ´ k

n ´ k

˙k´ℓ

ě

`

x0

ℓ

˘

`

n

ℓ

˘ ¨

ˆ

1 ´
1

k

˙k´ℓ

ě

`

x0

ℓ

˘

`

n

ℓ

˘ ¨
ℓ

k
,

6



as required. �

This completes our proof of Theorem 1.5.

4 Concluding remarks

One remaining question is to determine the smallest value of s0 where Conjecture 1.3 holds. As our
theorem provides that this best value of s0 is at most 4ℓ while the example at the introduction shows
that it must be Ωp ℓ

log ℓ
q. It would be interesting to determine the correct order of magnitude for

s0pℓq.
Another interesting question is what happens when s is smaller than the above value s0pℓq. In

such a case, would Example 1.4 provide an extremal example? In particular, would the answer of
the following question be true?

Question 4.1. Let n “ ks` ℓ where 0 ă ℓ ă k and F0,F1, . . . ,Fs Ă
`rns

k

˘

be non-empty cross-union
families. Does the following inequality hold?

s
ÿ

i“0

|Fi| ď max

#

ps ` 1q

ˆ

n ´ 1

k

˙

, 1 ` s

ˆ

n

k

˙

´
k´ℓ
ÿ

i“0

ˆ

k

i

˙ˆ

n ´ k

k ´ i

˙

+

On the other hand, Conjecture 1.3 motivates the ‘cross’ version of the Erdős matching conjecture
as follows.

In [14], Frankl and Kupavskii defined that families F0, . . . ,Fs satisfies the property Ups ` 1, qq if
|F0 Y F1 Y . . . Y Fs| ď q for every choice of Fi P Fi, 0 ď i ď s. The condition of being cross-union is
the same as having the property Ups` 1, n´ 1q and the condition on the Erdős matching conjecture
is the same as F0 “ ¨ ¨ ¨ “ Fs`1 “ F having the property Ups ` 1, kps ` 1q ´ 1q. This provides
the natural ‘cross’ version of the Erdős matching conjecture by considering the geometric mean and
arithmetic mean of families satisfying the condition Ups ` 1, kps ` 1q ´ 1q.

For the maximum value of
ś

0ďiďs
|Fi| where F0, . . . ,Fs having property Ups ` 1, kps ` 1q ´ 1q,

one can naturally consider F0 “ F1 “ tA P
`rns

k

˘

: 1 P Au and F2 “ ¨ ¨ ¨ “ Fs “
`rns

k

˘

. In fact, the
following proposition provides that this is an extremal example provided that n is sufficiently large.

Proposition 4.2. For k, s ě 1, there exists n0pk, sq such that the following holds for all n ě n0pk, sq.

Suppose that F0,F1, . . . ,Fs Ă
`rns

k

˘

are non-empty families having the property Ups` 1, kps` 1q ´ 1q.
Then we have

s
ź

i“0

|Fi| ď

ˆ

n ´ 1

k ´ 1

˙2ˆ

n

k

˙s´1

.

Here the s “ 1 case is known by e.g. the result of Pyber [21] and for s ě 2 it is sufficient to note

that for n sufficiently large,
´

`

n

k

˘

´
`

n´ks

k

˘

¯s`1

is smaller than the expression in the proposition. If

Fs is the largest family and the other s families have k pairwise disjoint sets, then all families have
size at most |Fs| ď

`

n

k

˘

´
`

n´ks

k

˘

as desired. If this is not the case, then the result follows by induction
on s.

On the other hand, it is interesting whether the above bound is actually best possible when n is

close to ks. For all we know,
`

n´1
k´1

˘s`1
can be the correct maximum when n is just above ks.

For the maximum value of
ř

0ďiďs
|Fi|, the families F0 “ rks,F1 “ tA P

`rns
k

˘

: |AX rks| ě 1u and

F2 “ . . . “ Fs “
`rns

k

˘

are natural candidates for an extremal example. The following proposition
yields that indeed this is an extremal example for sufficiently large n.
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Proposition 4.3. For k, s ě 1, there exists n0pk, sq such that the following holds for all n ě n0pk, sq.

Suppose that F0,F1, . . . ,Fs Ă
`rns

k

˘

are non-empty families having the property Ups` 1, kps` 1q ´ 1q.
Then we have

s
ÿ

i“0

|Fi| ď 1 ` s

ˆ

n

k

˙

´

ˆ

n ´ k

k

˙

.

Here the case of s “ 1 is known by the result of Hilton and Milner [16] and a similar induction

as before works as ps ` 1q
´

`

n

k

˘

´
`

n´ks

k

˘

¯

is smaller than the expression in the proposition for n

sufficiently large.
Even when n “ ks ` ℓ with small ℓ, as long as k ą ℓ, the term 1 ` s

`

n

k

˘

´
`

n´k

k

˘

is bigger than

ps` 1q
`

ks´1
k

˘

. Hence, the above example shows that, unlike Conjecture 1.3, F0 “ ¨ ¨ ¨ “ Fs “
`rks´1s

k

˘

is not an extremal example when n ą kps ` 1q.
While the maximum of the geometric mean and the arithmetic mean of the families satisfying

Ups`1, kps`1q´1q may behave differently from what is conjectured in the Erdős matching conjecture,
it has been conjectured [1, 17] that the minimum size behaves as in the Erdős matching conjecture.

Conjecture 4.4 ([1, 17]). Let F0,F1, . . . ,Fs Ă
`rns

k

˘

be non-empty families, where n ě kps ` 1q,
such that for any choice of Fi P Fi, 0 ď i ď s one has |F0 Y F1 Y . . . Y Fs| ď kps ` 1q ´ 1. Then

min t|F0|, |F1|, . . . , |Fs|u ď max

"ˆ

n

k

˙

´

ˆ

n ´ s

k

˙

,

ˆ

kps ` 1q ´ 1

k

˙*

.

Recently Kupavskii [18] proved that this conjecture when s is sufficiently large and n ą 3eps`1qk.
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