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Abstract

We give some natural sufficient conditions for balls in a metric space to have small intersection.
Roughly speaking, this happens when the metric space is (i) expanding and (ii) well-spread, and
(iii) a certain random variable on the boundary of a ball has a small tail. As applications, we show
that the volume of intersection of balls in Hamming, Johnson spaces and symmetric groups decay
exponentially as their centers drift apart. To verify condition (iii), we prove some large deviation
inequalities ‘on a slice’ for functions with Lipschitz conditions.

We then use these estimates on intersection volumes to

• obtain a sharp lower bound on list-decodability of random q-ary codes, confirming a conjecture
of Li and Wootters; and

• improve the classical bound of Levenshtein from 1971 on constant weight codes by a factor
linear in dimension, resolving a problem raised by Jiang and Vardy.

Our probabilistic point of view also offers a unified framework to obtain improvements on other
Gilbert–Varshamov type bounds, giving conceptually simple and calculation-free proofs for q-ary
codes, permutation codes, and spherical codes. Another consequence is a counting result on the
number of codes, showing ampleness of large codes.

1 Introduction

A well-known fact in convex geometry states that the volume of the intersection of two Euclidean
balls of the same radius in Rn is exponentially (in n) smaller than the two given balls. It can be
proved by observing that the intersection is contained in a ball of smaller radius centered at the
mid-point of the centers of the two original balls. This simple proof, however, does not extend to
some discrete settings, as the intersection might no longer be enclosed by a ball of smaller radius. One
such example is that of the Hamming space over a finite alphabet, one of the most studied space in
theoretical computer science and information theory. Indeed, take the discrete cube t0, 1un endowed
with the Hamming metric and let k, r P N with 2k ď r. Consider the two radius-r Hamming balls
A and B centered at a “ 0n and b “ 12k0n´2k respectively. Take a mid-point c of a and b, say by
symmetry c “ 1k0n´k. Then the point x “ 0k1r0n´r´k lies in the intersection A X B, but it is of
Hamming distance r ` k from the chosen mid-point c.

The expression of the intersection volume in such discrete metric spaces can usually be written
out explicitly. The problem is that such expression is often cumbersome and it is a grueling task to
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estimate. To illustrate, let us consider the q-ary Hamming space t0, 1, . . . , q´1un. Denote by volqpn, rq
the volume of a radius-r q-ary Hamming ball, and by volqpn, r; kq the volume of the intersections of
two radius-r balls whose centers are distance k apart. It is not hard to show that the intersection
volume is

volqpn, r; kq “
ÿ

i`jďk

k!

i!j!pk ´ i´ jq!
pq ´ 2qk´i´j

ÿ

tďtmax

ˆ

n´ k

t

˙

pq ´ 1qt, (1)

where tmax :“ minpn´ k, r ´ k ` i, r ´ k ` jq.
Estimating the asymptotics of the right hand side above is not at all a straightforward task.

Indeed, when k and r are linear in the dimension n, Jiang and Vardy [25] studied the binary case
q “ 2 with the help of computer. Later, Vu and Wu [43] estimated the general q-ary case for all q ě 2
using a discrete analog of Lagrange’s multiplier and some inequalities on entropy functions; their
proof, though computer-free and much cleaner, is still rather involved.

Consider the following alternative probabilistic approach to estimate the intersection volume. Let
A,B be two radius-r Euclidean balls centered at a, b P Rn respectively. Let x be a uniform random
point drawn from A, then the ratio of the volume of the intersection AXB and the volume of the
radius-r ball is precisely the probability that x lies in AXB, that is, volpAXBq

volpAq “ Ppx P AXBq. We

can then bound the probability Ppx P A X Bq using for instance Talagrand’s celebrated deviation
inequality [38] for functions with Lipschitz condition with respect to both `n1 and `n2 norms. We refer
the readers to [4, 30] for related results on concentration of measure.

We use this probabilistic approach to give some natural sufficient conditions that guarantee small
intersection of balls in a metric space. The advantage of this approach is that it can be implemented
in the discrete settings, provided that appropriate concentration inequalities can be proved.

1.1 Sufficient conditions for small intersection

To state our result, we need some notations. Let pX, dq be a finite metric space with d taking values
in NY t0u. For a P X and r P N, we write Bpa, rq for the ball of radius r around a and write Spa, rq
for the shell of all points of distance exactly r from a. We say the metric space pX, dq has exponential
growth at radius r with rate c if for every a P X and every t ă r,

volpBpa, r ´ tqq

volpBpa, rqq
ď 2e´ct.

For a, b P X, let `a,b : X Ñ R be given by

`a,bpxq “ dpx, bq ´ dpx, aq. (2)

Given r, k P N and α ą 0, we say that the metric space pX, dq is pr, kq-dispersed with constant α if
for any a, b P X with dpa, bq “ k and any 0 ď i ď αk,

Ex„Spa,r´iq
”

`a,bpxq
ı

ě 2αk,

where x is a uniform random point of Spa, r ´ iq.
A real-valued random variable X is K-subgaussian if for any t ě 0,

Pp|X| ě tq ď 2 exp
`

´t2{K
˘

.

Our result reads as follows.

Theorem 1.1. Let pX, dq be a finite metric space with d taking values in NY t0u and let k, r P N.
Suppose
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(A1) pX, dq has exponential growth at radius r with rate c ą 0;

(A2) pX, dq is pr, kq-dispersed with constant α ą 0;

(A3) For any a, b P X with dpa, bq “ k and any 0 ď i ď αk, `a,bpxq ´ E`a,bpxq is K-subgaussian,
where `a,b is as in (2) and x is drawn uniformly from Spa, r ´ iq.

Then, for any a, b P X with dpa, bq “ k,

volpBpa, rq XBpb, rqq

volpBpa, rqq
“ 2e´Ωc,αp1q¨pk`k2{Kq.

The merit of Theorem 1.1 is its formulation. The conditions (A1)–(A3) are quite natural; they
are inspired by properties of the Euclidean space. By our result, showing that the intersection
volume is small then amounts to verifying these conditions, which are more manageable. For instance,
using Theorem 1.1, we can get a conceptually simple and calculation-free proof that the intersection

volume in (1) is exponentially small, i.e.
volqpn,pn;kq
volqpn,pnq

ď e´Ωpkq, for the optimal range 0 ă p ă 1´ 1{q

and all 1 ď k ď n (Lemma 4.2). It is important that the exponential bound holds for not just when
k “ Ωpnq, but for all k, which is needed in some applications, e.g. the tightness on list-decoding
capacity theorem (Theorem 2.3).

To illustrate the power of Theorem 1.1, apart from the Hamming cube example above, we shall
apply it to Johnson space (Lemma 4.3) and permutation group (Lemma 4.4). Such estimates on
the intersection volume of balls are useful for various problems. We will use them in Section 2 to
obtain results on list-decodability of q-ary random codes with rate just below the limiting rate, and
improvements on Gilbert–Varshamov type bounds for constant weight codes, q-ary codes, permutation
codes and spherical codes, and the corresponding counting results.

In order to apply Theorem 1.1, it is not hard to check that the discrete metric spaces we consider
have the exponential growth and they are well-dispersed. To verify the third condition that the centered
random variable `a,bpxq ´ E`a,bpxq is subgaussian in our applications, we prove some concentration
inequalities for Lipschitz functions defined on ‘slices’ of the space, see Lemmas 3.2 and 3.5.

Notations. Before discussing the applications in details, let us review the terminology that will be
used throughout the paper. A code over a finite alphabet Σ is simply a subset of Σn; the number n is
referred to as the length of the code. The elements of the code are called codewords. If |Σ| “ q, the
code is called q-ary code, with the term binary used for the case q “ 2. We say that the code has
rate R if the number of codewords is |Σ|Rn. Given two words x “ px1, . . . , xnq and y “ py1, . . . , ynq
in Σn, the Hamming distance ∆px, yq between x and y is the number of coordinates i in which xi and
yi differ. For a word x we denote by xi the value of its i-th coordinate. For x P t0, 1, . . . , q ´ 1un,
we denote its weight, which is the number of non-zero entries in x, by wtpxq. The Johnson distance
between two binary words x, y P t0, 1un of the same weight is half of their Hamming distance. The
q-ary entropy function hq : r0, 1s Ñ R is

hqpxq “ x logqpq ´ 1q ´ x logq x´ p1´ xq logqp1´ xq.

We generally use boldface letters for random variables. Given a finite set A, we write x „ A for a
discrete random variable x chosen uniformly from A.

2 Applications

2.1 List decoding of random codes

One of the main goals of the theory of error-correcting codes is to understand the trade-off between
the rate of a code and the fraction of errors the code can tolerate during transmission over a noisy
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channel. There are two natural error models: Hamming’s adversarial noise model, and Shannon’s
stochastic noise model. Channels in Shannon’s world can flip each transmitted bit with certain
probability, independently of other bits, while channels in Hamming’s world can corrupt the codeword
arbitrarily, subject only to a bound on the total number of errors.

There is a gap between Hamming and Shannon’s world: one can correct twice as many errors in
Shannon’s world. We refer the reader to [21] for a thorough comparison. List decoding, which was
introduced by Elias [14] and Wonzencraft [40] in the late 1950’s, can be used to bridge the gap. In
list decoding we give up unique decoding, allowing decoder to output a list of all codewords that are
within Hamming distance pn from the received word. Thus, if at most pn errors occur, the list will
include the correct codeword. Formally, we say that a q-ary code C Ă Σn is pp, Lq-list decodable if any
Hamming ball of radius pn in Σn contains at most L codewords.

List decoding has three important parameters: the rate R of the code, the error fraction p, and
the list size L. A fundamental question in list decoding is to determine the feasible region of pR, p, Lq.
Despite significant efforts, a full description remains elusive. In 1981, Zyablov and Pinsker [48] proved
the list-decoding capacity theorem, thus giving a partial solution to the above question.

Theorem 2.1 (Zyablov and Pinsker). Let q ě 2, 0 ă p ă q´1
q , and ε ą 0.

1. There exist q-ary codes of rate 1´ hqppq ´ ε that are
`

p, r1
ε s
˘

-list decodable.

2. Any q-ary code of rate 1´ hqppq ` ε that is pp, Lq-list decodable must have L ě qΩpεnq.

Theorem 2.1 establishes the optimal trade-off between the rate and the error fraction for list
decoding. In particular, it shows that the list decoding capacity is 1 ´ hqppq, which matches the
capacity of Shannon’s model.

The existential part of Theorem 2.1 was achieved by demonstrating that a random code of rate
1 ´ hqppq ´ ε is pp, r1

ε sq-list decodable with high probability. Rudra [34] proved that this result is
best possible up to a constant factor, in the sense that a random code of rate 1´ hqppq ´ ε requires
L “ Ωp,qp1{εq. In [20], Guruswami and Narayanan provided a more direct proof of Rudra’s result. For
binary codes, Li and Wootters [29] recently sharpened the argument of Guruswami and Narayanan to
show that the list size of 1{ε in Theorem 2.1 is tight even in the leading constant factor:

Theorem 2.2 (Li and Wootters). For any p P p0, 1{2q and ε ą 0, there exist γp,ε “ exp
`

´Ωp

`

1
ε

˘˘

and np,ε P N such that for all n ě np,ε, a random code C Ď t0, 1un of rate R “ 1´ hppq ´ ε is with

probability 1´ expp´Ωp,εpnqq not pp,
1´γp,ε
ε ´ 1q-list decodable.

Li and Wootters [29] conjectured that Theorem 2.2 generalizes to q-ary codes, for any q ě 3. To
quote their words, “our arguments only work for binary codes and do not extend to larger alphabets.”

Our first application, making use of the intersection volume estimate, confirms their conjecture,
showing that the list size 1{ε in list decoding capacity theorem is optimal for all q ě 2.

Theorem 2.3. Let q ě 2. Then for any p P p0, q´1
q q and ε ą 0, there exist γp,q,ε “ exp

`

´Ωp,q

`

1
ε

˘˘

and np,q,ε P N such that for all n ě np,q,ε, a random code C Ď rqsn of rate R “ 1´ hqppq ´ ε is with

probability 1´ expp´Ωp,q,εpnqq not pp,
1´γp,q,ε

ε ´ 1q-list decodable.

2.2 The sphere-covering bounds

Our second group of applications concern codes over metric spaces. Consider a metric space pX, dq
and a real number r ą 0. We say a subset C of X is an pX, d, rq-code if dpc, c1q ą r for any distinct
codewords c, c1 P C. A simple covering argument shows the existence of such a code C with

|C| ě inf
aPX

mpXq

mpBpa, rqq
(3)

4



for any finite measure m on the Borel σ-algebra of X. To see why (3) holds, one can assume C is a
maximal pX, d, rq-code of finite size. From the maximality of C, we deduce that X “

Ť

aPC Bpa, rq.
By the subadditivity of measures, we then get mpXq ď

ř

aPC mpBpa, rqq ď |C| ¨ supaPX mpBpa, rqq,
resulting in (3).

Improving upon the sphere-covering bound (3) is a notoriously difficult problem; more on this
later. Our next result improves the bound, assuming some mild conditions on the metric space.

Theorem 2.4. Let pX, dq be a finite metric space, and let r ą 0. Suppose

(P1) (Homogeneous) For every s P R, all the balls of radius s have the same volume volpsq.

Suppose further that there exist t P p0, rq and K ą 0 such that

(P2) (Exponential growth) volpr´tq
volprq ď e´K ; and

(P3) (Small intersection volume) for any a, b P X with r ´ t ă dpa, bq ď r, volpBpa,rqXBpb,rqq
volprq ď e´K .

Then there is an pX, d, rq-code of size p1´ oKÑ8p1qqK ¨
|X|

volprq , and the number of pX, d, rq-codes is at

least exp
´

p1
8 ` oKÑ8p1qqK

2 ¨
|X|

volprq

¯

.

Theorem 2.4 can be used in conjunction with Theorem 1.1 (for verifying condition (P3)) to
give a unified proof of improvements on Gilbert-Varshamov type bounds on various models of error
correction codes, which we now discuss in details. Theorem 2.4 builds on recent developments on
some graph theoretic results; such approach was pioneered by the work of Jiang and Vardy [25] and
by Krivelevich, Litsyn and Vardy [26].

q-ary codes

A q-ary code C is said to have minimum distance at least d if any two codewords in C have distance
at least d. Given three parameters q, n and d, what is the largest possible size Aqpn, dq of a q-ary
length-n code with minimum distance at least d? This question has been studied extensively for
almost seven decades, and remains one of the most important questions in coding theory.

For a word x P rqsn, the Hamming ball of radius d centered at x is the collection of words in rqsn

with distance at most d from x. The volume of this ball does not depend on the location of x and
can be expressed as

volqpn, dq “
d
ÿ

i“0

ˆ

n

i

˙

pq ´ 1qi.

The sphere-covering bound (3), applied to the the Hamming space prqsn,∆q, gives

Aqpn, d` 1q ě
qn

volqpn, dq
.

This is known in the literature as the famous Gilbert–Varshamov bound [19, 39] from the 1950’s. For
five decades this was the best asymptotic lower bound for Aqpn, d` 1q (see for example [22, page 95]).

The case when d is proportional to n, that is, d{n is a positive constant, is of special interest in
coding theory. It is an easy exercise to see that for d{n ě pq ´ 1q{q, the fraction qn{ volqpn, dq is less
than 2. In this case, the Gilbert–Varshamov bound gives no useful information. Thus, the value
pq ´ 1q{q is a natural threshold for the ratio d{n.

In a breakthrough, Jiang and Vardy [25] improved the Gilbert–Varshamov bound, for the binary
case, for d ď 0.4994n. Extending the work of Jiang and Vardy, Vu and Wu [43] proved that if d{n is
less than pq ´ 1q{q, then one can improve the Gilbert–Varshamov bound by a factor linear in n. We
give a short proof of the following strengthening of Vu-Wu’s result, showing ampleness of large codes.
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Theorem 2.5. Let q ě 2 and let 0 ă p ă q´1
q and d “ pn. Then there exists a positive constant

c “ cp,q such that the number of q-ary length-n codes with minimum distance at least d` 1 is at least

exp

ˆ

cn2 ¨
qn

volqpn, dq

˙

.

As the number of subsets of rqsn of size op,qp1qn ¨
qn

volqpn,dq
is exp

´

op,qp1qn
2 ¨

qn

volqpn,dq

¯

, Theorem 2.5

recovers the bound Aqpn, d` 1q ě Ωp,qp1qn ¨
qn

volqpn,dq
of Vu and Wu. The original proof of Vu-Wu’s

bound was quite complicated, and involved heavy calculations. Our proof of Theorem 2.5 is conceptual
and reflects, in a clean way, the necessity of the assumption d{n ă pq ´ 1q{q.

Constant-weight codes

Given positive integers n, d and w, we denote by Apn, d, wq the size of a largest constant-weight code
of length n and minimum Johnson distance d all of whose codewords are in t0, 1un with weight w.
Estimating Apn, d, wq accurately is the central problem regarding constant-weight codes. With the
exceptions of a few particular small cases [5] and the fixed w case [7], it remains open in general.

Thanks to symmetry, all Johnson ball of radius d in
`

rns
w

˘

have the same volume

Vwpn, dq :“
d
ÿ

i“0

ˆ

w

i

˙ˆ

n´ w

i

˙

.

Thus, the sphere-covering bound, specialized to the Johnson space, gives

Apn, d` 1, wq ě

`

n
w

˘

Vwpn, dq
.

This lower bound was obtained by Levenshtein back in 1971 [28].
Our next result provides an improvement on this 50-year-old bound of Levenshtein by a factor

linear in the dimension. This resolves a problem posed by Jiang and Vardy [25].

Theorem 2.6. Let α and λ be constants satisfying 0 ă α ă λp1´ λq. There is a positive constant
c “ cα,λ such that for d “ αn and w “ λn

Apn, d` 1, wq ě cn ¨

`

n
w

˘

Vwpn, dq
.

Permutation codes

Let Sn be the symmetric group of permutations on rns. Consider a permutation σ P Sn as a codeword
pσp1q, . . . , σpnqq P rnsn, then Sn is a subset of rnsn. With this view, the Hamming distance between
two permutations σ, τ P Sn is naturally defined as

∆pσ, τq “
ˇ

ˇti P rns : σpiq ‰ τpiqu
ˇ

ˇ.

A code C is called a permutation code if C Ď Sn. It is said to have minimum distance at least d if any
two codewords in C have the Hamming distance at least d.

Permutation codes have been extensively studied, see for example [1, 2, 12, 13, 36]. It also has
various applications including data transmission over power lines [8, 9, 16, 32, 42], and design of block
ciphers [10]. From an extremal perspective, the most natural question for permutation codes is that
for given n and d, what is the largest possible size Aperpn, dq of a length-n permutation code with
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minimum distance at least d? Let volperpn, dq be the volume of a radius-d Hamming ball in Sn. Once
again, the sphere-covering bound (3) yields

Aperpn, d` 1q ě
n!

volperpn, dq
.

Tait-Vardy-Verstraëte [37], Yang-Chen-Yuan [47] and Wang-Zhang-Yang-Ge [44] further improved
this to

Aperpn, d` 1q ě Ωpnq ¨
n!

volperpn, dq
for Ωpnq ď d ă n{2.

We prove the following strengthening which recovers this bound for a larger range of distance d.

Theorem 2.7. For given ε P p0, 1{2q, there exists a positive constant c “ cε such that the following
holds. For εn ă d ă p1´ εqn, Aperpn, d` 1q ě cn ¨ n!

volperpn,dq . Furthermore, the number of length-n
permutation codes with minimum distance at least d is at least

exp

ˆ

cn2 ¨
n!

volperpn, dq

˙

.

Spherical codes

A spherical code of angle θ in dimension n is a collection of vectors x1, . . . , xk in the unit sphere Sn´1

such that xxi, xjy ď cos θ for every i ‰ j, that is, any two distinct vectors form an angle at least θ.
Let Apn, θq be the size of the largest spherical code of angle θ in dimension n.

For θ ě π{2, Rankin [33] determined Apn, θq exactly, so from now on we will assume that
θ P p0, π{2q. For x P Sn´1, we write

Cθpxq “ ty P Sn´1 : xx, yy ě cos θu

for the spherical cap of angular radius θ around x, and let snpθq denote the normalized surface area
of Cθpxq.

The sphere-covering bound (3) (observed by Chabauty [6], Shannon [35], and Wyner [46]) implies

Apn, θq ě
1

snpθq
“ p1` op1qq

?
2πn ¨

cos θ

sinn´1 θ
.

For over six decades there have been no improvements to this easy lower bound. By estimating the
expected size of a random spherical code drawn from a Gibbs point process, Jenssen, Joos and Perkins
[24] recently improved the lower bound by a linear factor in dimension.

Theorem 2.8 (Jenssen, Joos and Perkins). For θ P p0, π{2q, let cθ “ log sin2 θ?
p1´cos θq2p1`2 cos θq

. Then,

Apn, θq ě p1` op1qqcθ ¨
n

snpθq
.

This bound was very recently further improved by Gil Fernández, Kim, Liu and Pikhurko [18].

Theorem 2.9 (Gil Fernández, Kim, Liu and Pikhurko). Let θ P p0, π{2q be fixed. Then,

Apn, θq ě p1` op1qq log
sin θ

?
2 sin θ

2

¨
n

snpθq
, as nÑ8.
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Although Theorem 2.4 is not directly applicable to the continuous setting of spherical codes, we use
discretization and the graph theoretic idea in Theorem 2.4 to give a short proof of the improvement of
Jenssen, Joos and Perkins [24] in Theorem 2.8. This answers another question of Jiang and Vardy [25],
who asked whether discretization approach would work for spherical codes. A closely related topic
in continuous setting is the sphere packing problem, where a similar approach using integer lattice
instead was utilized by Krivelevich, Litsyn and Vardy [26].

We remark that the best lower bound by Gil Fernández, Kim, Liu and Pikhurko [18] in Theorem 2.9,
however, seems not attainable via discretization and requires to work directly with intrinsic properties
of spherical geometry.

Organization. The rest of the paper is organized as follows. In Section 3, we prove Theorem 1.1
and concentration inequalities for Lipschitz functions over slices of Hamming spaces and symmetric
group, see Lemmas 3.2 and 3.5. We then use these concentration inequalities in Section 4 to deduce
bounds on the volume of intersections of Hamming/Johnson/permutation balls, see Lemmas 4.2 to 4.4.
Section 5 comtains some graph theoretic tools, which will be used in Section 6 to prove Theorems 2.5
to 2.8 on improvements on sphere-covering bounds. The proof of Theorem 2.3 is given in Section 7.

3 Proof of Theorem 1.1 and concentration on the slice

In this section we will prove Theorem 1.1, and establish some new concentration inequalities that will
be used to verify (A3) when applying Theorem 1.1. Concentration inequalities are fundamental tools
in probabilistic combinatorics and theoretical computer science for proving that nice random variables
are near their means. The main principle is that a random function that smoothly depends on many
independent random variables should be sharply concentrated. The new concentration inequalities we
need are for functions of dependent random variables. Our proofs use coupling techniques.

Proof of Theorem 1.1. Let T “ Bpa, rq XBpb, rq, and let η „ Bpa, rq. Then

volpBpa, rq XBpb, rqq

volpBpa, rqq
“ Ppη P T q.

By definition, η lies in T if and only if it is of distance at most r from b, i.e.

Ppη P T q “ Ppdpη, bq ď rq.

As the metric space has exponential growth at radius r, Ppdpη, aq ď r ´ αkq ď 2e´Ωpkq. Thus,

Ppη P T q ď Ppη P T
ˇ

ˇdpη, aq ą r ´ αkq ¨ Ppdpη, aq ą r ´ αkq ` Ppdpη, aq ď r ´ αkq

ď

αk
ÿ

i“0

P
`

dpη, bq ď r
ˇ

ˇdpη, aq “ r ´ i
˘

¨ Ppdpη, aq “ r ´ iq ` 2e´Ωpkq

ď max
0ďiďαk

P
`

dpη, bq ď r
ˇ

ˇdpη, aq “ r ´ i
˘

` 2e´Ωpkq.

Fix an arbitrary 0 ď i ď α, and let x „ Spa, r ´ iq. Note that, conditioning on dpη, aq “ r ´ i, η
and x are identically distributed. We thus have

P
`

dpη, bq ď r
ˇ

ˇdpη, aq “ r ´ i
˘

“ P
`

dpη, bq ´ dpη, aq ď i
ˇ

ˇdpη, aq “ r ´ i
˘

“ Ppdpx, bq ´ dpx, aq ď iq

“ Pp`a,bpxq ď iq.
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Using that pX, dq is pr, kq-dispersed with constant α, we see that E`a,bpxq ě 2αk. Consequently,
i´ E`a,bpxq ď i´ 2αk ď ´αk. Thus, since `a,bpxq ´ E`a,bpxq is K-subgaussian, we get

Pp`a,bpxq ď iq “ Pp`a,bpxq ´ E`a,bpxq ď i´ E`a,bpxqq
ď Pp`a,bpxq ´ E`a,bpxq ď ´αkq

ď 2e´Ωpk2{Kq,

as desired.

3.1 Slices of the q-ary cube

One of the most natural and easy-to-verify smoothness assumptions that one may consider is the
so-called bounded differences condition.

Definition 3.1 (Bounded differences condition). A function f : Ωn Ñ R is said to satisfy the bounded
differences condition with parameters pc1, . . . , cnq P Rn if for every x, x1 P Ωn

|fpxq ´ fpx1q| ď
n
ÿ

i“1

ci1txi‰x1iu.

In the proof of Theorems 2.3, 2.5 and 2.6 we will use the following “non-uniform” concentration
inequality.

Lemma 3.2. Suppose f : t0, 1, . . . , q ´ 1un Ñ R satisfies the bounded differences condition with
parameters pc1, . . . , cnq and that η is drawn uniformly at random from t0, 1, . . . , q ´ 1un subject to
wtpηq “ k. Then

Pp|fpηq ´ Efpηq| ě tq ď 2 exp

ˆ

´
t2

68
řn
i“1 c

2
i

˙

for all t ě 0.

The binary case above is Lemma 2.1 from [27]. For completeness, we include its short proof.

Lemma 3.3 ([27]). Suppose g : t0, 1un Ñ R satisfies the bounded differences condition with parameters

pc1, . . . , cnq and that ξ P t0, 1un is a random vector uniformly distributed in
`

rns
k

˘

. Then

Pp|gpξq ´ Egpξq| ě tq ď 2 exp

ˆ

´
t2

8
řn
i“1 c

2
i

˙

for all t ě 0.

Proof. We may assume without loss of generality that c1 ě ¨ ¨ ¨ ě cn. Consider the Doob martingale
Zi “ E rg pξq|ξ1, . . . ξis, so Z0 “ Eg pξq and Zn “ Zn´1 “ g pξq. Let L px1, . . . , xiq be the conditional
distribution of ξ given ξ1 “ x1, . . . , ξi “ xi.

We want to show that

|E rg pL px1, . . . , xi´1, 0qqs ´ E rg pL px1, . . . , xi´1, 1qqs| ď 2ci

for all feasible x1, . . . , xi´1 P t0, 1u; this will imply that |Zi ´Zi´1| is uniformly bounded by 2ci, so
the desired result will follow from the Azuma–Hoeffding bound (see for example [17, Theorem 22.16]).

If ξ is distributed as L px1, . . . , xi´1, 0q, we can change ξi to 1 and then randomly choose one of
the ones among ξi`1, . . . , ξn and change it to 0; we thereby obtain the distribution L px1, . . . , xi´1, 1q.
This provides a coupling between L px1, . . . , xi´1, 0q and L px1, . . . , xi´1, 1q that differs in only two
coordinates i and j ą i, and since cj ď ci this implies the required bound.

We also require some standard facts about subgaussian random variables (see for instance [41,
Proposition 2.5.2]).

9



Lemma 3.4 (Subgaussian properties). Let X be a random variable with mean zero. Then the
following properties are equivalent.

(i) There exists K1 ą 0 such that the tails of X satisfy

Pp|X| ě tq ď 2 exp
`

´t2{K1

˘

for all t ě 0.

(ii) There exists K2 ą 0 such that the moment generating function of X satisfies

E exppλXq ď exp
`

K2λ
2
˘

for all λ ě 0.

In particular, for piq ùñ piiq, we can take K2 “ 2K1 and for piiq ùñ piq, we can take K1 “ 4K2.

We now have all the tools to prove Lemma 3.2.

Proof of Lemma 3.2. Let ξ P t0, 1un be a random vector uniformly distributed in
`

rns
k

˘

. Let u be
drawn uniformly from rq ´ 1sn, independently from ξ. Then the distribution of η coincides with the
distribution of

u ‹ ξ :“ pu1ξ1, . . . , unξnq.

Writing }c}2 “
řn
i“1 c

2
i , by Lemma 3.4, it suffices to show that

EuEξeλpfpu‹ξq´Eu,ξfpu‹ξqq ď e17}c}2λ2 . (4)

Fix an instance of u. Note that, as fp¨q, fpu ‹ ¨q also satisfies the bounded differences condition
with parameters c “ pc1, . . . , cnq. Then, by Lemma 3.3 with fpu ‹ ¨q playing the role of gp¨q and
Lemma 3.4, we get that

Eξeλpfpu‹ξq´Eξfpu‹ξqq ď e16}c}2λ2 .

Thus,

EuEξeλpfpu‹ξq´Eu,ξfpu‹ξqq “ e´λEu,ξfpu‹ξq ¨ EueλEξfpu‹ξqEξeλpfpu‹ξq´Eξfpu‹ξqq

ď e16}c}2λ2 ¨ EueλpEξfpu‹ξq´EuEξfpu‹ξqq. (5)

It is easy to check that gp¨q :“ Eξfp¨ ‹ ξq also has the bounded differences condition with parameters
c. Thus by McDiarmid’s inequality (see for example [17, Theorem 22.17]),

Pp|gpuq ´ Eugpuq| ě tq ď 2e
´ 2t2

}c}2

and so by Lemma 3.4,
Eueλpgpuq´Eugpuqq ď e}c}

2λ2 .

This, together with (5), implies (4) and completes the proof.

3.2 Slices of the symmetric group

The proof of Theorem 2.7 relies on the following concentration inequality for functions over slices of
the symmetric group. We define the weight of a permutation σ in Sn to be the Hamming distance
between σ and the identity.

Lemma 3.5. Let Sn,k be the set of all permutations in Sn with weight k. Suppose f : Sn,k Ñ R
satisfies

|fpσq ´ fpτq| ď ∆pσ, τq for all σ, τ P Sn,k. (6)

Let σ be drawn uniformly at random from Sn,k. Then

Pp|fpσq ´ Efpσq| ě tq ď 2 expp´t2{72kq for all t ě 0.
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To prove Lemma 3.5 we will use a coupling argument together with two well-known concentration
inequalities. The first is a simple consequence of the Azuma–Hoeffding bound, obtained by Wormald
[45, Theorem 2.19].

Theorem 3.6 (Wormald [45]). Let Dn Ă Sn be the set of derangements, that is, σ P Dn if and only
if σpiq ‰ i for all i P rns. Suppose f : Dn Ñ R satisfies

|fpσq ´ fpτq| ď ∆pσ, τq for all σ, τ P Dn.

Let σ be a uniformly random element of Dn. Then

Pp|fpσq ´ Efpσq| ě tq ď 2 expp´t2{4nq for all t ě 0.

We also need a Gaussian bound for Lipshitz functions on slices of the discrete cube, due to Bobkov
[3, Theorem 2.1].

Theorem 3.7 (Bobkov [3]). Let g :
`

rns
k

˘

Ñ R be a function such that

|gpJq ´ gpJ 1q| ď 1.

for any J, J 1 P
`

rns
k

˘

with |J X J 1| “ k ´ 1. Let I be a uniformly random element of
`

rns
k

˘

. Then

P p|gpIq ´ EgpIq| ě tq ď 2 exp

ˆ

´
t2

mintk, n´ ku

˙

for all t ě 0.

Proof of Lemma 3.5. For J Ď rns, let DJ be the set of all permutations which has exactly rnszJ as
the set of fixed points, in other words,

DJ “ tσ P Sn : σpiq ‰ i if and only if i P Ju. (7)

It is not difficult to see that the following two-step random process yields the uniform distribution on
the set of all permutations in Sn with weight k:

1. Choose a set I uniformly at random from
`

rns
k

˘

, and

2. Choose a permutation σ uniformly at random from DI .

For a set J P
`

rns
k

˘

, let gpJq be the average of f over DJ , that is,

gpJq “ EI,σrfpσq | I “ Js “ Eσ„DJfpσq.

Claim 3.8. For any J, J 1 P
`

rns
k

˘

with |J X J 1| “ k ´ 1, we have

|gpJq ´ gpJ 1q| ď 3.

Proof of claim. Let j be the element in JzJ 1 and j1 be the element in J 1zJ . For each permutation
σ P DJ , we define a permutation rσ P DJ 1 as follows:

• rσpiq “ i for all i R tj, j1, σ´1pjqu,

• rσpjq “ j,

• rσpj1q “ σpjq, and

• rσpσ´1pjqq “ j1.
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Since σpjq ‰ j and σpj1q “ j1, we see that σ´1pjq R tj, j1u, σpjq ‰ j1, and j1 ‰ σ´1pjq. Thus rσ is
a permutation in DJ 1 . Also it is easy to see that the map σ ÞÑ rσ is a bijection from DJ to DJ 1 . As σ
and rσ differ only at three places, by the hypothesis we have |fpσq ´ fprσq| ď ∆pσ, rσq “ 3. Therefore,

|gpJq ´ gpJ 1q| “
ˇ

ˇEσ„DJ rfpσq ´ fprσqs
ˇ

ˇ ď 3,

as desired. �

Let µ be the mean of f . Then note that

µ “ EgpIq.

By the triangle inequality,

Pp|fpσq ´ µ| ě tq ď Pp|gpIq ´ µ| ě t{2q ` Pp|fpσq ´ gpIq| ě t{2q.

For the first term, recalling Claim 3.8 and applying Theorem 3.7 to 1
3g, we get

Pt|gpIq ´ µ| ě t{2u ď 2 expp´t2{36kq.

For the second term, note that gpIq “ Eσ„DIfpσq for each instance of I. Once I is fixed, for
σ „ DI , we can view fpσq as a function from DI to R. Then, by Eq. (6), we can apply Theorem 3.6
to f and get

Pp|fpσq ´ gpIq| ě t{2q ď 2 expp´t2{16kq.

Therefore,
Pp|fpσq ´ µ| ě tq ď 4 expp´t2{36kq.

As the left side is at most one, we get Pp|fpσq ´ µ| ě tq ď 2 expp´t2{72kq.

4 Small intersection

In this section, we will verify the conditions of Theorem 1.1 for Hamming/Johnson/permutation
spaces, using the concentration inequalities proved in previous section, to show that the intersection
of balls in these spaces has small volume.

As these metric spaces pX, dq have the property that the balls of the same radius have the same
volume independent of the center point, we will use volprq throughout this section to denote the
volume of a radius-r ball in X.

We start with the Hamming space. We will need the following standard estimate on the volume
of a Hamming ball.

Lemma 4.1. Suppose that 0 ă p ă 1´ 1{q and that 1 ď αn ď pn. Then

volqpn, αnq “ Θp,qp1q ¨
qhqpαqn
?
αn

.

The Hamming space satisfies the conditions of Theorem 1.1 as follows.

Lemma 4.2. Let 0 ă p ă q´1
q , and let k be any positive integer. Consider X “ t0, 1, . . . , q ´ 1un

endowed with the Hamming distance ∆. Then pX,∆q satisfies the conditions (A1)–(A3) of Theorem 1.1
as follows.

(A1) pX,∆q has exponential growth at radius pn with rate c “ Ωp,qp1q.

(A2) pX,∆q is ppn, kq-dispersed with constant α “ 1
2p1´

pq
q´1q ą 0.
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(A3) For any a, b P X with ∆pa, bq “ k and any 0 ď i ď αk, `a,bpxq ´ E`a,bpxq is 400k-subgaussian,
where `a,b is as in (2) and x is drawn uniformly from Spa, pn´ iq.

Consequently, for every a, b P X,

volpBpa, rq XBpb, rqq

volpBpa, rqq
“ 2e´Ωp,qp1q¨∆pa,bq. (8)

Proof. (A1) Consider t ă pn. By the mean value theorem, hqppq ´ hqpp´ t{nq “ h1qpxqt{n for some
x P pp´ t{n, pq. Together with Lemma 4.1, this yields

volppnq

volppn´ tq
“ Ωp,qp1q ¨

?
pn´ t
?
pn

¨ qphqppq´hqpp´t{nqqn “ Ωp,qp1q ¨

?
pn´ t
?
pn

¨ qh
1
qpxqt.

As x ď p ă 1 ´ 1{q, we have h1qpxq “ logqpq ´ 1q ´ logq
x

1´x ě logqpq ´ 1q ´ logq
p

1´p ą 0. Letting

ε “ logqpq ´ 1q ´ logq
p

1´p , we thus get

volppnq

volppn´ tq
ě Ωp,qp1q ¨

?
pn´ t
?
pn

¨ qεt.

If t ď pn{2, then
?
pn´t
?
pn ě 1{2; while

?
pn´t
?
pn ¨ qεt ě qεt{2 if pn{2 ď t ď pn ´ 1 and pn is sufficiently

large. Hence volppn´tq
volppnq ď Op,qp1q ¨ q

´εt{2 in either case. As the left side is at most one, we conclude

that there exists c “ Ωp,qp1q such that volppn´tq
volppnq ď 2e´ct for all t ă pn.

(A2) Consider any two points a, b P X with ∆pa, bq “ k. Let 0 ď i ď αk, and let x „ Spa, pn´ iq.
We can assume a “ 0n and b “ 1k0n´k. Write γ “ Ppx1 ‰ 1q “ ¨ ¨ ¨ “ Ppx1 ‰ q´1q and δ “ Ppx1 ‰ 0q.
Then δ “ pn´i

n ď p. Moreover, note that pq ´ 1qγ ` δ “ q ´ 1, and so γ “ 1´ δ
q´1 ě 1´ p

q´1 . By the
linearity of expectation we have

E`a,bpxq “
k
ÿ

i“1

pPpxi ‰ 1q ´ Ppxi ‰ 0qq

“ kpγ ´ δq

ě k
`

1´
p

q ´ 1
´ p

˘

“ 2αk,

where the second equality follows from the symmetry.
(A3) Assume a “ 0n and b “ 1k0n´k. It is easy to see that the function `a,b satisfies the bounded

difference condition with parameters p2, . . . , 2, 0, . . . , 0q where only the first k coordinates are non-zero.
Let 0 ď i ď αk, and let x „ Spa, pn´ iq. By Lemma 3.2, `a,bpxq ´ E`a,bpxq is 400k-subgaussian.

Our next result justifies the conditions of Theorem 1.1 for the Johnson space.

Lemma 4.3. Let β, λ and ε be real numbers with 0 ă ε ă 1{10 and 0 ă β ă p1 ´ εqλp1 ´ λq. Let

k be any positive integer. Consider the slice X “
`

rns
λn

˘

endowed with the Johnson distance d. Then
pX, dq satisfies the conditions (A1)–(A3) of Theorem 1.1 as follows.

(A1) pX, dq has exponential growth at radius βn with rate ε2;

(A2) pX, dq is pβn, kq-dispersed with constant ε{2;

(A3) For any a, b P X with ∆pa, bq “ k and any 0 ď i ď εk, `a,bpxq ´ E`a,bpxq is 8βn-subgaussian,
where x „ Spa, βn´ iq.
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Consequently, for every a, b P X,

volpBpa, βnq XBpb, βnqq

volpBpa, βnqq
“ 2e´Ωεp1q¨

`

dpa,bq`dpa,bq2{pβnq
˘

. (9)

Proof. (A1) We wish to show that volpβn´ tq{ volpβnq ď 2e´ε
2t for all t ď βn. Since the left side is

at most one, we can assume t ě 1{p2ε2q. Recall that volpdq “
řd
i“0

`

λn
i

˘`

p1´λqn
i

˘

for all non-negative
integer d. For 1 ď i ď βn, we have

`

λn
i

˘`

p1´λqn
i

˘

`

λn
i´1

˘`

p1´λqn
i´1

˘
“
pλn´ i` 1qpp1´ λqn´ i` 1q

i2

ě
pλ´ βqpp1´ λq ´ βq

β2

“ 1`
λp1´ λq ´ β

β2
ě 1` 4ε. (10)

It follows that

volpβn´ tq ď

ˆ

λn

βn´ t

˙ˆ

p1´ λqn

βn´ t

˙

¨

βn´t
ÿ

i“0

p1` 4εq´i ď

ˆ

λn

βn´ t

˙ˆ

p1´ λqn

βn´ t

˙

¨
1` 4ε

4ε
.

Furthermore, (10) implies volpβnq ě
`

λn
βn

˘`

p1´λqn
βn

˘

ě
`

λn
βn´t

˘`

p1´λqn
βn´t

˘

¨ p1 ` 4εqt. Therefore, we have
volpβn´tq

volpβnq ď 1`4ε
4ε ¨ p1` 4εq´t ď 2e´ε

2t assuming 0 ă ε ď 1{10 and t ě 1{p2ε2q.

(A2) Consider any two points a, b P X with dpa, bq “ k. Let 0 ď i ď εk{2, and let x „ Spa, βn´ iq.

We can assume a “ 1λn0p1´λqn and b “ 0k1λn0p1´λqn´k. Since x P
`

rns
λn

˘

and dpx, aq “ βn´ i, we find
řλn
j“1 xj “ pλ ´ βqn ` i and

řn
j“λn`1 xj “ βn ´ i. We thus get Ex1 “ ¨ ¨ ¨ “ Exλn “ pλ´βqn`i

λn and

Exλn`1 “ ¨ ¨ ¨ “ Exn “ βn´i
p1´λqn , by the symmetry. Furthermore, notice that

`a,bpxq “ dpx, bq ´ dpx, aq “
1

2

k
ÿ

j“1

p2xj ´ 1q `
1

2

λn`k
ÿ

j“λn`1

p1´ 2xjq “
k
ÿ

j“1

xj ´
λn`k
ÿ

j“λn`1

xj .

Therefore, by linearity of expectation, we obtain

E`a,bpxq “ k ¨

ˆ

pλ´ βqn` i

λn
´

βn´ i

p1´ λqn

˙

ě k ¨
λp1´ λq ´ β

λp1´ λq
ě εk,

as desired.
(A3) Without loss of generality we can assume a “ 1λn0p1´λqn and b “ 0k1λn0p1´λqn´k. We

wish to show Pp|`a,bpxq ´ E`a,bpxq| ě tq ď 2e´t
2{p8βnq for all t ě 0. As the left side is at most

one, we may assume 2e´t
2{p8βnq ď 1. Observe that x „ Spa, βn ´ iq is a concatenation of two

independent random vectors px1, . . . , xλnq „
`

rλns
pλ´βqn`i

˘

and pxλn`1, . . . , xnq „
`

rnszrλns
βn´i

˘

. Moreover,

we can decompose `a,bpxq “ fpx1, . . . , xλnq ` gpxλn`1, . . . , xnq, where fpx1, . . . , xλnq “
řk
j“1 xj and

gpxλn`1, . . . , xnq “ ´
řλn`k
j“λn`1 xj . Applying Theorem 3.7 to f and g, we therefore get

Pp|`a,bpxq ´ E`a,bpxq| ě tq ď Pp|f ´ Ef | ě t{2q ` Pp|g ´ Eg| ě t{2q

ď 4 exp
´

´
t2

4pβn´ iq

¯

ď 4e´t
2{p4βnq ď 2e´t

2{p8βnq,

where the last inequality holds as 2e´t
2{p8βnq ď 1. This completes our proof.
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The last result of this section confirms the conditions of Theorem 1.1 for the permutation space.

Lemma 4.4. Let 0 ă ε ă 0.01, 1 ď r ď p1 ´ εqn and k ě 6{ε. Consider the symmetric group
Sn endowed with the Hamming distance ∆. Then pSn,∆q satisfies the conditions (A1)–(A3) of
Theorem 1.1 as follows.

(A1) pSn,∆q has exponential growth at radius r with rate ε;

(A2) pSn,∆q is pr, kq-dispersed with constant ε{4;

(A3) For any a, b PM with ∆pa, bq “ k and any 0 ď i ď εk{4, `a,bpxq ´ E`a,bpxq is 72r-subgaussian,
where x „ Spa, r ´ iq.

Consequently, for every a, b P Sn with ∆pa, bq ě 6{ε,

volpBpa, rq XBpb, rqq

volpBpa, rqq
ď 2e´Ωεp1q¨p∆pa,bq`∆pa,bq2{rq. (11)

Proof. (A1) We wish to show volpr ´ tq{ volprq ď 2e´εt for all t ă r. As the left side is at most one,
we may assume 2e´εt ď 1. It is well known that 1

3 |I|! ď |D|I|| ď
1
2 |I|! for |I| ě 2 (where DI is as

defined in (7)). Hence,

volpr ´ tq

volprq
“

ř

IPp rnsďr´tq
|DI |

ř

IPprnsďrq
|DI |

ď
1` 1

2

řr´t
i“2

`

n
i

˘

i!

1` 1
3

řr
i“2

`

n
i

˘

i!

ď
3

2
¨

3npn´ 1q ¨ ¨ ¨ pn´ r ` t` 1q

npn´ 1q ¨ ¨ ¨ pn´ r ` 1q
ď

5

t!
ď 2e´εt,

where the last inequality holds as ε ď 0.01 and 2e´εt ď 1.
(A2) Consider any a, b P Sn with ∆pa, bq “ k. Let 0 ď i ď εk{4, and let x „ Spa, r ´ iq. We can

assume a P Sn is the identity permutation and b is a permutation in Drks. To compute the mean of

`a,bpxq, we generate x by first drawing I „
`

rns
r´i

˘

and then choosing x „ DI .
Note that for all i P rkszI and j P tk ` 1, . . . , nuzI, we have xpiq “ i ‰ bpiq and xpjq “ j “ bpjq.

Hence, by the linearity of expectation, we have

Er∆px, bq : I “ Is “
ÿ

iPI

Prxpiq ‰ bpiqs ` |rkszI|

ě |I|

ˆ

1´
p|I| ´ 1q!

|DI |

˙

` |rkszI|

ě pr ´ i´ 3q ` |rkszI|.

Here the penultimate inequality holds as there are at most p|I| ´ 1q! permutations fixing one value,
and the final inequality follows from the facts that |DI | ě

1
3 |I|! and that |I| “ r´ i. From this we get

Er∆px, bqs “
ÿ

IPp rnsr´iq

Er∆px, bq : I “ Is ¨ PpI “ Iq

ě pr ´ i´ 3q ` E|rkszI|

“ pr ´ i´ 3q `
kpn´ r ` iq

n
.

As `a,bpxq “ ∆px, bq ´∆px, aq “ ∆px, bq ´ pr ´ iq, we obtain

Er`a,bpxqs “ Er∆px, bqs ´ pr ´ iq

ě
kpn´ r ` iq

n
´ 3

ě εk ´ 3 ě εk{2,
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assuming r ď p1´ εqn and k ě 6{ε.
(A3) For all x, x1 P Bpa, r´ iq, we have |`a,bpxq ´ `a,bpx

1q| “ |∆px, bq ´∆px1, bq| ď ∆px, x1q. Hence
Lemma 3.5 implies `a,bpxq ´ E`a,bpxq is 72r-subgaussian.

5 Graph theoretic tools

We will reduce the lower bound on various codes to lower bound on independence number of some
auxiliary graphs. We then show that all the auxiliary graphs are locally sparse. We can then use
known bound on independence number of locally sparse graphs. We will use the following variant
which is tailored to our needs.

Theorem 5.1. Let G be an N -vertex with maximum degree D and minimum degree at least D{2. Let
K P r1, Ds, and let Γ Ď G be a subgraph induced by the neighborhood of an arbitrary vertex. Suppose
there is a partition V pΓq “ B Y I such that

• every vertex u P B has degree degΓpuq ď D{K; and

• |I| ď D{K.

Then the independence number of G is at least
`

1´oKÑ8p1q
˘

N
D logK, and the number of independent

sets in G is at least exp
`

p1
8 ` oKÑ8p1qq

N
D log2K

˘

.

Remark. In some of our applications we have K “ DΘp1q, in which case the second conclusion implies
that the average size of an independent set in G is at least Ωp1q ¨ ND logD.

Proof of Theorem 5.1. As |Γ| ď D, we get

2epΓq “
ÿ

vPB

degΓpvq `
ÿ

vPI

degΓpvq ď |B| ¨ pD{Kq ` |I| ¨ |Γ| ď 2D2{K.

Hence Γ has average degree at most 4D{K. By a result of Hurley and Pirot [23, Theorem 2], G has
chromatic number at most p1` oKÑ8p1qq

D
logK . It follows that the independence number of G is at

least
`

1´ oKÑ8p1q
˘

N
D logK, as desired.

For the second statement, we need to introduce some notation. Let IpGq be the collection of
independent sets of G. The hard-core model on G at fugacity λ ą 0 is a probability distribution on
IpGq, where each I P IpGq occurs with probability proportional to λ|I|. In other words,

PrIs “
λ|I|

ř

JPIpGq λ
|J |
.

The denominator, PGpλq “
ř

JPIpGq λ
|J |, is the partition function of the hard-core model on G. Note

that PGpλq is an increasing function with PGp0q “ 1 and PGp1q “ |IpGq|.
The expected size of an independent set drawn from the hard-core model on G at fugacity λ is

the scaled logarithmic derivative of the partition function:

sαGpλq “
ÿ

IPIpGq
|I| ¨ PrIs “

ř

IPIpGq |I|λ
|I|

PGpλq
“
λP 1Gpλq

PGpλq
“ λ ¨ plogPGpλqq

1. (12)

We need a lower bound on sαGpλq for certain range of λ, due to Davies et al. [11]. The lower
bound is written in terms of the Lambert W function: for z ą 0, W pzq is the unique positive real
satisfying W pzqeW pzq “ z. Note that W pzq “ p1` op1qq log z as z Ñ8.
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Consider a graph G that satisfies the assumptions of Theorem 5.1. Let λ0 “
logK
D and λ1 “

?
K
D .

As epΓq ď D2{K, Theorem 5 in [11] shows that for all λ P rλ0, λ1s we have

1

N
sαGpλq ě p1` op1qq

λ

1` λ

W pD logp1` λqq

D logp1` λq
.

Combining this with (12) and letting ui “W pD logp1` λiqq, we find

logPGpλ1q ´ logPGpλ0q ě
N

D

ż λ1

λ0

W pD logp1` tqq

p1` tq logp1` tq
dt

“
N

D

ż W pD logp1`λ1qq

W pD logp1`λ0qq
p1` uq du

“
N

2D
ru2

1 ` 2u1 ´ u
2
0 ´ 2u0s,

where the first equality follows from change of variable u “W pD logp1`tqq. Using the approximations
D logp1`λ0q “ p1` op1qq logK, D logp1`λ1q “ p1` op1qq

?
K, and W pzq “ p1` op1qq log z, we have

u0 “ p1` op1qq log logK and u1 “ p
1
2 ` op1qq logK. Therefore, we get

logPGpλ1q ´ logPGpλ0q ě
`1

8
` op1q

˘N

D
log2K.

Since 1 ď PGpλ0q ď PGpλ1q ď |IpGq|, this gives log |IpGq| ě p1
8 ` op1qq

N
D log2K, as desired.

6 Improvement on Gilbert–Varshamov bounds

We present in this section a unified short proofs of improvements on sphere-covering bounds on various
codes by reducing it to lower bound on independence number of an auxiliary graph. In order to use
Theorem 5.1, we need to show that the graph is locally sparse. Our strategy is to split the edge count
in the subgraph induced by the neighbourhood of a vertex into two parts, one from vertices from the
boundary of the Hamming/Johnson/Euclidean ball, and the other from interior vertices of the ball.
The contribution from boundary vertices is exponentially small because the volume of the intersection
of balls that are far apart is small as we have shown using Theorem 1.1 and concentration of measure.
On the other hand, the contribution from the interior vertices is also small as there are negligible
amount of interior vertices using the growth of the balls in such spaces.

Proof of Theorem 2.4. Define a graph G whose vertices are points in the metric space pX, dq and
two points are adjacent if their distance is at most r. It is easy to see that G has |X| vertices, the
degree of every vertex is volprq ´ 1, and the maximum size of an pX, d, rq-code is the independence
number αpGq of G. Let Γ be a subgraph induced by the neighborhood of an arbitrary vertex x P X.
We partition V pΓq “ B Y I, where I is the punctured ball of radius r ´ t centered at x. By the

assumption, |I|
volprq “

volpr´tq´1
volprq ď e´K . Consider any vertex u P B. As r ´ t ă dpx, uq ď r, we obtain

degΓpuq

volprq
“

volpBpx, rq XBpu, rqq

volprq
ď e´K .

Therefore, Theorem 2.4 is a realization of Theorem 5.1.

Proof of Theorems 2.5 to 2.7. Each of Lemmas 4.2 to 4.4 verifies the conditions for each of q-ary
codes, constant-weight codes and permutation codes for applying Theorem 2.4, respectively. Hence,
Theorems 2.5 to 2.7 all follow from Theorem 2.4.
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6.1 Spherical codes

We need two lemmas for the short proof of Theorem 2.8. The first one is a folklore result that
partitions the sphere into small pieces of equal measure (see e.g. [15, Lemma 21]).

Lemma 6.1. For each δ P p0, 1q the sphere Sn´1 can be partitioned into N “ pOp1q{δqn pieces of
equal measure, each of diameter at most δ.

The second one is an Euclidean version of results from Section 4. For a measurable set A Ă Sn´1,
let spAq denote the normalized surface area of A. Recall that snpθq is the normalized surface area of
a spherical cap of angular radius θ. It is well known that for fixed angle θ P p0, π{2q

snpθq “
1` op1q
?

2πn
¨

sinn´1 θ

cos θ
. (13)

We need a parameter qθ, which is the angular radius of the smallest cap containing the intersection
of two spherical caps of angular radius θ whose centers are at angle θ. It is straightforward to compute
that

qθ “ arcsin
´

a

pcos θ ´ 1q2p1` 2 cos θq

sin θ

¯

. (14)

Lemma 6.2 ([24, Lemma 6]). Let x P Sn´1 and A Ă Cθpxq be measurable with spAq ą 0. Then

E
u„A

rspCθpuq XAqs ď 2 ¨ snpqθq,

where qθ is as in (14).

Proof of Theorem 2.8. Choose δ !θ,n 1, that is, δ is less than a suitable function of θ and n. Apply
Lemma 6.1 to partition the unit sphere into N “ pOp1q{δqn pieces P1, . . . , PN of equal measure, each
with diameter at most δ. For each i P rN s, pick an arbitrary point vi from Pi. Let G be a graph
with vertex set being these N chosen points, and two vertices form an edge if the angle between
them is less than θ. Then by definition, Apn, θq ě αpGq. We first use a packing/covering argument to
show that every vertex in G has degree p1` op1qqsnpθqN . Write N rxs :“ Npxq Y txu for the closed
neighborhood of x.

Claim 6.3. For every x P V pGq,

Cθ´2δpxq Ă
ď

viPNrxs

Pi Ă Cθ`2δpxq.

Proof of claim. We only prove the first inclusion. Let y be any point in Cθ´2δpxq, that is, the angle
between y and x is at most θ ´ 2δ. As the Pi’s cover the sphere, there exists an index i such
that y P Pi. By the assumption on Pi, we have ||y ´ vi|| ď δ. Thus, the angle between vi and y
is 2 arcsinp||y ´ vi||{2q ď 2 arcsinpδ{2q ă 2δ. It follows from the triangle inequality that the angle
between vi and x is less than 2δ` pθ´ 2δq “ θ, implying vi P N rxs. Therefore, for every y P Cθ´2δpxq
we must have y P

Ť

viPNrxs
Pi, as desired. �

Let x be an arbitrary vertex of G. Since the Pi’s are disjoint subsets of Sn´1 of normalized
surface area 1{N , Claim 6.3 gives snpθ ´ 2δqN ď |N rxs| ď snpθ ` 2δqN . Moreover, it follows from
(13) that snpθ ˘ 2δq “ p1`Opδqqnsnpθq “ p1` op1qqsnpθq. Therefore, every vertex in G has degree
D :“ p1` op1qqsnpθqN .

Let K “
snpθq

4snpqθq
. By (13), we obtain logK “ p1` op1qq log sin θ

sin qθ
¨ n “ p1` op1qqcθ ¨ n. It suffices

to show that we can apply Theorem 5.1 with this choice of K. This amounts to proving that for any
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x P V pGq, the average degree of GrNpxqs is at most D{K. For this, we view the average degree of
GrNpxqs probabilistically as the expected degree of a uniform random vertex in Npxq.

We partition N rxs “ B Y I, where I “ tvi : Pi Ă Cθpxqu. From Claim 6.3, we know that
Ť

viPB
Pi

is contained in Cθ`2δpxqzCθ´2δpxq. Thus, δ !θ,n 1, the number of boundary point is

|B| ď
`

snpθ ` 2δq ´ snpθ ´ 2δq
˘

N “ OpδnqsnpθqN “ opD{Kq,

which is negligible. So it suffices to estimate the average degree of GrIs.
Let A “

Ť

viPI
Pi, and let u be a uniform random point in A. Now, as each vertex in G corresponds

to a piece of the sphere with the same measure, we can generate vi „ I by rounding u to the vertex
vi such that u P Pi. Thus, we have by Lemma 6.2 that

E
vi„I

rdegGrIspviqs “ E
u„A

rspCθpuq XAqs ¨N ď 2snpqθqN ď D{K,

as desired.

7 List-decodability of random codes

In this section, we prove Theorem 2.3, which states that a uniformly chosen random code of rate
1´ hqppq ´ ε is with high probability not pp, p1´ op1qq{εq-list decodable. In large part we follow the
proof of Guruswami and Narayanan [20, Theorem 20]. As in [20] we define a random variable W that
counts the number of witnesses that certify the violation of the pp, Lq-list decodability property. Thus
the code is pp, Lq-list decodable if and only if W “ 0. So our job becomes to bound the probability
of the event that W “ 0. For this we employ the Chebyshev’s inequality

PpW “ 0q ď
VarrW s

ErW s2
.

We then show that VarrW s{ErW s2 is exponentially small, which would finish the proof. To bound
the variance, we introduce a new ingredient (Lemma 7.1), whose proof relies crucially on our bound
on intersection volume from Lemma 4.2.
Notation. For the rest of this section, we shall employ the following notation. Given a P rqsn and
r P N, we write Bqpa, rq for the Hamming ball of radius r centered at a. Recall that volqpn, rq is the
volume of a radius-r Hamming ball in rqsn, and volqpn, r; kq stands for the volume of the intersections
of two radius-r balls whose centers are distance k apart.

Lemma 7.1. Let 0 ă p ă 1 ´ 1{q, 1 ď ` ď L and µ :“ q´n volqpn, pnq. There exists a constant
c “ cp,q ą 0 such that the following holds. Let

a, b, x1, . . . ,x`, y``1, . . . ,yL, z``1, . . . ,zL

be chosen independently and uniformly at random from rqsn. Denote by E` the event

!

x1, . . . ,x` P Bqpa, pnq XBqpb, pnq, y``1, . . . ,yL P Bqpa, pnq, z``1, . . . ,zL P Bqpb, pnq
)

.

Then
PpE`q ď min

!

µ2L´``1, q´nµ2L´`
´

1` 2pq ´ 1qq´c`
¯n )

.

Remark. A version of Lemma 7.1, for the case q “ 2, appeared as [29, Lemma A.5]. The proof of [29,
Lemma A.5], however, does not extend to larger q.
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Proof of Lemma 7.1. We first show that the probability of E` is at most µ2L´``1. For the event
E` to occur, one must have (i) a, b P Bqpx1, pnq, (ii) x2, . . . ,x`,y``1, . . . ,yL P Bqpa, pnq, and (iii)
z``1, . . . ,zL P Bqpb, pnq. Note that the events (i), (ii), (iii) are independent. Conditioned on the
position of x1, (i) occurs with probability µ2. Given a and b, (ii) and (iii) happen with probability
µL´1 and µL´`, respectively. It follows that PpE`q ď µ2L´``1.

For the other bound, we first apply the law of total probability to get

PpE`q “
n
ÿ

k“0

Pp∆pa, bq “ kq ¨ PpE`
ˇ

ˇ∆pa, bq “ kq.

Since there are
`

n
k

˘

pq´1qk codewords b P rqsn which are at distance k from a P rqsn, the probability that
∆pa, bq “ k is exactly q´n

`

n
k

˘

pq´ 1qk. Conditioned on the positions of a and b being distance k apart,

the probability that x1, . . . ,x` P Bqpa, pnq X Bqpb, pnq is
´

volqpn,pn;kq
qn

¯`
“

´

volqpn,pn;kq
volqpn,pnq

¯`
µ`. The

probability that y``1, . . . ,yL P Bqpa, pnq is µL´`, and the probability that z``1, . . . ,zL P Bqpa, pnq
is µL´`. Thus, we have

PpE`
ˇ

ˇ∆pa, bq “ kq “

ˆ

volqpn, pn; kq

volqpn, pnq

˙`

µ` ¨ µL´` ¨ µL´`

“

ˆ

volqpn, pn; kq

volqpn, pnq

˙`

µ2L´`.

Therefore, we get the following for some c “ cp,q as in Lemma 4.2.

PpE`q “
n
ÿ

k“0

q´n
ˆ

n

k

˙

pq ´ 1qk ¨

ˆ

volqpn, pn; kq

volqpn, pnq

˙`

µ2L´`

pby Lemma 4.2q ď q´nµ2L´`
n
ÿ

k“0

ˆ

n

k

˙

pq ´ 1qk ¨ p2q´ckq`

“ q´nµ2L´`
´

1` 2pq ´ 1qq´c`
¯n
,

as desired.

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. Let c be the positive constant given by (8). Let

µ :“ q´n volqpn, pnq, `0 :“
1´ hqppq

2ε
, γ :“

4pq ´ 1q

ln q
¨ q´c`0 , and L “

1´ γ

ε
.

From Lemma 4.1, and recalling that R “ 1´ hqppq ´ ε, we get

µ “
Θp1q
?
n
¨ q´p1´hqppqqn and qRnµ “

Θp1q
?
n
¨ q´εn. (15)

Notice that a random q-ary code of rate R is simply a random map C : rqsRn Ñ rqsn where, for each
x P rqsRn, its image Cpxq is chosen independently and uniformly at random from rqsn. For any center
a P rqsn and any ordered list of L distinct messages X “ px1, . . . , xLq P prqs

RnqL, we define Ipa,Xq
to be the indicator random variable for the event that Cpx1q, . . . ,CpxLq all fall in Bqpa, pnq, and let
W “

ř

a,X Ipa,Xq. Then C is pp, L´ 1q-list decodable if and only if W “ 0.
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We have ErIpa,Xqs “ P
 

Cpx1q, . . . ,CpxLq P Bqpa, pnq
(

“ µL and the number of pairs pa,Xq is

qn ¨
L´1
ś

i“0
pqRn ´ iq ě qn ¨ 1

2q
RnL. Thus, by linearity of expectation,

ErW s ě
1

2
µLqRnL`n. (16)

Observe that if X and Y are two disjoint lists (viewed as sets), then the events Ipa,Xq and Ipb, Y q
are independent for any pair of centers a, b. It follows that

VarrW s “
ÿ

XXY‰∅

ÿ

a,b

´

ErIpa,XqIpb, Y qs ´ ErIpa,Xqs ¨ ErIpb, Y qs
¯

ď
ÿ

XXY‰∅

ÿ

a,b

ErIpa,XqIpb, Y qs

“

L
ÿ

`“1

ÿ

|XXY |“`

ÿ

a,b

P
 

Ipa,Xq “ 1 and Ipb, Y q “ 1
(

“

L
ÿ

`“1

ÿ

|XXY |“`

q2n ¨ Pa,b,C
 

Ipa, Xq “ 1 and Ipb, Y q “ 1
(

,

where in the last equality we converted the inner summation into an expectation by randomizing over
the centers a and b.

Fix a pair pX,Y q with |XXY | “ `, and suppose that the elements of CpXq are x1, . . . ,x`,y``1, . . . ,yL
while the elements of CpY q are x1, . . . ,x`, z``1, . . . ,zL. Then the event

 

Ipa, Xq “ 1 and Ipb, Y q “ 1
(

is exactly the event E` in Lemma 7.1. Thus, we can bound the variance of W as

VarrW s ď

L
ÿ

`“1

ÿ

|XXY |“`

q2n ¨ PpE`q

ď

L
ÿ

`“1

L2LqRnp2L´`q`2n ¨ PpE`q,

where the second inequality stems from the fact that the number of pairs pX,Y q with |X X Y | “ ` is
at most L2LqRnp2L´`q. We split the summation into ` ď `0 and ` ą `0, and get VarrW s ď Vď`0 `Vą`0 .
From Lemma 7.1 and (16), we find

Vď`0
ErW s2

ď
4

µ2Lq2RnL`2n

`0
ÿ

`“1

L2LqRnp2L´`q`2n ¨ µ2L´``1

“ 4L2L
`0
ÿ

`“1

pqRnµq´` ¨ µ

pby (15)q “ Θp1q ¨
`?
nqεn

˘`0
¨

Θp1q
?
n
q´p1´hqppqqn

pas `0 “
1´ hqppq

2ε
q “ q´Ωpnq.
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Again by appealing to Lemma 7.1 and (16), we see that

Vą`0
ErW s2

ď
4

µ2Lq2RnL`2n

ÿ

`0ă`ďL

L2LqRnp2L´`q`2n ¨ q´nµ2L´`
´

1` 2pq ´ 1qq´c`
¯n

“ 4L2L
ÿ

`0ă`ďL

pqRnµq´` ¨

ˆ

1` 2pq ´ 1qq´c`

q

˙n

pby the choice of γq ď 4L2L
ÿ

`0ă`ďL

pqRnµq´` ¨ q´p1´γ{2qn

pby (15)q “ Θp1q ¨
`?
nqεn

˘L
¨ q´p1´γ{2qn

psince L “
1´ γ

ε
q “ q´Ωpnq.

Putting everything together, we get from Chebyshev’s inequality that

PpW “ 0q ď
VarrW s

ErW s2
ď
Vď`0 ` Vą`0

ErW s2
ď q´Ωpnq.

Since C is pp, L ´ 1q-list decodable if and only if W “ 0, we conclude that C is with probability
1´ q´Ωpnq not pp, L´ 1q-list decodable.
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