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Linear and weakly nonlinear boundary layer acoustics in a

lined duct

Owen David Petrie

In this thesis I look at the effect of boundary layer flow on the acoustics of an acoustic

lining. Acoustic linings are used in aircraft engine ducts to reduce the sound they produce.

They typically consist of an array of Helmholtz resonators that are characterised by their

impedance - a linear relationship between the acoustic pressure and acoustic normal velocity.

However in aircraft engines the air in the duct is moving quickly over the lining and so there

is a boundary layer near the lining. The impedance boundary condition then needs to be

modified to take into account the effect of the boundary layer flow on the acoustics.

In this thesis I begin by considering the weakly nonlinear acoustics for a parallel visco-

thermal boundary layer flow with uniform geometry over an acoustic lining. This is done

using a two layer matched asymptotics model that is solved numerically. It is known that

certain linear acoustic components are amplified within the boundary layer and I show that

this causes the weakly nonlinear acoustics to be amplified outside of the boundary layer. I

also show that this model leads to some surprising large rapidly oscillating disturbances that

propagate out into the centre of the duct in certain cases.

I then consider the case of a non-parallel boundary layer with non-uniform geometry.

This is done using a three-layer WKB asymptotic solution and the corresponding boundary

condition is derived and shown be in agreement with previous work in certain limits. I also

then show that for the non-parallel case the weakly nonlinear acoustics, while still amplified,

do not display the large oscillating behaviour, suggesting that it is important that non-parallel

effects are considered.
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ṽ acoustic radial velocity perturbation

w̃ acoustic azimuthal velocity perturbation

p boundary layer mean flow pressure

T boundary layer mean flow temperature

u boundary layer mean flow streamwise velocity

v boundary layer mean flow radial velocity

cs outer mean flow speed of sound

M outer mean flow Mach number

P outer mean flow pressure

T̄ outer mean flow temperature

U outer mean flow streamwise velocity

V outer mean flow radial velocity



xx Nomenclature

q mass source strength

K± set of upstream/downstream streamwise modes

W set of forcing frequencies

x streamwise coordinate

Pr Prandtl number

Re Reynolds number

Greek Symbols

ρ̃ acoustic density perturbation

γ ratio of specific heats

ρ mean flow density

Superscripts

∗ dimensional variable

⋆ complex conjugate



Chapter 1

Introduction

1.1 Motivation

The acoustics in flow over acoustic linings is of interest due to their use in aeroengine

ducts. Acoustic liners are an essential part of civilian aircraft engines as aircraft engine

manufacturers rely on acoustic linings in the inlets and outlets of their engines to reduce the

noise [23]. Thus a good understanding of their effect is necessary to get the best possible

reduction in noise.

As shown in figure 1.1, while aircraft have become quieter over the last few decades the

noise limit regulations have become ever stricter and are set to become increasingly strict in

the coming years. As a consequence much work is needed to meet these requirements. A

better understanding of acoustic liners is needed to enable the aircraft manufacturers to meet

these newer noise requirements.

Noise is an important concern for the aviation industry [13], particularly for commercial

airliners which operate from busy airports with ever more stringent noise control policies.

The major contributor to an aircraft’s noise is its engines. Historically low bypass ratio

engines were used and the majority of the noise produced was from the jet noise. However

more recent engine developments have allowed the construction of larger high bypass ratio

engines which are significantly more fuel efficient. A result of this however is that the major

contributor to the noise of the engine is now the inlet and outlet of the engine duct rather than

the jet noise. This is because high bypass ratio engines push a larger mass of air at a slower

velocity to achieve the same momentum flux, which reduces the effect of jet noise [21].

Figure 1.2 shows the relative amplitude of the main contributors to aircraft engine noise

in a 1992-technology level airliner. It can be seen that the largest source of noise is the engine

inlet and outlet.
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Fig. 1.1 Historic aircraft noise reduction and noise regulation reduction [8, pg. 169]

Fig. 1.2 Breakdown of noise components for a 1992-level technology engine at takeoff and

approach. Credit: NASA [12]
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Newer aircraft use acoustic linings in the engine duct to try and reduce the noise that

is produced. These have proved to be very effective. However as fuel efficiency is ever

more important, newer engines have had ever larger diameters to increase fuel efficiency and

ever shorter lengths of ducting to reduce drag. This in turn reduces the effective area of the

acoustic linings. It is therefore desirable to have an effective way of modelling the acoustic

linings so that the best possible noise reduction may be obtained over the shortest possible

distance.

1.2 Acoustic linings

So far I have outlined the reason acoustic linings are used but not described what they are or

how they work. In this section I will describe the typical construction of an acoustic lining

and describe how they may be modelled.

Typically the acoustic lining in an aircraft engine consists of a perforated metal panel

beneath which is a honeycomb array of acoustic resonators which are capped at the end.

A cutaway diagram can be seen in figure 1.3. The acoustic lining is characterised by its

impedance Z(ω), which is a linear relationship between the acoustic pressure perturbation p̃

and acoustic normal velocity ṽ at the lining

p̃ = Z(ω)ṽ. (1.1)

Note that Z typically depends on the frequency ω of the acoustics and so this boundary

condition can only be applied in the frequency domain.

To derive the form for the impedance of the liner we need to consider the mechanics of

the individual cells of the liner. Each of the cells acts as a Helmholtz resonator. A Helmholtz

resonator consists of a cavity filled with air which has a small opening, called a neck.

One of the simplest physically-realizable ways of modelling the impedance of a Helmholtz

resonator is by using a mass-spring-damper model. This is because the action of the resonator

can be described as the oscillation of the mass of fluid in the neck against the ‘spring’ of

compressible fluid inside the cavity with vortex shedding and viscous dissipation in the neck

causing damping. Figure 1.4 shows a diagram of a single Helmholtz resonator showing the

vortex shedding off the edge of the opening which is one of the causes of the damping.

Typically the damping is fairly low and a nearly resonant mode for the resonator exists.

For this nearly resonant mode the dissipative effects will be large, nonlinear effects of the

liner will be important and the sound power will be greatly reduced. It is often desirable

to tune the resonator such that the nearly resonant mode occurs at the same frequency as
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holes
metal face sheet

metal backing

honeycomb of resonators

Fig. 1.3 Cutaway diagram of an acoustic lining

Fig. 1.4 Diagram of a single Helmholtz resonator
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the largest source of noise inside the engine. However this only produces a narrowband

sound absorption for frequencies near the resonant frequency. Independently of the linear

or nonlinear reaction of the liner, the boundary layer above the liner can have important

nonlinearities at all frequencies, and this is what I am interested in investigating in this thesis.

It has been shown [32] that, to good approximation, the liner may be modelled by a

linear boundary condition. For this boundary condition it is assumed that the effect of each

individual resonator is averaged across the liner which leads to the following boundary

condition in the time domain for the acoustic lining

∂ p

∂ t
= d

∂ 2v

∂ t2
+R

∂v

∂ t
+bv, (1.2)

where d corresponds to the mass of the air in the neck, b the compressibility of the fluid

in the resonator and R the damping. Here the normal velocity acts as a damped oscillator

which is forced by the changes in pressure. As this boundary condition involves derivatives

of flow quantities and is therefore difficult to solve we typically map to the frequency

domain, using the Fourier conventions outlined in section §2.5. In the frequency domain the

boundary condition can be written as an algebraic equation in terms of the impedance, as in

equation (1.1), with

Z(ω) = R+ iωd − ib

ω
, (1.3)

where Re(Z)=R is known as the resistance and Im(Z)=ωd−b/ω is known as the reactance.

By solving for the eigenfunctions of the impedance condition we find the closest real

frequency to the impedance resonant frequency to be

√

b
d

and the impedance damping factor

to be R
4bd

[6].

The impedance of an acoustic lining is typically measured using a normal impedance

tube, e.g. [2]. This uses a sound source perpendicular to the lining to produce different

frequencies for which the reaction of the lining can be measured. There also exist numerical

methods to evaluate the impedance [33]. However in a normal impedance tube there is no

background flow and so we need a way to convert the impedance measured or numerically

simulated in the normal impedance tube to an effective impedance for linings in aircraft

engines with flow passing over them.

Given a liner that has a known impedance when there is no-flow, we wish to find a

way to derive its effective impedance when there is a grazing flow over the lining. The

effective impedance is defined by the impedance the outer flow, the flow in the duct outside

the boundary layer, ‘sees’ at the wall when there is a boundary layer flow at the wall

p̃O(r = a) = ZeffṽO(r = a), (1.4)
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where the wall of the duct is at r = a and p̃O and ṽO are the outer acoustics from the centre

of the duct extrapolated through the boundary layer. All the boundary layer effects are

then contained within Zeff. Note that Zeff may now also depend on the wavenumber of the

acoustics and on the background boundary layer flow profile.

The effective impedance of a lining may be measured in a grazing flow impedance tube

(GFIT) [14] however this is both time consuming and expensive. Also the scale and aspect

ratio of the GFIT apparatus is very different to an actual aircraft engine and so it is difficult

to measure the effective impedance in the relevant physical regimes.

Much work has been carried out trying to model the effective impedance by matching

through the boundary layer and using the known no-flow impedance results. This is because

given the effective impedance only the acoustics in the uniform flow would need to be

considered and the boundary layer would not need to be resolved to accurately predict the

acoustics. This would make the simulation of the acoustics in a duct much simpler to carry

out accurately. Some of these boundary condition models are covered in the next section.

1.3 Previous grazing flow impedance boundary conditions

Historically the Myers boundary condition [24] has been used to model the effective boundary

condition for flow over acoustic linings. It assumes that both the acoustic pressure and

acoustic normal displacement are constant across the boundary layer. This then gives the

Myers effective impedance

Z
Myers
eff =

Zω

ω −Uk
, (1.5)

where Z is the no-flow impedance of the lining, U is the outer uniform flow velocity and k

is the streamwise wavenumber of the acoustics. However the Myers boundary neglects the

effects of shear, viscosity and non-parallel effects inside the boundary layer as it assumes

an infinitely thin boundary layer at the wall. This means that the Myers boundary condition

gives a vortex sheet at the boundary. Furthermore it has been shown to be ill-posed [3, 11].

This is because it admits surface modes for which there is no maximum exponential temporal

growth rate as k → ∞, i.e. there can be arbitrarily large growth in time for arbitrarily short

wavelengths. This means that better models of the acoustics in flows over acoustic linings

are needed.

More recent work [5] gave a modified Myers boundary condition which took account of

the shear in the boundary layer of the background flow but still ignored the effect of viscosity.
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This gave a closed form solution

Z
Brambley
eff =

Zω

ω −Uk

1− i(ω−Uk)2

Zω δ IB
0

1+ iωZ(k2+m2)
(ω−Uk)2 δ IB

1

, (1.6)

involving the integrals δ I0 and δ I1 over the mean flow boundary layer profile

δ IB
0 =

∫ 1

0
1− (ω −uk)2

(ω −Uk)2
dr,

δ IB
0 =

∫ 1

0
1− (ω −Uk)2

(ω −uk)2
dr,

where u is the radially varying boundary layer mean flow velocity, U is the outer uniform

mean flow velocity and the radius of the duct has been nondimensionalised to be at r = 1

here.

However it has been shown [16] that the effect of viscosity on the acoustics occurs at the

same order of magnitude as shear, and so viscosity must also be taken into account. This

requires considering a finite thickness viscous boundary layer near the acoustic lining and

solving for the acoustics in the boundary layer and then matching to an outer solution, which

is an inviscid solution uniform flow [18, 17, 19]. This approach is used in the first part of

chapter §3 to derive the leading order linear acoustics in a parallel duct. It has been shown

that this approach agrees more closely to results obtained by solving the linearised Navier

Stokes equations for the entire duct.

All of the above methods only consider the linear acoustics in a lined duct. However as

discussed in section §1.1 aircraft engines are very loud and the assumption of linearity may

not be valid. However, even if the sound within the engine ducting may be considered linear,

an amplification mechanism by a factor of 1/δ , where δ is the boundary layer thickness

(typically δ = 10−3), has been shown to exist within a thin visco-thermal boundary layer [4].

Experimental evidence also suggests nonlinearity becomes important at lower amplitudes

than expected for flow over an acoustic lining [1]. This amplification is due to the interaction

of the acoustic normal velocity with the large shear within the boundary layer.

A lot of previous work has been carried out to investigate the stability of perturbations in

flow over hard walls. For the case of incompressible perturbations in flows over hard walls it

has been shown that that non-parallel effects are important [27, 10] and some investigations

into nonlinear effects have been made [36]. For the case of compressible perturbations there

has also been a lot of prior work, e.g. [28]. In this case it has also been shown that non-parallel
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effects are important to consider [35] and again some investigations into nonlinear effects

have been made [22].

However it should be noted that the amplification effect does not occur for a hard walled

duct as the no-penetration condition at the wall in this case causes the acoustic normal

velocity to be small near the wall and thus suppresses the amplification mechanism. This

means that while a lot of work has been carried out on the stability of perturbations in flows

over hard walls, these cases will not display the amplification within the boundary layer and

so constitute a different physical regime.

There has been some work on compressible perturbations in boundary layer flows with

non-hard walls [37, 34]. However in this previous work the normal velocity at the wall was

prescribed and so this doesn’t correspond to the case of a locally reacting acoustic liner. This

is because the prescribed normal velocity at the wall drives the perturbations rather than the

perturbations being driven by an outside pressure source that interacts with the wall through

an impedance condition and so this is again in a different physical regime. It is clear then

that for the case of acoustic linings there is still scope to investigate further.

The amplification mechanism discussed above motivates the investigation into the weakly

nonlinear acoustics for a lined duct with parallel mean flow in chapter §3. In that chapter

I will show that the nonlinearity can cause unexpected acoustic streaming phenomena in

certain cases. Acoustic streaming is a well studied phenomena in the case of no flow and

hard walls [29], but there has been very little previous work done on acoustic streaming in

flow over acoustic liners.

All of the previous models for acoustic linings discussed above assume the flow through

the duct is parallel. This assumption is valid for large distances downstream and so may

work well for experiments conducted on high aspect ratio apparatus (e.g. the grazing flow

impedance tube). However it is less likely to be valid for aeroengines whose aspect ratio

is moderate (particularly since the diameter of turbofan engines has historically increased).

Furthermore it has been suggested [10] that the non parallel effects of developing boundary

layers may have an important effect on the acoustics. However this previous work considered

only no-penetration boundary conditions for the acoustics which as I have discussed are

in a different scaling regime to acoustics in boundary layers near impedance linings. This

motivatives the investigation in chapters §4 and §5, into the linear and weakly nonlinear

acoustics respectively for a developing non-parallel boundary layer profile, to see whether

the acoustic streaming phenomena for the parallel flow case are an artefact of the parallel

assumption or an actual physical effect.
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1.4 Summary

In this thesis I will investigate the weakly nonlinear acoustics of boundary layer flow over

acoustic linings. I will show that the current assumption of parallel flow used to solve for the

linear acoustics results in some unusual non-physical nonlinear acoustics. I will then develop

a three-layer WKB method to solve for both the linear and weakly nonlinear acoustics in the

duct with a slowly developing boundary layer and show that this method does not give these

unphysical results.

In chapter §2 I will introduce the governing equations for the acoustics in a duct and then

solve for the outer uniform mean flow for the cases of a parallel and a non-parallel duct. I

will then derive the compressible Blasius boundary layer solution for the inner mean flow in

both cases.

In chapter §3, I first cover the derivation of the leading order linear acoustics for the case

of a lined duct with parallel mean flow. I will then extend this numerical solution to solve for

the weakly nonlinear acoustics that arise. I will show that both the double frequency harmonic

and zero frequency streaming modes are amplified due to the amplification mechanism within

the boundary layer. I will then also show that in certain cases the acoustic streaming modes

can have very large, highly oscillatory solutions that propagate out into the centre of the duct.

As it it believed that the highly oscillatory streaming solutions are an artefact of the

parallel mean flow assumption, in chapter §4 I will develop a global, slowly varying WKB

solution for the linear acoustics within a lined duct of varying radius with a developing

boundary layer mean flow. I will consider the acoustics sufficiently far downstream so that

1/k ≪ x, where k is the streamwise wavenumber, which means that the boundary layer is

sufficiently well developed that the effect of viscosity on the acoustics is restricted to an

inner-inner region. This means that a three-layer formulation may be used that can be solved

analytically using asymptotic matching.

In chapter §5 I will then extend the slowly varying solution further to investigate the

weakly nonlinear non-parallel acoustics. I again find that the weakly nonlinear acoustics are

amplified but now the highly oscillatory acoustic streaming solution is confined to the inner

boundary layer regions.

I will then conclude and discuss potential further work that could be undertaken to extend

this work.





Chapter 2

Formulation

To investigate the acoustic properties of boundary layer flow over acoustic linings I will

be considering the problem of acoustics in a duct of circular cross section, lined with an

acoustic lining. In chapter §3 I will restrict to the case of a parallel cylindrical duct with the

assumption of a sufficiently well developed parallel boundary layer flow. As discussed in the

introduction, §1.1, the linear acoustics in this case have been studied extensively. Here I will

extend this analysis to the weakly nonlinear acoustics that arise. I will show that under these

assumptions a surprising large rapidly varying streaming mode may propagate into the centre

of the duct in certain cases. To investigate whether this effect is a physical phenomenon or

just a consequence of the assumptions in chapters §4 and §5 I will develop the solution for

acoustics in a non-parallel boundary layer flow for the linear and weakly nonlinear acoustics

respectively. I also allow the radius of the duct to vary slowly in these chapters and derive an

analytic solution that considers the effects of shear, viscosity and streamwise variations.

In this chapter I will introduce the governing equations for the above problems. I will

derive the solution for the steady outer mean flow in a duct of slowly varying radius. I will

then derive the solution for the steady viscous boundary layer flow near the wall of the slowly

varying radius duct. These mean flow solutions are necessary so that a perturbation expansion

for the small amplitude unsteady acoustic quantities can be used to solve for the acoustics in

the following chapters.

2.1 Nondimensionalisation

To begin it is useful to nondimensionalise all the physical parameters inside the duct. I

nondimensionalise lengths with respect to the radius of the duct l∗, speeds with respect to

the mean flow sound speed c∗0, density with respect to the mean flow density ρ∗
0 and specific

heats with respect to the specific heat at constant pressure c∗p. The values l∗, c∗0, ρ∗
0 and c∗p
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Density ρ∗ = ρ∗
0 ρ Pressure p∗ = c∗2

0 ρ∗
0 p

Velocity u∗ = c∗0u Viscosity µ = c∗0l∗ρ∗
0 µ

Distance x∗ = l∗x Thermal Conductivity κ∗ = c∗0l∗ρ∗
0 c∗pκ

Time t∗ = l∗/c∗0t Temperature T ∗ = c∗2
0 /c∗pT

Table 2.1 Dimensional and nondimensional variables, where ∗ denotes a dimensional variable,

with lengthscale l∗, velocity c∗0, density ρ∗
0 and specific heat at constant pressure c∗p.

are taken along the centreline of the duct and for the case of a slowly varying duct, are taken

at the origin x = 0. This means that for the parallel duct the mean flow density will be ρ = 1

and the mean flow velocity U = M is the Mach number of the flow. While for the slowly

varying duct this is only true at x = 0. The nondimensionalisation of all physical parameters

is shown in table 2.1.

In the duct we will use cylindrical coordinates (r∗,θ ,x∗) which after the nondimensional-

isation become (r,θ ,x). r is the radial coordinate, θ the azimuthal coordinate and x is the

axial coordinate. The wall of the duct is at r = a(x), with a(x) = 1 for the case of a parallel

duct.

2.2 Governing equations

Inside the duct I assume that there is a viscous perfect gas which obeys the Navier Stokes

equations [20]

∂ρ
∂ t

+∇ · (ρu) = 0, (2.1a)

ρ Du
Dt

=−∇p+∇ ·σ , (2.1b)

σi j = µ
(

∂ui

∂x j
+

∂u j

∂xi

)

+
(

µB − 2
3
µ
)

δi j∇ ·u, (2.1c)

ρ DT
Dt

= Dp
Dt

+∇ · (κ∇T )+σi j
∂ui

∂x j
, (2.1d)

T = p
(γ−1)ρ , (2.1e)

where D/Dt = ∂/∂ t +u ·∇ is the convective derivative and γ = c∗p/c∗v is the ratio of specific

heats, typically 1.4 for air. Equation (2.1a) is the continuity equation and corresponds

to conservation of mass, equation (2.1b) is the momentum equation and corresponds to

Newton’s 2nd law for the fluid, equation (2.1d) is the energy equation corresponding to the

1st law of thermodynamics and finally equation (2.1e) is the equation of state for a perfect

gas.
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u(r)

M

δ

r

x

θ

Fig. 2.1 Diagram of the duct.

I assume that the viscosities and thermal conductivity depend linearly on the temperature

and are independent of pressure (Prangsma, Alberga & Beenakker) [26], so that I can write

µ =
T

T0Re
, µB =

T

T0Re

µB∗
0

µ∗
0

, κ =
T

T0PrRe
, (2.2)

where T0 is a nondimensional reference value for the temperature, i.e. the temperature at r =

x = 0. We also have three nondimensional numbers, the first Re = c∗0l∗ρ∗
0/µ∗

0 is the Reynolds

number, defined with respect to the sound speed and radius of the duct, and is a measure of

the inertial forces against the viscous forces. For the case of an aeroengine the Reynolds

number is typically very large, in the range of 106 to 108. Another nondimensional number

that appears is the Prandtl number Pr = µ∗
0 c∗p/κ∗

0 which is a balance of the rates of viscous

diffusion against thermal diffusion, for air it is typically ∼ 0.7. The last nondimensional

number
µB∗

0

µ∗
0

is a balance of the bulk viscosity against the dynamic viscosity.

We now have the problem set up as in figure 2.1 where x is the streamwise distance, r

the radial distance, and δ 2 = 1
Re

will be a small parameter that controls the thickness of the

viscous boundary layer.

To solve for the acoustics I will decompose the flow into steady mean flow terms and

unsteady acoustic perturbations. e.g. u =U + ũ. The equations (2.1) can then be expanded in

terms of the amplitude of the acoustics |p̃| ∼ ε and the small parameter δ . However before

we do this we must first write down our boundary conditions then solve for the steady mean

flow, this is done in the following sections.
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2.2.1 Boundary conditions

Given the above equations, we now just need the boundary and initial conditions to close the

problem so that we can begin solving for the acoustics.

For the initial conditions we will assume our mean flow is steady and that there are

no acoustics for t < 0. This will only be used when inverting the Fourier transforms of

our acoustic quantities, however it will be shown that it has important implications for the

stability of the acoustics due to the requirement of causality.

For the boundary conditions we first consider the boundary conditions that apply to the

mean flow. At the wall of the duct we will have the no-slip condition

u = 0 (2.3)

due to viscosity. This is what causes the boundary layer at the wall of the duct as the effect

of viscosity must be considered near the wall to enforce the no-slip condition.

We will also assume that the air inside the duct is in thermal equilibrium with the walls

of the duct. This is equivalent to

n ·∇T = 0 (2.4)

at the wall of the duct.

Now for the acoustic terms we first require that on the centreline of the duct, at r = 0,

all terms are regular. Then, at the wall of the duct we will again require no-slip (2.3) for

the streamwise and azimuthal components of the acoustic velocity. However for the normal

component we have the impedance condition for the acoustic lining

p̃ = Z(ω)ṽ. (2.5)

This is a linear relationship, dependent on the frequency of the mode, between the acoustic

pressure and acoustic normal velocity. Note that the dependence on the frequency means that

this condition must be applied in Fourier space.

Lastly we require a boundary condition on the acoustic temperature fluctuations at the

wall. Here I will assume

T̃ = 0 (2.6)

at the wall. This is an assumption that the walls of the duct have a far higher thermal capacity

than the air within the duct, so that whatever the heat that flows in or out of the duct walls,

they remain the same temperature.
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2.3 Outer mean flow

2.3.1 Parallel duct

In the case of the parallel duct the mean flow away from the wall of the duct will be assumed

to be parallel, uniform and inviscid. This means that all mean flow terms will be constant

and the mean flow radial velocity will vanish. Also given that our reference values are taken

at the centreline of the duct at x = 0 we will have that the streamwise velocity is the Mach

number, and the density is one:

U = M , V = 0 , ρ = 1 , P =
1

γ
, T̄ =

1

γ −1
. (2.7)

Note that here I am considering the case of a duct with no swirl, that is W = u · θ̂ = 0.

2.3.2 Slowly varying duct

For the case of a slowly varying duct the integrated Navier Stokes equations can be used to

derive an implicit equation for the flow Mach number in terms of the duct cross-sectional

area. Given the Mach number all other mean flow terms can then be easily computed.

To derive the Mach number we begin by considering the radius of the duct a(x) to be

varying slowly and will ignore any time derivatives as we are looking for a steady mean flow.

As the Reynolds number is very large and I am assuming that gradients in the centre of the

duct are order one, the viscous terms may be ignored and we can consider the steady inviscid

Euler equations

∇ · (ρu) = 0, (2.8a)

ρ(u ·∇u) =−∇p, (2.8b)

ρu ·∇T = u ·∇p, (2.8c)

T = γ p

(γ−1)ρ . (2.8d)

Integrating the continuity equation (2.8a) over a thin slice of the duct as shown in

figure 2.2, with the normal n pointing outwards. We can then use the divergence theorem

which gives
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n

n

Fig. 2.2 Thin slice of the duct over which we integrate to solve for the outer slowly varying

mean flow, with normals n in the directions shown.

0 =
∫

V
∇ · (ρu)dV =

∫

∂V
ρu ·ndS.

But u ·n = 0 on the walls by the no-penetration condition, so

ρUA = ṁ, (2.9)

where A(x) = πa(x)2 is the area of the duct, ṁ is a constant and U and ρ are independent

of r. I then integrate the energy over the same region and again use the divergence theorem

along with the continuity equation, momentum equation (2.8b) and energy equation (2.8c) to

find another conserved quantity

∫

∂V

(

1

2
ρ|u|2 +ρT

)

u ·ndS =
∫

V

|u|2
2

∇ · (ρu)+
ρ

2
u ·∇(|u|2)+T ∇ · (ρu)+ρu ·∇T dV

=
∫

V
0−u ·∇p+0+u ·∇pdV = 0.

Again using the no penetration condition on the walls of the duct, we then have

(

1

2
ρ|u|2 +ρT̄

)

UA = E, (2.10)
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where E is a constant. Since I am assuming that the duct varies slowly, we know that the

radial velocity must be much smaller than the streamwise velocity, so to leading order we

can approximate |u|2 ≈U2. Lastly I consider the streamwise momentum equation (2.8b).

Using the assumptions that U is independent of r to leading order and that the radial velocity

is negligible to leading order, this simplifies to

ρU
dU

dx
=−dP

dx
. (2.11)

Now we can use the equation of state for a perfect gas (2.8d) along with the conserved

quantities (2.9) and (2.10) to derive an expression for the pressure in terms of U and A;

P =
(γ −1)ρT̄

γ
=
( E

UA
− ṁU

2A

)(γ −1)

γ
.

Substituting this into (2.11) and using the conserved quantity (2.9) to substitute for the density

we have an equation involving U and A only

ṁ

A

dU

dx
=−(γ −1)

γ

d

dx

( E

UA
− ṁU

2A

)

,

which can be rearranged to

dU

dx

(

ṁ(γ +1)

2γ
− E(γ −1)

γU2

)

=
d lnA

dx

(E

U
− ṁU

2

)(γ −1)

γ
. (2.12)

Now we introduce the Mach number M = U
cs

and the speed of sound for a perfect gas c2
s =

γP
ρ .

We can then use the equation of state (2.8d) and the conserved quantity (2.10) to derive an

expression for the speed of sound

c2
s = (γ −1)T̄ = (γ −1)

(

E

ṁ
− 1

2
U2

)

= (γ −1)

(

E

ṁ
− 1

2
M2c2

s

)

. (2.13)

This can then be rearranged to give an expression for cs in terms of M

cs =

√

(γ −1)E

ṁ(1+ (γ−1)
2

M2)
.
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Using this result it is then possible to write the streamwise velocity in terms of M, since

U = Mcs. We can then evaluate dU
dx

in terms of M

dU

dx
=

(

1+M
−1

2
(γ−1)

2
2M

1+ (γ−1)
2

M2

)

dM

dx
cs =

(

1

1+ (γ−1)
2

M2

)

dM

dx
cs. (2.14)

We can now substitute this into (2.12) and use (2.13) to cancel the E
ṁ

terms. This gives the

following differential equation for M and A;

d lnA

dx
=−dM

dx

[

1−M2

M(1+ (γ−1)
2

M2)

]

. (2.15)

This first order differential equation can be integrated directly, using the initial condition

from the nondimensionalisation that A(x) = π and M = M0 when x = 0;

A =
πM0

M

[

1+ (γ−1)
2

M2

1+ (γ−1)
2

M2
0

]

(γ+1)
2(γ−1)

. (2.16)

This is an implicit equation for M in terms of A. For any sufficiently large A there are two

roots, one corresponding to a subsonic flow (M < 1) and the other to a supersonic flow

(M > 1). However if A is too small it can result in there being either one solution (M = 1 the

sonic point) or no solutions (the flow is choked). This can be seen in figure 2.3. In this thesis

I will deal with cases where A(x) is such that two solutions exist and I will use the lower

branch subsonic solution as that is the relevant regime for aeroengines.

Given M we can now compute all other mean flow quantities. The initial conditions for

ρ and cs from the nondimensionalisation allow us to evaluate ṁ and E, which gives:

ρ =

[

1+ (γ−1)
2

M2
0

1+ (γ−1)
2

M2

]
1

(γ−1)

, c2
s =

[

1+ (γ−1)
2

M2
0

1+ (γ−1)
2

M2

]

, (2.17)

and the other mean flow terms are then given by:

P =
1

γ
ργ , T̄ =

ργ−1

γ −1
, U = M

(πM0

AM

)

(γ−1)
(γ+1)

= Mcs. (2.18)
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Fig. 2.3 Mach number of the flow in a slowly varying duct against the cross sectional area of

the duct, the sonic point is highlighted in red.
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While to leading order the radial velocity is zero, we can use the continuity equation (2.8a)

to evaluate its first order correction. This gives

V =
−r(ρU)x

2ρ
=

a′(x)Ur

a(x)
, (2.19)

which is small, since |a′(x)| ≪ 1, and is linear in r. We now have all the mean flow terms

away from the wall of the duct. If a′(x) ∼ O(εk) and a′′(x) ∼ O(ε2
k ) then the first mean

flow correction terms will appear at O(ε2
k ) as this is the scale of the terms in the governing

equations that we have ignored.

2.4 Boundary layer flow

The mean flow calculated above does not obey the no-slip condition at the wall of the

duct. This means that it must be matched to a viscous boundary layer solution near the

wall. To derive the boundary layer profile I first consider the scalings near the wall to

derive the boundary layer equations, then use several transformations to map to the parallel

incompressible case where a similarity solution for the boundary layer profile can be found.

2.4.1 Boundary layer scalings

I begin by assuming that the boundary layer profile is steady. Near the wall it is viscosity that

enforces the no-slip condition, so to find the boundary layer thickness I consider the balance

of inertial and viscosity

ρ(uux + vur)∼ (µur)r. (2.20)

If we consider the scaling of each term, assuming that the duct opening is at x = 0 so that our

streamwise lengthscale is just x, this gives

δL ∼
√

x

MRe
= δ

√

x

M
, (2.21)

where δL is the radial lengthscale, i.e. the thickness of the boundary layer. Now from the

outer uniform mean flow solution we know that u ∼ O(1) and v ≪ u. We now also have

inside the boundary layer ∂
∂ r

∼ O
(

1
δ

)

, ∂
∂x

∼ O(1) and µ ∼ O(δ 2). Using the continuity

equation (2.1a) we also have the following scaling:

∂ (ρu)

∂x
∼ ∂ (ρv)

∂ r
.
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This means that at leading order in δ the Navier Stokes equation (2.1) simplify to the

boundary layer equations:

(ρu)x +(ρv)r = 0, (2.22a)

ρ(uux + vur) =−px +(µur)r, (2.22b)

0 =−pr, (2.22c)

ρ(uTx + vTr) = upx + vpr +(κTr)r +µu2
r . (2.22d)

The radial momentum equation (2.22c) means that the pressure will not vary in the normal

direction within the boundary layer and it can be found by matching to the outer mean flow

solution (2.18), so p = P.

Turbulent boundary layer profiles

It should be noted that the boundary layer equations above (2.22) are valid for laminar

boundary layer profiles. Often in aeroacoustics it is desirable to use a turbulent boundary

model that incorporates extra terms to try to include the effects of turbulence in the boundary

layer profile. While all the results in this thesis are presented using the compressible Blasius

boundary layer derived below, the mathematics are valid for any steady boundary layer profile

provided it is in thermal equilibrium with the boundary and has no azimuthal component. In

chapter 4 when simplifying the expressions using the boundary layer equations I will use the

boundary layer equations (2.23) below. These include arbitrary extra terms which could be

used for a turbulent boundary layer model

(ρu)x +(ρv)r = 0, (2.23a)

ρ(uux + vur) =−px +(µur)r +µFrr(x,r), (2.23b)

pr = 0, (2.23c)

ρ(uTx + vTr) = upx + vpr +(κTr)r +µu2
r +µGrr(x,r), (2.23d)

the arbitrary functions F and G are used to model the ‘apparent’ or ‘Reynolds’ stress for a

turbulent boundary layer model [31].

2.4.2 Non-parallel boundary layer

To solve the boundary layer mean flow in the case of a slowly varying duct we first map

to the case of a parallel duct. To do this we begin by introducing y such that r = a(x)− y.

This means that the wall of the duct is at y = 0 and we get the following rules for the partial
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derivatives:

∂

∂ r
→− ∂

∂y
,

∂

∂x
→ ∂

∂x
+a′

∂

∂y
.

We also let v = −v̂+ a′u to match with the mean flow V at r = a, this transformation

also means the advective terms uux + vvr simplify as the a′(x) terms cancel. Using these

transformations, the equation of mass conservation now gives

(ρu)x +(ρv)r = 0 =⇒ (ρu)x +(ρ v̂)y = 0,

the streamwise momentum equation gives

ρ(uux + vur) =−Px +(µur)r =⇒ ρ(uux + v̂uy) =−px +(µuy)y,

and the energy equation becomes

ρ(uTx + v̂Ty) = uPx +(κTy)y +µu2
y .

Now we write v̂ = v, so we have the same boundary layer equations as before, except that the

boundary conditions are now applied at y = 0

(ρu)x +(ρv)y = 0, (2.24a)

ρ(uux + vuy) =−Px +(µuy)y, (2.24b)

py = 0, (2.24c)

ρ(uTx + vTy) = uPx +(κTy)y +µu2
y . (2.24d)

To solve for the boundary layer profiles we now map, using the Illingworth-Stewartson

transformation [31], to the incompressible case by writing

ŷ = cs

∫ y

0
ρ(x,y′)dy′, (2.25a)

x̂ =
∫ x

0
γP(x′)cs(x

′)dx′, (2.25b)

where P and cs are the pressure and speed of sound respectively for the outer mean flow

solution. This transformation gives
∂ ŷ
∂y

= csρ , ∂ x̂
∂x

= γPcs and ∂ x̂
∂y

= 0.
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Flow profile

To solve for the mean flow I begin by solving for the velocity profile using equations (2.24a)

and (2.24b). To do this I introduce a streamfunction ψ , where ρu = ψy and ρv = −ψx

so that the continuity equation (2.24a) is satisfied. Now ψ(x,y) = ψ̂(x̂, ŷ), so under the

transformation (x,y)→ (x̂, ŷ) we get

ρu = ψ̂ŷcsρ =⇒ u = csψ̂ŷ = csû

and

ρv =−ψ̂x̂γPcs − ψ̂ŷ
∂ ŷ

∂x
.

We can then write down the derivatives of the streamwise velocity

ux = γPcs(csx̂ψ̂ŷ + csψ̂ŷx̂)+ csψ̂ŷŷŷx,

uy = ρc2
s ψ̂ŷŷ,

which then gives the advective term from the streamwise momentum equation

uux + vuy = γPc3
s (ψ̂

2
ŷ

csx̂

cs
+ ψ̂ŷx̂ψ̂ŷ − ψ̂ŷŷψ̂x̂).

If we now consider the viscous term in the streamwise momentum equation

(µuy) = δ 2(γ −1)T ρc2
s ψ̂ŷŷ = δ 2γPc2

s ψ̂ŷŷ,

so

1

ρ
(µuy)y = δ 2γPc3

s ψ̂ŷŷŷ.

Putting all these terms together to form the streamwise momentum equation we now have

ψ̂ŷx̂ψ̂ŷ − ψ̂ŷŷψ̂x̂ −δ 2ψ̂ŷŷŷ =−ψ̂2
ŷ

csx̂

cs
− Px̂

ρc2
s

. (2.26)

This can also be written as:

ψ̂ŷx̂ψ̂ŷ − ψ̂ŷŷψ̂x̂ −δ 2ψ̂ŷŷŷ =
1
2
u2 +T

1
γ−1

+ 1
2
M2

0

MMx̂, (2.27)
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as shown in appendix A.1. The right hand side of this equation contains an Mx term which

from the implicit outer mean flow solution must be small. This means that at leading order

the right hand side is negligible and we only need to solve for the left hand side. If we wanted

to satisfy the full equation we could use an asymptotic expansion of ψ̂ to find the first order

in a′ correction terms, this would result in a linear PDE for the correction terms that is forced

by the leading order solution. However here I will only use the leading order solution for

simplicity.

The left hand side of this equation has the standard form for a Blasius boundary layer

streamfunction [31], so we can try a similarity solution of the form

ψ̂ = δ
√

Mx̂ f (ζ̂ ), (2.28)

with

ζ̂ =
ŷ

δ

√

M

x̂
. (2.29)

Using this ansatz, and noting that x̂ derivatives of M are negligible at leading order, the

equation then becomes the Blasius equation

f ′′′+
f f ′′

2
= 0. (2.30)

This equation corresponds to the incompressible Blasius boundary layer in the case x̂ = x and

ŷ = y. So the functions x̂(x) and ŷ(x,y) map the incompressible solution to the compressible

solution that we are interested in.

To satisfy the no-slip condition at the wall we have u= 0 and v= 0 at ζ̂ = 0, and matching

to the outer mean flow solution gives u →U or in the transformed variables û → M as ζ̂ → ∞.

These then imply the following boundary conditions on f (ζ̂ )

f = f ′ = 0 at ζ̂ = 0 and f ′ → 1 as ζ̂ → ∞.

The equation can then be solved numerically using the shooting method by specifying f ′′(0)

and solving the initial value problem, then updating the value of f ′′(0) and repeating until

the boundary condition f ′ → 1 as ζ̂ → ∞ is satisfied.

Finally at leading order we have

u = csû = csM f ′(ζ̂ ). (2.31)
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Temperature profile

Now that I have the boundary layer velocity profile I just need the boundary layer temperature

profile to be able to evaluate all boundary layer mean flow terms. To derive the temperature

profile I now consider the energy equation (2.24d). Using the above solution for the flow

velocities, we can again evaluate each term in the equation. Firstly the convective terms

uTx + vTy = γPc2
s (ψ̂ŷTx̂ − ψ̂x̂Tŷ),

the pressure term

uPx

ρ
=

γPc2
s ψ̂ŷPx̂

ρ
,

the thermal diffusion term

1

ρ
(κTy)y =

δ 2γPc2
s

Pr
Tŷŷ,

and lastly the viscous dissipation term

µ

ρ
u2

y = δ 2γPc4
s ψ̂2

ŷŷ.

Putting this all together the transformed energy equation is

ψ̂ŷTx̂ − ψ̂x̂Tŷ −
δ 2

Pr
Tŷŷ −δ 2c2

s ψ̂2
ŷŷ = ψ̂ŷ

Px̂

ρ
. (2.32)

We now let T = c2
s τ , so Tŷ = c2

s τŷ and Tx̂ = c2
s τx̂ +2cscsx̂τ . This transforms the equation to

ψ̂ŷτx̂ − ψ̂x̂τŷ −
δ 2

Pr
τŷŷ −δ 2ψ̂2

ŷŷ = ψ̂ŷ
Px̂

ρ
−2cscsx̂τψ̂ŷ, (2.33)

which rearranges to

ψ̂ŷτx̂ − ψ̂x̂τŷ −
δ 2

Pr
τŷŷ −δ 2ψ̂2

ŷŷ = 0, (2.34)

as shown in appendix A.2. We can now use the leading order solution for ψ̂ from above and

assume that τ = τ(ζ̂ ) to solve for the leading order solution. This results in a second order

ODE for τ(ζ̂ )
τ

ζ̂ ζ̂

Pr
+

f τ
ζ̂

2
+M2 f 2

ζ̂ ζ̂
= 0. (2.35)
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Given that τ → 1
γ−1

as ζ̂ → ∞ we use the following change of variables

τ =
1

γ −1
+

M2

2
τ̂,

equation (2.35) then becomes:

τ̂ ′′+
Pr f τ̂ ′

2
=−2Pr f ′′2. (2.36)

We can now use an integrating factor exp
(

∫ Pr f
2

dζ̂
)

to solve for τ̂ . However we can first

use the equation for f (2.30) to get a nicer form of the integrating factor. We have

f ′′′

f ′′
=− f

2
,

so

∫

f

2
dζ̂ =− ln( f ′′).

Using this in equation (2.36) then gives

(

τ̂ ′

( f ′′)Pr

)′
=−2Pr( f ′′)2−Pr,

which can be rearranged to a first order differential equation for τ̂ ,

τ̂ ′ =−2Pr( f ′′)Pr

∫ ζ̂

0
( f ′′(q))2−Pr dq, (2.37)

with τ̂ → 0 as ζ̂ → ∞. This equation can easily be solved numerically by integrating

the equation from ζ̂ = 0 then subtracting the resulting value of τ̂(∞) to set the arbitrary

integration constant, so that the correct boundary condition is satisfied.

At leading order we now have

T =
c2

s

γ −1
+

M2c2
s

2
τ̂(ζ̂ ). (2.38)

We can now also implicitly invert the x̂, ŷ transformation using the integrals (2.25).
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2.4.3 Parallel duct boundary layer profile

In the parallel duct case the above boundary layer profile solutions can be simplified. From

the outer mean flow solution for the parallel duct, we have cs = 1 and P = 1
γ . This then gives

ŷ =
∫ y

0
ρ(x,y′)dy′, (2.39a)

x̂ = x. (2.39b)

So we now only have to transform the y coordinate, and our boundary layer profile is

u = M f ′(ζ̂ ), (2.40)

T =
1

γ −1
+

M2

2
τ̂(ζ̂ ). (2.41)

Since the pressure is constant through the boundary layer and is 1
γ in the outer region, using

the equation of state (2.1e) we have

ρ =
1

(γ −1)T
(2.42)

inside the boundary layer. Also since a′ = 0 the normal velocity simplifies

ρv =−γPcsψ̂x̂ − ψ̂ŷŷx =−γPcs
δ

2

√

M

x
( f − ζ̂ f ′)−M f ′ŷx,

but ŷx =
∫ y

0
∂ρ
∂x

dy and
∂ρ
∂x

is only non-zero inside the boundary layer, i.e. a region of width δ

so ŷx ∼ O(δ ). This means that for the parallel duct we have

v = O(δ ). (2.43)

Figure 2.4 shows a plot of the boundary layer profiles for M = 0.7.

2.5 Fourier transform convention

To solve for the acoustics I will take Fourier transforms in x and t and, for periodicity, a

Fourier series in θ . In this thesis I will use the following conventions when taking Fourier
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Fig. 2.4 Plot of the boundary layer streamwise velocity and temperature profiles

transforms/series. For the ω-time transform I use the following convention

f̃ (ω) = Fω [ f (t)] =
∫ ∞

−∞
f (t)e−iωt dt, (2.44)

which then gives the inverse transform

f (t) = F
−1
t [ f̃ (ω)] =

1

2π

∫ ∞

−∞
f (t)eiωt dt. (2.45)

Whereas for the k-spatial transform I use the opposite sign convention

f̃ (k) = Fk[ f (x)] =
∫ ∞

−∞
f (x)eikx dx, (2.46)

and thus

f (x) = F
−1
x [ f̃ (k)] =

1

2π

∫ ∞

−∞
f (x)e−ikx dx. (2.47)

Finally for the θ Fourier series I use the same sign convention as for the k-spatial transform

f̃ (m) =
1

2π

∫ π

−π
f (θ)eimθ , (2.48)

so that we have

f (θ) =
∞

∑
−∞

f̃ (m)e−imθ . (2.49)



Chapter 3

Weakly nonlinear parallel acoustics

3.1 Introduction

In this chapter I will investigate the weakly nonlinear acoustics in a lined duct with parallel

boundary layer flow. The assumption of a parallel boundary layer flow is a standard assump-

tion in the field of duct acoustics [24, 5]. We assume that we are far enough downstream of

the leading edge of the duct such that streamwise variations in the mean flow are negligible.

This means that we can use the parallel outer mean flow §2.3.1 and the parallel boundary

layer mean flow §2.4.3 at some fixed value downstream.

To solve for the weakly nonlinear acoustics in the duct I begin with the leading order

linear acoustics solution developed by Brambley [4]. This takes into account the effects of

both shear and viscosity on the acoustics inside the boundary layer. I will then calculate the

weakly nonlinear acoustics due to the leading order solution and show that in certain cases a

surprisingly large, rapidly varying acoustic streaming mode can propagate into the centre of

the duct.

3.2 Mean flow

As discussed in the introduction, in this chapter I consider a parallel duct with a boundary

layer of thickness δ to be constant, independent of x. I assume that the nondimensionalised

radius of the duct is r = 1 so the parallel outer mean flow §2.3.1 can be used. I then set the

boundary layer thickness

ξ δ 2 = 1/Re, (3.1)
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where ξ ∼ O(1) is a parameter adjusting how well developed the boundary layer is,

and ξ = 0 gives an inviscid boundary layer. Any boundary layer profile could be used for

what follows, provided it is independent of t, x and θ and is in thermal equilibrium with the

boundary, Tr(1) = 0. For the results given here, a compressible Blasius boundary layer is

used as was derived in §2.4.3, with the downstream distance, x, fixed so that δL = δ . This

is equivalent to setting x = M
ξ

fixed and assuming streamwise derivatives of the mean flow

terms are negligible.

3.3 Acoustic perturbations

We now consider small monochromatic perturbations to the mean flow of magnitude ε ≪ δ

that are the real part of terms with dependence exp{i(ωt − kx−mθ)}. We will write, for

example, the total temperature as T + T̃ , where T (r) is the mean flow value and T̃ is the

small harmonic perturbation.

Outside the boundary layer (i.e. within the duct away from the walls) we assume gradients

are not large, so that the viscous terms, which are O(1/Re) = O(δ 2) from (2.2), can be

neglected at leading order. This means that at leading order we can treat the flow outside

the boundary layer as inviscid and can use the results from §2.3.1 for the mean flow terms

with u = (M + ũO, ṽO, w̃O), p = 1/γ + p̃O and T = 1/(γ − 1)+ T̃O, where all the acoustic

perturbations, ũO, ṽO, w̃O, p̃O and T̃O are O(ε) at leading order.

Inside the boundary layer, we rescale using (3.1), so that

r = 1−δy and u = (u+ ũ,−δ ṽ, w̃). (3.2)

Note that the factor of δ in front of ṽ is needed for terms to balance at leading order (see,

e.g. [4]), while the minus sign is for convenience so that ṽO is positive in the positive r

direction while ṽ is positive in the positive y direction. From [4] we know that for the leading

order system to be well-posed we require ũ, ṽ, ρ̃ and T̃ to be O(ε/δ ) and p̃ and w̃ to be O(ε)
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at leading order. This suggests we use the expansion

ũ =
ε

δ
ũ1 +

ε2

δ 2
ũ2 + ε ũ3, (3.3a)

ṽ =
ε

δ
ṽ1 +

ε2

δ 2
ṽ2 + ε ṽ3, (3.3b)

w̃ = εw̃1 +
ε2

δ
w̃2 + εδ w̃3, (3.3c)

T̃ =
ε

δ
T̃1 +

ε2

δ 2
T̃2 + εT̃3, (3.3d)

p̃ = ε p̃1 +
ε2

δ
p̃2 + εδ p̃3, (3.3e)

where the quantities labelled ‘1’ are the leading order (linear) perturbations, quantities

labelled ‘2’ are the first order nonlinear correction, and quantities labelled ‘3’ are the first

order in δ linear correction (i.e. the first terms to involve mean flow shear). Note that, at

leading order within the boundary layer, −δ ṽ = O(ε), the same as outside the boundary

layer, but ũ = O(ε/δ ), an amplification of 1/δ compared to ũO.

The solution for the leading order linear perturbations was given by Brambley [4] while

the solution for the first order in δ linear correction terms has been given by Khamis [15]. In

this chapter I will solve for the nonlinear order ε2 terms. To do this it is necessary to expand

the governing equations §(2.1) first to leading order to solve for the leading order linear

acoustics and then to order O(ε2) to give a linear system of ODEs for the weakly nonlinear

quantities.

3.4 Linear acoustics

In this section I describe the process for solving the governing equations (2.1) with the

asymptotic expansion (3.3) for the leading order O(ε) linear terms (quantities labelled ‘1’),

reproducing the results of [4]. A similar procedure can be used for the first order linear

correction terms (quantities labelled ‘3’), as was done in [18]. Since the equations that I am

working with here are linear, we do not have to take the real parts of the complex exponentials

when substituting for the perturbations, and may instead work directly with the complex

exponentials, as is usual in acoustics.

Given the assumption that the acoustic perturbations are harmonic this will result in

a homogeneous set of linear ODEs in both the outer region and the inner boundary layer

region.
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3.4.1 Derivation of linear acoustics equations

I begin by considering the leading order linear acoustics. I first consider the equation of state

for a perfect gas (2.1e), expanding in powers of ε and δ gives

ρ + ερ̃1 =
γ p

(γ −1)T
+ ε
( γ p̃1

(γ −1)T
− T̃1

(γ −1)T 2

)

+O(ε2,εδ ).

From the derivation for the steady mean flow §2.4 we know that the O(1) steady leading

order equation is satisfied, so we can match the terms of order ε to get

ρ̃1 =
p̃1γ

(γ −1)T
− T̃1

(γ −1)T 2
. (3.4)

This equation is independent of δ and has no derivatives so it will hold in both the outer invis-

cid region and the inner boundary layer region. Now I consider the continuity equation (2.1a)

ρt +(ρu)x +
1

r
(rρv)r +

1

r
(ρw)θ = 0,

note that the subscripts here denote differentiation (e.g. ρt =
∂ρ
∂ t

). Considering only the

leading order O(ε) time harmonic terms this becomes

i(ω −uk)ρ̃1 − ikρ ũ1 +
1

r
ρ ṽ1 +ρrṽ1 +ρ ṽ1r −

im

r
ρw̃1 = 0.

Equation (3.4) can then be used to eliminate ρ̃1 and (2.1e) to eliminate ρ , this gives the

following equation

i(ω −uk)γ p̃1 −
i(ω −uk)

T
T̃1 − ikũ1 +

1

r
ṽ1 −

Tr

T
ṽ1 + ṽ1r −

im

r
w̃1 = 0. (3.5)

In the outer region the mean flow profile is uniform so this equation simplifies to

i(ω −Mk)γ p̃1 − i(ω −Mk)(γ −1)T̃1 − ikũ1 +
1

r
ṽ1 + ṽ1r −

im

r
w̃1 = 0, (3.6)

and in the inner region, under the rescaling (3.2) and taking into account the amplification (3.3)

of ũ, ṽ and T̃ equation (3.5) simplifies to

i(ω −uk)T̃1 + ikT ũ1 +Tyṽ1 −T ṽ1y = 0. (3.7)
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Now µ is given by equation (2.2) which can be rewritten in terms of δ

µ =
T

T0Re
= ξ δ 2(γ −1)T. (3.8)

Using this we can now consider the streamwise momentum equation (this is the x-component

of equation (2.1b))

ρ(ut +uux + vur +
1

r
wuθ ) =−px +(σ11)x +

1

r
(rσ12)r +

1

r
(σ13)θ , (3.9)

the leading order in ε expansion then gives

i(ω −uk)

(γ −1)T
ũ1 +

urṽ1

(γ −1)T
− ikp̃1 +2k2µ ũ1 + ikµ

(

µB∗
0

µ∗
0

− 2

3

)

[

−ikũ1 + ṽ1r +
ṽ1

r
− im

r
w̃1

]

+
µm

r

(

kw̃1 +
m

r

)

ũ1 −
(

µr(ũ1r − ikṽ1)
)

r
−µ

(

ũ1r

r
− ikṽ1

r

)

−ur

(

µ̃1r +
µ̃1

r

)

−urrµ̃1 = 0,

(3.10)

where µ̃ = T̃
T0Re

= ξ δ 2(γ −1)T̃ . In the outer region we assume our gradients are O(1) and

given that µ and µ̃ are O(δ 2) this allows the equation to be greatly simplified as the viscous

terms may be neglected

i(ω −Mk)ũ1 − ikp̃1 = 0. (3.11)

In the inner region from the definition of δ as the thickness of the boundary layer we know

that gradients in r are O(1/δ ). This means that the only viscous terms that will appear at

leading order are those with two r-derivatives. We can then write down the leading order

equation for the acoustics in the inner region again taking into account the amplification (3.3)

and the rescaling (3.2)

i(ω −uk)ũ1 + ṽ1uy −ξ (γ −1)2T (T ũ1y + T̃1uy)y = 0. (3.12)

If we now consider radial momentum equation

ρ(vt +uvx + vvr +
1

r
wvθ ) =

1

r
ρw2 − pr −

1

r
σ33 +(σ12)x +

1

r
(rσ22)r +

1

r
(σ23)θ , (3.13)

in the outer region, given the assumption of O(1) gradients, we can see straight away that

the viscous terms may be ignored since, from (3.8), they will be at least O(εδ 2). If we then
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consider the remaining terms it is easy to see that the leading order O(ε) balance will give

i(ω −Mk)ṽ1 =−p̃1r. (3.14)

Now in the inner boundary layer region we find that the viscous terms can be O(ε) due to the

large radial gradients. However there is also a term involving the radial gradient of pressure

which in the inner region is O( ε
δ ). Since ṽ is only this order after the rescaling (3.2) we find

that this pressure term cannot be balanced and so the equation in the boundary layer is simply

p̃1y = 0. (3.15)

If we now consider θ -momentum equation

ρ(wt +uwx + vwr +
1

r
wwθ ) =−1

r
ρvw− 1

r
pθ +(σ13)x +

1

r2
(r2σ23)r +

1

r
(σ33)θ , (3.16)

for the outer solution it is again clear that the viscous terms will not appear at leading order

in δ , similarly to the streamwise and radial momentum equations. So the equation becomes

i(ω −Mk)w̃1 =
im

r
p̃1, (3.17)

while for the inner region the expansion is similar to that for the streamwise momentum

equation. Again the only viscous terms that will appear at leading order are those with two

r-derivatives. This means that the leading order inner equation is

i(ω −uk)w̃1 −ξ (γ −1)2T (T w̃1y)y = imp̃1. (3.18)

Lastly we consider the energy equation

ρ(Tt +uTx + vTr +
1

r
wTθ ) = (pt +upx + vpr +

1

r
wpθ )+(κTx)x +

1

r
(rκTr)r +

1

r2
(κTθ )θ

+σ11ux +σ12(ur + vx)+σ13

(1

r
uθ +wx

)

+σ22vr +σ23

(

1

r
vθ + r

(w

r

)

r

)

+
1

r
σ33(wθ + v),

(3.19)

we can note that κ = µ/Pr, so in the outer region we find all κ and µ terms to be negligible.

The equation then simplifies to

i(ω −Mk)T̃1 = i(ω −Mk)p̃1. (3.20)
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In the inner region, given the amplification (3.3), the pressure terms will be negligible and

the only terms that appear from the right hand side are those with two radial derivatives. So

we can simplify the equation to get

i(ω −uk)T̃1 + ṽ1Ty −ξ (γ −1)2T

[

1

Pr
(T̃1T )yy + T̃1(uy)

2 +2Tuyũ1y

]

= 0. (3.21)

We now have a set of five equations for the acoustics in both the inner and outer regions. In

the outer region we can notice that equations (3.11), (3.17) and (3.20) are algebraic only and

may be substituted easily into equation (3.6) along with equation (3.14). This results in the

following second order ODE for the acoustic pressure perturbation in the outer region

p̃1rr +
p̃1r

r
+ p̃1

(

(ω −Mk)2 − k2 − m2

r2

)

= 0. (3.22)

For the inner region we can notice that the equations uncouple, as equations (3.15)

and (3.18) only involve the acoustic pressure and acoustic azimuthal velocity perturbations

while equations (3.7), (3.12) and (3.21) involve only the acoustic radial and streamwise

velocity and acoustic temperature pertubations. This gives the following system of second

order linear ODEs for the acoustic normal velocity, acoustic streamwise velocity and acoustic

temperature

L (ũ1, ṽ1,T1;ω,k,m) = 0, (3.23)

where

L =











i(ω −uk)T̃1 +Tyṽ1 −T ṽ1y + ikT ũ1

i(ω −uk)ũ1 + ṽ1uy −ξ (γ −1)2T (T ũ1y + T̃1uy)y

i(ω −uk)T̃1 + ṽ1Ty −ξ (γ −1)2T
[

1
Pr
(T̃1T )yy + T̃1(uy)

2 +2Tuyũ1y

]











. (3.24)

From (3.15) the acoustic pressure perturbation is constant within the inner region so may be

found by matching to the outer region. The acoustic azimuthal velocity can then be found

using equation (3.18).

3.4.2 Outer solution in the duct interior

I have shown in §3.4.1 that at leading order the governing equations in the outer region reduce

to (3.22) which is the standard Bessel’s equation for acoustics in a duct with cylindrical cross

section. Applying the boundary condition that the solution must be regular at r = 0, the
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solution for the pressure is given by:

p̃O =CJm(αr), where α2 = (ω −Mk)2 − k2, (3.25)

and C is an arbitrary constant. The other quantities are then given in terms of p̃O by

i(ω −Mk)ũO − ikp̃O = 0, (3.26a)

i(ω −Mk)ṽO + p̃Or = 0, (3.26b)

i(ω −Mk)w̃O − imp̃O/r = 0, (3.26c)

T̃O = p̃O. (3.26d)

Now that we have all the acoustic quantities we just need to apply a boundary condition

at the wall to close the system and obtain a dispersion relation ω(k). However the above

solution is not valid within the boundary layer close to the wall, it does not satisfy the no-slip

condition (2.3) or take into account the mean flow boundary layer shear. So we must solve

for the acoustics in the inner boundary layer region where we can apply the impedance

condition at the wall. We can then match our solutions in an intermediate region to obtain

the dispersion relation.

3.4.3 Inner solution in the boundary layer

Inside the boundary layer, the expansion of the governing equations (2.1) at leading order

gives the system of equations (3.23)











i(ω −uk)T̃1 +Tyṽ1 −T ṽ1y + ikT ũ1

i(ω −uk)ũ1 + ṽ1uy −ξ (γ −1)2T (T ũ1y + T̃1uy)y

i(ω −uk)T̃1 + ṽ1Ty −ξ (γ −1)2T
[

1
Pr
(T̃1T )yy + T̃1(uy)

2 +2Tuyũ1y

]











= 0.

This is a coupled system of linear homogeneous ODEs in y. It contains terms involving

u and T and so takes into account the full mean flow boundary layer profile. Since our

boundary layer profile is generally found numerically and this system of equations is not

directly integrable we must also solve this system of equations numerically. First however

we must consider the boundary conditions that we will apply.

The boundary conditions at the wall (y = 0) are those of no slip (ũ1 = 0), thermal

equilibrium (T̃1 = 0, obtained by assuming the wall has a far higher thermal capacity than

the fluid), and the impedance boundary condition p̃ = Z(ω)ṽ. Since the system of equations

L is second order in ũ and T̃ , one further boundary condition on each of ũ and T̃ is needed,
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which is obtained by requiring the inner solution to be compatible with an outer solution as

y → ∞. Finding the compatible outer solution to match to the inner solution is considered in

the next section.

3.4.4 Matching the outer and inner solutions

Sufficiently far outside the boundary layer for y ≥ Y ≫ 1, the gradients of the mean flow

quantities vanish and the mean flow quantities attain their uniform mean flow values. Hence,

for y ≥ Y the system of ODEs (3.23) decouples and becomes

L (ũ1, ṽ1,T1;ω,k) =











η2
∞ξ T̃1 − 1

(γ−1) ṽ1y +
ik

(γ−1) ũ1

η2
∞ũ1 − ũ1yy

η2
∞T̃1 − 1

σ2 T̃1yy











= 0, (3.27)

where σ2 =Pr and η2
∞ = i(ω−Mk)/ξ with Re(η∞)> 0. This can now be solved analytically

ũ1 = ũA
1 eη∞y + ũB

1 e−η∞y,

T̃1 = T̃ A
1 eση∞y + T̃ B

1 e−ση∞y,

ṽ1 = ṽ1∞ +
ik

η∞

(ũA
1 eη∞y − ũB

1 e−η∞y)+
(γ −1)η∞ξ

σ
(T̃ A

1 eση∞y − T̃ B
1 e−ση∞y),

where ũA
1 , ũB

1 , T̃ A
1 , T̃ B

1 and ṽ1∞ are constants. Since Re(η∞)> 0 the ũA
1 and T̃ A

1 terms grow

exponentially as y → ∞. In the outer region we have a Bessel function solution which does

not grow exponentially away from the wall. So in order to match to the outer region only the

decaying solutions can be allowed, i.e. we must set ũA
1 = T̃ A

1 = 0. This can be reformulated

as the following boundary conditions at y = Y which admit only the decaying solutions.

ũ1y +η∞ũ1 = 0, ṽ1 = ṽ1∞ − η∞(γ −1)ξ

σ
T̃1 −

ik

η∞

ũ1, T̃1y +ση∞T̃1 = 0 at y = Y. (3.28)

Using these boundary conditions our inner solution can now be solved and the value ṽ1∞

can be used to match to the outer region soluion. This gives the results of [4]. Note that the

O(ε/δ ) amplification in the boundary layer does not propagate into the centre of the duct

where the acoustics remain O(ε). This is because both ũ1 and T̃1 decay to zero outside the

boundary layer, while −δ ṽ1∞, which is O(ε), is matched to the outer.

It should be noted that taking the decaying solution involves taking the correct branch of

the square root of η2
∞ so that Re(η∞)> 0. This leads to a branch cut in the complex k-plane,

with the branch point at k = ω/M and the branch cut extending vertically downwards towards
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Fig. 3.1 Surface plot of |Zeff/Z
Myers
eff − 1| in the k-plane for ω = 31, M = 0.7, δ = 10−3,

Pr = 0.7 and ξ = 1. The lighter shades are where the Myers condition agrees fairly closely

with the viscous asymptotics whereas the darker shades are where the two schemes disagree.

−i∞. This branch cut can be seen prominently in figure 3.1, which plots |Ze f f/Z
Myers
eff −1|

in the k-plane for the leading order viscous asymptotics. Here, Zeff = p̃O(1)/ṽO(1) is the

impedance seen by the outer solution at the wall, and therefore includes the effect of both the

liner and the boundary layer. Figure 3.1 therefore compares this effective impedance with

the impedance from the Myers boundary condition.

The same procedure as given here may be used to calculate the first order linear correction

terms (quantities labelled ‘3’ above), and such an analysis is given in [18]. Since these first

order linear correction terms are not needed for calculating the nonlinear correction terms

below, I will not reproduce this argument here.

Figure 3.2 shows the inner and outer solutions for the leading order linear acoustics

compared to the solutions from the linearised Navier Stokes. It can be seen that the solutions
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Fig. 3.2 Inner (left) and outer (right) mode shapes of the linear acoustic mode ũ1/ε , comparing

the asymptotics (real part dark blue, imaginary part green) to the linearised Navier Stokes

(real part red, imaginary part red). Parameters are M = 0.7, δ = 10−3, Pr = 0.7, ξ = 0.8,

ω = 5, k = 5+ i and m = 2

are in good agreement in both regions and the O(1/δ ) amplification inside the boundary

layer is evident.

3.5 Nonlinear acoustics

We now turn our attention to the nonlinear correction terms (quantities labelled ‘2’ in

equation 3.3). Substituting the asymptotic ansatz (3.3) into the governing equations (2.1)

and taking terms of order O(ε2) will result in a set of linear ODEs to solve for the nonlinear

correction terms, forced by terms quadratic in the leading order linear solution. Since these

forcing terms are nonlinear, we must take the real parts of the perturbed leading order

quantities before multiplying. For example, the multiple of ũ1 = û1 exp{iωt − ikx− imθ}
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and dṽ1/dx =−ikv̂1 exp{iωt − ikx− imθ} is

Re
(

û1 exp{iωt − ikx− imθ}
)

Re
(

− ikv̂1 exp{iωt − ikx− imθ}
)

=
1

2

(

û1eiωt−ikx−imθ + û⋆1e−iω⋆t+ik⋆x+imθ
) 1

2

(

− ikv̂1eiωt−ikx−imθ + ik⋆v̂⋆1e−iω⋆t+ik⋆x+imθ
)

=
(

− ikû1v̂1

4
e2i(ωt−kx−mθ)+

ik⋆û⋆1v̂⋆

4
e−2i(ω⋆t+k⋆x+mθ)

)

+
( ik⋆û1v̂⋆1

4
− ikû⋆1v̂1

4

)

ei(ω−ω⋆)t−i(k−k⋆)x

=
1

2
Re
(

− ikû1v̂1 exp{2iωt −2ikx−2imθ}+ ik⋆û1v̂⋆1 exp{i(ω −ω⋆)t − i(k− k⋆)x}
)

=
1

2
Re
(

− ikũ1ṽ1 + ik⋆ũ1ṽ⋆1

)

=
1

4

(

− ikũ1ṽ1 + ik⋆ũ1ṽ⋆1

)

+ c.c. (3.29)

where a ‘⋆’ denotes the complex conjugate. This therefore results in two different modes:

a mode of double the frequency and wavenumber of the leading order acoustics (Ω = 2ω ,

K = 2k and M= 2m); and a ‘zero’ frequency mode that has the purely imaginary frequency

(Ω = ω −ω⋆) and wavenumber (K = k− k⋆ and M = 0). It is useful to note that for the

‘zero’ frequency terms we are free to take the complex conjugate of the nonlinear terms while

deriving the equations since they will have the same real part. However this is not possible

for the double mode terms as the complex conjugate has a different frequency.

3.5.1 Weakly nonlinear equations

I will now derive the equations for the leading order weakly nonlinear acoustics. These occur

due to the self interaction of a leading order mode and so will be a linear system of equations

forced by terms that are quadratic in the leading order linear acoustic quantities. It is clear

that the terms involving the leading order nonlinear ‘2’ terms will have the same form as the

equations for the linear acoustics, so we only need to calculate the quadratic forcing terms

Q(ũ1, ṽ1, T̃1; ũ⋆1, ṽ
⋆
1, T̃

⋆
1 ;ω,k). We begin as in §3.4.1 by considering the equation of state for a

perfect gas (2.1e), now expanding to O(ε2)

ρ+ερ̃1+ε2ρ̃2 =
γ p

(γ −1)T
+

ε

(γ −1)T

(

p̃1γ− T̃1

T

)

+
ε2

(γ −1)T

(

p̃2γ− T̃2

T
− p̃1T̃1γ

T
+

T̃1T̃1

T 2

)

.

Using the results for the steady mean flow and leading order acoustics (3.4) to cancel the

mean flow and leading order linear terms we can match the O(ε2) terms. We also need to
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use the nonlinear multiplication rule (3.29) above which then gives

ρ̃2 =
p̃2γ

(γ −1)T
− T̃2

(γ −1)T 2
− p̃1T̃ ⋆

1 γ

4(γ −1)T 2
+

T̃1T̃ ⋆
1

4(γ −1)T 3
, (3.30)

where the complex conjugate is taken in the case of the ‘zero’ frequency mode and is ignored

for the double frequency mode. This equation is again independent of δ and so it will hold in

both regions. Now I consider the continuity equation (2.1a), considering only the leading

order nonlinear O(ε2) time harmonic terms this becomes

i(Ω−uK)ρ̃2 − iKρ ũ2 +
1

r
ρ ṽ2 +(ρ ṽ2)r −

iM
r

ρw̃2 =
iK

4
ρ̃1ũ⋆1 +

iM
4r

ρ̃1w̃⋆
1 −

(rρ̃1ṽ⋆1)r

4r
.

(3.31)

Equation (3.30) can now be used to eliminate ρ̃2. If we first consider the outer region we

can also use the results from the linear outer region (3.26) to simplify this equation. In the

outer region ρ = 1 and equation (3.4) together with the linear outer solution T̃1 = p̃1 gives

ρ̃1 = p̃1. This means that the equation simplifies to

i(Ω−MK)γ p̃2 −
i(Ω−MK)

T
T̃2 − iKũ2 +

1

r
ṽ2 + ṽ2r −

iM
r

w̃2 =

p̃⋆1
4

(

iKũ1 +
iM

r
w̃1 + i(Ω−MK)(γ −1)T̃1 −

ṽ1

r
− ṽ1r

)

− p̃⋆1rṽ1

4
.

(3.32)

In the inner region, taking into account the amplification (3.3) of T̃1 and T̃2 the equation for

the nonlinear density perturbations simplifies to

ρ̃2

ρ
=− T̃2

T
+

T̃1T̃ ⋆
1

4T 2
. (3.33)

So we can now use this along with the amplification (3.3) of ũ, ṽ and T̃ and the rescaling (3.2)

in the inner region to simplify the leading order O
(

ε2

δ 2

)

part of equation (3.31)

i(Ω−uK)T̃2 + iKT ũ2 +Tyṽ2 −T ṽ2y =
Ty

2T
(T̃1ṽ⋆1)−

1

4
(T̃1ṽ⋆1)y +

T̃1T̃ ⋆
1

4T
i(Ω−uK)+

1

4
iKũ1T̃ ⋆

1 .

(3.34)

Now we move on to consider the streamwise momentum equation (3.9). In the outer region

the assumption of O(1) gradients means that all viscous terms are then O(δ 2) which allows

us to again neglect the viscous terms, it is then easy to write down the nonlinear equation

i(Ω−MK)ũ2 − iK p̃2 =− p̃⋆1
4
(i(ω −Mk)ũ1)+

ik

4
ũ⋆1ũ1 −

1

4
ṽ⋆1ũ1r +

im

4r
w̃⋆

1ũ1. (3.35)
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In the inner region the leading order terms are O
(

ε2

δ 2

)

and gradients in r are O(1/δ ). This

means that we again have that the only viscous terms that will appear at leading order are

those with two r-derivatives. We can then write down the equation in the inner region, again

taking into account the amplification (3.3) and the rescaling (3.2)

i(Ω−uK)ũ2 + ṽ2uy −ξ (γ −1)2T (T ũ2y + T̃2uy)y =

ik

4
ũ⋆1ũ1 −

1

4
ṽ⋆1ũ1y +

T̃ ⋆
1

4T
[i(ω −uk)ũ1 + ṽ1uy]+

ξ (γ −1)2T

4
(T̃ ⋆

1 ũ1y)y.
(3.36)

If we now consider radial momentum equation (3.13) in the outer region we can again ignore

the viscous terms. If we then consider the remaining terms it is easy to see that the leading

order O(ε2) balance will give

i(Ω−MK)ṽ2 + p̃2r =− p̃⋆1
4
(i(ω −Mk)ṽ1)+

ik

4
ũ⋆1ṽ1 −

1

4
ṽ⋆1ṽ1r +

im

4r
w̃⋆

1ṽ1 +
w̃⋆

1w̃1

4r
. (3.37)

Now in the inner boundary layer region given the amplification (3.3) we find that the radial

gradient of the nonlinear pressure term is O( ε2

δ 2 ). Given the rescaling of all acoustic normal

velocity terms (3.2) the pressure gradient term cannot be balanced and so the equation in the

boundary layer is again simply

p̃2y = 0. (3.38)

If we now consider the θ -momentum equation (3.16), for the outer solution it is again

clear that the viscous terms will not appear at leading order and the leading order nonlinear

equation has a similar form to the streamwise and radial equations

i(Ω−MK)w̃2 −
iM

r
p̃2 =− p̃⋆1

4
(i(ω −Mk)w̃1)+

ik

4
ũ⋆1w̃1 −

1

4
ṽ⋆1w̃1r +

im

4r
w̃⋆

1w̃1 −
ṽ⋆1w̃1

4r
,

(3.39)

while for the inner region the expansion is similar to that for the streamwise momentum

equation. Again the only viscous terms that will appear at leading order are those with two

r-derivatives. This means that the leading order O( ε2

δ ) inner equation is

i(Ω−uK)w̃2 −ξ (γ −1)2T (T w̃2y)y − iM p̃2 =

ik

4
ũ⋆1w̃1 −

1

4
ṽ⋆1w̃1y +

T̃ ⋆
1

4T
[i(ω −uk)w̃1]+

ξ (γ −1)2T

4
(T̃ ⋆

1 w̃1y)y.
(3.40)

Finally we consider the energy equation (3.19). We can again note that in the outer region

all κ and µ terms are negligible and since T̃1 = p̃1 in the outer region, the equation then
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simplifies to

i(Ω−MK)T̃2 − i(Ω−MK)p̃2 =− i(ω −uk)

4
p̃⋆1T̃1. (3.41)

In the inner region given the amplification (3.3) all the pressure terms will be negligible and

the only terms that appear from the right hand side are those with two radial derivatives. So

we can simplify the equation to get

i(Ω−uK)T̃2 + ṽ2Ty −ξ (γ −1)2T

[

1

Pr
(T̃2T )yy + T̃2(uy)

2 +2Tuyũ2y

]

=
ik

4
ũ⋆1T̃1

− ṽ⋆1T̃1y

4
+

T̃ ⋆
1

4T
[i(ω −uk)T̃1 + ṽ1Ty]+

ξ (γ −1)2T

4

[

(T̃ ⋆
1 T̃1y)y

Pr
+T ũ⋆1yũ1y +2uyT̃ ⋆

1 ũ1y

]

.

(3.42)

In the outer region we can now combine equations (3.32), (3.35), (3.37), (3.39) and (3.20) as

before to derive an equation for the pressure perturbations. Given that the left hand sides of

these equations have the same form as the linear equations we will again obtain a Bessel’s

equation, but now forced by quadratic terms in the leading order linear acoustics

p̃2rr +
p̃2r

r
+ p̃2

(

(Ω−MK)2 −K2 −M2

r2

)

=QO(ũ1, ṽ1, T̃1; ũ⋆1, ṽ
⋆
1, T̃

⋆
1 ;ω,k). (3.43)

The derivation of QO is given in §3.5.4.

Now in the inner region the equations again uncouple and we can use (3.34), (3.36)

and (3.42) to derive a forced system of second order linear ODEs. Given that the left hand

side of these equations has the same for as those for the linear acoustics, the equations are

L (ũ2, ṽ2, T̃2;Ω,K) =Q(ũ1, ṽ1, T̃1; ũ⋆1, ṽ
⋆
1, T̃

⋆
1 ;ω,k), (3.44)

where L is as given in (3.23) and Q is given in §3.5.2. In the double frequency mode case,

Ω = 2ω , K = 2k and the ⋆ is ignored. In the ‘zero’ mode case, Ω = ω −ω⋆, K = k− k⋆ and

the ⋆ denotes the complex conjugate. From (3.38) the acoustic pressure perturbation is again

constant within the inner region and so may be found by matching to the outer region.
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3.5.2 Inner solution in the boundary layer

In the inner region we can use equations (3.34), (3.36) and (3.42) to write down the forcing

term Q,

Q=















Ty

2T
(T̃1ṽ⋆1)− 1

4
(T̃1ṽ⋆1)y +

T̃1T̃ ⋆
1

4T
i(Ω−uK)+ 1

4
iKũ1T̃ ⋆

1

ik
4

ũ⋆1ũ1 − 1
4
ṽ⋆1ũ1y +

T̃ ⋆
1

4T
[i(ω −uk)ũ1 + ṽ1uy]+

ξ (γ−1)2T

4
(T̃ ⋆

1 ũ1y)y

ik
4

ũ⋆1T̃1 − 1
4
ṽ⋆1T̃1y +

T̃ ⋆
1 [i(ω−uk)T̃1+ṽ1Ty]

4T
+ ξ (γ−1)2T

4

[

(T̃ ⋆
1 T̃1y)y

Pr
+(T ũ⋆1y +2uyT̃ ⋆

1 )ũ1y

]















.

(3.45)

Similarly to the linear case, when the extrapolation outside the boundary layer at y =

Y ≫ 1 is carried out we get exponential terms ∝ exp(±N∞y) where N2
∞ = i(Ω−MK)/ξ . The

equations for large y are

N2
∞ξ T̃2 −

1

(γ −1)
ṽ2y +

iK

(γ −1)
ũ2 =−1

4
(T̃1ṽ⋆1)y +

T̃1T̃ ⋆
1

4
i(Ω−MK)(γ −1)+

1

4
iKũ1T̃ ⋆

1 ,

N2
∞ξ ũ2 −ξ ũ2yy =

i(ω −Mk)(γ −1)

4
(ũ1T̃ ⋆

1 )+
ik

4
ũ1ũ⋆1 −

1

4
(ṽ1ũ⋆1y)+

ξ (γ −1)

4
(T̃1ũ⋆1y)y,

N2
∞ξ T̃2 −

ξ T̃2yy

σ2
=

ikũ⋆1T̃1

4
−

ṽ1T̃ ⋆
1y

4
+

i(ω −Mk)(γ −1)T̃1T̃ ⋆
1

4
+

ξ (γ −1)(T̃ ⋆
1 T̃1y)y

4σ2
+

ξ ũ1yũ⋆1y

4
.

The equations for ũ2 and T̃2 have now decoupled and may be solved analytically. But we

have already shown that for large y, ũ1 and T̃1 must decay exponentially, so we find the right

hand side decays exponentially. This means that to be able to match to the outer we again

need to take the decaying exponential solutions for ũ2 and T̃2 and so we obtain boundary

conditions similar to the leading order linear case

ũ2y +N∞ũ2 = 0, ṽ2 = ṽ2∞ − N∞(γ −1)ξ

σ
T̃2 −

iK

N∞

ũ2, T̃2y +σN∞T̃2 = 0 at y = Y,

(3.46)

where we have ignored the forcing terms as they decay exponentially and so are expected to

be negligible for y ≥ Y .

The double frequency mode behaves similarly to the leading order acoustics. The branch

cut for N∞ is the same as for η∞, and we can take the decaying solution and rewrite the

equations to ensure only this solution is admitted. However for the ‘zero’ mode N2
∞ is always

real, and the resulting behaviour depends on the sign of N2
∞. For downstream decaying

modes, N2
∞ < 0, and both exponentials have purely imaginary argument and oscillate without

decaying. In effect, this is because in this case the whole lower-half k-plane is mapped to the

branch cut under the transformation Ω = ω −ω⋆, K = k−k⋆. This means that the O(ε2/δ 2)
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‘zero’ frequency amplification will propagate out of the boundary layer and into the centre of

the duct. For upstream decaying modes, N2
∞ > 0, and the decaying solution may be taken

similarly to the leading order case.

3.5.3 Interaction of multiple modes

We might also consider the nonlinear effect due to two different frequency leading order

modes interacting. We now take the leading order acoustics as a superposition of two waves,

ũ1 = Re
(

û1aei(ωat−kax−maθ)
)

+Re
(

û1bei(ωbt−kbx−mbθ)
)

. (3.47)

When we take quadratic terms of this form we will get the self interaction double frequency

mode, 1
4
(ũ2

1a + ũ⋆2
1a), and ‘zero’ frequency mode, 1

4
(ũ1aũ⋆1a + ũ⋆1aũ1a), for each of the leading

order linear modes ũ1a and ũ1b. However we will also get two cross-interaction terms, as

ũ2
1 =[

1

2
(ũ1a + ũ⋆1a)+

1

2
(ũ1b + ũ⋆1b)]

2

=
1

4

[

(ũ2
1a + ũ⋆2

1a)+(ũ1aũ⋆1a + ũ⋆1aũ1a)

+(ũ2
1b + ũ⋆2

1b)+(ũ1bũ⋆1b + ũ⋆1bũ1b)

+2(ũ1aũ1b + ũ⋆1aũ⋆1b)+2(ũ1aũ⋆1b + ũ⋆1aũ1b)
]

,

so we can see that we obtain two pairs of nonlinear self-interaction modes, as described

above, as well as two cross-interaction modes. These cross-interactions modes will have the

forms

ũ2+ = Re
(

û2+ei[(ωa+ωb)t−(ka+kb)x−(ma+mb)θ ]
)

, (3.48)

ũ2− = Re
(

û2−ei[(ωa−ω⋆
b )t−(ka−k⋆b)x−(ma−mb)θ ]

)

. (3.49)

Noting the factor of 2 from above we can see that the system of equations we now have to

solve are

L (ũ2+, ṽ2+, T̃2+;Ω,K) =Q(ũ1a, ṽ1a, T̃1a; ũ1b, ṽ1b, T̃1b;ωa,ka)

+Q(ũ1b, ṽ1b, T̃1b; ũ1a, ṽ1a, T̃1a;ωb,kb),
(3.50)
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with Q from (3.45), Ω = ωa +ωb and K = ka + kb, and

L (ũ2−, ṽ2−, T̃2−;Ω,K) =Q(ũ1a, ṽ1a, T̃1a; ũ⋆1b, ṽ
⋆
1b, T̃

⋆
1b;ωa,ka)

+Q(ũ⋆1b, ṽ
⋆
1b, T̃

⋆
1b; ũ1a, ṽ1a, T̃1a;−ω⋆

b ,−k⋆b),
(3.51)

with Ω = ωa −ω⋆
b and K = ka − k⋆b.

The magnitude of the matching outer solution depends on N2
∞ in the same way as the

self-interaction modes. For N2
∞ real and negative the outer solution is O(ε2/δ 2), and for all

other values of N2
∞ it is O(ε2). However, for N2

∞ to be real and negative a rather particular

choice of ωa, ωb, ka and kb is needed, and the usual case will be of O(ε2) and therefore the

amplification is expected to remain contained within the boundary layer for most nonlinear

wave interactions.

3.5.4 Outer solution in the duct interior

In the case N2
∞ > 0 (typically when the original mode decays in the upstream direction) the

behaviour of the ‘zero’ mode outside the boundary layer is similar to the leading order mode,

the amplification in the boundary layer decays and we can match the O( ε2

δ ) acoustic normal

velocity to the outer solution.

To derive the equation for the outer pressure we use equations (3.35), (3.37) (3.39) and

(3.41) to substitute all nonlinear terms for the nonlinear pressure in equation (3.32). The

resulting equation will also be valid for the double frequency nonlinear mode. This gives the

following forced Bessel’s equation

p̃2rr +
1

r
p̃2r +A2 p̃2 −

M2

r2
p̃2 =

(γ −1)ξ 2η2
∞N2

∞

4
p̃⋆1T̃1 −

(γ −1)ξ 2N4
∞

4
p̃⋆1T̃1

− iKξ N2
∞

4
p̃⋆1ũ1 +

ξ N2
∞

4
(
ṽ1

r
+ ṽ1r)p̃⋆1 +

ξ N2
∞

4
ṽ1 p̃⋆1r −

iMξ N2
∞

4r
w̃1 p̃⋆1

+
iK

4
[ξ η2

∞ p̃⋆1ũ1 − ikũ⋆1ũ1 + ṽ⋆1ũ1r −
im

r
w̃⋆

1ũ1]

+
1

4r
[−ξ η2

∞ p̃⋆1ṽ1 + ikũ⋆1ṽ1 − ṽ⋆1ṽ1r +
im

r
w̃⋆

1ṽ1 +
1

r
w̃⋆

1w̃1]

+
1

4
[−ξ η2

∞ p̃⋆1ṽ1 + ikũ⋆1ṽ1 − ṽ⋆1ṽ1r +
im

r
w̃⋆

1ṽ1 +
1

r
w̃⋆

1w̃1]r

+
iM
4r

[−p⋆1η2
∞ξ w̃1 + ikũ⋆1w̃1 − ṽ⋆1w̃1r +

im

r
w̃⋆

1w̃1 −
1

r
ṽ⋆1w̃1], (3.52)

where A2 =−ξ 2N4
∞ −K2 = [Ω−MK]2 −K2. This can be transformed to a forced Bessel’s

equation of order M. Note that the right hand side forcing terms are all O(ε2), so the leading
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order outer nonlinear pressure term is mainly affected by the matching to ṽ2∞. We could use

this to solve for p̃2 asymptotically however here I will solve these equations numerically.

3.5.5 Outer solution for self-interaction mode with N2
∞ < 0

In the case N2
∞ < 0, the extrapolation of the inner gives an oscillatory solution. This propagates

into the rest of the duct and as the frequency of the oscillations is ∝ 1/δ , the gradients outside

the boundary layer can no longer be assumed to be small and so the viscous terms cannot

be ignored. However, an approximate solution to the outer equations may be found using

the method of multiple scales. To do this we begin by defining variables y and R such that

r = R−δy, so y is the rapidly varying variable and R the slowly varying variable. We can

then expand all quantities as ũ2 =
ε2

δ 2 ũO0+
ε2

δ ũO1+ε2ũO2 and expand the equations in powers

of δ . This gives

ξ N2
∞ũ2 = ξ δ 2ũ2rr +

ξ δ 2ũ2rr

r
+O(ε2). (3.53)

At leading order, O(ε2/δ 2), this simplifies to

N2
∞ξ ũO0 −ξ ũO0yy = 0 ⇒ ũO0 = A1(R)e

i f y +A2(R)e
−i f y, (3.54)

where f 2 =−N2
∞ so that f is real. At next order the equation is now

ũO1yy −N2
∞ũO1 =

(

2ũO0Ry +
ũO0y

R

)

= 2i f ei f y

(

A′
1 +

A1

2R

)

−2i f e−i f y

(

A′
2 +

A2

2R

)

.

(3.55)

To avoid a secular term we require that both terms on the right hand side vanish, this gives

the secularity conditions

A′
1 +

A1

2R
= 0 and A′

2 +
A2

2R
= 0 ⇒ ũO0 =

1√
R
(A1ei f y +A2e−i f y). (3.56)

Now this solution is singular at the origin, so to eliminate one of the two constants we need

to solve for ũO in an inner-outer region about r = 0 where the 1/r terms become large. To do

this we set r = δq and expand our equations to leading order in δ . This gives

N2
∞ξ ũO0 −ξ ũO0qq −

ξ

q
ũO0q = 0 ⇒ ũO0 = AJ0( f q). (3.57)
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For large q this solution can be approximated by the standard result

ũO0 ≈ A

√

2

f πq
cos
(

f q− π

4

)

. (3.58)

This now has to match with our outer solution, which means that the outer solution must be

ũO0 =
ũ2∞√

R
cos
(

− f y− π

4

)

and A =

√

f π

2δ
ũ2∞. (3.59)

This means that

ũO0 =

√

f π

2δ
ũ2∞J0( f q) =

√

f π

2δ
ũ2∞J0

(

f r

δ

)

(3.60)

is a uniformly valid asymptotic solution outside the boundary layer. We can use a similar

method to find the leading order terms of T̃ , ṽ and p̃

T̃O0 =

√

f σπ

2δ
T̃2∞J0

(

f σr

δ

)

≈ T̃2∞√
R

cos
(

− f σy− π

4

)

, (3.61a)

ṽO0 =
δ i(k− k⋆)ũ2∞

f
√

R
sin
(

− f y− π

4

)

− δ f ξ (γ −1)T̃2∞

σ
√

R
sin
(

− f σy− π

4

)

+ v̂O(R),

(3.61b)

p̃O1 = δ 2ξ 2N2
∞(γ −1)

(

2+
µB∗

0

µ∗
0

− 2

3
− 1

Pr

)

T̃O0 + p̂O(R). (3.61c)

To find the slowly varying terms of ṽO and p̃O, we have to expand to order ε2 and consider

only the non-oscillating parts of the solutions, a full derivation is presented in appendix B.1.

We find that v̂O(R) and p̂O(R) satisfy the same outer equations as ṽ2O and p̃2O in the case

N2
∞ > 0.

We can find the constants ũ2∞ and T̃2∞ by matching to the inner solution at y = Y ≫ 1.

This gives

ũ2∞ =
1

i f
ei f y+i π

4 (i f ũ2 − ũ2y) at y = Y, (3.62)

T̃2∞ =
1

i f σ
ei f σy+i π

4 (i f σ T̃2 − T̃2y) at y = Y. (3.63)

Since the inner solutions are O(ε2/δ 2) and don’t decay, the constants ũ2∞ and T̃2∞ are

both O(ε2/δ 2). This corresponds to an amplified acoustic streaming, stronger than the O(ε2)
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acoustic streaming that would be expected, that is caused by the viscous boundary layer over

the acoustic lining.

3.6 Numerical results

While asymptotic approximate solutions to equations (3.23,3.45,3.50) are possible [see, e.g.

4, 17], here these equations are solved numerically using 4th order finite differences.

In the centre of the domain central differences are used while at the boundary 4th order

forward differences are used to maintain accuracy near the boundary. It is important to use

4th order differences at the boundary as there can be fairly large gradients in the solution here

particularly for the expanded full Navier Stokes solutions which need to be solved accurately.

However it does come at the cost of having wide finite difference stencils near the boundary

which increase the width of the resulting banded matrix.

The resulting 3N × 3N banded matrix system of equations is solved using the LA-

PACK_ZGBSV routine. To solve for the first order nonlinear inner, the same matrix is used,

now forced by terms nonlinear in the leading order quantities. The system of equations

is solved from y = 0 to y = Y , where Y is large enough so that the mean flow terms are

approximately their uniform mean flow values, and the extrapolation condition (3.27) is used

as the boundary condition.

By way of comparison, we also produce weakly nonlinear solutions to the full Navier

Stokes equations, without any of the asymptotic assumptions in δ and the matching needed

above. The full Navier Stokes equations are expanded in ε , full details of this derivation are

given in appendix B.2, and a 4th order finite difference scheme is again used for the O(ε) and

O(ε2) equations thus obtained. In this case we get a 5N ×5N banded matrix equation that is

homogeneous in the leading order case and forced by leading order terms in the first order

case. To accurately resolve the details in the boundary layer while still solving across the

whole duct, stretched coordinates η = tanh(Sr)/ tanh(S) are used, where S is the stretching

factor. This then concentrates the grid points about r = 1 so that the rapid variations there

due to the thin boundary layer are properly resolved1. For the results below a stretching

factor of S = 2.0 is used. While this is a fairly conservative stretching factor that requires

many grid points to accurately resolve the detail in the boundary layer it avoids the problem

of significant rounding errors that can occur near the boundary for larger stretching factors

due to the very small step size right at the boundary. Before solving, the matrix is balanced

1It should be noted that the use of this stretching factor is not necessary when solving for the asymptotic

solutions as they are solved separately in the boundary layer and outer regions and so there is no problem of

small scales that need to be resolved.
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Fig. 3.3 Plot showing the convergence of the asymptotic linear (left) and nonlinear (right)

solutions to the solutions from the linearised Navier Stokes and first order expansion in ε of

the full Navier Stokes respectively as the boundary layer thickness δ → 0.

so that the largest value in each row is 1; this ensures that the solution remains stable near

the origin, where terms involving 1/r can become large and could cause the matrix to be

ill-conditioned.

The boundary conditions at the origin for the expansion in ε of the full Navier Stokes are

found by assuming all quantities have a regular series expansion near the origin and matching

powers of 1/r, the full derivation is given in appendix B.3. This eliminates the possibility

of any non-regular terms in the acoustic quantities and gives boundary conditions that are

consistent with the expected Bessel function solutions. Figure 3.3 shows that the asymptotic

linear and nonlinear solutions achieve the expected order of accuracy in δ , when compared

to the expansion of the full Navier Stokes, as δ is decreased up to the point that rounding

errors dominate the solutions.

Figure 3.4 shows plots of the mode shapes for both types of cross-interaction modes. The

asymptotic solution can be seen to be in good agreement with the comparable result derived

directly from the expansion in ε of the full Navier Stokes, calculated without assumptions

about the asymptotics and matching. Note that these solutions are normalized so that p̃1 = 1

at the wall. The values of ω and k used do not come from solving the dispersion relation but

are used to show representative behaviours of the solutions.

A typical mode shape of the double-frequency nonlinear mode is given in figure 3.5. The

nonlinear asymptotic solution is shown to be in good agreement with be first term from the

expansion in ε of the full Navier Stokes, giving confidence in the asymptotic method applied.

Moreover, both solutions are localized within the boundary layer (δ = 10−3 in this case),

confirming the prediction that the O(1/δ ) amplification of the linear acoustics within the
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ũ2

1− r

0

1000

2000

3000

−1000

−2000

−3000

−4000

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

ũ2

1− r

0

1000

−1000

−2000

−3000

−4000

0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007

Fig. 3.4 Inner solutions of ũ2+/ε2 (left) and ũ2−/ε2 (right) for ωa = 5, ka = 10, ma = 10,

ωb = 31+5i, kb = 12, mb = 12 for asymptotics (real part dark blue, imaginary part green)

compared to expanded full Navier Stokes (real part light blue, imaginary part red), with

δ = 10−3, M = 0.7, Pr = 0.7 and ξ = 0.8
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Fig. 3.5 Inner (left) and outer (right) mode shapes of the double frequency mode ũ2/ε2,

comparing the asymptotics (real part dark blue, imaginary part green) to the first term

from the expansion in ε of the full Navier Stokes (real part light blue, imaginary part red).

Parameters are M = 0.7, δ = 10−3, Pr = 0.7, ξ = 0.8, ω = 5, k = 5+ i and m = 2
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Fig. 3.6 Inner (left) and outer (right) of ‘zero’ mode ũ2/ε2 for ω = 5, k = 5+ i and m = 2

for asymptotics (real part dark blue, imaginary part green) compared to the first term from

the expansion in ε of the full Navier Stokes (real part light blue, imaginary part red). Other

parameters are M = 0.7, δ = 10−3, Pr = 0.7 and ξ = 0.8

boundary layer [4] does indeed trigger significantly more nonlinearity than would otherwise

have been expected, but that, for the double frequency mode, it is mostly confined within the

boundary layer.

The comparable ‘zero’ frequency nonlinear mode, for the case upstream decaying case

N2
∞ > 0, is plotted in figure 3.6.2 This shows a similar trend to 3.5, in that the predicted

O(1/δ 2) amplification of the nonlinear acoustics within the boundary layer is seen, but most

of this does not bleed out into the rest of the duct; the acoustic streaming in the centre of the

duct is O(ε2/δ ).

In contrast, however, figure 3.7 shows the mode-shapes in the case of a downstream

decaying mode, for which N2
∞ < 0. The solution is seen to oscillate rapidly in r with a radial

wavelength of order O(δ ). This amplified rapid oscillation does not decay away from the

boundary layer and is present throughout the duct, with an amplitude of O(ε2/δ 2). This

shows that, in this case, the amplification within the boundary layer by a factor of 1/δ

previously predicted [4] does indeed lead to significant nonlinearity beyond what would have

been expected within the duct, and that the nonlinearity is not confined to the boundary layer

but bleeds out into the rest of the duct in this case.

Figure 3.8 shows the total sum of these effects, by plotting the overall perturbation to the

streamwise velocity ũ at different acoustic amplitudes. The effect of the nonlinear streaming

2Note that for the ‘zero’ frequency mode I have combined both of the terms that contribute to the mode as

it is time independent, this should be equivalent to taking the real part, and as can be seen from the plot the

imaginary part of the solution is indeed zero.
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Fig. 3.7 Inner (left) and outer (right) of ‘zero’ mode ũ2/ε2 for ω = 5, k = 5− i and m = 2

for asymptotics (real part dark blue, imaginary part green) compared to the first term from

the expansion in ε of the full Navier Stokes (real part light blue, imaginary part red). Other

parameters are M = 0.7, δ = 10−3, Pr = 0.7 and ξ = 0.8

Fig. 3.8 Plot of snapshots of the total perturbation for k = 5− i, ω = 31, m= 10 and δ = 10−3

for different initial amplitudes.
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Fig. 3.9 Diagram showing the mechanism by which the linear amplification within the

boundary layer causes an amplification of the outer nonlinear acoustics

is easily seen by the hairy appearance of the louder plot, although this nonlinear perturbation

decays faster in the x direction than the damped acoustics, since the axial wavenumber has

twice the decay rate of the linear acoustics.

3.7 Conclusion

In this chapter, I have investigated how the previously predicted [4] amplification of acoustics

within a thin visco-thermal boundary layer over an acoustic lining leads to nonlinear effects

becoming apparent at lower sound amplitudes than might have otherwise been predicted.

It is emphasized that the nonlinearity presented here is nonlinearity within the fluid in the

boundary layer, and is separate to the nonlinear behaviour of the actual boundary, such as the

nonlinear behaviour of Helmholtz resonators near resonance [32].

As shown in figure 3.9, the mechanism is that sound of amplitude ε enters the boundary

layer of thickness δ and is amplified to order ε/δ by the large shear. Nonlinear interactions

inside the boundary layer then result in nonlinear acoustics with an amplitude of order ε2/δ 2.

These new acoustics have either double the frequency of the incoming sound, or ‘zero’

times the frequency, the latter corresponding to acoustic streaming. The double frequency

amplified sound is mostly localized to the boundary layer, but it still causes amplified

nonlinear acoustics of order ε2/δ in the outer region. The upstream ‘zero’ frequency

nonlinear modes behave in a similar fashion. However for downstream decaying sound the

‘zero’ frequency nonlinear modes bleed into the rest of the duct and show an ε2/δ 2 amplitude

throughout the duct. This is a factor of 1/δ 2 times greater than the magnitude of nonlinear
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acoustics that would be created by ordinary nonlinear interactions outside of the boundary

layer.

This is an unexpected result as one would not expect such highly oscillatory solutions

in the centre of the duct. However this behaviour is present in both the asymptotic solution

and in the results from the weakly nonlinear expansion of the Navier Stokes. It is possible

that this behaviour is a consequence of one of our assumptions. In the next two chapters I

will weaken some of these assumptions, in particular that of uniform mean flow, as in real

aircraft engines we would expect to have a developing boundary layer profile. Also the effect

of non-uniform mean flow has also been shown to be important for other duct acoustics

problems [35].

Also derived here are equations governing the nonlinear interactions of two modes of

differing frequencies. As for the self-interacting case, nonlinearity becomes important at

lower amplitudes than expected due to the 1/δ amplification within the boundary layer. Such

interactions may well be important when two well-damped high azimuthal order spinning

modes (for example, corresponding to the number of rotor and stator blades respectively)

interact to produce a poorly-damped low azimuthal order nonlinear mode.

The analysis presented in this chapter assumed a thin boundary layer of constant width δ ,

and a small acoustic perturbation of amplitude ε , with ε ≪ δ ≪ 1. In practice this will limit

the maximum amplitude where the asymptotic solution may be used. Typically it is assumed

that nonlinear effects are unimportant for sound power levels up to around 150dB, however

here I have shown that the amplification within the boundary layer will cause nonlinear

effects to become important much sooner than this. This means that the linear assumption

in aircraft engines may only be valid up to around 100dB, much less than the typical sound

level in an aircraft engine.

While the use of the asymptotics simplifies the governing equations, numerical solutions

are still needed. In the linear case, other additional methods are used to derive approximate

solutions and an effective impedance Zeff that accounts for the behaviour within the bound-

ary layer without having to numerically solve differential equations [4, 18, 17], and such

techniques may well be applicable here.





Chapter 4

Non-parallel linear acoustics

4.1 Introduction

In the last chapter I used the common assumption that the background flow in the duct is

parallel. This assumption is valid for large distances downstream and so may work well

for experiments conducted on high aspect ratio apparatus (e.g. GFIT [14]). However, in

this case we would no longer expect the boundary layer thickness to be very small and so

O(δ ) corrections would be important; work on these correction terms for both inviscid and

viscous background flows has been done previously [5, 17]. Indeed, in the limiting case

that streamwise gradients are zero, we would expect the boundary layer thickness to be of

the order of the radius of the duct, so the asymptotic expansion would break down entirely.

However, we would only expect this to occur at very large downstream distances.

Even if we accept that the parallel flow assumption is valid for high aspect ratio apparatus,

this assumption is less likely to be valid for aeroengines, whose aspect ratio is moderate

(particularly since the diameter of turbofan engines has historically increased). Indeed, I

showed in the previous chapter that under the parallel flow assumption, unusually large

oscillatory acoustic streaming modes could appear. It is believed that these are unphysical

and are an artefact of the parallel flow assumption.

In this chapter I will develop a non-parallel model for the linear acoustics inside a duct of

slowly varying width, with a developing boundary layer shear background flow profile. This

model will again take into account the effects of shear and viscosity, but now it will also be a

non-local model that takes into account streamwise variations of the background flow. To do

this I will use a three-layer matching WKB method to solve analytically for the acoustics in

a viscous non-parallel boundary layer flow over an acoustic lining. In chapter §5 I will then

extend this solution to consider the weakly nonlinear acoustics.
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Fig. 4.1 Diagram of the slowly varying radius duct

To solve the problem I will introduce a new small variable εk ≪ 1, which will be a

measure of streamwise variation. It will quantify both the slow variation of the duct radius as

well as the slow streamwise variation of the boundary layer mean flow. This means that I now

have three small quantities ε , δ and εk. Since ε measures the amplitude of the acoustics, it is

independent of the background flow. In this chapter I will only consider the linear acoustics

and hence the leading order quantities in ε . In chapter §5 I will consider the weakly nonlinear

acoustics which are the first order corrections in ε . The last small parameter, δ , is a measure

of the boundary layer thickness. From the scaling for the acoustics (3.3) in chapter §3 we

expect the leading order linear acoustics within the boundary layer to scale as O
(

ε
δ

)

. This

requires that we have ε ≪ δ so that it is still valid to assume that the acoustic quantities are

much smaller than the mean flow quantities within the boundary layer. If this requirement

did not hold the problem would become fully nonlinear within the boundary layer and would

not be possible to solve analytically. As I do not wish to introduce further restrictions on the

range of validity of the asymptotic solution, I will not assume any scaling between εk and

δ and will solve for the first order corrections in both simultaneously. When we come to

match between the inner and outer regions we will find that these corrections separate, as

δ measures radial variations which are involved in the matching, while εk is a measure of

streamwise variations which are solved using the WKB solution.

4.2 Statement of the problem

I consider the problem of acoustics in a cylindrical duct lined with an acoustic lining. We will

allow the radius of the duct a(X) to change slowly, depending on the slow variable X = εkx,
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and assume that we have a developed boundary layer flow inside the duct. A diagram of the

duct is shown in figure 4.1.

I again nondimensionalise as in §2.1, so that our lengths are nondimensionalised with

respect to the duct radius l∗ at x = 0 and use the mean flow sound speed in the centre of the

duct at x = 0 to nondimensionalise our timescales. We still assume that the fluid inside the

duct is a perfect gas and that the viscosity and thermal diffusivity are linear with temperature.

The equations for our problem are then the Navier Stokes equations (2.1).

I assume that the acoustic lining reacts locally and can be modelled by a linear impedance

boundary condition. In this chapter I will use the mass-spring-damper (1.3) impedance

Z = R+ iωd − ib

ω
,

however the method is valid for any local impedance which is a function of ω only.

4.2.1 Mean flow

For the outer mean flow I use the slowly varying solution from 2.3.2:

πa2 =
πM0

M

[

1+ (γ−1)
2

M2

1+ (γ−1)
2

M2
0

]

(γ+1)
2(γ−1)

, c2
s =

[

1+ (γ−1)
2

M2
0

1+ (γ−1)
2

M2

]

,

ρ =c
2

(γ−1)
s , P =

1

γ
ργ , T̄ =

ργ−1

γ −1
, U = Mcs, V =

εka′(X)Ur

a(X)
,

since all outer mean flow terms depend algebraically on a(X), they are also slowly varying

downstream functions of X .

For the boundary layer flow profile I use the solutions to the boundary layer equa-

tions (2.23)

(ρu)x +(ρv)r = 0,

ρ(uux + vur) =−px +(µur)r +µFrr(x,r),

pr = 0,

ρ(uTx + vTr) = upx + vpr +(κTr)r +µu2
r +µGrr(x,r),

for the results here I set both F and G to zero so that we can use the compressible Blasius

boundary layer solution (2.31) and (2.38). Note that while in §2.4.2 I used the boundary layer

coordinates (x̂, ζ̂ ) (2.25), here in region II for simplicity I will use coordinates (x,ζ = a−r
δ
√

x
).
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Fig. 4.2 Diagram of the duct with inner boundary layer region II and inner-inner acoustic

boundary layer region I

Now that we have our background flow profile we can consider the asymptotic scalings

of the problem to simplify the equations we need to solve.

4.3 Three layer setup-asymptotic model

From the standard Blasius boundary layer scaling (2.21) we have the thickness of the duct

boundary layer δL =
√

x
Re

= δ
√

x. Note that for simplicity, here we drop the M from the

boundary layer thickness; this doesn’t change the scalings since M ∼ O(1). To attempt a

closed form solution for the acoustics we consider the radial lengthscale λ over which the

acoustics are affected by the viscosity. For the acoustics, the time dependence is given by the

frequency Re(ω) = ωr and the viscosity scales like 1/Re, so the balance is now

∂ ũ

∂ t
∼ µ

ρ
ũyy =⇒ ωr ∼

1

Reλ 2
,

rearranging we then have

λ ∼ δL

√

1

ωrx
∼ δL√

krx
. (4.1)

Note that the last result is true as we have cs ∼O(1) when nondimensionalised and ωr ∼ cskr

where kr = Re(k). Away from the leading edge we assume x is much larger than the

wavelength, so that krx ≫ 1. This lets us ignore any scattering effects due to the leading edge
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of the duct. This also then implies that λ ≪ δL, so we can introduce an inner-inner region

of lengthscale λ . We then have three distinct regions where different scalings dominate as

shown in figure 4.2. In the inner-inner region, region I, the effect of viscosity on the acoustic

dominates and the base flow can be viewed as approximately linear. Note that this region is

sometimes knowns as the Stokes layer [30]. In region II, the effect of viscosity is negligible

at leading order, so the acoustics act inviscidly, but the profile of the base flow must now be

taken into account. In region III, the base flow is approximately uniform and the effect of

viscosity is negligible at leading order, so the acoustics can be treated as being in an inviscid

uniform flow, for which the solutions can be found to be in the form of Bessel functions.

Note we also need x ≫ δ 2

M
for boundary layer approximation to be appropriate. However

this will be true away from a very small region near the leading edge.

If we compare these scalings to those used in §3 we can see that for the parallel assumption

of §3 to hold we need to make x very large while keeping the mean flow boundary layer

thickness δL constant. However if we keep δL constant as we increase x, our inner-inner

region will become very thin. This means that it is not possible to take the limit of these

new three layer scalings to obtain the same scalings as in §3 as doing so will collapse our

inner-inner region into an infinitely thin region with infinitely large gradients near the wall of

the duct.

4.4 Solution in each region

We first let εk =
1

krx0
where x0 is some characteristic distance downstream, e.g. the location

of a source and kr is a characteristic wavenumber, perhaps related to the source frequency.

This means that the effects of the slow variation of the radius of the duct and streamwise

variation of the boundary layer will occur at the same order of magnitude and will be

solved simultaneously for convenience. If we desired, we could then separate these effects

afterwards by adjusting the magnitude of a′(X).

Now since 1/kr ≪ x from §4.3, we have εk ≪ 1, as required for the asymptotic scalings

to hold. We then try a WKB solution of the form

ũ = (ũ0(X ,r)+ εkũ1(X ,r))e
−i[
∫ x k(X)

εk
dX−ωt+mθ ]

, (4.2)

where X = εkx is a slow streamwise variable with which the background flow profile varies

and x a fast streamwise variable with which the acoustics vary; ũ0 is the leading order solution

and ũ1 the O(εk) correction term.
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It is useful to note here that in chapter §3 I used ũ1 as the leading order term and ũ3 as

a linear correction term. However here I use ũ0 as the leading order term and ũ1 and ũ3 as

linear correction terms.

4.4.1 Region III

We first consider region III, the outer region. The radius of the duct is at r = a(X) and we

have assumed that the streamwise mean flow velocity, pressure and density are uniform

but x-dependent, while the normal mean flow velocity is O(εk) and linear in the radial

direction §2.3.2. We now consider the equations for the acoustic perturbations to first order

in εk by expanding the linearised Navier Stokes equations. Since we assume that gradients

are O(1) we can ignore the viscous terms in this region as they are O(δ 2
L ). The equations are

then

i(ω −Uk)
ρ̃

ρ
− ikũ+ ṽr +

ṽ

r
− imw̃

r
+ εk

(

U ρ̃X

ρ
+

ũρX

ρ
+ ũX +

ρ̃UX

ρ

)

+
(rρ̃V )r

rρ
= O(ε2

k ),

(4.3a)

ρ[i(ω −Uk)ũ+ εk(UũX + ũUX)+V ũr]+ εkρ̃UUX = ikp̃− εk p̃X +O(ε2
k ), (4.3b)

ρ[i(ω −Uk)ṽ+ εkUṽX +V ṽr + ṽVr] =− p̃r +O(ε2
k ), (4.3c)

ρ[i(ω −Uk)w̃+ εkUw̃X +V w̃r] =−1

r
ρV w̃+

im

r
p̃+O(ε2

k ), (4.3d)

i(ω −Uk)(ρT̃ − p̃)+ρ[εk(UT̃X + ũT̄X +
ρ̃

ρ
UT̄X)+V T̃r] = εk(U p̃X + ũPX)+V p̃r +O(ε2

k ).

(4.3e)

Since our outer mean flow solution (ρ,U,V, T̄,P) (2.18) is correct to order O(ε2
k ) there is no

need to introduce correction terms due to the assumptions made when calculating the mean

flow. We also consider the linearised the equation of state (2.1e) which gives an expression

for ρ̃

ρ̃ = ρ

(

p̃

P
− T̃

T̄

)

. (4.4)
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At leading order these equations then simplify to

i(ω −Uk)

(

p̃0

P
− T̃0

T̄

)

− ikũ0 + ṽ0r +
ṽ0

r
− im

r
w̃0 = 0,

ρi(ω −Uk)ũ0 = ikp̃0,

ρi(ω −Uk)ṽ0 =− p̃0r,

ρi(ω −Uk)w̃0 =
im

r
p̃0,

ρi(ω −Uk)T̃0 = i(ω −Uk)p̃0.

These equations can now be combined to give a Bessel’s equation for the acoustic pressure

perturbation, similar to what we found in §3.4.1

p̃0rr +
p̃0r

r
+ p̃0

(

(ω −Uk)2

(γ −1)T̄
− k2 − m2

r2

)

= 0.

Due to the condition of regularity at the origin we find that the leading order solution for the

acoustic perturbations in this region is

p̃0 = B(X)Jm(αr), (4.5a)

ũ0 =
k

ρ(ω −Uk)
B(X)Jm(αr), (4.5b)

ṽ0 =
−α

iρ(ω −Uk)
B(X)J′m(αr), (4.5c)

w̃0 =
m

rρ(ω −Uk)
B(X)Jm(αr), (4.5d)

T̃0 =
B(X)

ρ
Jm(αr), (4.5e)

where α = α(X) = (ω−Uk)2

(γ−1)T̄ − k2 and B(X) is an unknown slowly varying function that will

be found by matching between each region and using a compatibility condition.
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Now to find the order εk correction terms we first use equation (4.4) at order εk to cancel

all ρ̃ terms in equations (4.3), which can then be written out

i(ω −Uk)
( p̃1

P
− T̃1

T̄

)

− ikũ1 + ṽ1r +
ṽ1

r
− im

r
w̃1 = Rp

=−εk

(

U

ρ

( p̃0

(γ −1)T̄

)

X
+ ũ0

ρX

ρ
+ ũ0X +UX

p̃0

γP

)

−2
V p̃0

γPr
−V

p̃0r

γP
,

(4.6a)

ρi(ω −Uk)ũ1 − ikp̃1 = Ru

=−εk p̃0X − εk

(

UUX
p̃0

(γ −1)T̄
+ρUũ0X +ρ ũ0UX

)

−ρV ũ0r,
(4.6b)

ρi(ω −Uk)ṽ1 + p̃1r =−εk(ρUṽ0X +ρV ṽ0r +ρ ṽ0Vr) = Rv, (4.6c)

i(ω −Uk)w̃1 −
imp̃1

ρr
=−ρV w̃0

r
−ρV w̃0r − εkρUw̃0X = Rw, (4.6d)

i(ω −Uk)(ρT̃1 − p̃1) = εkU p̃0

(

ρX

ρ
− T̄X

(γ −1)T̄

)

+ εkũ0(PX −ρT̄X) = RT = 0, (4.6e)

where RT = 0 by using the outer mean flow solution (2.18). These equations can now be

combined to give a forced Bessel’s equation for the acoustic pressure correction term

p̃1rr +
p̃1r

r
+ p̃1

(

α2 − m2

r2

)

=−ρi(ω −Uk)Rp − ikRu −
imρRw

r
+(Rv)r +

Rv

r
.

Substituting the terms on the right hand side of this equation for the leading order solution,

this becomes:

p̃1rr +
p̃1r

r
+ p̃1

(

α2 − m2

r2

)

=
2iV (ω −Uk)

(γ −1)T̄
p̃0r +2i

(

k+
(ω −Uk)U

(γ −1)T̄

)

εk p̃0X

− iεk p̃0

((ω −Uk)UT̄X

(γ −1)T̄2
− kX − 2k2UX

ω −Uk
− (ω −Uk)UX

(γ −1)T̄
+

U(ω −Uk)γρX

ρ(γ −1)T̄

+
(γ −1)kρX

γρ
+

U2kX

(γ −1)T̄
− kT̄X

γT̄
− 4V (ω −Uk)

εkr(γ −1)T̄
+

2k2V

εkr(ω −Uk)

)

,
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which can be simplified slightly using the outer mean flow solution (2.18) to give

p̃1rr +
p̃1r

r
+ p̃1

(

α2 − m2

r2

)

= 2ikεk p̃0X +
2i(ω −Uk)

(γ −1)T̄
(V p̃0r +Uεk p̃0X)

+ εki p̃0

[

kX +
(ω −Uk)

(γ −1)T̄

(

UX +
4Vr

εk

)

− kXU2

(γ −1)T̄
+2k2

UX − Vr

εk

ω −Uk
+

(1−2γ)UT̄X(ω −Uk)

(γ −1)2T̄2

]

(4.7)

4.4.2 Region II

In region II we transform into the boundary layer using the transformation r = a(X)−δLζ ,

where ζ is our boundary layer mean flow parameter (ζ = y/δL, δL = δ
√

x). The derivatives

then transform as follows

∂

∂ r

∣

∣

∣

∣

x

→− 1

δL

∂

∂ζ

∣

∣

∣

∣

X

, (4.8)

∂

∂x

∣

∣

∣

∣

r

→ ∂

∂x

∣

∣

∣

∣

ζ

+ εk

∂

∂X

∣

∣

∣

∣

ζ

+ εk

(

a′(X)

δL
− ζ

2X

)

∂

∂ζ

∣

∣

∣

∣

X

. (4.9)

Note that while in §2.4.2 we solved the boundary layer mean flow profile (ρ,u,v,T, p) in

terms of x̂ and ζ̂ , the transformation to x and ζ does not change the asymptotic scaling of the

coordinates. This is because the transformation integrals (2.25) do not change the scalings

of x̂ and ŷ and, since ax̂ ∼ εk, the transformation (X ,ζ ) → (x̂, ζ̂ ) also doesn’t change the

scalings, so the boundary layer flow profile gradients are O(1) in these coordinates. This can

also be shown by considering the x and ζ derivatives using the chain rule, first for ζ ,

∂

∂ζ

∣

∣

∣

∣

X

= δ
√

x
∂

∂y

∣

∣

∣

∣

x

= δ
√

xcsρ
∂

∂ ŷ

∣

∣

∣

∣

x̂

=

√
xMcsρ√

x̂

∂

∂ ζ̂

∣

∣

∣

∣

x̂

.

(4.10)

Since the transformation from x̂ to x doesn’t change the scalings and the term
√

xMcsρ√
x̂

is O(1),

the transformation from ζ̂ to ζ also won’t change the scalings. Hence the ζ derivatives of
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the mean flow boundary layer terms will be O(1). Now we consider X derivatives

∂

∂X

∣

∣

∣

∣

ζ

=
1

εk

∂

∂x

∣

∣

∣

∣

y

+
y

2X

∂

∂y

∣

∣

∣

∣

x

=
γ pcs

εk

∂

∂ x̂

∣

∣

∣

∣

ŷ

+

(

ŷx

εk

+
ycsρ

2X

)

∂

∂ ŷ

∣

∣

∣

∣

x̂

,

=
γ pcs

εk

∂

∂ x̂

∣

∣

∣

∣

ζ̂

+

(√
M

δ
√

x̂

( ŷx

εk

+
ycsρ

2X

)

− γ pcsζ̂

2x̂

)

∂

∂ ζ̂

∣

∣

∣

∣

x̂

.

(4.11)

First note that when ζ is O(1) both y and ŷ will be O(δL). Also the mean flow boundary

layer terms only depend on x̂ through the outer mean flow terms that are functions of a(x) and

since ax ∼ ax̂ ∼ εk all the coefficients above are O(1). So we also have that the X derivatives

of all mean flow boundary layer terms are O(1).

In this region we will also use the scaling v → −v+ ṽ+ εka′(X)(u+ ũ) as in §2.4.21,

since this causes the
a′(X)

δL
terms from the advective part of the equations to cancel. This is

because the
a′(X)

δL
terms introduced by the change of the x-derivative (4.8) are cancelled out

by the term added to v

uux + vur →u

(

ux + εk(uX +
a′

δL
− ζ

2X
)uζ

)

− (v+ εka′u)
uζ

δL

= uux − v
uζ

δL
+ εk

(

uX − ζ

2X
uζ

)

.

The mean flow term added to v, εka′(X)u, is exactly the outer normal mean flow velocity V

near the wall of the duct. This means that the remaining mean flow part v is only due to the

boundary layer with v ∼ O(δLεk) when both X and ζ are O(1).

Using the same scaling arguments as in §3.3 we find that at leading order p̃, w̃, ṽ ∼ O(ε)

and ũ, T̃ ∼ O( ε
δL
). We then expand the equations to second order in δL and εk. Firstly the

continuity equation (2.1a), including terms to order O(ε) and O( εεk

δL
) since the leading order

terms are O( ε
δL
),

i(ω −uk)ρ̃ + εk

(

uρ̃X − ζ u

2X
ρ̃ζ + ũρX − ζ ũ

2X
ρζ

)

−ikρ ũ+ εk

(

ρ ũX − ζ ρ

2X
ũζ + ρ̃uX − ζ ρ̃

2X
uζ

)

− 1

δL

(

ρ ṽζ − ρ̃vζ − ρ̃ζ v+ρζ ṽ
)

+
1

a(X)
(ρ ṽ+ εka′(X)(ρ ũ+ ρ̃u))− imρw̃

a(X)
= O(δ 2

L ,ε
2
k ,εkδL)

ε

δL
.

1Note that the − sign in front of v here is a choice so that we remain consisent with the convention of §2.4.2
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Now we consider the streamwise momentum equation (2.1b), which again has leading order

terms that are O( ε
δL
),

ρ

[

i(ω −uk)ũ− ṽ
uζ

δL
+ εk

(

uũX − uζ

2X
ũζ + ũuX − ζ ũ

2X
uζ

)

+
v

δL
ũζ

]

+ρ̃(εk(uuX − uζ

2X
uζ )+

v

δL
uζ )

−ikp̃− a′(X)εk

δL
p̃ζ −

(γ −1)εk

X
(T ũζ + T̃ uζ )ζ = O(δ 2

L ,ε
2
k ,εkδL)

ε

δL
.

For the radial momentum equation only the pressure gradient term is O( ε
δL
) while all others

are of higher order,

ρ

[

i(ω −uk)ṽ+ εka′(X)i(ω −uk)ũ− ṽ
εka′(X)

δL
uζ

]

−
p̃ζ

δL
= O(δ 2

L ,ε
2
k ,εkδL)

ε

δL
. (4.12)

The azimuthal momentum equation only has terms of order O(ε), so we only need to expand

to leading order,

ρ [i(ω −uk)w̃]− im

a(X)
p̃ = O(δL,εk)ε.

The energy equation (2.1d) again has leading order terms that are O( ε
δL
),

ρ

[

i(ω −uk)T̃ − ṽ
Tζ

δL
+ εk

(

uT̃X − uζ

2X
T̃ζ + ũTX − ζ ũ

2X
Tζ

)

+
v

δL
T̃ζ

]

+ρ̃(εk(uTX − uζ

2X
Tζ )+

v

δL
Tζ )− i(ω −uk)p̃− εk(ũpX − ζ ũ

2X
pζ )− ṽ

pζ

δL

−εk(γ −1)

X

[

1

Pr
(T̃ T )ζ ζ + T̃ (uζ )

2 +2Tuζ ũζ

]

= O(δ 2
L ,ε

2
k ,εkδL)

ε

δL
.

We can see in the equations above that the viscous terms only appear as an order εk correction,

since µ ∼ δ 2 ∼ εkδ 2
L

X
, and so the leading order solutions are only effected by the mean flow

boundary layer profile shear. It is the interaction between the large streamwise boundary

layer shear and the non-zero acoustic normal velocity perturbation ṽ that causes the O

(

ε
δL

)

amplification in this region.

We now use the equation of state (2.1e) to write down the density perturbation in terms

of the pressure and temperature perturbations. But since the pressure perturbation p̃0 is O(ε)
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the density perturbation only depends on the temperature perturbation to leading order

ρ̃0

ρ
=− T̃0

T
. (4.13)

Now pζ = O(δ 2
L εk), so using (4.13) we can solve for the leading order acoustics, which

gives

p̃0ζ = 0, (4.14a)

ũ0 =C(X)
uζ

δL
, (4.14b)

ṽ0 =C(X)i(ω −uk), (4.14c)

w̃0 = p̃0
m

a(X)ρ(ω −uk)
, (4.14d)

T̃0 =C(X)
Tζ

δL
, (4.14e)

where we will find the slow functions of X , p̃0 and C(X), by matching to region III. Note

that in §3.3 we scaled the leading order terms ũ1 and T̃1 by 1
δ while here we include the 1

δL

term in the definition of ũ0 and T̃0, as δL varies with X .

Now for the first order terms we will have both O(εk) corrections and O(δL) corrections.

Here we will consider both corrections simultaneously. Doing this we will find equations for

ũ1, ṽ1 and T̃1 forced by the leading order terms. We begin by considering the O

(

εεk

δL

)

and

O(ε) terms in the continuity equation (2.1a)

i(ω −uk)
ρ̃1

ρ
− ikũ1 −

ṽ1ζ

δL
−

ρζ ṽ1

ρδL
=−εk

ρ

(

uρ̃0X − ζ u

2X
ρ̃0ζ + ũ0ρX − ζ ũ0

2X
ρζ

)

−εk

ρ

(

ρ ũ0X − ζ ρ

2X
ũ0ζ + ρ̃0uX − ζ ρ̃0

2X
uζ

)

− 1

δLρ

(

ρ̃0vζ + ρ̃0ζ v
)

− 1

a(X)
(ṽ0 + εka′(X)(ũ0 +

ρ̃0

ρ
u))+

imw̃0

a(X)
.

We also consider the correction terms to the streamwise momentum equation (2.1b)

i(ω −uk)ũ1 = ṽ1

uζ

δL
− εk

(

uũ0X − uζ

2X
ũ0ζ + ũ0uX − ζ ũ0

2X
uζ

)

− v

δL
ũ0ζ

− ρ̃0

ρ
(εk(uuX − uζ

2X
uζ )+

v

δL
uζ )+

ikp̃0

ρ
+

a′(X)εk

δLρ
p̃0ζ +

(γ −1)εk

Xρ
(T ũ0ζ + T̃0uζ )ζ ,
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and finally we consider the correction term to the energy equation (2.1d):

i(ω −uk)T̃1 = ṽ1

Tζ

δL
− εk

(

uT̃0X − uζ

2X
T̃0ζ + ũ0TX − ζ ũ0

2X
Tζ

)

− v

δL
T̃0ζ

− ρ̃0

ρ
(εk(uTX − uζ

2X
Tζ )+

v

δL
Tζ )+

i(ω −uk)

ρ
p̃0 + εkũ0

pX

ρ

+
εk(γ −1)

ρX

[

1

Pr
(T̃0T )ζ ζ + T̃0(uζ )

2 +2Tuζ ũ0ζ

]

.

We now substitute the leading order results (4.14) into the right hand side of these equations.

This gives the continuity equation

i(ω −uk)
ρ̃1

ρ
− ikũ1 −

ṽ1ζ

δL
−

ρζ ṽ1

ρδL
=−εk

ρ

[

u

(

Cρζ

δL

)

X

+ρ

(

Cuζ

δL

)

X

]

− εkC

ρδL

(

−ζ u

2X
ρζ ζ +uζ ρX −

ζ uζ

2X
ρζ −

ζ ρ

2X
uζ ζ +ρζ uX −

ζ ρζ

2X
uζ

)

− C

δ 2
L ρ

(

ρζ vζ +ρζ ζ v
)

− C

a(X)
(i(ω −uk)+

εk

δL
a′(X)(uζ +

ρζ

ρ
u))+

im2 p̃0

a(X)2ρ(ω −uk)
,

(4.15)

the streamwise momentum equation

i(ω −uk)ũ1 = ṽ1

uζ

δL
− εku

(

Cuζ

δL

)

X

− εkC

δL

(

−
uζ uζ ζ

2X
+uζ uX −

ζ u2
ζ

2X

)

− v

δL

Cuζ ζ

δL

−
Cρζ

ρδL
(εk(uuX − uζ

2X
uζ )+

v

δL
uζ )+

ikp̃0

ρ
+

(γ −1)εkC

XρδL
(Tuζ ζ +Tζ uζ )ζ ,

(4.16)

and the energy equation:

i(ω −uk)T̃1 = ṽ1

Tζ

δL
− εku

(

CTζ

δL

)

X

− εkC

δL

(

−
uTζ ζ ζ

2X
+uζ TX −

ζ uζ

2X
Tζ

)

− v

δL

CTζ ζ

δL

−
Cρζ

ρδL
(εk(uTX − uζ

2X
Tζ )+

v

δL
Tζ )+

i(ω −uk)

ρ
p̃0 +

εkC

δLρ
uζ pX

+
εk(γ −1)C

ρδLX

[

1

Pr
(Tζ T )ζ ζ +Tζ (uζ )

2 +2Tuζ uζ ζ

]

.

(4.17)

We can now use the boundary layer equations for the mean flow (2.23) to simplify these

equations. Transforming the mean flow boundary layer equations into the same coordinates
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ζ and X we get the following equations that the mean flow satisfies to leading order

εk

(

ρuX −
ρζ uζ

2X
+uρX −

uζ ρζ

2X

)

+
v

δL
ρζ +

vζ

δL
ρ +

εka′(X)

a(X)
ρu = 0, (4.18a)

ρ

(

εk

(

uuX −
uζ uζ

2X

)

+
v

δL
uζ

)

=−εk pX +
(γ −1)εk

X
(Tuζ )ζ +

(γ −1)T εk

X
Fζ ζ (X ,ζ ),

(4.18b)

ρ

(

εk

(

uTX −
uζ Tζ

2X

)

+
v

δL
Tζ

)

= εkupX +
(γ −1)εk

X

[

(T Tζ )ζ

Pr
+Tu2

ζ +T Gζ ζ (X ,ζ )

]

.

(4.18c)

Our first order equations (4.15), (4.16) and (4.17) contain many terms from the ζ -derivative

of these mean flow equations. We use this to simplify the equations, giving

i(ω −uk)
ρ̃1

ρ
− ikũ1 −

ṽ1ζ

δL
−

ρζ ṽ1

ρδL
=− εk

ρδL
(uρζ +ρuζ )CX

+
C

δ 2
L ρ

(

ρζ vζ + vζ ζ ρ
)

− C

a(X)
(i(ω −uk))+

im2 p̃0

a(X)2ρ(ω −uk)
,

(4.19)

i(ω −uk)ũ1 = ṽ1

uζ

δL
−

εkuuζ

δL
CX +

Cvζ uζ

δ 2
L

+
ikp̃0

ρ
− εkC(γ −1)

ρδLX
(T Fζ ζ )ζ , (4.20)

i(ω −uk)T̃1 = ṽ1

Tζ

δL
−

εkuTζ

δL
CX +

Cvζ Tζ

δ 2
L

+
i(ω −uk)

ρ
p̃0 −

εkC(γ −1)

ρδLX
(T Gζ ζ )ζ . (4.21)

Now we again use the equation of state (2.1e) to write down the density perturbation ρ̃1 in

terms of the temperature perturbation

ρ̃1

ρ
=

p̃0

p
− T̃1

T
. (4.22)

We then use equations (4.20) and (4.21) to substitute for ũ1 and T̃1 in equation (4.19), giving

an equation for ṽ1

(

ṽ1

ω −uk

)

ζ

=

(

εkCX u−C
vζ

δL

ω −uk

)

ζ

+
εkC(γ −1)

ρX(ω −uk)

(

(T Gζ ζ )ζ

T
+

k(T Fζ ζ )ζ

ω −uk

)

+ iδL

(

C

a
+

p̃0

γ p
− p̃0

γ p
(k2 +

m2

a2
)
(γ −1)T

(ω −uk)2

)

.

(4.23)
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We can also use equation (4.12) to derive an equation for the correction term, p̃1, to the

pressure in a similar way. Expanding the equation to O(εδL) and O(εεk) gives

p̃1ζ = δLρ

[

i(ω −uk)ṽ0 + εka′(X)i(ω −uk)ũ0 − ṽ0
εka′(X)

δL
uζ

]

,

but when we substitute in the leading order solutions the last two terms cancel and we find

that the pressure perturbation correction term only has a O(δL) contribution. The equation

then simplifies to:

p̃1ζ =−δLCγ p
(ω −uk)2

(γ −1)T
.

We can then integrate this equation and write the result in the following form

p̃1 =−δLCγ p

(

ζ
(ω −Uk)2

(γ −1)T̄
−
∫ ∞

ζ

(ω −uk)2

(γ −1)T
− (ω −Uk)2

(γ −1)T̄
dζ

)

+ p̃1∞, (4.24)

where p̃1∞ will be matched to the acoustic pressure in region III and is expected to be order

O(εεk,εδL).

4.4.3 Region I

In Region I we transform into the acoustic boundary layer using the transformation r =

a(X)−λy, where λ = δ = δL

√

εk

X
. Note that this variable y for region I slhould not to be

confused with the different variable y used in §2.4.2 to solve for the boundary layer mean

flow, as they differ by the constant factor λ . Now λ is independent of x, and we can expand

the mean flow quantities about their values at the wall, e.g.

u = 0+ζ uζ (0)+ ...= y

√

εk

X
uζ (0)+ ...,

where we have used the no-slip boundary condition (2.3) to set u(0) = 0. From the boundary

condition for the mean flow temperature (2.4) we also have that Tζ (0) = 0 so ρζ (0) ∼
pζ (0) = O(δ 2).

By matching to the leading order equations in region II (4.14) we expect ṽ0, w̃0 and p̃0 to

be O(ε) and ũ0 and T̃0 to be O( ε
δL
). However in region II T̃0 ∝ Tζ , but when we expand Tζ
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in region I we have

Tζ = Tζ (0)+ y

√

εk

X
Tζ ζ (0) = 0+ y

√

εk

X
Tζ ζ (0).

This means that the solution in region II for T̃0 becomes order O(
ε
√

εk

δL
) when matched to

region I and so we expect T̃0 to be O(
ε
√

εk

δL
) in this region.

We can now expand the equations using these scalings for the leading order acoustic

terms. The continuity equation (2.1a) now becomes

i
(

ω − y

√

εk

X
uζ (0)k

)

ρ̃δ − ikρ(0)ũδ −
(

ρ(0)+
y2

2

εk

X
ρζ ζ (0)

)

ṽy (4.25)

−
(

y
εk

X
ρζ ζ (0)

)

ṽ+
δ

a(X)
ρ(0)ṽ = O(ε

3/2

k ,δ
√

εk,δ
2)

ε

δL
, (4.26)

the streamwise momentum equation gives

ρ(0)
[

i
(

ω − y

√

εk

X
uζ (0)k

)

ũ− ṽ

δL

(

uζ (0)+
y
√

εk√
X

uζ ζ (0)
)]

(4.27)

− (γ −1)

[

T (0)ũyy +

√

εk

X
uζ (0)T̃y

]

= O(εk,δL)
ε

δL
, (4.28)

and the radial momentum equation gives

p̃y = O(
√

εkδL,ε
3/2

k )ε. (4.29)

So we find that the pressure perturbation is constant to leading and first correction order and

can be matched to the result from region II. Finally the energy equation (2.1d) gives

ρ(0)
[

i
(

ω − y

√

εk

X
uζ (0)k

)

T̃ − ṽ

δL
y

√

εk

X
Tζ ζ (0)+ εkũTX

]

(4.30)

− (γ −1)

[

T (0)
T̃yy

Pr
+2T (0)

(

√

εk

X
uζ (0)+

εky

X
uζ ζ (0)

)

]

y = O(εk,δ )
ε
√

εk

δL
. (4.31)

Now if we just consider the leading order terms in the above equations, with ũ0 ∼ ε
δL

, ṽ0 ∼ ε

and T̃0 ∼ ε(εk)
1/2

δL
as discussed above so that the equations balance, we can use the leading

order equation of state (4.13) to write ρ̃0 in terms of T̃0 and obtain the following equations
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for the leading order perturbations

ṽ0y = 0,

iω ũ0 −
ṽ0uζ (0)

δL
=

(γ −1)2T (0)2

γ p(0)
ũ0yy,

iωT̃0 −
yṽ0Tζ ζ (0)

√
εk√

XδL

=
(γ −1)2T (0)2

γ p(0)

(

T̃0yy

Pr
+2

√

εk

X
uζ (0)ũ0y

)

.

Note that since p is approximately constant inside this region, p ≈ p(0), so for brevity I

will just write p. Since the first equation gives ṽ0 constant we can then solve the other two

equations analytically. Both of the other equations are second order and so need two boundary

conditions; at the wall we have no-slip (2.3) ũ0 = 0 and no temperature fluctuations (2.6)

T̃0 = 0. The other boundary condition that we apply is that the solutions cannot grow

exponentially as y → ∞, this is necessary for these solutions to be able to be matched to the

solutions in region II. We then have at leading order in region I

ṽ0 = iωC(X), (4.32a)

ũ0 =
uζ (0)C(X)

δL

[

1− exp
( −y

√
iωγ p

(γ −1)T (0)

)

]

, (4.32b)

T̃0 =
C(X)Tζ ζ (0)y

√
εk

δL

√
X

(4.32c)

+
2Pr

1−Pr

(γ −1)T (0)uζ (0)
2C(X)

√
εk

δL

√
iωXγ p

[

exp
(−y

√
iωγ pPr

(γ −1)T (0)

)

− exp
( −y

√
iωγ p

(γ −1)T (0)

)

]

,

(4.32d)

where the square root is taken so that the real part is positive and the exponential terms decay

away from the wall. Note here that the
√

εk

δL
terms arise due to the relationship λ = δL

√
εk,

where λ is the thickness of region I.

Whereas in region II and III our leading order solutions were correct to O(εk), here

our solutions (4.32) are only correct to O(
√

εk). To match to region II we will also need

the O(ε
√

εk) correction term to ṽ0. We will call this term ṽ1 with ṽ1 ∼ ε
√

εk. Expanding

equation (4.25) to this order we have the following equation

ṽ1y =− ik
√

εkũ0√
X

,
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this then gives

ṽ1 =−
ikuζ (0)C(X)

√
εk√

X

[

y+
(γ −1)T (0)√

iωγ p
exp
( −y

√
iωγ p

(γ −1)T (0)

)

]

+ ṽ1∞, (4.33)

where ṽ1∞ is a constant, but matching to the solution in region II gives ṽ1∞ = 0.

To find the slowly varying terms B(X) and C(X) we will also need the O(εεk) solution for

ṽ in this region. To avoid confusion with the ṽ2 terms in §5 I will call the O(εεk) correction

ṽ3. This term will satisfy the O(εεk) expansion of equation (4.25)

ṽ3y =−y
εkρζ ζ (0)

Xρ(0)
ṽ0 − ikũ1δL

√

εk

X
− iωT̃0

T (0)
δL

√

εk

X
. (4.34)

Now before we can solve this equation for ṽ3 we must first solve for ũ1, the O(
ε
√

εk

δL
)

correction to ũ0. Expanding equation (4.27) to this order we obtain the following equation

for ũ1,

iω ũ1 −
ṽ1uζ (0)

δL
− (γ −1)2T (0)2

γ p(0)
ũ1yy = y

√

εk

X

(

ikuζ (0)ũ0 +
uζ ζ (0)ṽ0

δL

)

,

which has the following solution

ũ1 =
C(X)

√
εk

δL

√
X

(

uζ ζ (0)y−
kuζ (0)

2

4ω

[ √
iωγ p

(γ −1)T (0)
y2 +3y+ ũ1∞

]

exp
( −y

√
iωγ p

(γ −1)T (0)

)

)

,

where ũ1∞ is a constant. Applying the no-slip condition at y = 0 gives ũ1∞ = 0.

We can now solve equation (4.34) for ṽ3,

ṽ3y =−
εkikCyuζ ζ (0)

X
+

ik2uζ (0)
2Cεk

4ωX

[ √
iωγ p

(γ −1)T (0)
y2 +3y

]

exp
( −y

√
iωγ p

(γ −1)T (0)

)

−εk

X

2Pr

1−Pr

(γ −1)Cuζ (0)
2
√

iω
√

γ p

[

exp
(−y

√
iωγ pPr

(γ −1)T (0)

)

− exp
( −y

√
iωγ p

(γ −1)T (0)

)

]

.

(4.35)

4.5 Matching and dispersion relation

Now that we have our solutions in each region we can match them and derive the dispersion

relation. First we consider the leading order asymptotics to obtain the dispersion relation for

k. Given that the leading order pressure term p̃0 is constant in regions I and II we have

p̃0|r=a = B(X)Jm(αa) = p̃0|y=0,
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where α2 = (ω −Uk)2 −k2 as before. We can now apply the impedance boundary condition

at y = 0 in region I

p̃0|y=0 = Zṽ0|y=0 = ZiωC(X).

We have already matched ṽ0 between regions I and II so we only need to match between

regions II and III to get an expression for C(X) in terms of B(X). At leading order this

matching simply involves setting ṽ0|ζ→∞ = ṽ0|r=a which gives

iC(ω −Uk) = ṽ0|r=a =
−αB(X)J′m(αa)

ρi(ω −Uk)
. (4.36)

Putting this all together we have

p̃0|r=a =
Zω

(ω −Uk)
ṽ0|r=a,

so Zeff =
Zω

(ω−Uk) and the dispersion relation is

Jm(αa) =
ZiωαJ′m(αa)

ρ(ω −Uk)2
, (4.37)

so that k depends on X only through the outer mean flow terms U(X) and ρ(X). This

is the same dispersion relation as for the Myers boundary condition, which makes sense

as the leading order solution corresponds to an infinitely thin boundary (δL → 0) without

nonparallel effects (εk → 0). However if we now try to match to order O(ε
√

εk) we find that

the contribution from the ṽ1 term in region I must be included with the leading order terms,

otherwise it cannot be matched. This is because there are no O(ε
√

εk) correction terms in

regions II and III, and including terms of this order in these regions is equivalent to adjusting

the slowly varying terms B(X) and C(X), which drop out during the matching. Including

the ṽ1 term in the matching gives the following modified dispersion relation due to viscous

effects in the acoustic boundary layer

Zω

(ω −Uk)
ṽ0|r=a = p̃0|r=a

[

1−
kuζ (0)(γ −1)T (0)

ω

√

εk

iωγ p(0)X

]−1

+O(εk,δL).

We can improve the accuracy of this dispersion relation by considering the correction

terms when matching to region III. We find that the expansion of p̃0 in region III involves
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only O(εδL) and not O(εεk) terms

p̃0III(a(X)−δLζ )≈ p̃0III(a(X))−δLζ p̃0IIIr(a(X)).

Since δL and εk are independent small parameters, this means that the O(εδL) correction

terms in region II must match to the expansion of the leading order terms, and will give a

correction to the dispersion relation. While the O(εεk) correction terms in region II will

match to the first order correction term, p̃1, in region III, and so will contribute to the slowly

varying term B(X). We then have

p̃0III(a(X))−δLζ p̃0IIIr(a(X)) = p̃0II + p̃
δL

1II|ζ→∞,

where p̃
δL

1II|ζ→∞ is the O(εδL) terms of p̃1 (4.24) in region II for large ζ

p̃
δL

1II|ζ→∞ =−δLCγ pζ
(ω −Uk)2

(γ −1)T̄
+ p̃

δL

1∞,

where p̃
δL

1∞ is the O(εδL) constant term in the solution (4.24). Matching this to the solution

in region III and using the leading order result (4.36) for C(X) gives

−δLζ BJ′m(αa)α =−δLCγ pζ
(ω −Uk)2

(γ −1)T̄
+ p̃

δL

1∞ =−δLζ BJ′m(αa)α + p̃
δL

1∞,

and so we must have p̃
δL

1∞ = 0. We can then use the solution to p̃1 in region II (4.24) for small

ζ to match to region I. This gives

p̃0 + p̃
δL

1II|ζ=0 = p̃0 + p̃1I,

where p̃1I is the correction in region I to the leading order pressure perturbation p̃0, but both

p̃0 and p̃1I are constant so we can now write the pressure perturbation at the wall as

p̃|y=0 = B(X)Jm(αa)+δLC(X)γ p

(

∫ ∞

0

(ω −uk)2

(γ −1)T
− (ω −Uk)2

(γ −1)T̄
dζ

)

.

To apply the impedance boundary condition at the wall we first have to apply a similar

procedure to match ṽ between each region. From (4.23), in region II we have

(

ṽ
δL

1II

ω −uk

)

ζ

= iδL

(

C

a
+

p̃0

γ p
− p̃0

γ p
(k2 +

m2

a2
)
(γ −1)T

(ω −uk)2

)

,
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which gives

ṽ
δL

1II =iδL(ω −uk)ζ

(

C

a
+

p̃0

γ p
− p̃0

γ p

(

k2 +
m2

a2

)

(γ −1)T̄

(ω −Uk)2

)

+ iδL(ω −uk)
p̃0

γ p

(

k2 +
m2

a2

)(

∫ ∞

ζ

(γ −1)T

(ω −uk)2
− (γ −1)T̄

(ω −Uk)2
dζ

)

+ ṽ
δL

1∞.

Matching to region III and using the leading order results we find again that ṽ
δL

1∞ = 0. We can

now match to ṽ in region I which has only the O(ε
√

εk) viscous correction term mentioned

above and no O(εδL) terms. For small ζ the solution in region II is

ṽII ∼iC

(

ω − kuζ (0)y

√

εk

X
− kuζ ζ (0)

y2εk

2X

)

+ iδLω
p̃0

γ p

(

k2 +
m2

a2

)

∫ ∞

0

(γ −1)T

(ω −uk)2
− (γ −1)T̄

(ω −Uk)2
dζ .

The first constant term will match to ṽ0 in region I, the second linear term will match to ṽ1 in

region I and the quadratic term will match to the quadratic term in ṽ3 in region I. The integral

term is now constant and only provides a O(εδL) correction to the constant term in ṽ0.

We can now apply the impedance boundary condition at the wall and use the result (4.36)

to cancel the slowly varying terms B(X) and C(X). This then gives a correction to the

dispersion relation due to the inviscid shear in region II in terms of two integrals

δ I1(X) = δL

∫ ∞

0

(γ −1)T

(ω −uk)2
− (γ −1)T̄

(ω −Uk)2
dζ , (4.38a)

δ I2(X) = δL

∫ ∞

0

(ω −uk)2

(γ −1)T
− (ω −Uk)2

(γ −1)T̄
dζ , (4.38b)

these correspond to the O(δL) change in ṽ1 and p̃1 respectively across region II. When

including these terms in the matching we now obtain the full dispersion relation to O(δL)

Jm(αa)

[

1− Ziω

γ p(0)

(

k2 +
m2

a2

)

δ I1

]

=

iαJ′m(αa)

[

Z
(

ω − kuζ (0)(γ−1)T (0)
√

εk√
iωγ p(0)X

)

+ iγ p(0)δ I2

]

ρ(ω −Uk)2

(4.39)
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This dispersion relation can also be written in terms of the effective impedance Zeff

Zeff =
p̃0(a)

ṽ0(a)
=

Zω
ω−Uk

[

1− kuζ (0)(γ−1)T (0)
√

εk

ω
√

iωγ p(0)X
+ iγ p(0)δ I2

Zω

]

[

1− Ziω
γ p(0)

(

k2 + m2

a2

)

δ I1

] , (4.40)

where p(0), T (0) and uζ (0) are the mean flow boundary layer terms evaluated at the wall

and all other mean flow terms are evaluated in the centre of the duct. Note there are no

O(εk) terms here as these will be taken into account by the slowly varying function B(X).

Which will be found in the next section by deriving a compatibility condition. Also the εa′ũ

correction from the transformation of v in region II does not affect the dispersion relation

because ũ0 → 0 as ζ → ∞.

We can compare this effective impedance to previous results. If we consider the modified

Myers boundary condition [5], which takes into account the boundary layer shear but assumes

viscosity is negligible and the duct is parallel, this results in the local effective impedance

given in equation (1.6)

Z
Brambley
eff =

Zω

ω −Uk

1− i(ω−Uk)2

Zω δ IB
0

1+ iωZ(k2+m2)
(ω−Uk)2 δ IB

1

.

If we assume a = 1, the mean flow temperature and pressure don’t vary within the boundary

layer and we ignore the viscous O

(√

εk

X

)

term we can see that

δ IB
0 =− δ I2

(ω −Uk)2
,

δ IB
1 =−δ I1(ω −Uk)2,

and the two effective impedances agree.

We can also compare the slowly varying effective impedance (4.40) to previous work

on a three layer model [17] that included the effect of viscosity. This previous work used

the assumption ξ δ 3
L ∼ 1/Re, with ξ ∼ O(1) to derive a local parallel three layer model.

Although this previous work assumed the flow was parallel, if we set ξ = U
xδL

we have the

same scaling regime as in this thesis. We can then write down the effective impedance in

terms of the notation used in this thesis for a = 1

ZKhamis
eff =

Zω

ω −Uk





1− (γ−1)T (0)kuζ (0)
√

εk

ω
√

iωX
+ i

Zω δ I2

1− i(k2 +m2)ωZδ I1



+O(εk,
√

εkδL). (4.41)



4.6 Slowly varying part - compatibility condition 79

We can see that at this order the dispersion relation above agrees with what we derived for

the slowly varying duct.2 However at higher orders the corrections to this dispersion relation

will not agree, as the assumption of parallel flow means that this previous work only gives a

local solution and does not take into account the variation of the boundary layer thickness

or the mean flow normal velocity. Here these effects are taken into account by the slowly

varying term B(X) and by integrating k(X) over the duct (4.2), rather than evaluating k(X)x

locally, to give a global solution.

4.6 Slowly varying part - compatibility condition

To solve for the slow non-parallel variations, we must obtain a solvability condition. To

do this we take the inner product of the unknown first order correction solution with the

known leading order solution in each region, matching between the regions, and then use the

boundary conditions to get an equation only in terms of the slow variation. We will want to

match our O(εk) solution from region III to the wall to apply the boundary condition. To do

this we must use the parts of the solutions in regions II and I that were not matched by the

leading order solution.

In region III we have the O(εk) correction p̃1 to the leading order pressure perturbation

given by equation (4.7)

p̃1rr +
p̃1r

r
+ p̃1

(

α2 − m2

r2

)

= RIII = 2ikεk p̃0X +
2i(ω −Uk)

(γ −1)T̄
(V p̃0r +Uεk p̃0X)

+ εki p̃0

[

kX +
(ω −Uk)

(γ −1)T̄

(

UX +
4Vr

εk

)

− kXU2

(γ −1)T̄
+2k2

UX − Vr

εk

ω −Uk
+

(1−2γ)UT̄X(ω −Uk)

(γ −1)2T̄2

]

Given that the left hand side of this equation is a Bessel’s equation we multiply this by

Jm(αr)r and integrate from 0 to a(X)−δ
β
L η , where 0 < β < 1 and η is a matching variable

that lets us match to region II. Note that as we are only matching up to order O(εεk) we will

ignore any O(εεkδL) correction terms and so we may set η = 0. The integral of the left hand

side may be integrated by parts so that the only remaining terms are the boundary terms, so

we have

[p̃1rJm(αr)r− p̃1αJ′m(αr)r]
a(X)−δ

β
L η

0 = εk

∫ a(X)−δ
β
L η

0
RIIIJm(αr)r dr. (4.42)

2Note that pζ ≈ 0 and P = 1
γ for a parallel duct so γ p(0)≈ 1.
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But we can use equation (4.6c) to substitute p̃1r for ṽ1 and known leading order terms

p̃1r =−ρi(ω −Uk)ṽ1 +Rv =−ρi(ω −Uk)ṽ1 − εkρUṽ0X − V p̃0

i(ω −Uk)
(α2 − m2

r2
),

using this in equation (4.42) we obtain:

−ρi(ω −Uk)ṽ1|r=aaJm(αa)− p̃1|r=aαaJ′m(αa)

= aJm(αa)

(

εkρUṽ0X |r=a +
V p̃0|r=a

i(ω −Uk)
(α2 − m2

a2
)

)

+ εk

∫ a

0
RIIIJm(αr)r dr.

(4.43)

Now in regions I and II the remaining part of p̃1 is constant since the only non-constant

contribution to p̃1 was the O(εδL) contribution (4.24) in region II which was used to match

the leading order solutions and derive the dispersion relation. However ṽ1 has non-constant

parts that were not used for the matching, so we need to match these remaining parts across

the regions to apply the impedance boundary condition at the wall.

To match ṽ1 through region II we first note that ṽ1|r=a = ṽ1|ζ→∞ + εka′(X)ũ0|ζ→∞ from

the transformation of v, where ṽ1|r=a is the solution in region III at r = a and ṽ1|ζ→∞ and

ũ0|ζ→∞ are the solutions in region II for large ζ . But ũ0|ζ→∞ = 0 so ṽ1|r=a = ṽ1|ζ→∞. So

we can integrate the equation for ṽ1 in region II (4.23), ignoring the O(εδL) terms as they

have been dealt with in the dispersion relation, to match through the region. This gives

[

ṽ1

ω −uk

]∞

0

=





εkCX u− Cvζ

δL

ω −uk





∞

0

+
εkC(γ −1)

X

∫ ∞

0

(

(T Gζ ζ )ζ

ρT (ω −uk)
+

k(T Fζ ζ )ζ

ρ(ω −uk)2

)

dζ .

(4.44)

At the wall we have u(0) = 0 from the no-slip condition. However using the boundary layer

mean flow continuity equation (4.18a) at the wall, and using ζ = u = uX = v = 0 at the wall

from the no-slip condition, we must also have vζ (0) = 0. Similarly, using equation (4.18a)

for ζ → ∞ we have

vζ (∞) =−δLεk

ρ

(

a′

a
ρU +(ρU)X

)

=−δLεk

aρ

(

ṁ

πa

)

X

=
εkδLa′(X)U

a(X)
,

where we have used the continuity equation (2.9) for the outer mean flow to simplify the

expression. These results mean that equation (4.44) simplifies to

ṽ1|ζ→∞ =
(ω −Uk)ṽ1|ζ→0

ω
+ εkCXU − εkCUaX

a
+ εkC(X)Sbl(X), (4.45)
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where

Sbl(X) =
(γ −1)(ω −Uk)

X

∫ ∞

0

(

(T Gζ ζ )ζ

ρT (ω −uk)
+

k(T Fζ ζ )ζ

ρ(ω −uk)2

)

dζ , (4.46)

is a term that arises due to the functions F and G which allow for different boundary layer

profiles to be used.

We can now match ṽ1|ζ=0 to ṽ3, the O(εεk) solution in region I. Integrating the equation

for ṽ3 (4.35) from 0 to ∞ in region I and ignoring the quadratic term that has already been

matched when solving for the dispersion relation, we have

ṽ3|y→∞ = ṽ3|y=0 + εkC(X)Sviscous(X), (4.47)

where

Sviscous(X) =
uζ (0)

2(γ −1)2T (0)2

γ pX

(

5k2

4ω2
− 2σ

T (0)(1+σ)

)

,

and σ =
√

Pr. This term arises due to the effect of viscosity in the inner acoustic boundary

layer region.

Now if we substitute these results into equation (4.43) we have

−ρi
(ω −Uk)2

ω
ṽ1|y=0aJm(αa)− p̃1|y=0αaJ′m(αa)

= ρεki(ω −Uk)aJm(αa)

[

C
(ω −Uk

ω
Sviscous +Sbl −

UaX

a

)

+CXU

]

+aJm(αa)

(

εkρUṽ0X |r=a +
V p̃0|r=a

i(ω −Uk)
(α2 − m2

a2
)

)

+ εk

∫ a

0
RIIIJm(αr)r dr,

(4.48)

but since we now have both ṽ1 and p̃1 evaluated at the wall we can use the impedance

boundary condition p̃1(0) = Zṽ1(0). This means that the left hand side of this equation

becomes

−aṽ1|y=0

[

ZαJ′m(αa)+
ρi(ω −Uk)2

ω
Jm(αa)

]

.

Since we are only interested in the result up to order O(εεk), and ṽ1 ∼ O(εεk), we can

apply the leading order dispersion relation (4.37), to find that this expression cancels. So
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equation (4.48) becomes

0 = ρi(ω −Uk)aJm(αa)

[

C
(ω −Uk

ω
Sviscous +Sbl −

UaX

a

)

+CXU

]

+aJm(αa)

(

ρUṽ0X |r=a +
V p̃0|r=a

εki(ω −Uk)

(

α2 − m2

a2

)

)

+
∫ a

0
RIIIJm(αr)r dr,

(4.49)

which is a first order differential equation for the slowly varying amplitude C(X).

To simplify this equation we can first use the expression for the outer mean flow normal

velocity (2.19)

V =
εkaXUr

a
.

From the leading order matching of the solutions in region II and III (4.36) we also have

C =
BαJ′m(αa)

ρ(ω −Uk)2
. (4.50)

Finally note that RIII contains terms involving the leading order pressure p̃0 and its first

derivatives p̃0r and p̃0X . This means that the term involving the integral of RIII contains

two different integrals of Bessel functions for which the following identity may be used [9,

Eq. 10.22.5]

∫ a

0
rJm(αr)2 dr =

a2

2

(

J2
m(αa)− Jm−1(αa)Jm+1(αa)

)

. (4.51)

The second Bessel function integral can then be evaluated by integrating by parts and using

the above identity to give

∫ a

0
r2Jm(αr)J′m(αr)dr =

a2

2α
(Jm−1(αa)Jm+1(αa)) , (4.52)

but we can use the identity for the derivative of a Bessel’s function

Jm−1(x)Jm+1(x) =
m2

x2
Jm(x)

2 − J′m(x)
2,

and we can then use the dispersion relation to write

Jm−1(aα)Jm+1(aα) = Jm(aα)2

(

m2

a2α2
+

ρ2(ω −Uk)2

α2Z2
e f f

)

.
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This gives

∫ a

0
RIIIJm(αr)r dr = BX(X)Jm(aα)2Smean f low(X)+B(X)Jm(aα)2Sgeometry(X),

where

Smean f low(X) = ia2

(

k+
(ω −Uk)U

(γ −1)T̄

)

(

1− m2

a2α2
− ρ2(ω −Uk)2

α2Z2
e f f

)

,

is a term that is due to the outer mean flow in the duct, and

Sgeometry(X) = ia2

(

αX k

α
+

(ω −Uk)

(γ −1)T̄

(

UaX

a
+

UαX

α

))

(

m2

a2α2
+

ρ2(ω −Uk)2

α2Z2
e f f

)

+
a2

2

(

1− m2

a2α2
− ρ2(ω −Uk)2

α2Z2
e f f

)

[

ikX − ikXU2

(γ −1)T̄

+
i(ω −Uk)

(γ −1)T̄
(UX +4

UaX

a
)+2ik2UX − UaX

a

ω −Uk
+

(1−2γ)UT̄X i(ω −Uk)

(γ −1)2T̄2

]

,

is a term due to the variation in the radius of the duct, a(X).

Putting this all together in equation (4.49) we have

BX

(

Smean f lowJm(aα)2 +
2iαaUJm(aα)J′m(aα)

ω −Uk

)

=

−B

(

SgeometryJm(aα)2 + iαaJm(aα)J′m(aα)
(Sviscous

ω
+

Sbl − UaX

a

ω −Uk

)

)

+ iαaB

(

UJm(aα)J′m(aα)

ω −Uk

(aX

a
+

2ρX

ρ
− 3(Uk)X

ω −Uk

)

+2U(αa)X

Jm(aα)2(1− m2

a2α2 )

(ω −Uk)

)

.

Dividing out Jm(aα)2 and using the dispersion relation we get

BX

(

Smean f low +
2ρaU

Ze f f

)

=−B

(

Sgeometry +
aρ

Ze f f

((ω −Uk)Sviscous

ω
+Sbl −

UaX

a

)

)

+B

(

ρaU

Ze f f

(aX

a
+

2ρX

ρ
− 3(Uk)X

ω −Uk

)

+2
(UαX

α
+

UaX

a

) i(a2α2 −m2)

(ω −Uk)

)

,
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which we can solve to obtain B(X)

B(X) = B0 exp



−
∫ X

X0

S̃geometryZe f f +aρ
(

(ω−Uk)Sviscous

ω +Sbl

)

Smean f lowZe f f +2ρaU
dX



, (4.53)

where

S̃geometry = Sgeometry −
(

ρaU

Ze f f

(2aX

a
+

2ρX

ρ
− 3(Uk)X

ω −Uk

)

+2
(UαX

α
+

UaX

a

) i(a2α2 −m2)

(ω −Uk)

)

(4.54)

is the total contribution due to the slowly varying geometry of the duct. If the duct is

cylindrical, i.e. a′(x) = 0 then this term will vanish.

To find the constants B0 for each mode we can consider the Green’s function solution for

a point source at X = X0 in a small region near the source and use the Briggs-Bers method

to distinguish between upstream and downstream modes. We can then match the resulting

Green’s function back to our WKB solution which will give the mode amplitudes B0. This

procedure is covered in the following two sections.

4.7 Green’s function

So far we have only considered the case of a single mode but to solve for the constants B0

we need to consider a particular initial condition or forcing. Here we will consider the case

of a point source forcing at x = x0 starting at time t = 0 with no acoustics prior to that. The

solution to this will give us the Green’s function for the problem.

We begin by considering a harmonic point mass source of the form

q(t) = Re

[

qδ (x− x0)δ (r− r0)H(t)eiω f t
δ (θ)

r

]

, (4.55)

where H(t) is a Heaviside function, δ (·) is a delta function and ω f is the forcing frequency.

Note the difference between the time varying forcing, always written q(t), and the constant

forcing strength q. The point source is located at (r0,x0,0), the source angle may be set to

θ = 0 without loss of generality due to the symmetry of the problem. It should be noted

that once the solution for this point forcing has been obtained it is possible to construct the

solution for any other forcing function by using the linearity of the equations and integrating

the Green’s function solution over the forcing.
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Given this form for the source, the continuity equation will now be

ρt +(ρu)x +
1

r
(rρv)r +(ρw)θ = q̇(t). (4.56)

We first assume that the source is sufficiently far from the wall such that the source is in

region III. This means that we only need to solve in the outer region. We now need to

transform equation (4.56) to be in terms of ω , k and m. Since we are only interested in the

solution near the source, as this is where the constants B0 are set, we transform to a small

local region near x0 by setting x = x0 +η where |η | ≪ 1. This means that all slowly varying

streamwise terms may be approximated by their values at the source location X0 = εkx0.

Given this, we then find that inside this region the WKB solution simplifies to a Fourier

transform in x

ũ = ũ0(X ,r)e
−i[
∫ x

x0
k(X)dx−ωt+mθ ] ≈ ũ0(X0,r)e

−i[kη−ωt+mθ ].

We can then use this, along with the Fourier transform of a δ -function, to transform the

expression for the source, using a Fourier series in θ , a Fourier transform in x and for

causality a Laplace transform in t. This then gives the transformed continuity equation (4.56)

as

p̃0rr +
p̃0r

r
+ p̃0

(

α2 − m2

r2

)

=
ω(ω −Uk)qδ (r− r0)

2πr0

−i

ω −ω f

,

which is a forced Bessel’s equation, with a δ -function forcing. This has a solution in terms of

Bessel functions of order m in the region r < r0 and r > r0. We use the condition of regularity

at r = 0, continuity and a jump condition at r = r0, and the effective impedance at r = a(X)

to match the solutions and apply boundary conditions. This gives the following solution

p̃0 =







q̃
(

ρ(ω−Uk)Ym(αa)−iαY ′
m(αa)Ze f f

ρ(ω−Uk)Jm(αa)−iαJ′m(αa)Ze f f
Jm(αr0)−Ym(αr0)

)

Jm(αr), r < r0

q̃
(

ρ(ω−Uk)Ym(αa)−iαY ′
m(αa)Ze f f

ρ(ω−Uk)Jm(αa)−iαJ′m(αa)Ze f f
Jm(αr0)Jm(αr)− Jm(αr0)Ym(αr)

)

, r > r0

where q̃ = −iq
ω−ω f

ω(ω−Uk)
4

and Ze f f =
p̃|r=a

ṽ|r=a
is given by the dispersion relation (4.40).

Now this expression can only have singularities at the roots of the dispersion relation

ρ(ω −Uk)Jm(αa) = iαJ′m(αa)Ze f f and at α = 0. However if we expand near α = 0 we

find that these singularities are removable. To show this we first note the series expansions of
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Jm(α) and Ym(α)

Jm(α) = αm
∞

∑
n=0

α2nbn,

Ym(α) =
2

π
ln
(α

2

)

Jm(α)+α−m
∞

∑
n=0

α2ncn,

where bn and cn are constants. Using this it is immediately obvious that the smallest power

of α in p̃0 will be α0 and all other powers of α will be even. So we only need to consider

the logarithmic terms; these give

p̃0 =







q̃
(

2
π ln(aα

2
)Jm(αr0)− 2

π ln(αr0

2
)Jm(αr0)

)

Jm(αr), r < r0

q̃
(

2
π ln(aα

2
)Jm(αr0)Jm(αr)− Jm(αr0)

2
π ln(αr0

2
)
)

, r > r0

and from this expression it is clear that all ln(α) terms cancel as α → 0, so the singularities

at α = 0 are removable. In fact, since we showed that the powers of α are even, we find that

the branch cut due to the square root in α also cancels. This means that there is no continuous

spectrum and the only singularities we have are simple poles where the dispersion relation

ρ(ω −Uk)Jm(αa) = iαJ′m(αa)Ze f f is satisfied, which gives the discrete spectrum. Indeed,

there are no singularities due to the Ym(αr) and Ym(αr0) terms and so they do not contribute

to the final solution.

If we now invert our local Fourier transform in η we can find the values of B0. The

η-Fourier transform may be inverted using Jordan’s lemma; closing in the upper half plane

when looking downstream, x > x0 and η > 0, and closing in the lower half plane when

looking upstream, x < x0 and η < 0. The only contribution will then be from the residues of

the poles inside our inversion contour. Since these poles lie on values of k that are solutions

to the dispersion relation there is a one-to-one mapping from modes to poles. The residue at

each pole will give us the value of B0 for the corresponding mode.

Writing down the inversion formula for the local Fourier transforms near the source, we

have the local pressure perturbation near the source in the space-time domain

p(t,η ,r,θ) =
1

4π2

∞

∑
m=−∞

∫

Cω

∫

Ck

p̃(ω,k,r,m)ei(ωt−kη−mθ) dk dω,

where Ck is our k Fourier inversion contour. For the ω inversion we perform a Laplace

inversion with s = iω . Since we are only interested in the long time solution the only

contribution from the ω inversion that we will take is the pole at ω f , corresponding to the

long time reaction to the forcing. There will also be some other ω poles in our solution,
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however these will correspond to transient modes associated with the abrupt startup of our

source which we will ignore here.

Once we know the locations of the modes k∗ that fall inside our integration contour we

can then analytically compute the residue of each mode using L’Hôpital’s rule to find B0 for

that mode

B0|k=k∗ =±qi(ω −Uk∗)ω
4

(

Jm(αr0)
ρ(ω −Uk∗)Ym(αa)− iαY ′

m(αa)Ze f f

∂
∂k
(ρ(ω −Uk)Jm(αa)− iαJ′m(αa)Ze f f )|k=k∗

)

,

with B0 = 0 if the mode is outside the integration contour. The − sign is taken for downstream

modes as the k-inversion contour is clockwise and the + sign for upstream modes as the

k-inversion contour is counter-clockwise.

Now that we have both slowly varying functions and have used the local solution to

determine the appropriate constants for each mode, we are almost ready to calculate the

global slowly varying long term solution. The only thing remaining is to determine whether

our modes correspond to upstream or downstream modes, i.e. whether they fall inside or

outside our η Fourier inversion contour. To determine this we use the Briggs-Bers method,

which is covered in the next section.

4.8 Briggs-Bers

To maintain causality we take our transform from t to ω to be a Laplace transform with

s = iω so that there is no response before the initial time t = 0. For the Laplace inversion we

then need to take our inversion contour to be to the right of all poles in the s-plane which

corresponds to a contour below all poles in the ω-plane. This means that we are integrating

along ω = r− iR with R sufficiently large.

For t < 0 we will use Jordan’s lemma and close our ω contour in the lower half plane.

The k-inversion contour is then closed in the upper half plane for x < x0 and the lower half

plane for x > x0. For there to be no poles within the ω contour we take all poles in the

upper half plane to be upstream modes, k∗ ∈ K+ and all poles in the lower half plane to be

downstream modes k∗ ∈ K−. Since there are no poles inside this contour by construction

there is no pressure pertubation, as required. For t > 0 we now use Jordan’s lemma to close

the ω contour in the upper half plane and we will get a contribution from the residue of

the poles inside the contour. For the k-inversion we have the same sets of upstream and

downstream poles K±.

However, we are only interested in the long term solution so we only want to evaluate

the contribution from the pole at ω f . To evaluate this contribution we must raise our ω
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integration contour to lie on the real axis in ω-space. Since this is a smooth deformation

of the contour we expect the k Fourier inversion to also vary smoothly as the imaginary

part of ω is increased. However if any modes cross the real k axis and we do not include

them in the inversion for the half plane from which they originated, then the k-inversion

will not vary smoothly. This means that we must track the modes k∗(ω) as ω → ω f , so that

the modes stay in their respective sets; K+ or K−. Any mode that crosses the real k axis

corresponds to a convective instability as it will be a streamwise exponentially growing mode

up or downstream.

In general, when evaluating the time domain long time pressure perturbation, instead of

finding our modes for ω with large negative imaginary part and tracking them as ω → ω f ,

we invert the process. We find the modes at ω = ω f and then track them as Im(ω)→−∞.

This then allows us to classify the modes into upstream or downstream modes based on

which half plane they end up in.

We can plot the Briggs-Bers trajectories for a given azimuthal wavenumber m. A

comparison between the Myers and slowly varying dispersion relation (4.39) for Z = 0.1−
0.15 i

ω +0.05iω is given in figure 4.3. While the cut-off acoustic modes (those to the left

hand side of the k-plane) behave similarly for both dispersion relations, it is clear that the

surface mode (the mode that begins in the upper-right quadrant) behaves quite differently. For

the Myers dispersion relation the surface mode is unstable, and corresponds to a convective

instability; while for the slowly varying dispersion relation the surface mode is stable.

4.9 Numerical methods

To solve for the long time pressure perturbation inside the duct we must first find the modes.

To do this I begin by looking for modes of the dispersion relation (4.39) at the source location

x = x0, ignoring the O(δL) correction terms (4.38). This is useful because the dispersion

relation may then be written as:

f (ω,k,m) =
Jm(αa)

α |m| (ω −Uk)2 − ZiαJ′m(αa)

ρα |m|

(

ω −
kuζ (0)(γ −1)T (0)

√
εk

√

iωγ p(0)X

)

= 0. (4.57)

Note that the α |m| terms cancel any solutions with α = 0, since we know from the Green’s

function solution §4.7 that these do not contribute to the final solution. These terms also

ensure that there is no branch cut due to the square root inside the α term as we are left with

only the even powers of α . This then means that f (ω,k,m) is an analytic function of k and

has no singularities. This is helpful as it means that we can use a zero counting integral

to count the number of zeros, N0, for fixed ω and m within a given integration contour, Γ.
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Fig. 4.3 Plot of thes Briggs-Bers trajectories for the Myers (left) and slowly varying (right)

dispersion relations for m = 15 with Z = 0.1− 0.15i/ω + 0.05iω , M = 0.7, a = 1 and

δ = 10−3. The initial positions of the modes for ω = 10 are given by the blue points while

the final positions for ω = 10−20i are given by the red points.
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Fig. 4.4 Diagram of the subdivision process used to find the roots of the dispersion relation

Given that there are no poles inside Γ, the counting integral has the following form

N0 =
1

2πi

∮

Γ

f ′(k)
f (k)

dk. (4.58)

To find the modes I then fix ω = ω f (as we are only interested in the long time solution)

and for each m within some finite range I search for the modes k(ω,m). To do this I choose

a starting contour Γ0 to be a square of side length R and calculate the counting integral. I

then subdivide to get four squares of side length R/2 and again count the modes within each

subdivided square. This process continues until there are either no zeros within a given square

or only one mode. At this point a simple root finding algorthim (e.g. Newton-Raphson) can

be used to find the single zero within a square using the centre of the square as the starting

value. If the root finding algorithm fails to find the mode within the square, it may be further

subdivided to refine the starting value given to the root finding algorithm. A diagram of this

subdivision process is shown in figure 4.4.
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It should be noted that the truncation of the search range for each given m to a square

of side length R is easily justified, since for sufficiently large3 R we will only be neglecting

modes with large imaginary parts that rapidly decay away from the source, and so this will

only produce errors localised near to the source. Similarly the truncation of the range of m

can be justified provided that we take sufficiently many m that the neglected terms are only

rapidly decaying modes; typically m ≈ 10−20 is sufficient.

Once these modes are found I can then find the O(δL) correction by simply solving for the

full dispersion relation with a root finding algorithm using the previously found approximate

modes as initial values and sub-stepping if the difference between the old and new modes is

beyond a specified tolerance.

Given the modes at x = x0 we can then evaluate the constants B0 for each mode. We then

use the chain rule on f to write

∂k

∂ω
=−

∂ f
∂ω
∂ f
∂k

. (4.59)

This lets us solve a simple ODE to track the mode for the Briggs-Bers procedure, using the

value we have for the mode at ω f as our initial value. Once this is done the mode can be

classified as either upstream or downstream. We can then use the same method to track the

modes as X varies and evaluate all necessary streamwise integrals for the slow variation

terms.

Once we have calculated the streamwise varying terms for each mode we can plot the

long time pressure perturbation by summing over the contribution from all modes {kω f ,m}.

This procedure can be sped up computationally by pre-computing the r− x terms, t terms

and θ terms separately and then combining them within the sum.

4.10 Results

In this section I will show some results for the acoustics in the duct due to a point source. I

will first consider the simpler case of a cylindrical duct then move on to investigate the case

of a duct of varying radius.

4.10.1 Cylindrical duct

In the case of a cylindrical duct, i.e. one with a′(x) = 0, the solution simplifies greatly. As the

outer mean flow terms no longer depend on X the only term in the dispersion relation (4.39)

that is dependent on X is of order O(
√

εk), and so to leading order k will be independent of

3this turns out to be R greater than the roots of α2
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X as well. The result of this is that the slowly varying terms simplify. Assuming we are using

the compressible Blasius boundary layer we have S̃geom = Sbl = 0, Smean f low is a constant in

X and Sviscous ∝ 1
X

. This means that at leading order we can analytically evalute B(X) to get

B(X) = B0

(

X

X0

)n(ω,k)

, (4.60)

with

n(ω,k) =− ρ(ω −Uk)Sviscous|X=1

Smean f lowZeffω +2ρUω
.

From this we can see that as expected the assumption that B(X) varies slowly will break

down at the leading edge, however it will hold elsewhere.

Figure 4.5 shows the pressure perturbation of the linear acoustics in a cylindrical duct

due to a source at r = 0.8 and x = 10.1 with frequency ω f = 10, comparing between the

Myers boundary condition and the slowly varying boundary condition (4.39). Here I use the

same impedance Z = 0.1−0.15i/ω +0.05iω as was used in the Briggs-Bers plots 4.3 and

so we expect the Myers solution to have a convective instability downstream and the slowly

varying solution to be stable.

Since ω f = 10 and x0 = 10.1 we have εk ≈ 0.01 and we also have δ = 10−3, so both

parameters are small are required. I also set the source strength q= 10−7 so that the maximum

pressure perturbation is of order 10−5, and so ε ≈ 10−5 is also small and ε ≪ δL as required

for the asymptotics to be valid.

To calculate these solutions I truncated the sum over m at the first value m for which

there are no ‘almost cut-on’ modes, i.e. the first m for which the decay rate of the modes is

sufficiently large, in this case mmax = 15. I also limited the search in the k-plane for modes

to a square of side length 140 centred at the origin. These approximations only affect the

accuracy of the solution very near the source as the modes that have been ignored will decay

very rapidly away from the source. Although it should be noted that for the Myers boundary

condition the surface mode is unstable for all m, so we are not capturing the higher frequency

downstream instabilities.

It can be seen that the Myers solution has a convective downstream instability as expected

from the Briggs-Bers trajectories, whereas this instability does not occur for the slowly

varying acoustics. Interestingly, the upstream acoustics appear to be stronger than those

radiated downstream.

Figure 4.6 compares the result of the slowly varying boundary condition to one of

the numerical simulations with realistic values for aircraft engines suggested by Brambley
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Fig. 4.5 Pressure perturbation of the linear acoustics (real part) at θ = 0 due to a point source

at r = 0.8, θ = 0 and x = 10.1 in a cylindrical duct for the Myers (top) and slowly varying

(bottom) boundary conditions for a cylindrical duct with Z = 0.1+ 0.05iω − 0.15i/ω for

ω f = 10, and M = 0.7.
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and Gabard [6]. This has a source with frequency ω f = 31, a lining impedance of Z =

0.75+0.01iω −10i/ω , δ = 10−3, and the mean flow Mach number is 0.5. For my solution

the duct is cylindrical and the source is positioned at r0 = 0.7 and x0 = 2.0 so that it is

0.3 away from the wall of the duct. The transient simulations carried out in [6] used a 2D

rectangular domain of height 2 and length 4 and a numerical approximation to a transient

point source 0.3 away from the wall and with x0 = 2.0. This means that the results may be

compared even though the duct geometry is different. For my result the search window for

the modes was limited to a square of side length 140 centred about the origin in k-space and

the sum was truncated at m = 8. The source strength q was set to 2×10−8 which resulted in

ε ≈ 10−5.

The qualitative appearance of the solutions broadly agree. However their numerical

solutions appeared to show a convective instability occuring near the wall of the duct which

does not appear in the slowly varying solution. However if we expand our search window

for the modes and consider the Briggs-Bers trajectories, we can see that the search window

was too small and we missed an unstable surface mode. From the Briggs-Bers trajectories,

figure 4.7, we can see that there is indeed an unstable surface mode. This demonstrates a

problem with the method of finding and tracking modes to solve for the long time pressure

perturbation; it is difficult to know whether the search window for the modes is large enough

to capture all potentially unstable modes. From the Briggs-Bers trajectories we can see that

the growth rate of the unstable surface mode is very large and we would expect it to dominate

the downstream solution. This does not occur for the numerical simulation as it is only a

transient simulation rather than a long time solution.

4.10.2 Varying radius duct

For the case of a varying radius duct B(X) must be integrated numerically. Here I will present

the results for the linear acoustics due to a point source at r = 0.8, θ = 0 and x = 10.1 for

ducts of different slowly varying mean flow Mach numbers M(X). The mean flow Mach

numbers and radii a(X) used are given in table 4.1. In both cases |M′(x)|= 0.01 and so we

still have εk ∼ 0.01. The numerical truncation used for these solutions is the same as for the

parallel duct solutions above. Note that while the analytic results include corrections of order

O(εk) for the plots that follow I will use the leading order non-parallel boundary layer mean

flow derived in §2.4.2 for convenience.

To solve for the Myers boundary condition we now have to evaluate k(X) independently

at each X , since the outer mean flow velocity U now varies with X . This means that although

the Myers solution does take into account some of the slowly varying nature of the mean flow



4.10 Results 95

Fig. 4.6 Comparison of the numerical simulation result of Brambley and Gabard [6] at

t = 4.2 (top) to the pressure perturbation (real part) for the slowly varying boundary condition

(bottom). The white region in the numerical simulation is where the amplitude of the pressure

is within the numerical precision noise
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Fig. 4.7 Plot of the Briggs-Bers trajectories for the slowly varying dispersion relations for

m = 0 with Z = 0.75+ 0.01iω − 10i/ω , M = 0.5. The initial positions of the modes for

ω = 310 are given by the blue points while the final positions for ω = 31−200i are given

by the red points. The unstable surface mode can be seen to the right of the plot.
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it is still only a local condition, as e−ik(X)x only depends on the current location, whereas the

slowly varying solution e−i
∫

k(X)dx gives a global solution.

Figure 4.8 shows the long time pressure perturbation for M = 0.7− 0.01. This case

corresponds to a slowly expanding duct and we can see again that the Myers solution is

unstable while the slowly varying solution is not, and so the solutions are very similar to the

parallel duct case above.

For the accelerating flow, narrowing duct case, with M = 0.7+0.01 shown in figure 4.9,

we can see that both solutions have convective instabilities downstream. These instabilities

are both caused by the surface mode crossing the Re(k) axis and becoming a convective

instability, as can be seen in the Briggs-Bers plot in table 4.1. However the growth rate of

these instabilities is quite different as the location of the surface mode is quite different in

each case.

We can also see that the slowly varying solution appears to be unstable upstream. Even

though all the upstream modes have a positive decay rate, the solution grows because some

of the upstream streamwise wavenumbers k have very slow decays rates, and for these modes

the slowly varying term B(X) grows. The result is that the total amplitude of the solution

grows slowly upstream.

4.11 Conclusion

In this chapter I have used a WKB approximation to develop an effective impedance boundary

condition that takes into account the effects of boundary layer shear, viscosity and non-parallel

effects. I have shown that in certain cases it matches with previous work [5, 17]. While

this new effective impedance boundary condition is more complex than the Myers boundary

condition, involving integrals over the boundary layer mean flow profile, it takes into account

the effects of shear, viscosity and non-parallel variations all of which are ignored by the

Myers boundary condition.

I have also presented comparisons to the results of the Myers boundary condition and

shown that in certain cases the surfaces modes of the slowly varying boundary condition

can be stable even when they are unstable for the Myers boundary condition. This suggests

that this new effective impedance boundary condition may not suffer from the ill-posedness

that affects the Myers boundary condition. This ill-posedness is caused by the Myers

boundary condition admitting unstable surface modes with a growth rate that increases with

wavenumber. If these surfaces modes are stable under the slowly varying boundary condition

then the surface modes will decay and this problem will not occur. However much more
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Table 4.1 Values of outer mean flow Mach number M(x) used, the corresponding duct radius

a(x) and some of the Briggs-Bers trajectories for m = 0 at x0 = 10.1.
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Fig. 4.8 Linear acoustics (real part) for the Myers (top) and slowly varying (bottom) boundary

conditions for an expanding duct with Z = 0.1+0.05iω −0.15i/ω for ω = 10, x = 10.1 and

M = 0.7−0.01x
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Fig. 4.9 Linear acoustics (real part) for the Myers (top) and slowly varying (bottom) boundary

conditions for a narrowing duct with Z = 0.1+0.05iω −0.15i/ω for ω = 10, x = 10.1 and

M = 0.7+0.01x
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work would be needed to check if this behaviour is always true and to prove mathematically

the well-posedness of this new boundary condition.

I have also used the WKB approximation to find the effect of a slowly varying radius duct

on the acoustics. I have shown that while in some cases (fig 4.8) the slow variation appears

to have relatively little effect. In other cases (fig 4.9) the slow variation of the radius can

greatly affect the stability of the acoustics, both by affecting the Briggs-Bers trajectories of

the modes and through the slow variation of the amplitude of the modes.

In the next chapter I will extend this work to consider the weakly nonlinear acoustics

that arise in the duct due to the slowly varying linear acoustics, and investigate whether this

model suffers from the same rapidly oscillating streaming solutions that were found occur in

the parallel case in chapter §3.





Chapter 5

Non parallel weakly nonlinear acoustics

5.1 Introduction

In this chapter I will consider the weakly nonlinear acoustics that arise due to the slowly

varying linear acoustics from chapter §4. I will use the same three layer asymptotic regime

to analytically solve for the first order in ε , weakly nonlinear contributions.

Following the same scaling arguments as in §4.3 we have three different asymptotic

regions. In region III, the base flow is assumed to be approximately uniform and gradients of

the acoustics are assumed to be O(1) so that the effect of viscosity is negligible at leading

order. This means that the acoustics can be treated as being in an inviscid uniform flow.

In region II, the mean flow varies over a lengthscale δL and gradients in the acoustics are

assumed to be at most O(1/δL). Hence the effect of viscosity is still negligible at leading

order and the acoustics can be treated as being in a sheared inviscid flow. In region I, the

mean flow is approximately linear but gradients in the acoustics are assumed to be O(1/λ ).

This means that the effect of viscosity is now important. Here we treat the acoustics as being

in a linearly sheared viscous flow.

In chapter §3 we found that under the parallel flow assumption some weakly nonlinear

streaming modes could cause rapidly oscillating solutions to propagate out into the centre

of the duct, region III, which would violate the scaling assumptions above. Here I will

investigate whether it is still possible for these solutions to exist under our three-layer, slowly

varying model.
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5.1.1 Forcing

As in chapter §4, we will consider an oscillating point mass source at (r0,x0,0) which turns

on at t = 0. This mass source has the following form (4.55)

q(t) = Re

[

qδ (x− x0)δ (r− r0)H(t)eiω f t
δ (θ)

r

]

,

where H(t) is a Heaviside function, δ (·) is a delta function and q is the strength of the source.

Note again here that as in §4.7, there is a difference between the time varying forcing, always

written q(t), and the constant forcing strength q.

5.2 Linear acoustics

For the linear acoustics we will use the slowly varying solutions from chapter §4.

When we invert the ω Laplace transform we will get a contribution from the pole at ω f

and a contribution from any ω poles arising from the k-residue of B0. These additional poles

however will correspond to transient modes, so if we are interested in the long time solution

we only expect to have to consider the pole at ω f . We can then find p0(t,r,x,θ) at long time

p0 = Re

[

∞

∑
m=−∞

∑
ω∈W

∑
k∗∈K±

p̃0(ω,k,m)

]

= Re

[

∞

∑
m=−∞

∑
ω∈W

∑
k∗∈K±

B(X)Jm(αr)e
i(ωt−∫ x

x0
k∗(X)dx−mθ)

]

,

(5.1)

where W is the set of forcing frequencies {ω f }1. The real part here is necessary, as it was

in chapter §3, as we will be taking nonlinear combinations of the leading order pressure

perturbation. To evaluate the real part we take

Re[p̃0] =
p̃0 + p̃⋆0

2
.

However we can note that if {ω,k,m} is a solution to the dispersion relation (4.39) then we

can take the complex conjugate of the equation and it must still hold. However the complex

conjugate of the dispersion relation is the same equation but now for {−ω⋆,−k⋆,−m}. This

means that {−ω⋆,−k⋆,−m} will also be a solution to the dispersion relation. Furthermore

1All the following results will still hold if we do not restrict ourselves to the long time case and include the

transient modes ω(m) in W . However these modes are computationally difficult to find and there are better

methods to investigate the transient stability of small perturbations.
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(B(X){ω,k,m})
⋆ = B(X){−ω⋆,−k⋆,−m}. So we can see that

p̃0(ω,k,m)⋆ = p̃0(−ω⋆,−k⋆,−m),

and so due to this symmetry of the solution we write equation (5.1) as

p0 =
1

2
∑

ω∈W

∞

∑
m=−∞

∑
k∗∈K±

p̃0(ω,k,m) =
1

2
∑

ω∈W

∞

∑
m=−∞

∑
k∗∈K±

B(X)Jm(αr)e
i(ωt−∫ x

x0
k∗(X)dx−mθ)

,

(5.2)

where for each forcing frequency ω f we have replaced the complex conjugate in p0 by

including −ω⋆
f in W .

K± corresponds to the set of upstream/downstream poles as determined by the Briggs-

Bers method §4.8. That is, the set of poles which end up in the upper/lower half plane as

Im(ω f )→−∞. If x > x0 we take K− whereas if x < x0 we take K+.

5.3 Weak nonlinearity

So far we have only looked at the linear acoustics that arise due to a point source. This

linear solution is valid provided ε
δL

≪ 1 so that the nonlinear terms are much smaller than

the linear acoustics. In aircraft engines the acoustics are often very loud which means that

this assumption may not be true and the nonlinear acoustics may be important. I will now

consider a weakly nonlinear perturbation to find a solution for the nonlinear acoustics.

For the linear acoustics we solved a system of equations of the form

L(p) = q(t),

where L is a linear operator acting on p. If we consider the nonlinear terms we now have an

equation of the form

L(p) = Q(p, p)+q(t),

where Q is quadratic in p. Now using the weakly nonlinear approximation we can decompose

the problem into the linear acoustics problem above and a linear problem forced by nonlinear
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quantities of the linear solution

L(p0) = q(t),

L(p2) = Q(p0, p0).

We know the general form of the linear pressure perturbation p0

p0 =
1

2

∞

∑
m=−∞

∑
ω∈W

∑
k(ω,m)∈K±

Bk(X)Jm(αkr)e
i(ωt−∫ x

x0
k(X)dx−mθ)

.

We can then consider quadratic quantities of p0

p0 p0 =
1

4

∞

∑
m,n=−∞

∑
ω,v∈W

∑
k,l∈K±

Bk(X)Jm(αkr)Bl(X)Jn(αlr)e
i(Ωt−∫ x

x0
K(X)dx−Mθ)

=
1

4

∞

∑
m,n=−∞

∑
ω,v∈W

∑
k,l∈K±

p̃a
0 p̃b

0,

where p̃a
0 = p̃0(ω,k,m), p̃b

0 = p̃0(v, l,n), Ω = ω + v, K(X) = k(X)+ l(X), M= m+n and

each sum is now a double sum over every pair of frequencies/wavenumbers (ω,v), (k, l) and

(m,n). We can now write down the form of p2

p2 =
∞

∑
m,n=−∞

∑
ω,v∈W

∑
k(ω,m),l(v,n)∈K±

p̃2(Ω,K,M)e
i(Ωt−∫ x

x0
K(X)dx−Mθ)

, (5.3)

and we can solve for p̃2(Ω,K,M) separately for each mode.

5.4 Leading order weakly nonlinear acoustics

For each ω ̸= v or k ̸= l there is a pair of pairs (ω,k;v, l) and (v, l;ω,k) in the sum (5.3) that

will give terms with the same frequency dependence. This mean that we can combine these

contributions when solving the equations for a single mode and we just need to include a

factor of 1
2

to avoid double counting when we compute the double sums. This allows the

solutions to be greatly simplified. I will now solve for the leading order weakly nonlinear

acoustics in each of the asymptotic regions.
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5.4.1 Region III

In region III, we start with the O(ε2) terms of the Navier Stokes equations (2.1), ignoring

the viscous terms which are assumed to be negligible in this region as discussed in §4.3. The

equations for each leading order weakly nonlinear mode are then given by

i(Ω−UK)ρ̃2 − iKρ ũ2 +
ρ ṽ2

r
+ρ ṽ2r −

iMρ

r
w̃2 =

iK

4
ρ̃b

0 ũa
0 +

iM
4r

ρ̃b
0 w̃a

0 −
1

4r
(rρ̃b

0 ṽa
0)r,

(5.4a)

ρi(Ω−UK)ũ2 − iK p̃2 =
ik

4
ρ ũb

0ũa
0 +

imρ

4r
w̃b

0ũa
0 −

ρ

4
ṽb

0ũa
0r −

i(ω −Uk)

4
ρ̃b

0 ũa
0, (5.4b)

ρi(Ω−UK)ṽ2 + p̃2r =
ik

4
ρ ũb

0ṽa
0 +

imρ

4r
w̃b

0ṽa
0 −

ρ

4
ṽb

0ṽa
0r −

i(ω −Uk)

4
ρ̃b

0 ṽa
0 +

ρ

4r
w̃b

0w̃a
0,

(5.4c)

ρi(Ω−UK)w̃2 −
iM p̃2

r
=

ikρ

4
ũb

0w̃a
0 +

imρ

4r
w̃b

0w̃a
0 −

ρ

4
ṽb

0w̃a
0r −

i(ω −Uk)

4
ρ̃b

0 w̃a
0 −

ρ

4r
ṽb

0w̃a
0,

(5.4d)

i(Ω−UK)(ρT̃2 − p̃2) =
( ik

4
ũb

0 +
im

4r
w̃b

0

)

(ρT̃ a
0 − p̃a

0)−
ṽb

0

4
(ρT̃ a

0 − p̃a
0)r −

i(ω −Uk)

4
ρ̃b

0 T̃ a
0 ,

(5.4e)

where p̃a
0 = p̃0(ω,k,m) = Bk(X)Jm(αkr)e

i(ωt−∫ x
x0

k(X)dx−mθ)
is one of the leading order linear

modes and p̃b
0 = p̃0(v, l,n) is another linear mode. Similarly for all other leading order linear

terms, the ‘a’ terms correspond to a mode with frequency ω and wavenumbers k, m and the

‘b’ terms correspond to a mode with frequency v and wavenumbers l, n. All terms on the left

hand side are of the same order and all terms on the right hand side are O(ε2).

Now consider the expansion of the equation of state (2.1e) up to and including quadratic

terms

1+ ε ∑
ω,k

ρ̃0

2ρ
+ ε2 ∑

ω,k
∑
v,l

ρ̃2

ρ
= 1+ ε ∑

ω,k

[

p̃0

2P
− T̃0

2T̄

]

+ ε2 ∑
ω,k

∑
v,l

[

p̃2

P
− T̃2

T̄
− p̃b

0T̃ a
0

4PT̄
+

T̃ b
0 T̃ a

0

4T̄2

]

,

note here we again have a factor of 1
2

in the linear terms so that we only have real quantities

in the expression. Matching coefficients the of ε2 we then have

ρ̃2

ρ
=

p̃2

P
− T̃2

T̄
− p̃b

0T̃ a
0

4PT̄
+

T̃ b
0 T̃ a

0

4T̄2
(5.5)

=
p̃2

P
− T̃2

T̄
− (γ −1)p̃b

0 p̃a
0

4γ2P2
, (5.6)
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where we have used the leading order linear solution (4.5) to simplify the expression.

Using this result as well as the leading order linear solutions (4.5) to substitute all linear

acoustic quantities for the linear acoustic pressure, the equations for the weakly nonlinear

perturbations (5.4) can be simplified to

i(Ω−UK)
( p̃2

P
− T̃2

T̄

)

− iKũ2 +
ṽ2

r
+ ṽ2r −

iM
r

w̃2 =
(γ −1)i(Ω−UK)p̃a

0 p̃b
0

4γ2P2

+
i

4γP(ω −Uk)

[

p̃a
0 p̃b

0

(Kk

ρ
+

Mm

r2ρ

)

− p̃a
0r p̃b

0r

ρ
+

p̃a
0 p̃b

0

ρ

((ω −Uk)2

(γ −1)T̄
− k2 − m2

r2

)

]

,

ρi(Ω−UK)ũ2 − iK p̃2 =
ik

4(v−Ul)(ω −Uk)

[

p̃a
0 p̃b

0

( lk

ρ
+

mn

ρr2

)

− p̃a
0r p̃b

0r

ρ

]

− ikp̃a
0 p̃b

0

4γP
,

ρi(Ω−UK)ṽ2 + p̃2r =− 1

8(v−Ul)(ω −Uk)

[

p̃b
0 p̃a

0

( lk

ρ
+

mn

ρr2

)

− p̃b
0r p̃a

0r

ρ

]

r

+
p̃b

0 p̃a
0r

4γP
,

ρi(Ω−UK)w̃2 −
iM p̃2

r
=

im

4r(v−Ul)(ω −Uk)

[

p̃a
0 p̃b

0

( lk

ρ
+

mn

ρr2

)

− p̃a
0r p̃b

0r

ρ

]

− imp̃a
0 p̃b

0

4rγP
,

i(Ω−UK)(ρT̃2 − p̃2) =−i(ω −Uk)
p̃a

0 p̃b
0

4γP
,

we can now use the symmetry (ω,k,m, p̃a
0)↔ (v, l,n, p̃b

0) as discussed above to combine the

contributions from the two terms with the same frequency dependence. Including the factor

of 1
2

to avoid double counting, the equations simplify to

i(Ω−UK)
( p̃2

P
− T̃2

T̄

)

− iKũ2 +
ṽ2

r
+ ṽ2r −

iM
r

w̃2 =
i(Ω−UK)S(r)

4γP
+

pa
0 p̃b

0

4γP2
i(Ω−UK),

ρi(Ω−UK)ũ2 − iK p̃2 =
iK

4
S(r),

ρi(Ω−UK)ṽ2 + p̃2r =−1

4
S′(r),

ρi(Ω−UK)w̃2 −
iM p̃2

r
=

iM
4r

S(r),

i(Ω−UK)(ρT̃2 − p̃2) =− i(Ω−UK)p̃a
0 p̃b

0

8γP
,

where

S(r) =
1

2ρ(ω −Uk)(v−Ul)

[(

kl +
mn

r2

)

p̃a
0 p̃b

0 − p̃a
0r p̃b

0r

]

− pa
0 p̃b

0

2γP
,
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is a known function of the linear acoustics. Combining these equations we then have

(

∂ 2

∂ r2
+

1

r

∂

∂ r
+ℵ2 −M2

r2

)(

p̃2 +
S

4

)

= (Ω−UK)2

(

Sρ

2γP
+

p̃a
0 p̃b

0ρ(γ +1)

8γ2P2

)

, (5.7)

where ℵ2 = (Ω−UK)2

(γ−1)T̄ −K2. This is a forced Bessel’s equation and similarly to the linear

acoustics §4.4.1 we require that the pressure is regular at r = 0. So in region III the leading

order weakly nonlinear solution is

p̃2 = DJM(ℵr)− S(r)

4
+S f (r),

ṽ2 =
−ℵDJ′

M
(ℵr)−S′f (r)

ρi(Ω−UK)
,

where S f (r) is the particular integral to the forced equation (5.7) and D(X) is an unknown

slowly varying function that will be found by matching between each layer and applying

the impedance boundary condition at the wall of the duct. Note that we will find in section

§5.4.4 that D(X)∼ O
(

ε2

δL

)

, but we know that S f (r) must be order ε2 as that is the order of

the forcing in equation (5.7). This means that S f (r) will not contribute to the leading order

term.

5.4.2 Region II

In region II we will have quadratic terms of the amplified O( ε
δL
) linear acoustic quanti-

ties (4.14). We therefore expect the leading order nonlinear equations to be O

(

ε2

δ 2
L

)

.

At leading order we obtain the following equations

i(Ω−uK)ρ̃2 −
(ρ ṽ2)ζ

δL
− iKρ ũ2 =

iK

4
ρ̃b

0 ũa
0 +

(ṽa
0ρ̃b

0 )ζ

4δL
, (5.8a)

ρ

[

i(Ω−uK)ũ2 −
ṽ2uζ

δL

]

= ρ

[

ikũb
0ũa

0

4
+

ṽa
0ũb

0ζ

4δL

]

− ρ̃b
0

4

(

i(ω −uk)ũa
0 −

ṽa
0uζ

δL

)

, (5.8b)

p̃2ζ

δL
= O

(

ε2εk

δ 2
L

)

, (5.8c)

ρ [i(Ω−uK)w̃2]−
iM

a(X)
p̃2 = O

(

ε2

δL

)

, (5.8d)

ρ

[

i(Ω−uK)T̃2 −
ṽ2Tζ

δL

]

= ρ

[

ikũb
0T̃ a

0

4
+

ṽa
0T̃ b

0ζ

4δL

]

− ρ̃b
0

4

(

i(ω −uk)T̃ a
0 −

ṽa
0Tζ

δL

)

. (5.8e)
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From these equations we can see that the nonlinear azimuthal velocity perturbation w̃2 is

order O( ε2

δL
) much less that ũ2 and T̃2 which are O

(

ε2

δ 2
L

)

. While we could solve for w̃2 it is

not necessary for the matching, so I will not solve for it here. Now we can also see that

p2ζ = O

(

ε2εk

δL

)

in this region. As we said in section §5.4.1 the leading order nonlinear

pressure perturbation is O( ε2

δL
) and so in this region it will be constant at leading order.

We now only need to solve for ũ2, ṽ2 and T̃2. To do this we must first substitute for ρ̃2

and ρ̃0. We begin by considering the leading order O(ε2/δ 2
L ) terms of the weakly nonlinear

equation of state (5.5). As p̃0 ∼ O(ε) the equation simplifies to

ρ̃2

ρ
=− T̃2

T
+

T̃ a
0 T̃ b

0

4T 2
. (5.9)

Note that for the linear acoustics we also have equation (4.13):

ρ̃0

ρ
=− T̃0

T
,

in this region. The leading order equations (5.8) then become

i(Ω−uK)T̃2 −
Tζ ṽ2

δL
+

T ṽ2ζ

δL
+ iKT ũ2 =

i(Ω−uK)

4T
T̃ a

0 T̃ b
0 +

iK

4
T̃ b

0 ũa
0 +

(ṽa
0T̃ b

0 )ζ

4δL
−

ṽb
0T̃ a

0 Tζ

2T δL
,

i(Ω−uK)ũ2 −
ṽ2uζ

δL
=

ik

4
ũb

0ũa
0 +

ṽa
0ũb

0ζ

4δL
+

T̃ b
0

4T

(

i(ω −uk)ũa
0 −

ṽa
0uζ

δL

)

,

i(Ω−uK)T̃2 −
ṽ2Tζ

δL
=

ik

4
ũb

0T̃ a
0 +

ṽa
0T̃ b

0ζ

4δL
+

T̃ b
0

4T

(

i(ω −uk)T̃ a
0 −

ṽa
0Tζ

δL

)

.

When we substitute the results for the linear acoustics (4.14) and combine pairs using the

(ω,k,m, p̃a
0)↔ (v, l,n, p̃b

0) symmetry, this becomes

i(Ω−uK)T̃2 −
Tζ ṽ2

δL
+

T ṽ2ζ

δL
+ iKT ũ2 =

CaCb

8δ 2
L

(iKTζ uζ + i(Ω−uK)Tζ ζ ),

i(Ω−uK)ũ2 −
ṽ2uζ

δL
=

CaCb

8δ 2
L

(iKu2
ζ + i(Ω−uK)uζ ζ ),

i(Ω−uK)T̃2 −
ṽ2Tζ

δL
=

CaCb

8δ 2
L

(iKuζ Tζ + i(Ω−uK)Tζ ζ ),
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which we can solve analytically to find the leading order weakly nonlinear acoustic perturba-

tions in this region

p̃2 = const, (5.10a)

ṽ2 =− iKCaCb

8δL
uζ −

E

δL
i(Ω−uK), (5.10b)

ũ2 =
CaCb

8δ 2
L

uζ ζ −
E

δL
uζ , (5.10c)

T̃2 =
CaCb

8δ 2
L

Tζ ζ −
E

δL
Tζ , (5.10d)

where E(X) is a slowly varying term that will be matched to D(X) in region III. Ca and Cb

are the slowly varying function C(X) (4.14) for the ‘a’ and ‘b’ modes respectively.

5.4.3 Region I

For the linear acoustics, in region I we found that ũ0 ∼ O( ε
δL
) while T̃0 ∼ O(

ε
√

εk

δL
) as the

solution for T0 in region II becomes small when matched to region I. For the nonlinear

acoustics however we find that the solution for T̃2 in region II does not become small when

matched to region I, as Tζ ζ (0) ̸= 0, and we therefore expect T̃2 ∼ O( ε2

δ 2
L

). However when

we consider the nonlinear forcing by the leading order acoustic terms we find that the ũ2

equation has forcing terms of order O( ε2
√

εkδ 2
L

) so we expect ũ2 to be of this order. This means

that as in §4.4.3 the equation for T̃2 will uncouple from the equations for ũ2 and ṽ2. As we

are only solving for the leading order weakly nonlinear acoustics we therefore do not need to

consider the T̃2 equation. So we have

iKũ2 +

√

X

εk

ṽ2y

δL
= O

(

ε2

δ 2
L

)

, (5.11)

i
(

Ω− y

√

εk

X
uζ (0)K

)

ũ2 −
ṽ2uζ (0)

δL
− (γ −1)2T (0)2

γ p
ũ2yy =

ṽb
0ũa

0y

√
X

4δL
√

εk

+
ikũb

0ũa
0

4
, (5.12)

where ṽ2 ∼ O
(

ε2

δL

)

, ũ2 ∼ O
(

ε2
√

εkδ 2
L

)

and equation (5.12) is correct to order O

(

ε2√εk

δL

)

. The

leading order equation for ũ2 then simplifies to

iΩũ2 −
(γ −1)2T (0)2

γ p
ũ2yy =

ivCaCbuζ (0)

4
√

εkδ 2
L

√
iωγ pX

(γ −1)T (0)
exp
( −y

√
iωγ p

(γ −1)T (0)

)

. (5.13)
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Provided that Ω ̸= 0, this equation has two exponential solutions. To match to the solution in

region II we must take the decaying exponential, this is possible for Re(Ω) ̸= 0. The case

Re(Ω) = 0 will be covered in section §5.5 below. We may then use the no-slip condition to

set the remaining arbitrary constant. Using the (ω,k,m, p̃a
0)↔ (v, l,n, p̃b

0) symmetry we then

have the leading order solution for ũ2

ũ2 =
CaCbuζ (0)

√
Xγ p

8
√

εkδ 2
L (γ −1)T (0)

(√
iωe

− y
√

iωγ p

(γ−1)T (0) +
√

ive
− y

√
ivγ p

(γ−1)T (0) − (
√

iω +
√

iv)e
− y

√
iΩγ p

(γ−1)T (0)

)

.

Note that the branch cuts for the square roots
√

iω ,
√

iv and
√

iΩ are taken such that the real

part of the square root is positive and the exponential terms decay. For ω and v this detail is

unimportant as we are only interested in acoustic perturbations with non-zero frequency, i.e.

Re(ω), Re(v) ̸= 0. However for Ω we need to consider the case Re(Ω) = 0 separately, which

will be covered in section §5.5. We can now use equation (5.11) to solve for the leading order

nonlinear acoustic normal velocity perturbation

ṽ2 =− iEΩ

δL
− iKCaCb

8δL
uζ (0)

(

1+

√
ω +

√
v√

Ω
e
− y

√
iΩγ p

(γ−1)T (0) − e
− y

√
iωγ p

(γ−1)T (0) − e
− y

√
ivγ p

(γ−1)T (0)

)

.

Now we also need to solve for the leading order nonlinear pressure perturbation, however we

find that, as in region II, we have

p̃2 = const.

5.4.4 Matching

Now that we have the leading order solutions for both the weakly nonlinear pressure petur-

bation p̃2 and the weakly nonlinear acoustic normal velocity perturbation ṽ2 in each region

we can match these solutions and apply the impedance boundary condition to solve for the

slowly varying function D(X).

When we use the impedance boundary condition to solve for D(X) we find that p̃2 must

be O(ε2/δL) to balance with ṽ2 which is amplified in the boundary layer to be O(ε2/δL) at

the wall. At the wall in region I we then have

DJM(ℵa) = p̃2(0) = Zṽ2(0) = Z

[

− iEΩ

δL
− iKCaCb

8δL
uζ (0)

(

√
ω +

√
v√

Ω
−1
)

]

. (5.14)
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Now matching ṽ2 between region II and region III gives

− E

δL
i(Ω−UK) =

−ℵDJ′
M
(ℵa)−S′f (r)

ρi(Ω−UK)
, (5.15)

and since S f (r) ∼ O(ε2) is of lower order this lets us substitute E(X) for D(X) in equa-

tion (5.14) to give an equation for D(X)

D

(

JM(ℵa)−ΩZ(Ω)
iℵJ′

M
(ℵa)

ρ(Ω−UK)2

)

=
CaCb

8δL

(

iKZ(Ω)uζ (0)

(

1−
√

w+
√

v√
Ω

))

.

(5.16)

So we find that the nonlinear pressure perturbation is a factor of 1/δL greater than would

be expected, due to the amplification of terms within the boundary layer.

This solution is not valid for acoustic streaming modes which have Re(Ω) = 0 as the

exponential solution in region I no longer decays and we must match it to region II. Also this

solution has a singularity at Ω = 0. This is because the exponential solution for ṽ2 in region I

will no longer be valid in this case. To solve for the acoustic streaming modes with Ω = 0

we will have to include extra terms in the equations to regularise our solutions near Ω = 0.

The solution for both of these cases is described below.

5.5 Acoustic streaming Re(Ω) = 0

In this section I will consider the case of acoustic streaming modes, Re(Ω) = 0. If Ω ̸= 0

then equation (5.13) still has exponential solutions of the form

ũ2 ∝ e
± y

√
iΩγ p

(γ−1)T (0) . (5.17)

Since Re(Ω) = 0 these solutions oscillate but don’t decay as y → ∞, so we must match to an

oscillatory solution in region II. This is done in section §5.6.

If Ω = 0 then the above exponential solution is not valid and we must regularise the

equations to be able to solve in region I. This procedure is covered in the next section.

5.5.1 Acoustic streaming with Ω = 0

In this section I will consider the special case of acoustic streaming modes with Ω = 0. Note

that the case K = 0 is unlikely to happen for an absorbing liner as we cannot have a pair of

cancelling real wavenumbers since all wavelengths of sound are absorbed somewhat by the

liner and hence all wavenumbers must have some imaginary part. However we are likely
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to have real pair of cancelling frequencies, which give Ω = 0, as our forcing is typically

harmonic.

When Ω → 0, Z(Ω)→ ∞, as there can be no net flow through the acoustic lining. This

means that when the boundary condition is applied at the wall we must have ṽ2|y=0 = 0. Our

solution in region I for ṽ2 is singular and even if we rewrote it in terms of an integral of ũ2,

which now has a constant term instead of the exponential of Ω, we would find that we still

can’t satisfy both the boundary condition at y = 0 and the matching to region II. Also we

have ignored a term of the form
√

εkyũ2 at leading order which will become large as y → ∞

in this case.

To resolve this inconsistency we must now consider both leading order and next order

O(
√

εk) terms of the ũ2 equation together. To do this we use equation (5.11) to substitute

all ũ2 terms in equation (5.12) for ṽ2. This lets us write the ũ2 equation as a third order

differential equation for ṽ2

(
√

X

εk

Ω

K
− yuζ (0)

)

ṽ2y +uζ (0)ṽ2 −
(γ −1)2T (0)2

γ p

√

X

εk

1

iK
ṽ2yyy =− iKCaCb

8δL
uζ (0)

2

−
CaCbuζ (0)

√
iXγ p

8
√

εkδL(γ −1)T (0)

(

−iω
√

ωe
− y

√
iωγ p

(γ−1)T (0) + iω
√
−ωe

− y
√−iωγ p

(γ−1)T (0)

)

+E(y),

(5.18)

which is correct to O

(

ε2√εk

δ 2
L

)

. Note that the leading order term on the right hand side is

O(1/
√

εk) and we have written v = −ω as we are interested in the case Ω = 0. The E(y)

term contains subdominant O

(

ε2

δ 2
L

)

decaying exponential terms from the linear solutions in

region I. These terms only contribute exponential terms that are a factor of
√

εk smaller than

the leading order terms and so they may safely be ignored at leading order.

We find that the dominant contribution to the particular solution comes from the first two

terms. So we get

ṽ2 =− iKCaCb

8δL
uζ (0)

(

1− e
− y

√
iωγ p

(γ−1)T (0) − e
− y

√−iωγ p

(γ−1)T (0) + ṽc

)

+O(
√

εk),

where ṽc is the solution to the homogeneous equation with initial conditions ṽc(0) = 1 and

ṽ′c(0) =−
√

iωγ p+
√−iωγ p

(γ−1)T (0) . These initial conditions are required so that ṽ2 and ũ2 are zero at

the wall to satisfy the no-slip condition and impedance condition for Ω = 0.

When Ω ̸= 0 the first term in equation (5.18) balances the ṽ2yyy term. However for Ω = 0

the remaining terms on the left hand side of (5.18) must now balance the ṽ2yyy term. The

homogeneous equation now has a simliar form to Airy’s equation, due to the yṽ2y term and
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may be written as

−yṽcy + ṽc −
ṽcyyy

β
= 0, (5.19)

where β is a constant

β =

√

εk

X

iKuζ (0)γ p

(γ −1)2T (0)2
. (5.20)

We can see that this has one solution of the form ṽc = a0y. To solve for the other solutions

we first do a substitution ṽc(y) = yF(y). The equation then becomes

−y2F ′− (yF ′′′+3F ′′)
β

= 0.

We can now write f (y) = F ′(y) to get a second order differential equation for f

y f ′′+3 f ′+βy2 f = 0.

If we now write g(y) = y2 f (y) the equation becomes

g′′

y
− g′

y2
+βg = 0,

the first two terms can then be combined to give

(

g′

y

)′
+βg = 0,

Now finally if we write h′(y) = g(y) we have

(

h′′

y

)′
+βh′ = 0,

which can be integrated to give

h′′+βyh = const.

Since we did not specify the integration constant in h =
∫

gdy we can set the constant here

to zero and we have an Airy equation for h(y). We can then work backwards through the
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substitutions to find that ṽc has the following solution

ṽc = a0y+a1y

∫ y Ai′(x(−β )1/3)

x2
dx+a2y

∫ y Bi′(x(−β )1/3)

x2
dx, (5.21)

Now to set the constants a0, a1 and a2 we first consider the behaviour of this solution as

y→∞. For large y we have the following standard asymptotic results for the Airy functions [9,

Eq. 9.7.6 & 9.7.8]

Ai′(x(−β )1/3)∼−(−β )1/12x1/4

2
√

π
e−

2
3 x

3
2 (−β )1/2

, (5.22)

Bi′(x(−β )1/3)∼ (−β )1/12x1/4

√
π

e
2
3 x

3
2 (−β )1/2

, (5.23)

which are valid in the range

|arg((−β )1/3)|< π/3.

So if we take the root of −β that is within this arc then Bi′(x) will grow exponentially as x

increases. This means that to be able to match our solution to region II we must set a2 = 0.

However if |arg(−β )1/3|= π/3 then the Bi′(x) will oscillate and not decay for large x and

so we will not necessarily have a2 = 0. This case is covered below in section §5.5.2.

To set the other two constants we will use the boundary conditions at y = 0. However

we first note that the integrand is singular at x = 0. To remedy this problem we subtract a

term of the form Ai′(0)/x2 from the integrand and add a contribution outside the integral to

cancel it so that the solutions remains unchanged. This gives

ṽc =−a1Ai′(0)+a0y+a1y

∫ y Ai′(x(−β )1/3)−Ai′(0)
x2

dx. (5.24)

Now we can use the asymptotic behaviour of Ai′(x) near x = 0 [9, Eqs. 9.2.4 & 9.4.2]

Ai′(x) =− 1

31/3Γ(1/3)
+O(x2).

This means that the integrand is now regular at zero, so we can set the lower limit of the

integrand to zero and now we can easily apply the initial conditions at y = 0 to get

ṽc = 1−
√

iωγ p+
√−iωγ p

(γ −1)T (0)
y− y

∫ y

0

−31/3Γ(1/3)Ai′(x(−β )1/3)−1

x2
dx, (5.25)
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which then gives

ṽ2 =− iKCaCb

8δL
uζ (0)

(

2− y(
√

iωγ p+
√−iωγ p)

(γ −1)T (0)
− y

∫ y

0

Ai′(x(−β )1/3)
Ai′(0) −1

x2
dx

)

+
iKCaCb

8δL
uζ (0)

(

e
− y

√
iωγ p

(γ−1)T (0) + e
− y

√−iωγ p

(γ−1)T (0)

)

.

(5.26)

Now to match to region II we consider the large y behaviour of ṽ2. Using the result of

equation (C.1) and that Ai(x) decays exponentially for large x (5.22) we have the long time

behaviour of ṽ2

ṽ2 ∼− iKCaCb

8δL
uζ (0)

(

2− y(
√

iωγ p+
√−iωγ p)

(γ −1)T (0)
−1− y

(−β )2/3

Ai′(0)

∫ ∞

0
Ai(x(−β )1/3)dx

)

.

We can now use the result [9, Eq. 9.10.11]

∫ ∞

0
Ai(ax)dx =

1

3a
, (5.27)

which is valid for |arg(a)| ≤ π
3

and this then gives

ṽ2 ∼− iKCaCb

8δL
uζ (0)

(

−y

√
iωγ p+

√−iωγ p

(γ −1)T (0)
+

Γ(1/3)(−β )1/3

32/3
y+1

)

, (5.28)

for large y. This must match to ṽ2 in region II (5.10b) for small ζ

ṽ2 =− iKCaCb

8δL
uζ +

iEuK

δL

∼− iKCaCb

8δL
uζ (0)+

iKE

δL
y

√

εk

X
uζ (0).

Also for Ω = 0 the matching (5.15) of E with D becomes

D =− E

δLℵJ′
M
(ℵa)

ρ(UK)2.

Putting this all together we get

D =− ρ(UK)2

ℵJ′
M
(ℵa)

CaCb

8
√

εkδL

√
iωγ pX +

√−iωγ pX

(γ −1)T (0)
+O(ε

−1/3

k )∼ O(ε
−1/2

k ). (5.29)
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Note we could also include Ω in the equation for ṽc (5.19) by subsituting z= y−Ω/Kuζ

√
Xεk.

This gives a similar form for the solution ṽ2 and we find that the regularised solution (5.29)

is valid for Ω ≪ ε
1/3

k and that D will be at most O(1/
√

εk). These results are derived in

appendix §C.2.

5.5.2 Oscillating streaming solutions for Ω = 0

So far for the acoustic streaming modes with Ω = 0 we have assumed that |arg(−β )1/3|<
π/3 so that the exponential terms from the asymptotic behaviour of Ai(x) decay. We will

now consider the case where |arg(−β )1/3|= π/3 (i.e. |arg(−iK)|= π). These exponential

terms will now oscillate and must be considered when matching, similarly to what we found

in §3.

In region I the Airy function of the second kind will no longer decay, so the solution can

now be written in the form

ṽc = 1−
√

iωγ p+
√−iωγ p

(γ −1)T (0)
y

−a1y

∫ y

0

Ai′(x(−β )1/3)
Ai′(0) −1

x2
dx− (1−a1)y

∫ y

0

Bi′(x(−β )1/3)
Bi′(0) −1

x2
dx,

ũ2 =−
CaCbuζ (0)

√
Xγ p

8
√

εkδ 2
L (γ −1)T (0)

(√
iω(e

− y
√

iωγ p

(γ−1)T (0) −1)+
√
−iω(e

− y
√−iωγ p

(γ−1)T (0) −1)

)

+
CaCbuζ (0)

√
X(−β )2/3

8δ 2
L

√
εk

(

a1

Ai′(0)

∫ y

0
Ai(x(−β )1/3)dx+

(1−a1)

Bi′(0)

∫ y

0
Bi(x(−β )1/3)dx

)

,

where I have used the result of (C.1) to evaluate ũ2. The above solutions satisfy the boundary

conditions at the wall (ũ2(0) = 0 and ṽ2(0) = 0) but still contain an unknown constant a1

that must be found by matching to the solutions in region II.

To conduct the matching we first need the asymptotic behaviour of both of the integrals

of the Airy functions for large y so that we can evaluate the asymptotic behaviour of ũ2. For

this we first use the following expression for Bi(x) [9, Eq. 9.2.10]

Bi(x) = e−
iπ
6 Ai(xe−

2iπ
3 )+ e

iπ
6 Ai(xe

2iπ
3 ).

We will also use the integral results (5.27) and [9, Eq. 9.10.11]

∫ 0

−∞
Ai(ax)dx =

2

3a
,



5.6 Oscillating acoustic streaming in region II 119

which are both valid for |arg(a)| ≤ π
3

. Finally we use the large y asymptotic behaviour of the

following integrals [9, Eq. 9.10.4 & 9.10.6]

∫ ∞

x
Ai(at)dt ∼ 1

2
√

πx3/4a7/4
e−

2
3 (ax)3/2

,

∫ x

−∞
Ai(at)dt ∼ 1√

π(−x)3/4a7/4
cos

(

−2

3
(−ax)3/2 +

π

4

)

,

with the first integral above valid for |arg(a)| ≤ π
3

. Combining these results we can then

derive the following property for the asymptotic behaviour of the Airy function integrals for

the case |arg(−β )1/3|= π/3

∫ y

0
Ai(x(−β )1/3)dx ∼ 1

3(−β )1/3
− e−

2
3 y3/2

√
−β

2
√

πy3/4(−β )7/12
,

∫ y

0
Bi(x(−β )1/3)dx ∼ e

2
3 y3/2

√
−β

√
πy3/4(−β )7/12

± i

(

1

(−β )1/3
− e−

2
3 y3/2

√
−β

2
√

πy3/4(−β )7/12

)

,

where the ± in the second integral corresponds to the sign of arg((−β )1/3) =±iπ/3. We

can then use these results to find the asymptotic behaviour of ũ2 in region I for large y

ũ2 ∼
CaCbuζ (0)

√
X

8δ 2
L

√
εk

(−β )1/12

√
πy3/4

(

(1−a1)

Bi′(0)
e

2
√

−β
3 y3/2 − e−

2
√

−β
3 y3/2

(

a1

2Ai′(0)
± i

(1−a1)

2Bi′(0)

))

,

(5.30)

where I have ignored some constant terms and any terms of order O(1/y5/4) or less as we

are only interested in how the oscillating behaviour of the exponential terms behaves when

matched to the outer region. This matching is carried out in the next section.

5.6 Oscillating acoustic streaming in region II

We have shown that if Ω ̸= 0 and Re(Ω) = 0 or Ω = 0 and |arg(−iK)| = π the acoustic

streaming solutions in region I oscillate and do not decay for large y. When we match these

solutions to region II we will have gradients of order O
(

1
δL
√

εk

)

which is larger than what we

assumed when solving in this region. To be able to match our solutions we now consider the

equations in region II for gradients ∼ 1/
√

εk to order O(
√

εk). This means that we are now

considering the effect of viscosity at leading order. This is the same as what was required to

solve for the oscillating outer solution in the parallel flow case §3.5.5. However, here we
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must first solve for the oscillating terms in region II before matching to a viscous solution in

the outer region.

To solve in this region we will ignore any T̃ terms which oscillate with a different

frequency2 to the ũ2 terms and will contribute to an additional solution for ṽ but not for ũ.

Under these assumptions the leading order O

(

ε2
√

εkδ 2

)

equations for the terms that oscillate

with the same frequency as ũ2 are

ṽ2ζ

δL
+ iKũ2 = O

(

ε2

δ 2
L

)

, (5.31a)

i(Ω−uK)ũ2 −
ṽ2uζ

δL
− εk(γ −1)2T 2

Xγ p

(

ũ2ζ ζ +
Tζ

T
ũ2ζ

)

− ũ2ζ

(

− v

δL
+

εkuζ

2X

)

= O

(

√
εkε2

δ 2
L

)

.

(5.31b)

The leading order balance of equation (5.31b) is

i(Ω−uK)ũ2 =
εk(γ −1)2T 2

Xγ p
ũ2ζ ζ .

This has exponential solutions of the form

ũ2 ∝ e
±∫ ζ

√

i(Ω−uK)Xγ p

εk(γ−1)2T 2 dζ
. (5.32)

For Ω ̸= 0 it is clear that this matches to the oscillatory solutions in region I (5.17) since

u ≈ 0 for small ζ and this solution becomes

ũ2 ∝ e
±y

√

iΩγ p

(γ−1)2T (0)2 ,

the same as the region I solution (5.17).

For large ζ if i(Ω −UK) is not purely real and negative then the argument of the

exponential solution (5.32) will have a non-zero real part and so we will have an exponentially

decaying solution and an exponentially growing solution. It is clear that to match to region

III we must take the decaying solution and the oscillating acoustic streaming solution in

region I will not propagate into the centre of the duct.

However if i(Ω−UK) is purely real and negative then we will again have oscillatory

solutions that don’t decay. Indeed this behaviour is the same as the oscillatory solution with

2The T̃2 terms have exponential dependence ∝ exp(±y

√

iΩγ p

Pr(γ−1)T (0) ) if Ω ̸= 0 and ∝ exp± 2
√

−β

3
√

Pr
y3/2if

Ω = 0 and so can be solved independently of the ũ2 terms, however the procedure is exactly the same.
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N2
∞ = i(Ω−MK)/ξ < 0 found for the parallel mean flow in chapter §3 which in that case

propagated out into the centre of the duct.

This leading order solution varies rapidly in region II and to match to region III we will

also need to find the slow variation in the solution across region II. This suggests that we

should try a multiple scales solution of the form

ṽ2 =
f±(ζ )

δL
e
±∫ ζ

√

i(Ω−uK)Xγ p

εk(γ−1)2T 2 dζ
,

ũ2 =
g±(ζ )√

εkδ 2
L

e
±∫ ζ

√

i(Ω−uK)Xγ p

εk(γ−1)2T 2 dζ
.

Solving at O

(

ε2

δ 2
L

)

we find the following equations for the slower varying terms f±(ζ ) and

g±(ζ )

f±
δ 2

L

√

i(Ω−uK)Xγ p

εk(γ −1)2T 2
+

iKg±√
εkδ 2

L

= 0,

−
f uζ

δ 2
L

− 1

δ 2
L

(

2g′±−g±
uζ K

2(Ω−uK)

)

√

i(Ω−uK)(γ −1)2T 2

Xγ p

− g±
δ 2

L

√

i(Ω−uK)Xγ p

(γ −1)2T 2

(

− v

εkδL
+

uζ

2X

)

= 0.

These equations can then be solved to give the solutions

f±(ζ ) =±
√

(−iK)2(γ −1)2T 2g±(ζ )
√

i(Ω−uK)Xγ p
, (5.33a)

g±(ζ ) =
g±

(Ω−uK)3/4
e
−∫ ζ

0
Xγ p

2(γ−1)2T 2 (
uζ
2X − v

εkδL
)dζ

=
g±

(Ω−uK)3/4
e
−∫ ζ

0
X

2εk(γ−1)T
(

εkρuζ
2X − ρv

δL
)dζ

.

(5.33b)
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To check that this matches to (5.30) when Ω = 0 we consider the behaviour of this solution

for ζ → 0. Since u(0) = 0 we have

ũ2 ∼
g+

(

yuζ (0)
√

εk

X

)3/4
e
+
∫ ζ

0

√
−βζ

(

X
εk

)3/4
dζ

+
g−

(

yuζ (0)
√

εk

X

)3/4
e
−∫ ζ

0

√
−βζ

(

X
εk

)3/4
dζ

∼ g+
(

yuζ (0)
√

εk

X

)3/4
e

2
3 y3/2

√
−β +

g−
(

yuζ (0)
√

εk

X

)3/4
e−

2
3 y3/2

√
−β ,

which can be matched to (5.30) to give g+ and g− in terms of a1.

Now if the exponential term in g±(ζ ) decays then the large oscillation will not propagate

out of region II and we will not get the same behaviour as we had for the parallel flow case

in chapter §3. To check the sign of the integral we begin by using the streamfunction for the

boundary layer mean flow. By definition (§2.4.2) we have ρu = ψy, ρv =−ψx − a′
a

ψ . This

then gives the following result

εkρuζ

2X
− ρv

δL
=

1

δL

[

ψ
a′(x)
a(x)

+ψx +ψy
y

2x

]

.

The integrand in g±(ζ ) may be written in terms of (x,ζ ) as

∫ ζ

0

X

2εk(γ −1)T

(

εkρuζ

2X
− ρv

δL

)

dζ =
X

2δLγ p

∫ ζ

0
ρ

[

ψ
a′(x)
a(x)

+ψx

]

dζ , (5.34)

where we have changed variables from (x,y) to (x,ζ ) using the change of variable rules (4.11).

We expect this result to be positive for all physical boundary layer flows. In general for an

arbitrary boundary layer mean flow this is difficult to show but when we restrict to the case

of a cylindrical duct and the compressible Blasius boundary layer mean flow (§2.4.3) we can

prove the result.

For the cylindrical duct case a′(x) = 0 and all the outer mean flow terms are constant. In

this case using the compressible Blasius boundary layer solution we know that ψy = ρu =

h(ζ ) is3 independent of X . Using this along with the change of variable rule (4.10) gives

ψ = δL

∫

h(ζ )dζ ,

3here h(ζ ) is related to f (ζ̂ ) (2.31) but it is not necessary to know its exact form, however using the change

of variable rules (4.10) it is clearly independent of X
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and then we also have

ψx =
εk

2X
ψ,

since only δL depends on X . Using this we can now see that the integrand (5.34) has the

following form

εk

4γ p

∫ ζ

0
ρ

(

∫

h(ζ )dζ

)

dζ ,

but since ρu > 0 we have h(ζ )> 0 and so the integrand is positive. This means that g±(ζ )

will decay exponentially in region II. For a′(x) ̸= 0 or for different boundary layer profiles

we still expect this integral to be positive, provided the choices of a(x) and boundary layer

profile are reasonable.

This means that the large streaming oscillatory term in ũ2 decays exponentially due to the

integral term in g± which arises only because we are including the non-parallel contributions.

We can see that the first term in the integral
εkρuζ

2X
appears from the change of variable

rule (4.8) due to the fact that the mean flow boundary layer thickness δL depends on X and

thus the mean flow is non-parallel. The second term in the integral
ρv

δL
involves the normal

mean flow velocity which also appears due to the fact that we have allowed the mean flow

to be non-parallel, so that non-zero normal mean flow velocities are permitted. Since the

large oscillatory streaming term decays in region II there is no need to consider a rapidly

oscillating viscous outer solution in region III as we did in chapter §3 and the large oscillatory

streaming solution will no longer propagate out into the centre of the duct.

While we found that the large oscillatory streaming solution can still appear in region

I we have shown that it is confined to the boundary layer due to the interaction with the

non-parallel boundary layer profile in region II. This shows that it is necessary to consider the

non-parallel nature of the boundary layer when solving for the nonlinear modes and the large

oscillatory behaviour in chapter §3 that extended to the centre of the duct was an artefact of

the parallel flow assumption.

5.7 Results

We can now calculate the weakly nonlinear acoustics due to the leading order results presented

in §4.10. Here I will present separately the time dependent nonlinear acoustics and the steady

nonlinear streaming solutions.
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Figure 5.1 shows the separate components of the acoustic pressure field for a source

at (r0,x0,θ0) = (0.8,10.1,0) with ω = 10, Z = 0.1−0.15i/ω +0.05iω and M = 0.7. Note

that by construction, §5.3, these solutions are purely real.

It can be observed that there is more distortion at x = x0, due to the truncation of the sum

over the modes, than there was for the linear solutions. This is expected as any errors in

the linear solutions will be magnified in the nonlinear solutions. However this distortion is

confined to a fairly small region near the source and preliminary results show that this could

be reduced by taking more modes, at the expense of computation time.

As before we have δ = 10−3 and ε ∼ 10−5. However as can be seen from the solutions

the amplitude of the weakly nonlinear solutions is also of order 10−5 and so in this case the

weakly nonlinear assumption breaks down even sooner than would be expected from the

condition ε ≪ δL. This means that these solutions will only be valid for a weaker source

than was used here. It should be noted that although the nonlinear acoustic pressure solution

appears to have no downstream component, there are downstream nonlinear acoustics, they

are just of much lower amplitude than the upstream nonlinear acoustics. Also interesting

to note is that, apart from the numerical distortion near the source, the nonlinear streaming

solution appears to be mostly confined to a region close to the wall of the duct with only a

relatively small constant pressure contribution in the centre of the duct.

Figure 5.2 shows the nonlinear pressure perturbations corresponding to the accelerating

flow, narrowing duct linear solutions of figure 4.9. Again we see that for this solution the

weakly nonlinear assumption breaks down and it will only be valid for a weaker source. The

downstream convective instability can clearly be seen in the nonlinear acoustics and we can

see that it also causes the nonlinear streaming to fill the entire duct. However upstream the

nonlinear streaming still appears to be mostly confined to a region near the wall.

5.8 Conclusion

In this chapter I have shown that the nonlinear modes that arise due to the linear acoustics are

a factor of 1/δL greater than would be expected for the nonlinear modes in a hard walled duct.

This is a consequence of the amplification and subsequent interaction of certain quantities

in the boundary layer. This agrees with the result from chapter §3 where we showed that

the nonlinear acoustics were amplified by a factor of 1
δ 2 within the boundary layer, but only

by a factor of 1
δ in the outer region. Even when taking into account the non-parallel effects

this O(ε2/δL) amplified nonlinear solution is still permitted in the outer region. I have

also shown in this chapter that the nonlinear streaming modes are amplified further by an

additional factor of 1/
√

εk.



5.8 Conclusion 125

Fig. 5.1 Nonlinear acoustics (top) and nonlinear acoustic streaming (bottom) pressure per-

turbations in a cylindrical duct with Z = 0.1+0.05iω −0.15i/ω for ω = 10, x0 = 10.1 and

M = 0.7
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Fig. 5.2 Nonlinear acoustics for the Myers (top) and slowly varying (bottom) boundary

conditions for a narrowing duct with Z = 0.1+0.05iω −0.15i/ω for ω = 10, x0 = 10.1 and

M = 0.7+0.01x
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Additionally I have shown that the previously found large O(ε2/δ 2) oscillatory nonlinear

solution was an artefact of the parallel flow assumption. For both the parallel §3 and non-

parallel §5 solutions the same mechanism exists that can produce amplified oscillating

streaming solutions in the inner region near the wall of the duct. These oscillating streaming

solutions in the inner region are caused by viscosity. As the oscillating streaming solutions

don’t decay they must be matched to the next region away from the wall. For the parallel

flow case these means that they are matched to the outer, where the effect of viscosity must

now be considered, and the amplified streaming solution propagates into the centre of the

duct. Whereas for the non-parallel case, these amplified streaming solutions are matched to

region II, where again the effect of viscosity must now be considered. I have shown in this

chapter that in region II these solutions decay exponentially away from the wall due to the

interaction with non-parallel mean flow terms. These non-parallel terms are caused by the

mean flow normal velocity and the streamwise variation of the mean flow boundary layer

thickness.

It is expected that this exponential decay will always occur, as the only way to avoid

it would be to set the mean flow shear to zero. This would either mean that there was no

mean flow and so no inner region where the acoustics are amplified or would require keeping

δL fixed and letting x → ∞. However this would set λ → 0, i.e. gives an inviscid limit, the

inner-inner acoustic viscous region would become infinitely thin and the effect of viscosity

would be ignored. Despite this it is possible that for certain slowly varying duct geometries

or turbulent boundary layer models the decay of the amplified oscillating streaming solutions

in region II could be suppressed.





Chapter 6

Conclusion

6.1 Conclusion

In this thesis I first presented the results for the weakly nonlinear acoustics inside a duct with a

parallel mean flow profile, §3. This work involved a two layer matched asymptotic expansion

in both ε , the acoustic perturbation amplitude and δ , the boundary layer thickness which is

related to the Reynolds number by δ 2 = 1
Re

. For the weakly nonlinear assumption to be valid

within the inner boundary layer region I required that the assumption ε ≪ δ ≪ 1 held. The

solutions were obtained numerically in each region and the outer nonlinear acoustics were

found to be amplified by a factor of 1
δ . I also showed that in certain cases a surprising, large

highly oscillatory O

(

ε2

δ 2

)

acoustic streaming solution could propagate out into the centre of

the duct.

In chapter §4 I then introduced a three-layer matched WKB solution for the linear

acoustics in a duct of slowly varying radius with non-parallel mean flow. This required

introducing an additional small parameter εk ≪ 1 which was a measure of the streamwise

variation of the mean flow. As I found that the amplification within the inner boundary layer

regions still existed, I assumed ε ≪ δL ≪ 1 so that the linear (or weakly nonlinear) assumption

would hold, where δL is the streamwise varying boundary layer thickness, δL = δ
√

x. To

avoid further assumptions that would limit the range of validity of the solutions I did not

assume any relative scaling between δL and εk. While the introduction of this new small

parameter εk meant that the accuracy of the solutions could be reduced in cases with moderate

εk, it had the advantage that the equations could now be solved analytically in each region.

Also it allowed the inner boundary layer region to be separated into two different regions;

region II where the acoustics predominantly acted as if they were in an inviscid sheared

flow and the inner-inner region I where viscosity acted on the acoustics. I showed that the
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effective impedance condition found in this case matches to previous results found in certain

limiting cases.

In chapter §5 I extended the slowly varying WKB solution to solve for the weakly

nonlinear acoustics. I showed that in this case the nonlinear acoustics were still amplified

by a factor of 1
δL

. However I also showed that the previously found large amplitude, highly

oscillatory, acoustic streaming solution is confined to the boundary layer in this case. This is

due to the interaction of the acoustics with the non-parallel mean flow in region II.

To summarise I have shown that the nonlinear modes that arise due to the linear acoustics

are a factor of 1/δL greater than would be expected for the nonlinear modes in a hard walled

duct, where δL is the boundary layer thickness. This is a consequence of the amplification

and subsequent interaction of certain quantities within the boundary layer. I have also shown

that the large O(ε2/δ 2) oscillatory nonlinear streaming solution that occured in the centre of

the duct in chapter §3 is an artefact of the parallel flow assumption.

One disadvantage of the solutions presented in chapters §4 and §5 compared to the

solutions in §3 is that there is now another new small parameter, εk. The linear solutions

presented here are correct to O(εk) while the nonlinear solutions are only correct to leading

order in εk. This means that in certain cases we may lose accuracy when compared to the

parallel results in chapter §3 which only required two small parameters, δ and ε . However

the solutions in chapters §4 and §5 are analytical which allows much easier computation

of the pressure field and allows a more thorough investigation into the physical causes of

different behaviours, whereas the solutions in §3 have to be solved numerically which means

that it is much more computationally expensive to solve for the pressure field. Also, because

the results of chapters §4 and §5 include non-parallel effects which have been shown to be

important for the acoustic streaming modes, on balance they are more trustworthy as the

scale of any neglected terms are known in terms of the small parameters.

To discuss the validity of my solutions for real world applications in aircraft engines I

will now re-dimensionalise the parameters to check the range of validity.

As the fluid in aeroengines is air we have

c∗0 ≈ 340ms−1, ρ∗
0 ≈ 1.225kgm−3.

If we also assume that the radius of an aeroengine is approximately l∗ = 1m and the mean

flow Mach number is M = 0.5 then, given that the kinematic viscosity of air is approximately

10−5m2 s−1, we also have that the Reynolds number is

Re ≈ 0.5×340×1

10−5
≈ 2×107.
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δL Linear limit Fully nonlinear in the boundary layer Expected linear limit

10−3 97dB 137dB 137dB–157dB

10−4 77dB 117dB 137dB–157dB

Table 6.1 Table showing the limits of the linear assumption for different boundary layer

thicknesses.

Also, using the values suggested by Brambley and Gabard [6] as being relevant for aero-

engines we have ω = 31 and x0 = 2.0. This then gives the small parameters εk and δL

εk ≈ 0.02, δL ≈ 10−4 to 10−3,

so while δL is indeed very small, εk is only moderately small. However as our solutions are

accurate to order O(εk) we would hope to achieve a reasonably accurate result.

We can now write down the sound power level (SPL) in terms of ε ,

SPL = 20log10

(

p∗

2×10−5

)

= 20log10

(

εc∗2
0 ρ∗

0

2×10−5

)

≈ 197+20log10 ε.

Given the requirement ε ≪ δL for the weakly nonlinear assumption to hold there is a

limit to how large ε can be. It is typically assumed that nonlinearity only becomes important

for ε & 0.001 to 0.01, which corresponds to an SPL of 137dB–157dB. However if we assume

that nonlinearity becomes important when the nondimensionalised amplitude of the acoustics

in the boundary layer, ε
δL

, is greater than 0.01 then we will get a much lower limit where

the linear assumption is valid, as shown in table 6.1. For both values of δL we can see that

the linear assumption is not valid for an SPL greater than 100dB, far less than is normally

assumed, so it is clearly important to consider the effect of nonlinearity. Also the solution

becomes fully nonlinear in the boundary layer, with the acoustics the same magnitude as the

mean flow, at around 120dB to 140dB. Given that aircraft engines can be louder than 140dB

we can see that even the weakly nonlinear assumption may not always be valid.
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6.2 Further work

For future work it would be interesting to see if a weakly nonlinear full Navier Stokes solver

could be developed that takes into account the slow axial variation of the mean flow. This

would allow a similar verification of the results in chapters §4 and §5 to what I was able to

conduct in chapter §3.

It would also be interesting to try to match my results to the scattering solution for a

cylindrical duct opening [7]. The scattering problem can be solved using the Wiener Hopf

method, but an inner region near the leading edge would also be needed to match the two

solutions. This would then allow the far field sound power level to be calculated analytically

and could be a useful tool in analysing the effectiveness of certain acoustic linings.

Another useful extension of this work that could be made would be to derive a surface

mode dispersion relation for the slowly varying effective impedance (4.40). Not only would

this be interesting as it would allow a more in-depth investigation into the behaviour of

the surface modes, but it could also be used to provide a starting guess for the position of

the surface modes during the numerical mode search. This would mean that no, possibly

unstable, surface modes would be missed, as occured in §4.10.1.

Also it would be interesting to investigate the interaction of the nonlinear effects in the

boundary layer described in this thesis with the acoustic lining itself, which was treated

as linear in this thesis. We know that nonlinearity within the lining can be important [32]

but there may be other nonlinear effects that occur due to the interaction of the Helmholtz

resonators in the liner with the nonlinear terms in region I.

Beyond this it would also be interesting to investigate whether it is possible transform

the slowly varying effective impedance boundary condition to the time domain so that time

dependent numerical simulations could be carried out. This would also then allow the study

of the transient modes due to an acoustic source.

An attempt at experimentally validating some of the results presented here could also

be interesting. Particularly whether the high aspect GFIT apparatus is indeed in the wrong

parameter range to accurately study the properties of an acoustic lining for use in a moderate

aspect ratio aircraft engine. Fortunately there are some future experiments planned [25] on

an aeroengine that may be able to produce the results necessary to validate this result.
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Appendix A

Appendix 1

A.1 Boundary layer flow profile simplification

In this section I derive the simplification for the boundary layer flow profile equation. We

begin with equation (2.26)

ψ̂ŷx̂ψ̂ŷ − ψ̂ŷŷψ̂x̂ −δ 2ψ̂ŷŷŷ =−ψ̂2
ŷ

csx̂

cs
− Px̂

ρc2
s

.

If we use the outer mean flow equation (2.11) and use the outer speed of sound cs to substitute

for the outer density we have

Px̂ =−ρUUx̂ =−γP

c2
s

UUx̂,

and we can also use u = csψ̂ŷ, so that equation (2.26) can be written as

ψ̂ŷx̂ψ̂ŷ − ψ̂ŷŷψ̂x̂ −δ 2ψ̂ŷŷŷ =−u2 csx̂

c3
s

+
γPUUx̂

ρc4
s

. (A.1)

Now from the outer solution we have U = Mcs, and using equation (2.17) we have

csx̂ =−
γ−1

2
csMMx̂

1+ γ−1
2

M2
,

which can be substituted into equation (A.1) to give

ψ̂ŷx̂ψ̂ŷ − ψ̂ŷŷψ̂x̂ −δ 2ψ̂ŷŷŷ =
MMx̂

1+ γ−1
2

M2

( γP

ρc2
s

+
u2 γ−1

2

c2
s

)

. (A.2)
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We can then use equation (2.17) again and the equation of state (2.1e) to simplify further

giving equation (2.27)

ψ̂ŷx̂ψ̂ŷ − ψ̂ŷŷψ̂x̂ −δ 2ψ̂ŷŷŷ =
MMx̂

1
γ−1

+
M2

0

2

(

T +
u2

2

)

. (A.3)

A.2 Boundary layer temperature profile equation

In this section I derive the simplification for the boundary layer temperature profile equation.

Starting with equation (2.33)

ψ̂ŷτx̂ − ψ̂x̂τŷ −
δ 2

Pr
τŷŷ −δ 2ψ̂2

ŷŷ = ψ̂ŷ
Px̂

ρ
−2cscsx̂τψ̂ŷ, (A.4)

we can rewrite the last term in terms of T and then use the equation of state (2.1e) to write it

in terms of the pressure and density. This gives

ψ̂ŷτx̂ − ψ̂x̂τŷ −
δ 2

Pr
τŷŷ −δ 2ψ̂2

ŷŷ =
ψ̂ŷ

ρ

(

Px̂ −
2γPcsx̂

(γ −1)cs

)

. (A.5)

Now we use the outer mean flow solution (2.18): P = ργ

γ and the fact that the speed of sound

satisfies

c2
s =

γP

ρ
= ργ−1,

which then gives

Px̂ −
2γPcsx̂

(γ −1)cs
= ργ−1ρx̂ −

2ργ (γ−1)
2

csρx̂

(γ −1)ρcs
= 0,

and so equation (2.33) simplifies to equation (2.34)

ψ̂ŷτx̂ − ψ̂x̂τŷ −
δ 2

Pr
τŷŷ −δ 2ψ̂2

ŷŷ = 0. (A.6)
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B.1 Outer solution for self-interaction nonlinear oscillat-

ing mode

In this section I will derive the nonlinear self-interaction outer solutions in the case N2
∞ < 0.

From equation (3.52) we know that for the oscillating solution both ũ2 and T̃2 are of order

O(ε2/δ 2) while ṽ2 is order O(ε2/δ ) and w̃2 and p̃2 are order O(ε2). To solve for the slowly

varying, non-oscillating components of ṽ2 and p̃2 we must expand the equations to O(ε2),

this gives the following system of equations

i(Ω−Mk)(γ p̃2 − (γ −1)T̃2)− iKũ2 + ṽ2r +
ṽ2

r
− iM

r
w̃2 = PRHS, (B.1a)

i(Ω−Mk)ũ2 + iK p̃2 −
δ 2ξ

r
(rũ2r)r +ξ δ 2

(

2K2ũ2 +
M2

r2
ũ2 + iKṽ2r

)

=URHS, (B.1b)

i(Ω−Mk)ṽ2 + p̃2r +ξ δ 2

(

− ṽ2r

r
− ṽ2rr −

(

1+
µB∗

0

µ∗
0

− 2

3

)(

ṽ2rr +
ṽ2r

r
− iKũ2r

)

)

=VRHS,

(B.1c)

i(Ω−MK)w̃2 −
iM

r
p̃2 +ξ δ 2

(

−w̃2rr +
(

1+
µB∗

0

µ∗
0

− 2

3

)

(
im

r
ṽ2r +

km

r
ũ2)

)

=WRHS,

(B.1d)

i(Ω−MK)T̃2 − i(Ω−MK)p̃2 +
ξ δ 2

Pr

(

K2T̃2 +
M2

r2
T̃2 −

1

r
(rT̃2r)r

)

= TRHS, (B.1e)



140

where PRHS, URHS, VRHS, WRHS and TRHS are the forcing terms that arise from terms quadratic

in the linear leading order acoustics. They are given by

PRHS =
1

4

(

N2
∞ξ (γ −1) p̃⋆1T̃1 + iK p̃⋆1ũ1 −

1

r
(r p̃⋆1ṽ1)r +

iM
r

p̃⋆1w̃1

)

,

URHS =
1

4

(

−η2
∞ξ ũ1 p̃⋆1 + ikũ⋆1ũ1 − ṽ⋆1ũ1r +

im

r
w̃⋆

1ũ1

)

,

VRHS =
1

4

(

−η2
∞ξ ṽ1 p̃⋆1 + ikũ⋆1ṽ1 − ṽ⋆1ṽ1r +

im

r
w̃⋆

1ṽ1 +
1

r
w̃⋆

1w̃1

)

,

WRHS =
1

4

(

−η2
∞ξ w̃1 p̃⋆1 + ikũ⋆1w̃1 − ṽ⋆1w̃1r +

im

r
w̃⋆

1w̃1 −
1

r
ṽ⋆1w̃1

)

,

TRHS =
1

4

(

−η2
∞ξ T̃1 p̃⋆1

)

.

Expanding the streamwise momentum equation (B.1b) and using the transformation r =

R−δy as in §3.5.5 gives a set of differential equations at different orders in δ

O

(

ε2

δ 2

)

: ξ N2
∞ũO0 −ξ ũO0yy = 0, (B.2a)

O

(

ε2

δ

)

: ξ N2
∞ũO1 −ξ ũO1yy =−ξ

(

2ũO0yR −
ũO0y

R

)

= 0, (B.2b)

O(ε2) : ξ N2
∞ũO2 −ξ ũO2yy + iK p̃O0

+ξ

(

2k2ũO0 +
M2

r2
ũO0 − iKṽO0y − ũO0RR −

ũO0R − ũO1y

R
+2ũO1Ry

)

=URHS.

(B.2c)

Now using the results from §3.5.5 we can see that ũO0, ũO1 and ṽO0y only contain oscillating

terms ∝ e±i f y. So they will not affect the non-oscillating part ûO(R) of ũO which will satisfy

ξ N2
∞ûO + iK p̂O =URHS. (B.3)

We use the same argument to find similar expressions for T̂O and ŵO

ξ N2
∞ŵO +

iM
r

p̂O =WRHS, (B.4)

ξ N2
∞T̂O +ξ N2

∞ p̂O = TRHS. (B.5)
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Now for ṽO we have

O

(

ε2

δ

)

: ṽO1y + iKũO1 + i(Ω−MK)(γ −1)T̃O1 = ṽO0R +
ṽO0

R
,

O(ε2) : ṽO2y + iKũO2 + i(Ω−MK)(γ −1)T̃O2 − ṽO1R −
ṽO1

R

− i(Ω−MK)γ p̃O0 +
iM

r
w̃O0 =−PRHS.

The first equation tells us that ṽO0 can’t have a non-oscillating part, we can then use the

second equation to get an expression for the O(ε2) non-oscillating part of ṽO1

−iKûO − i(Ω−MK)(γ −1)T̂O + v̂OR +
v̂O

R
+ i(Ω−MK)γ p̂O − iM

r
ŵO = PRHS.

Finally we consider the pressure

O

(

ε2

δ

)

: ξ N2
∞ṽO0 − p̃O0y − iKξ ũO0y −2ξ ṽO0yy −ξ

(

µB∗
0

µ∗
0

− 2

3

)

(iKũO0y + ṽO0yy) = 0,

this gives the oscillating part of the pressure

p̃O0 = δ 2ξ 2N2
∞(γ −1)

(

2+
µB∗

0

µ∗
0

− 2

3
− 1

Pr

)

T̃O0 + p̂O(R).

We can then take the non-oscillating parts of the O(ε2) equation to find an expression for p̂0

i(Ω−MK)v̂O + p̂Or =VRHS. (B.6)

We can now combine the equations for ûO, v̂O, ŵO, T̂O and p̂O to get an equation for p̂O(R)

which we find is the same equation as for the non-oscillating case (3.52). v̂O is then given

by (B.6).

B.2 Derivation of linearised and leading order weakly non-

linear Navier Stokes

In this section I derive the equations for small linearised and weakly nonlinear perturbations

in a cylindrical duct without any assumptions on the thickness of the boundary layer δ or any

asymptotic matching. To do this I expand the governing equations (2.1) to O(ε2) ignoring

terms that are O(1) as they are expected to be satisfied by the base flow.
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We write all acoustic terms as ũ = ε ũ1 + ε2ũ2. Using the nonlinear multiplication rule

from §3.5 we will have a ‘zero’ mode and a ‘double’ mode for ũ2 which will be considered

separately.

We start by considering the equation of state (2.1e), note p = 1/γ in base flow,

T =
γ p

(γ −1)ρ
.

Considering the leading order linear terms and linear order quadratic terms, this becomes

ρ̃1 + ερ̃2 =
p̃1γ

(γ −1)T
− T̃1

(γ −1)T 2
+

ε p̃2γ

(γ −1)T
− εT̃2

(γ −1)T 2
− ε p̃1T̃1γ

(γ −1)T 2
+

εT̃1T̃1

(γ −1)T 3
.

Matching orders of ε gives at leading order gives

ρ̃1 =
p̃1γ

(γ −1)T
− T̃1

(γ −1)T 2
, (B.7)

while at order ε2, taking only ’zero’ mode gives

ρ̃2 =
p̃2γ

(γ −1)T
− T̃2

(γ −1)T 2
− p̃⋆1T̃1γ

4(γ −1)T 2
+

T̃ ⋆
1 T̃1

4(γ −1)T 3
. (B.8)

In the double mode case the result is the same but without the complex conjugates

ρ̃2 =
p̃2γ

(γ −1)T
− T̃2

(γ −1)T 2
− p̃1T̃1γ

4(γ −1)T 2
+

T̃1T̃1

4(γ −1)T 3
. (B.9)

Now we let K = k−k⋆, Ω = ω −ω⋆ and M= 0 for the zero mode and K = 2k, Ω = 2ω

and M = 2m for the double mode as in §3.5. Now we consider the equation of mass

conservation (2.1a)

ρt +(ρu)x +
1

r
(rρv)r +

1

r
(ρw)θ = 0.

At leading order, O(ε), this becomes

i(ω −Uk)ρ̃1 − ikρ ũ1 +
1

r
ρ ṽ1 +ρrṽ1 +ρ ṽ1r −

im

r
ρw̃1 = 0,

while at O(ε2) we get

i(Ω−UK)ρ̃2 − iKρ ũ2 +
(rρ ṽ2)r

r
− iM

r
ρw̃2 =

iK

4
ρ̃⋆

1 ũ1 −
(r(ρ̃⋆

1 ṽ1))r

4r
+

iM
4r

ρ̃⋆
1 w̃1,
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with the complex conjugate ‘⋆’ ignored for the double mode. Substituting for ρ and ρ̃ gives

i(ω −Uk)γ p̃1 −
i(ω −Uk)

T
T̃1 − ikũ1 +

1

r
ṽ1 −

Tr

T
ṽ1 + ṽ1r −

im

r
w̃1 = 0, (B.10)

and

i(Ω−UK)

(

γ p̃2 −
T̃2

T

)

− iKũ2 +
1

r
ṽ2 −

Tr

T
ṽ2 + ṽ2r −

iM
r

w̃2

= i(Ω−UK)

(

γ

4T
p̃⋆1T̃1 −

T̃ ⋆
1 T̃1

4T 2

)

+
iK

4
ũ1

(

γ p̃⋆1 −
T̃ ⋆

1

T

)

+
iM
4r

w̃1

(

γ p̃⋆1 −
T̃ ⋆

1

T

)

−
(

ṽ1

4r
+

ṽ1r

4

)(

γ p̃⋆1 −
T̃ ⋆

1

T

)

− ṽ1

4

(

γ p̃⋆1r −
γ p̃⋆1Tr

T
− T̃ ⋆

1r

T
+

2T̃ ⋆
1 Tr

T 2

)

,

(B.11)

where complex conjugates only apply to the zero mode case.

Now the mean flow viscosity µ is given by equation (2.2)

µ =
T

T0Re
= ξ δ 2(γ −1)T, (B.12)

and similarly the viscosity perturbation is given by

µ̃ = ξ δ 2(γ −1)T̃ . (B.13)

Using this we can then write down the linear viscous stress tensor perturbation σ̃1i j

σ̃1i j =







−2ikµ ũ1 µ(ũ1r − ikṽ1)+Urµ̃1 −µ( im
r

ũ1 + ikw̃1)

· 2µ ṽ1r µ(− im
r

ṽ1 + w̃1r − w̃1
r
)

· · 2µ
r
(−imw̃1 + ṽ1)







+µ

(

µB∗
0

µ∗
0

− 2

3

)

[

−ikũ1 + ṽ1r +
ṽ1

r
− im

r
w̃1

]

δi j,

where the ‘·’ terms have not been written down as the stress tensor is symmetric and so it is

fully determined by its upper triangular part. Similarly the nonlinear viscous stress tensor
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˜σ2i j is given by

˜σ2i j − σ̃i j =
µ̃⋆

1

4







−2ikũ1 (ũ1r − ikṽ1) −( im
r

ũ1 + ikw̃1)

· 2ṽ1r (− im
r

ṽ1 + w̃1r − w̃1
r
)

· · 2
r
(−imw̃1 + ṽ1)







+
µ̃⋆

1

4

(

µB∗
0

µ∗
0

− 2

3

)

[

−ikũ1 + ṽ1r +
ṽ1

r
− im

r
w̃1

]

δi j,

where σ̃i j correspondsto σ1i j with all linear ‘1’ perturbation terms replaced by the nonlinear

‘2’ quantities with k → K, m →M and ω → Ω. The complex conjugates are only applied in

the zero mode case.

Now that we have the viscous stress tensor for both the linear and nonlinear acoustics we

can consider streamwise momentum equation

ρ(ut +uux + vur +
1

r
wuθ ) =−px +(σ11)x +

1

r
(rσ12)r +

1

r
(σ13)θ .

Linearising this equation we obtain

i(ω −Uk)

(γ −1)T
ũ1 +

Ur

(γ −1)T
ṽ1 − ikp̃1 + ikµ

(

µB∗
0

µ∗
0

− 2

3

)

[

−ikũ1 + ṽ1r +
ṽ1

r
− im

r
w̃1

]

−µr(ũ1r − ikṽ1)−µ(ũ1rr − ikṽ1r +
ũ1r

r
− ikṽ1

r
)

+2k2µ ũ1 +
µkm

r
w̃1 +

µm2

r2
ũ1 −Ur(µ̃1r +

µ̃1

r
)−Urrµ̃1 = 0,

(B.14)

and for the nonlinear terms we have the same equation now forced by terms that are quadratic

in the linear acoustic quantities

Lx
2 =

(

T̃ ⋆
1

4(γ −1)T 2
− p̃⋆1γ

4(γ −1)T

)

(i(ω −Uk)ũ1 +Urṽ1)+

(

µ̃⋆
1

4r
+

µ̃⋆
1r

4

)

(ũ1r − ikṽ1)

− Kkũ1µ̃⋆
1

2
− iKµ̃⋆

1

4

(

µB∗
0

µ∗
0

− 2

3

)

[

−ikũ1 + ṽ1r +
ṽ1

r
− im

r
w̃1

]

−Mµ̃⋆
1

4r

(

mũ1

r
+ kw̃1

)

+
µ̃⋆

1

4
(ũ1rr − ikṽ1r)+

1

4(γ −1)T
(ikũ⋆1ũ1 − ṽ⋆1ũ1r +

im

r
w̃⋆

1ũ1),

where Lx
2 has the same form as the left hand side of the leading order equation but with 2

quantities and k → K, m →M and ω → Ω.
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Now we consider the radial momentum equation

ρ(vt +uvx + vvr +
1

r
wvθ ) =

1

r
ρw2 − pr −

1

r
σ33 +(σ12)x +

1

r
(rσ22)r +

1

r
(σ23)θ .

For the linear acoustics this becomes

ρi(ω −Uk)ṽ1 =− p̃1r − ik(µ(ũ1r − ikṽ1)+Urµ̃1)−
imµ

r
(− im

r
ṽ1 + w̃1r −

w̃1

r
)

− 2µ

r2
(ṽ1 − imw̃1)−

µ

r

(

µB∗
0

µ∗
0

− 2

3

)

[

−ikũ1 + ṽ1r +
ṽ1

r
− im

r
w̃1

]

+
2µ

r
ṽ1r +2(µ ṽ1r)r

+µ

(

µB∗
0

µ∗
0

− 2

3

)

[

− ik

r
ũ1 − ikũ1r +

2

r
ṽ1r + ṽ1rr −

im

r
w̃1r +µr(−ikũ1 + ṽ1r +

ṽ1

r
− im

r
w̃1)

]

,

which simplifies slightly to give

i(ω −Uk)

(γ −1)T
ṽ1 + p̃1r +µ(ikũ1r + k2ṽ1)+ ikUrµ̃1 +

µm2

r2
ṽ1

+
imµ

r
(w̃1r −

3w̃1

r
)+

2µ

r2
ṽ1 −

2µ

r
ṽ1r −2µrṽ1r −2µ ṽ1rr

−µ

(

µB∗
0

µ∗
0

− 2

3

)

[

−ikũ1r +
( ṽ1

r

)

r
+ ṽ1rr − im

(w̃1

r

)

r
− µr

µ
(ikũ1 − ṽ1r −

ṽ1

r
+

im

r
w̃1)
]

= 0,

(B.15)

and the forcing for the nonlinear acoustics is

Lr
2 =

(

T̃ ⋆
1

4(γ −1)T 2
− p̃⋆1γ

4(γ −1)T

)

(i(ω −Uk)ṽ1)+
(ikũ⋆1ṽ1 − ṽ⋆1ṽ1r +

im
r

w̃⋆
1ṽ1)

4(γ −1)T

+
1

4r(γ −1)T
w̃1w̃⋆

1 −
iKµ̃⋆

1

4
(ũ1r − ikṽ1)

− µ̃⋆
1

4r

(

2

r
(ṽ1 − imw̃1)+

(

µB∗
0

µ∗
0

− 2

3

)

[−ikũ1 + ṽ1r +
ṽ1

r
− im

r
w̃1]

)

+
µ̃⋆

1 ṽ1r

2r
+

µ̃⋆
1rṽ1r

2
+

µ̃⋆
1 ṽ1rr

2
+

µ̃⋆
1

4

(

µB∗
0

µ∗
0

− 2

3

)

[

−ikũ1r −
ik

r
ũ1 +2

1

r
ṽ1r + ṽ1rr −

im

r
w̃1r

]

+
µ̃⋆

1r

4

(

µB∗
0

µ∗
0

− 2

3

)

[−ikũ1 + ṽ1r +
ṽ1

r
− im

r
w̃1]−

iMµ̃⋆
1

4r

(

− im

r
ṽ1 + w̃1r −

w̃1

r

)

,
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where Lr
2 again has the same form as the linear equation (B.15). The forcing terms here then

simplify to

Lr
2 =

(

T̃ ⋆
1

4(γ −1)T 2
− p̃⋆1γ

4(γ −1)T

)

(i(ω −Uk)ṽ1)+
(ikũ⋆1ṽ1 − ṽ⋆1ṽ1r +

im
r

w̃⋆
1ṽ1)

4(γ −1)T

+
1

4r(γ −1)T
w̃1w̃⋆

1 −
µ̃⋆

1

2r2
(ṽ1 − imw̃1)−

iKµ̃⋆
1

4
(ũ1r − ikṽ1)

− iMµ̃⋆
1

4r

(

− im

r
ṽ1 + w̃1r −

w̃1

r

)

+
µ̃⋆

1 ṽ1r

2r
+

µ̃⋆
1rṽ1r

2
+

µ̃⋆
1 ṽ1rr

2

+
µ̃⋆

1r

4

(

µB∗
0

µ∗
0

− 2

3

)

[−ikũ1 + ṽ1r +
ṽ1

r
− im

r
w̃1]

+
µ̃⋆

1

4

(

µB∗
0

µ∗
0

− 2

3

)

[

−ikũ1r +
1

r
ṽ1r + ṽ1rr −

ṽ1

r2
+

im

r2
w̃− im

r
w̃1r

]

.

(B.16)

Now we consider the θ -momentum equation

ρ(wt +uwx + vwr +
1

r
wwθ ) =−1

r
ρvw− 1

r
pθ +(σ13)x +

1

r2
(r2σ23)r +

1

r
(σ33)θ .

Linearising this equation we obtain the following equation for the linear acoustics

ρi(ω −Uk)w̃1 =
im

r
p̃1 + ikµ

(

im

r
ũ1 + ikw̃1

)

− 2µim

r2
(ṽ1 − imw̃1)

− imµ

r

(

µB∗
0

µ∗
0

− 2

3

)

[

−ikũ1 + ṽ1r +
ṽ1

r
− im

r
w̃1

]

+µr

(−im

r
ṽ1 + w̃1r −

w̃1

r

)

+µ

(−im

r
ṽ1r −

im

r2
ṽ1 + w̃1rr +

w̃1r

r
− w̃1

r2

)

,

which simplifies to

i(ω −Uk)

(γ −1)T
w̃1 −

im

r
p̃1 +µ

(

km

r
ũ1 + k2w̃1

)

+
3µim

r2
ṽ1 +

2µm2

r2
w̃1

+µ

(

µB∗
0

µ∗
0

− 2

3

)

[

km

r
ũ1 +

im

r
ṽ1r +

imṽ1

r2
+

m2

r2
w̃1

]

+µr

(

im

r
ṽ1 − w̃1r +

w̃1

r

)

+µ

(

im

r
ṽ1r − w̃1rr −

w̃1r

r
+

w̃1

r2

)

= 0,

(B.17)
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and for the nonlinear acoustics we have Lθ
2 has the same form as (B.17) and the forcing is

given by

Lθ
2 =

(

T̃ ⋆
1

4(γ −1)T 2
− γ p̃⋆1

4(γ −1)T

)

i(ω −Uk)w̃1 + iK
µ̃⋆

1

4

(

im

r
ũ1 + ikw̃1

)

+
1

4(γ −1)T

(

ikũ⋆1w̃1 − ṽ⋆1w̃1r +
im

r
w̃⋆

1w̃1 −
1

r
ṽ⋆1w̃1

)

− µ̃⋆
1

4

(

im

r
ṽ1r +

im

r2
ṽ1 − w̃rr +

w̃1

r2
− w̃1r

r

)

− µ̃⋆
1r

4

(

imṽ1

r
− w̃1r +

w̃1

r

)

− iMµ̃⋆
1

2r2
(ṽ1 − imw̃1)−

iMµ̃⋆
1

4r

(

µB∗
0

µ∗
0

− 2

3

)

[

−ikũ1 + ṽ1r +
ṽ1

r
− im

r
w̃1

]

.

(B.18)

Finally we consider the energy equation (2.1d), noting that κ = µ/Pr so we can use the

results (B.12) and (B.13) to substitute for κ . The equation is

ρ(Tt +uTx + vTr +
1

r
wTθ ) = (pt +upx + vpr +

1

r
wpθ )+(κTx)x +

1

r
(rκTr)r +

1

r2
(κTθ )θ

+σ11ux +σ12(ur + vx)+σ13

(1

r
uθ +wx

)

+σ22vr +σ23

(

1

r
vθ + r

(w

r

)

r

)

+
1

r
σ33(wθ + v).

When we linearise this equation we get

ρi(ω −Uk)T̃1 +ρ ṽ1Tr =i(ω −Uk)p̃1 − k2κT̃1 +
1

r
(rκT̃1r + rκ̃1Tr)r

− m2

r2
κT̃1 +U2

r µ̃1 +2µUr(ũ1r − ikṽ1),

which can then be simplified to give

i(ω −Uk)

(γ −1)T
T̃1 +

ṽ1Tr

(γ −1)T
− i(ω −Uk)p̃1 + k2κT̃1 −

1

r
(rκT̃1r + rκ̃1Tr)r

+
m2

r2
κT̃1 −U2

r µ̃1 −2µUr(ũ1r − ikṽ1) = 0.

(B.19)
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For the nonlinear acoustics we have the linear operator of the nonlinear terms LT
2 forced by

LT
2 =

(

T̃ ⋆
1

4(γ −1)T 2
− γ p̃⋆1

4(γ −1)T

)

(i(ω −Uk)T̃1 + ṽ1Tr)+
1

4r
(rκ̃⋆

1 T̃1r)r −
Mm

4r2
κ̃⋆

1 T̃1

− ṽ⋆1
4

(

T̃1r

(γ −1)T
− p̃1r

)

− Kk

4
κ̃⋆

1 T̃1 +
1

4
(ikũ⋆1 +

im

r
w̃⋆

1)

(

T̃1

(γ −1)T
− p̃1

)

+
1

4
(ũ⋆1r − (ik)⋆ṽ⋆1)(µ(ũ1r − ikṽ1)+Urµ̃1)+

1

4
Urµ̃⋆

1 (ũ1r − ikṽ1)

− µ

4

(

−(im)⋆

r
ũ⋆1 − (ik)⋆w̃⋆

1

)(

im

r
ũ1 + ikw̃1

)

− µ

4

(

−(im)⋆

r
ṽ⋆1 + w̃⋆

1r −
w̃⋆

1

r

)(

im

r
ṽ1 − w̃1r +

w̃1

r

)

+
ik(ik)⋆µ

2
ũ⋆1ũ1 +

µ

2
ṽ⋆1rṽ1r +

µ

2r2
(ṽ⋆1 − (im)⋆w̃⋆

1)(ṽ1 − imw1)

+
µ

4

(

µB∗
0

µ∗
0

− 2

3

)

[

−ikũ1 + ṽ1r +
ṽ1

r
− imw̃1

r

](

−(ik)⋆ũ⋆1 + ṽ⋆1r +
ṽ⋆1
r
− (im)⋆w̃⋆

1

r

)

,

which can be expanded and written as

LT
2 =

(

T̃ ⋆
1

4(γ −1)T 2
− γ p̃⋆1

4(γ −1)T

)

(i(ω −Uk)T̃1 + ṽ1Tr)

+
1

4
(ikũ⋆1 +

im

r
w̃⋆

1)

(

T̃1

(γ −1)T
− p̃1

)

− ṽ⋆1
4

(

T̃1r

(γ −1)T
− p̃1r

)

− Kk

4
κ̃⋆

1 T̃1 −
Mm

4r2
κ̃⋆

1 T̃1 +
1

4r
(rκ̃⋆

1 T̃1r)r +
1

2
(ũ1r − ikṽ1)Urµ̃⋆

1

+
µ

4
(ũ⋆1rũ1r + ik(ik)⋆ṽ⋆1ṽ1 −2(ik)⋆ṽ⋆1ũ1r)+

µi(i)⋆

4

(

m2

r2
ũ⋆1ũ1 + kk⋆w̃⋆

1w̃1 +
2mk

r
ũ⋆1w̃1

)

+
µ

4

(

(im)(im)⋆

r2
ṽ⋆1ṽ1 + w̃⋆

1rw̃1r +
w̃⋆

1w̃1

r2
− 2(im)⋆

r
ṽ⋆1w̃1r +

2im

r2
w̃⋆

1ṽ1 −
2

r
w̃⋆

1rw̃1

)

+
ik(ik)⋆µ

2
ũ⋆1ũ1 +

µ

2
ṽ⋆1rṽ1r +

µ

2r2
(ṽ⋆1ṽ1 + im(im)⋆w̃⋆

1w̃1 −2imw̃1ṽ⋆1)

+
µ

4

(

µB∗
0

µ∗
0

− 2

3

)

[

ik(ik)⋆ũ1ũ⋆1 + ṽ1rṽ
⋆
1r +

ṽ1ṽ⋆1
r2

+
im(im)⋆w̃⋆

1w̃1

r2
−2(ik)⋆ũ⋆1ṽ1r −

2ikũ1ṽ⋆1
r

+
2(im)⋆ikũ1w̃⋆

1

r
+

2ṽ1rṽ
⋆
1

r
− 2(im)⋆ṽ1rw̃

⋆
1

r
− 2imṽ⋆1w̃1

r2

]

.
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B.3 Boundary conditions for linearised and weakly nonlin-

ear Navier Stokes

In this section I will derive the boundary conditions for the linearised and weakly nonlinear

Navier Stokes. Both the linearised and weakly nonlinear Navier Stokes are second order in ũ,

ṽ, w̃ and T̃ this means that we must supply two boundary conditions for each of these terms,

while we only need one boundary condition for p̃. At the wall the no-slip condition (2.3)

gives ũ(1) = w̃(1) = 0 and the acoustic thermal boundary condition (2.6) at the wall gives

T̃ (1) = 0. At the wall we also set ṽ1(1) = ṽ0 where ṽ0 is an arbitrary value that sets the

amplitude and phase of our perturbation. We can then check whether the impedance condition

is satisfied for the given ω , k and m. For the nonlinear normal velocity we have ṽ2(1) = 0 for

the zero mode, as there can be no net penetration through the wall, and for the double mode

we have Z(Ω)ṽ2(1) = p̃2(1).

To get another boundary condition for each term we must require that our solutions

are regular at the origin. To do this we assume each acoustic quantity has a power series

solution near the origin and we require that all singular terms of order O
(

1
r

)

or O

(

1
r2

)

in

the equations must cancel.

The boundary conditions we derive are different depending on the value of m, we first

consider the similar cases m = 0 for the linear acoustics and M = 0 for the nonlinear

acoustics.

B.3.1 Linear m = 0 and nonlinear M= 0

Keeping only leading order, O
(

1
r

)

, terms in r, equation (B.10) gives

ṽ1(0)

r
= 0,

so

ṽ1 = 0 at r = 0, (B.20)

and for the nonlinear acoustics we have

ṽ2(0)

r
=− ṽ1(0)

4r

(

γ p̃⋆1(0)−
T̃ ⋆

1 (0)

T

)

.



150

Using the linear boundary condition (B.20) this is zero for m = 0 but for m ̸= 0 this may not

be true so the nonlinear boundary condition is

ṽ2 =− ṽ1

4

(

γ p̃⋆1 − T̃ ⋆
1 (γ −1)

)

at r = 0. (B.21)

Now the leading order terms of equation (B.14) give

µ
ũ1r(0)

r
−Ur

µ̃1(0)

r
= 0,

but limr→0Ur = 0 as U only varies radially within the boundary layer, so we have

ũ1r = 0 at r = 0. (B.22)

Similarly for the nonlinear streamwise acoustic velocity we have

ũ2r = 0 at r = 0. (B.23)

For the radial momentum equation (B.15), we find that both the order O( 1
r2 ) and order O(1

r
)

terms cancel since ṽ1(0) = 0, so we must consider the balance of the order O(1) terms

p̃1r(0)+2µ
( ṽ1(0)

r2
− ṽ1r(0)

r
− ṽ1rr(0)

)

−µ

(

µB∗
0

µ∗
0

− 2

3

)

(1

r
ṽ1r(0)−

ṽ1(0)

r2
+ ṽ1rr(0)

)

= 0,

but ṽ1 = a1r+a2r2 + ... near r = 0, so this becomes

p̃1r =
3

2
µ ṽ1rr

(

(µB∗
0

µ∗
0

− 2

3

)

+2

)

at r = 0. (B.24)

Similarly for the nonlinear acoustics we have

p̃2r −
3

2
µ ṽ2rr

(

(
µB∗

0

µ∗
0

− 2

3
)+2

)

=
3

8
µ̃⋆

1 ṽ1rr

(

(
µB∗

0

µ∗
0

− 2

3
)+2

)

at r = 0, (B.25)

if m = 0 and

p̃2r −
3

2
µ ṽ2rr

(

(
µB∗

0

µ∗
0

− 2

3
)+2

)

=−γi(ω −Uk)p̃⋆1ṽ1

4
+

3im

8
w̃⋆

1ṽ1r

+
µ̃⋆

1rṽ1r

8

(

(
µB∗

0

µ∗
0

− 2

3
)(4−m2)+(4+2m2)

)

at r = 0,

(B.26)
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if m ̸= 0. The leading order terms of the azimuthal momentum equation (B.17) are

1

r2
w̃1(0)−

1

r
w̃1r(0) = 0,

so w̃1 = a1r+ ..., which gives

w̃1 = 0 at r = 0, (B.27)

and similarly for the nonlinear term we have

w̃2 = 0 at r = 0. (B.28)

Lastly the energy equation (B.19) gives

1

r
(κT̃1r(0)+ κ̃1(0)Tr) = 0,

but Tr → 0 near r = 0 since it only varies radially within the boundary layer, so we have

T̃1r = 0 at r = 0. (B.29)

Similarly for the nonlinear temperature term we have

T̃2r = 0 at r = 0. (B.30)

B.3.2 m ̸= 0 linear

Now we consider the case of m ̸= 0 in the same way. Beginning with the linear acoustics.

This time equation (B.10) gives

ṽ1(0)

r
− imw̃1(0)

r
= 0,

so

ṽ1 = imw̃1 at r = 0. (B.31)

The streamwise momentum equation (B.14) at order O

(

1
r2

)

gives

ũ1 = 0 at r = 0, (B.32)

and if we also consider the order O(1
r
) terms we have

µkmw̃1(0)+µm2ũ1r(0)+µ (−ũ1r(0)+ ikṽ1(0))−Urµ̃1(0) = 0,
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but limr→0Ur = 0. So this gives

(1−m2)ũ1r = ikṽ1 + kmw̃1 = 0 at r = 0, (B.33)

which gives no information for m = 1. Now if we consider the radial momentum equa-

tion (B.15) at order O

(

1
r2

)

we have

−imµ ṽ1(0)−µw̃1(0) = 0,

which gives

(m2 −1)w̃1 = 0 at r = 0.

For m = 1 this is true identically and so gives no extra information, but for m > 1 this gives

ṽ1 = w̃1 = 0 at r = 0 for m > 1. (B.34)

To find a boundary condition valid for m = 1 we continue and consider the terms that are

order O(1
r
). This gives

m2ṽ1r(0)−2imw̃1(0)−
(

µB∗
0

µ∗
0

− 2

3

)

(ṽ1r(0)− ṽ1r(0)+ imw̃1r(0)− imw̃1r(0)) = 0,

which then simplifies to give

mṽ1r = 2iw̃1r at r = 0 for m ≥ 1, (B.35)

a boundary condition that is valid for m = 1 as well as m > 1. The O
(

1
r2

)

terms of the

azimuthal momentum equation (B.17) give

µ(1−m2)w̃1(0) = 0,

so w̃1 = 0 for m > 1 as before, and the expression is true identically for m = 1. At order

O(1
r
), we have

−imp̃1(0)+4µimṽ1r(0)+2µm2w̃1r(0)+µ

(

µB∗
0

µ∗
0

− 2

3

)

(2imṽ1r(0)+m2w̃1r(0)) = 0,
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which can then be simplified to give a boundary condition for p̃1

p̃1 =
µ

2
(4−m2)ṽ1r

(

2+
(µB∗

0

µ∗
0

− 2

3

)

)

at r = 0 for m ≥ 1. (B.36)

Finally the singular terms of the linear energy equation (B.19) give

m2

r2
κT̃1 −

1

r
κT̃1r = 0,

so

T̃1 = 0 at r = 0 for m ≥ 1. (B.37)

We now have a consistent set of boundary conditions for the linear acoustics that are valid

for all m ≥ 1.

B.3.3 m ̸= 0 nonlinear

To find the boundary conditions for the nonlinear acoustics with M ≠ 0 we start with the

expansion of equation (B.11), this gives

ṽ2 − iMw̃2 =−(iMw̃1 − ṽ1)

4
γ p̃⋆1 at r = 0, (B.38)

which is valid for all m, note that the right hand side is zero for m = 0. The streamwise

momentum equation (B.14) at order O

(

1
r2

)

for the nonlinear acoustics gives

µm2ũ2 =−Mµ⋆
1 mũ1

4
= 0 at r = 0.

Similarly to the linear acoustics we find that the leading order terms of both the radial and

azimuthal equations give no extra information in the case M= 1 so we must expand to next

order. For the radial momentum equation this gives

Mṽ2r −2iw̃2r =−(γ −1)T̃ ⋆
1r

2M (ṽ1r − imw̃1r) at r = 0, (B.39)
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while if we consider the azimuthal momentum equation at order O(1
r
) we again find the

boundary condition for p̃

p̃2 −
µ

2
(4−M2)ṽ2r

(

2+
(µB∗

0

µ∗
0

− 2

3

)

)

=−imṽ1µ̃⋆
1r +

w̃⋆
1w̃1

4
(im− (im)⋆) at r = 0,

(B.40)

and finally the energy equation gives

T̃2 = 0 at r = 0. (B.41)

Now that we have the boundary conditions for all cases, we can see that, as all terms

involving µ are expected to be O(δ 2) smaller than the other terms, that these boundary

conditions are consistent with the expected Bessel function solutions.



Appendix C

C.1 Airy function integral

The Airy functions are the two independent solutions to the equation [9, Eq. 9.2.1]

y′′(x) = xy,

with Ai(x)→ 0 as x → ∞ and Bi(x)→ ∞ as x → ∞. We can then use this to write

Ai′(xb) = b2
∫ x

0
uAi(ub)du,

where we have also used the chain rule here to include the constant b in the equation. This

equation can then be used to transform the integral

I(y) =
∫ y

0

Ai′(xb)
Ai′(0) −1

x2
dx.

We integrate by parts, integrating the denominator 1/x2 and differentiating the numerator.

This gives

I(y) =−





Ai′(xb)
Ai′(0) −1

x





y

0

+
b2

Ai′(0)

∫ y

0
Ai(xb)dx,

but Ai′(x)∼ Ai′(0)+O(x2) for small x [9, Eq. 9.4.2]. So this becomes

I(y) =−
Ai′(yb)
Ai′(0) −1

y
+

b2

Ai′(0)

∫ y

0
Ai(xb)dx. (C.1)
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Now ṽc has the form yI(y) and ũ2 ∝ ṽcy, so we need to calculate d
dy
[yI(y)]

d

dy
[yI(y)] = I(y)+ yI′(y) = I(y)+

Ai′(yb)
Ai′(0) −1

y

=
b2

Ai′(0)

∫ y

0
Ai(xb)dx.

Note that this also holds for the Bi(x) integral as Bi(x) also obeys Airy’s equation and its

series expansion near zero has the same form as that for Ai(x).

C.2 Small Ω solution

When Ω ̸= 0 the equation for ṽ2 is (5.18)

(
√

X

εk

Ω

K
− yuζ (0)

)

ṽ2y +uζ (0)ṽ2 −
(γ −1)2T (0)2

γ p

√

X

εk

1

iK
ṽ2yyy

=
−CaCbuζ (0)

√
iXγ p

8
√

εkδL(γ −1)T (0)

(

iv
√

ωe
− y

√
iωγ p

(γ−1)T (0) + iω
√

ve
− y

√
ivγ p

(γ−1)T (0)

)

− iKCaCb

8δL
uζ (0)

2 +E(y).

As in chapter §5, this has solution

ṽ2 =− iKCaCb

8δL
uζ (0)

(

1− e
− y

√
iωγ p

(γ−1)T (0) − e
− y

√−iωγ p

(γ−1)T (0) + ṽc

)

+O(
√

εk),

where ṽc is a solution of the homogeneous equation with initial conditions ṽc(0) = Z1Ω and

ṽ′c(0) =−
√

iωγ p+
√−iωγ p

(γ−1)T (0) , where Z1 is a known constant. The equation for ṽc is now

(κ − y)ṽcy + ṽc −
ṽcyyy

β
= 0,

where κ = Ω
uζ (0)K

√

X
εk

and β is again given by equation (5.20). Now if we let z = y−κ the

equation has the same form as equation (5.19), which has the solution (5.24)

ṽc = a0z+a1z

∫ z Ai′(x(−β )1/3)

x2
dx+a2z

∫ z Bi′(x(−β )1/3)

x2
dx.
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To match to the region II solution we again need a2 = 0. So we have

ṽc =−a1 +a0(y−κ)+a1(y−κ)
∫ y−κ

−κ

Ai′(x(−β )1/3)
Ai′(0) −1

x2
dx.

If we apply the initial conditions we get the following equations for a0 and a1

−a1 −κa0 = 1+Z1κ
√

εk,

a0 −
a1

κ

(

Ai′(−κ(−β )1/3)

Ai′(0)
−1

)

=−
√

iωγ p+
√−iωγ p

(γ −1)T (0)
,

solving these equations we get the following results

a0 =−
Ai′(0)

√
iωγ p+

√−iωγ p

(γ−1)T (0) +
(Ai′(−κ(−β )1/3)−Ai′(0))(1+Z1κ

√
εk)

κ

Ai′(−κ(−β )1/3)
,

a1 =
Ai′(0)κ

√
iωγ p+

√−iωγ p

(γ−1)T (0) +
(

Ai′(−κ(−β )1/3)−Ai′(0)
)

(1+Z1κ
√

εk)

Ai′(−κ(−β )1/3)
−1−Z1κ

√
εk.

Now κ ∼ Ω√
εk

and to match to region II we need the asymptotic behaviour of ṽc for large y

ṽc ∼ 2a1 +a0(y−κ)−a1
Ai′((y−κ)(−β )1/3)

Ai′(0)
−a1

(y−κ)

κ

(

Ai′(−κ(−β )1/3)

Ai′(0)
−1

)

−a1(y−κ)
(−β )2/3

Ai′(0)

∫ y

0
Ai((x−κ)(−β )1/3)dx.

For κ = 0, i.e. Ω = 0, this gives the same asymptotic behaviour as equation (5.28). It is

clear that the solution for Ω = 0 given in chapter §5 will be the valid leading order solution

provided κ(β )1/3 ≪ 1. Since β ∼√
εk this is true for κ ≪ ε

−1/6

k , i.e. Ω ≪ ε
1/3

k .

Now for all κ this solution matches to
√

εk(y−κ) E
δL

in region II. Figure C.1 shows a plot

of E = ṽc/((y−κ)
√

εk) against κ for different values of εk from 10−4 up to 10−8. It is clear

from the plot that the maximum amplitude of E will be at most O(1/
√

εk) as expected and

hence the amplitude of the nonlinear acoustics is at most O(ε2/δL
√

εk).
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Fig. C.1 E = ṽc/((y−κ)
√

εk) against κ for εk ∈ {10−4,10−5,10−6,10−7,10−8} showing

that E is at most O(1/
√

εk)
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