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Sound within airraft engines an be 140dB�160dB, and may be ampli�ed by 1000×

within a viso-thermal boundary layer over an aousti lining, triggering nonlinear e�ets.

It has been suggested that non-parallel e�ets ould also be important, however aousti

linings give rise to di�erent asymptoti salings than most previous non-parallel work for

hard walls. This paper presents an investigation into the e�ets of nonlinearity on the

aoustis within a non-parallel boundary layer �ow over an aousti lining in a dut. The

analysis ombines the e�ets of shear, visosity, and nonlinearity and uses a three-layer

formulation to obtain analyti solutions. Unlike the parallel �ow aoustis the non-parallel

aoustis do not admit a highly osillatory ampli�ed aousti streaming (zero frequeny)

solution. However there is still an ampli�ed nonlinear solution that propagates out into

the rest of the dut.

I. Introdution

Aousti liners are an essential part of ivilian airraft engines, enabling them to meet ever striter

noise requirements. Sound within airraft engines is loud, potentially 140dB-160dB, pushing the validity

of the usually assumed linearised sound over a steady bakground �ow. However, even if the sound within

the engine duting may be onsidered linear, an ampli�ation mehanism by a fator of 1/δ, where δ is

the boundary layer thikness (typially δ = 10−3
), exists within a thin viso-thermal boundary layer[1℄.

Experimental evidene also suggests nonlinearity beomes important at lower amplitudes than expeted for

�ow over an aousti lining[2℄. It has been shown that nonlinearity an ause unexpeted aousti streaming

phenomena[3℄, although it has also been suggested that this may be an artefat of the assumption of parallel

mean �ow[4℄. The purpose of this paper is to investigate this by onsidering weakly nonlinear aoustis in a

developing non-parallel viso-thermal boundary layer over an aousti lining.

Muh work on aoustis in �ow over aousti linings uses the Myers boundary ondition[5℄. This mathes

the normal �uid displaements at the boundary, and omes from assuming the �uid is invisid with an

in�nitely thin boundary layer. However this boundary ondition gives a vortex sheet at the boundary and

an be shown to be ill-posed[6, 7℄. More reent work[8℄ gave a modi�ed Myers boundary ondition whih

took aount of the shear in the boundary layer of the bakground �ow but still ignored the e�et of visosity.

This gave a losed form solution involving integrals over the mean �ow boundary layer pro�le. However[9℄

the e�et of visosity on the aoustis ours at the same order of magnitude as shear, and visosity must also

be taken into aount. This means onsidering a �nite thikness visous boundary layer near the aousti

lining and solving for the aoustis in the boundary layer and then mathing to an outer solution, whih

is assumed to at as an invisid �uid with uniform �ow[10, 11, 12℄. This approah agrees more losely to

results from solving the linearised Navier Stokes equations for the entire dut. We also showed last year[3℄

that non-linearity ould give rise to unexpetedly large aousti streaming modes whih propagate out into

the entre of the dut, suggesting that the e�et of nonlinearity should also be onsidered.

All of the above work for an aousti lining was done under the assumption of a parallel mean �ow. It

has been suggested[4℄ that the non parallel e�ets of developing boundary layers may have an important

e�et on the aoustis. However this work onsidered only hard wall boundary onditions whih as we will

show have a di�erent saling regime than aoustis in boundary layers near impedane linings.
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Density ρ∗ = ρ∗0ρ Pressure p∗ = c∗20 ρ∗0p

Veloity u
∗ = c∗0u Visosity µ = c∗0l

∗ρ∗0µ

Distane x∗ = l∗x Thermal Condutivity κ∗ = c∗0l
∗ρ∗0c

∗
pκ

Time t∗ = l∗/c∗0t Temperature T ∗ = c∗20 /c∗pT

Table 1: Dimensional and non-dimensional variables, where ∗ denotes a dimensional variable, with lengthsale

l∗, veloity c∗0, density ρ∗0 and spei� heat at onstant pressure c∗p.
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Figure 1: Diagram of the dut.

Here we onsider the e�et of nonlinearity with a non-parallel boundary layer mean �ow. We restrit

ourselves to the weakly nonlinear ase ε ≪ δ ≪ 1, where ε is the aousti amplitude p̃/p0 and δ is a measure

of the boundary layer thikness. We will also look su�iently far downstream so that 1/k ≪ x where k
is the streamwise wavenumber, whih means that the boundary layer is su�iently well developed that the

e�et of visosity on the aoustis is restrited to an inner-inner region. This means that an expansion in ε
may be used with a three-layer formulation that an be solved analytially using asymptoti mathing and

a WKBJ solution.

II. Mathematial Formulation

We onsider the aoustis in a ompressible visous perfet gas inside a straight ylindrial dut. To

begin, we non-dimensionalise all quantities as shown in table 1. The governing equations are then (Landau

& Lifshitz)[13℄:

∂ρ
∂t +∇ · (ρu) = 0 (1a)

ρDu

Dt = −∇p+∇ · σ (1b)

σij = µ
(

∂ui

∂xj
+

∂uj

∂xi

)

+
(

µB − 2
3µ
)

δij∇ · u (1)

ρDT
Dt = Dp

Dt +∇ · (κ∇T ) + σij
∂ui

∂xj
(1d)

T = p
(γ−1)ρ (1e)

where D/Dt = ∂/∂t + u · ∇ and γ = c∗p/c
∗
v is the ratio of spei� heats. We assume that the visosities

and thermal ondutivity depend linearly on the temperature and are independent of pressure (Prangsma,

Alberga & Beenakker)[14℄, so that we an write:

µ =
T

T0Re
, µB =

T

T0Re

µB∗
0

µ∗
0

, κ =
T

T0PrRe
(2)

Where Re= c∗0l
∗ρ∗0/µ

∗
0 is the Reynolds number, de�ned with respet to the sound speed, and Pr= µ∗

0c
∗
p/κ

∗
0

is the Prandtl number. In the dut we use ylindrial oordinates (r∗, θ, x∗), where l∗ is now taken to be the

radius of the dut, so that in non-dimensionalised variables the wall of the dut is at r = 1.
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We take the referene values ρ∗0, T
∗
0 , µ

∗
0, µ

B∗
0 and κ∗

0 to be those of the entreline mean �ow whih is

assumed to be uniform. This gives T0 = 1/(γ− 1), p0 = 1/γ and the non-dimensionalised mean �ow veloity

U0 = M is the Mah number. We will onsider the aoustis due to a soure at (r0, x0), su�iently far from

the leading edge so that we an ignore its e�et and don't have to know anything about the geometry of the

dut inlet.

We will assume that the aousti lining reats loally and an be modelled by a linear impedane relation

p̃ = Z(ω)ṽ where p̃ is the aousti pressure, ṽ the aousti normal veloity and ω the frequeny. Here we

will use the mass-spring-damper impedane:

Z(ω) = R− i
b

ω
+ iωd (3)

This boundary ondition results in there being non-zero aousti normal veloity at the wall whih then

interats with the large shear to amplify the aoustis within the boundary layer. This auses the asymptoti

salings to be di�erent to the ase of a hard wall, Z = ∞, where the aousti normal veloity is zero at the

wall.

A. Three Layer Setup-Asymptoti model

We now onsider a developing boundary layer �ow near the wall of the dut, and we hoose x = 0 to be

the leading edge of the boundary layer. Using the standard Blasius boundary layer saling of inertia with

visosity we have our boundary layer thikness δL.

δL =

√

x

MRe

= δ

√

x

M

where we have de�ned δ2 = 1/Re ≪ 1. For the boundary layer approximation to be valid we need the

streamwise lengthsale to be muh larger than the radial lengthsale of the mean �ow. That is x0 ≫ δL,

where x0 is our distane downstream from the leading edge. This gives the requirement x0 ≫ δ2

M . Here we

will use the ompressible Blasius boundary layer pro�le whih is an exat solution of the boundary layer

equations for a �at plate with no pressure gradient and linear dependene of visosity with the temperature.

We now onsider the salings of the aoustis. We have the time dependene of the aoustis given by

the angular frequeny ℜ(ω) and we let λ be the radial lengthsale from the wall over whih the aoustis are

a�eted by visosity. Now we an onsider the balane of the time dependent terms with the visous terms:

∂ũ

∂t
∼ νũyy =⇒ ℜ(ω) ∼ 1

Reλ2

λ ∼ δL

√

M

ℜ(ω)x ∼ δL

√

M

krx

where kr = ℜ(k) is the streamwise aousti wavenumber. Now to avoid having to onsider sattering o� the

leading edge we assume that the streamwise wavelength is shorter than our distane downstream. That is:

1

kr
≪ x0

whih gives us that λ ≪ δL so we an introdue an inner-inner region of lengthsale λ.
We now have three distint regions as shown in Figure 2 where di�erent physial salings hold.

In region III, the base �ow is assumed to be approximately uniform and gradients of the aoustis are

assumed to be O(1) so that the e�et of visosity is negligible at leading order. This means that the aoustis

an be treated as being in an invisid uniform �ow, for whih the solutions an be found to be in the form

of Bessel funtions.

In region II, the mean �ow varies over a lengthsale δL, gradients in the aoustis are assumed to be at

most O(1/δL), so the e�et of visosity is still negligible at leading order and the aoustis and be treated

as being in a sheared invisid �ow.

In region I, the mean �ow is approximately linear, but gradients in the aoustis are assumed to be

O(1/λ) so the e�et of visosity is now important. Here we an treat the aoustis as being in a linearly

sheared visous �ow.
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Figure 2: Diagram of the dut with inner aousti boundary layer region

B. Linear Aoustis

For the linear aoustis we Fourier transform in x, Laplae transform in time and take a Fourier series in

θ so that we may onsider only a single mode. We want to inlude the e�et of the x-dependene of the

mean �ow so we will introdue a slow streamwise variable εkx, where εk = M
krx0

≪ 1 is the ratio between

the wavelength and downstream distane. If we now expand our equations in eah region to leading order

in δL, εk and ε, where ε ≪ 1 is the sale of the amplitude of the aousti perturbations, we get a solution

for the pressure perturbation of the form:

p′ = εp̃0(r, εkx)e
iωt−i

∫

k(εkx)dx−imθ +O(εk, δL, ε
2)

We an then use this ansatz to solve in eah region. In III all quantities are O(ε):

p̃0 = A(εkx)Jm(αr) ũ0 =
k

ω −Mk
A(εkx)Jm(αr) ṽ0 =

−α

i(ω −Mk)
A(εkx)J

′
m(αr)

T̃0 = A(εkx)Jm(αr) w̃0 =
m

r(ω −Mk)
A(εkx)Jm(αr)

where α2 = (ω −Mk)2 − k2 and A(εkx) is a slowly varying funtion of x, whih we will not need to solve

for here.

In region II we transform into the mean �ow boundary layer using the transformation r = 1− δLζ. This
means that the mean �ow terms depend only on the similarity variable ζ and not on x and we �nd that ũ
and T̃ ∼ O(ε/δL) and p̃, ṽ and w̃ ∼ O(ε),

p̃0 = const, ṽ0 = −iC(εkx)(ω − Uk), ũ0 = −C(εkx)Uζ/δL, T̃0 = −C(εkx)Tζ/δL.

Mathing with the solution in region III, we �nd A = − (ω−Mk)2

αJ′
m(α) C and p̃0 = AJm(α).

In Region I we transform into the aousti boundary layer using the transformation r = 1 − λy. Now

λ is independent of x, and we an expand the mean �ow quantities about their values at the wall, e.g.

U = 0 + ζUζ(0) + ... = y
√

M
krx

Uζ(0) + ..., noting that krx/M = x
εkx0

∼ 1/εk. We �nd that ũ0 ∼ ε/δL,

T̃0 ∼ ε(εk)
1/2/δL and p̃0, ṽ0 ∼ ε. We then get the following solutions for ũ0 and ṽ0:

p̃0 = const ṽ0 = −iωC(εkx) ũ0 = −Uζ(0)C(εkx)

[

1− exp
( −y

√
iω√

kr(γ − 1)T (0)

)

]

/δL
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and ũ1 ∼ ε(εk)
1/2/δL, ṽ1 ∼ ε(εk)

1/2

ṽ1 = ikUζ(0)C(εkx)

[

y

√

εkx0

x
+ (γ − 1)T (0)

√

M

iωx
exp
( −y

√
iω√

kr(γ − 1)T (0)

)

]

ũ1 = −C(εkx)Uζζ(0)
y

δL

√

εkx0

x
+

Uζ(0)
2C(εkx)

4δL
√
x

[

ik
√
εkx0√

iωkr(γ − 1)T (0)
y2 +

3k
√
εkx0

ω
y

]

e

−y
√

iω√
kr(γ−1)T (0)

To �nd the modes k∗(ω) we apply the boundary ondition p̃ = Z(ω)ṽ and math through eah region to

get the following dispersion relation at leading order:

Ziωα

(ω −Mk)2
J ′
m̄(ᾱ) = Jm̄(ᾱ)

[

1− kUζ(0)(γ − 1)T (0)

ω

√

M

iωx

]−1

+O(εk, δL)

We ould then �nd the next O(εk) solutions and apply a ompatibility ondition to �nd a di�erential

equation for the slow streamwise variation A(x). Here we will onsider A as being onstant whih is aurate

to O(εk).
Previous work on a three layer model[11℄ used the assumption ξδ3L ∼ 1/Re, with ξ ∼ O(1). This work

assumed the �ow was parallel, however if we set ξ = M
xδL

we have the same saling regime as in this paper

and we �nd that at this order the dispersion relation above agrees with that previously found. At higher

orders the orretions to the dispersion relation will not agree as the assumption of parallel �ow means this

previous work only gives a loal solution.

C. Foring

We will onsider a point mass soure at (r0, 0, x0) whih turns on at t = 0. i.e.

q(t) = Re[qδ(r − r0)δ(x − x0)
δ(θ)

r0
H(t)eiωf t]

where H(t) is a Heaviside funtion. This then gives us our onstant A for the linear solution and hene p̃0:

p̃0 =
eikx0(ω −Mk)

4

(

q

ω − ωf
+

q∗

ω + ω∗
f

)

(

(ω −Mk)Ym(α) − iαY ′
m(α)Zeff

(ω −Mk)Jm(α) − iαJ ′
m(α)Zeff

)

Jm(αr0)Jm(αr)

where Zeff = Z(ω)ω
(ω−Mk)

[

1− kUζ(0)(γ−1)T (0)
ω

√

M
iωx

]

is the e�etive impedane and kr now sales as O(ωf/M).

To �nd p(x, t) it is neessary to invert the Fourier-Laplae transforms. Inverting the Fourier x transfor-

mation is relatively simple, all the poles arise where (ω−Mk)Jm(α)− iαJ ′
m(α)Zeff = 0 (i.e. modes of a dut

with impedane Zeff) and an be found numerially. The singularities at α = 0 due to the Ym terms anel

out so do not need to be onsidered and there is no ontinuous spetrum. We an then use Jordan's lemma,

losing in the upper half plane for upstream modes x − x0 < 0 and in the lower half plane for downstream

modes x− x0 > 0, and get a sum over the poles.

p̃0(ω, x) = ±i
∑

k∗∈K±

Pe−ik∗(x−x0) lim
k→k∗

(k − k∗)

(

(ω −Mk)Ym(α) − iαY ′
m(α)Zeff

(ω −Mk)Jm(α) − iαJ ′
m(α)Zeff

)

Jm(αr0)Jm(αr)

P =
(ω −Mk∗)

4

(

q

ω − ωf
+

q∗

ω + ω∗
f

)

where K± orresponds to the set of upstream/downstream poles as determined by the Briggs�Bers method.

That is the set of poles whih end up in the upper/lower half plane as ℑ(ωf ) → −∞. If x > x0 we take the

negative sign and K− whereas if x < x0 we take the positive sign and K+.

When we invert the ω Laplae transform we will get a ontribution from the pole at ωf and a ontribution

from any ω poles from the k-residue term. These additional poles however will orrespond to transient modes,
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so if we are interested in the long time solution we expet to only have to onsider the pole at ωf . We an

then �nd p0(t, r, x, θ) at long time:

p0 =
∑

ω∈Q

∞
∑

m=−∞
∓
∑

k∗∈K±

Pei(ωt−k∗(x−x0)−mθ)

[

(ω −Mk∗)Ym(α)− iαY ′
m(α)Zeff

∂
∂k ((ω −Mk)Jm(α)− iαJ ′

m(α)Zeff)|k=k∗

]

Jm(αr0)Jm(αr)

P =
q(ω −Mk∗)

4

where Q is the set of foring frequenies {ωf}. Note that for eah foring frequeny we have replaed the

omplex onjugate in P by inluding −ω∗
f in Q, whih is equivalent due to the symmetry of the solution.

D. Weak Nonlinearity

So far we have only looked at the linear aoustis that arise due to a point soure. This linear solution is

valid provided ε/δL ≪ 1 so that the nonlinear terms are muh smaller than the linear aoustis. In airraft

engines the aoustis are often very loud whih means that this assumption may not be true. Here we will

onsider a weakly nonlinear perturbation to �nd a solution for the nonlinear aoustis.

For the linear aoustis we solved a system of equations of the form:

L(p) = q(t)

where L is a linear operator ating on p. If we onsider the nonlinear terms we now have an equation of the

form:

L(p) = Q(p, p) + q(t)

where Q is quadrati in p. Now using the weakly nonlinear approximation we an deompose the problem

into the linear aoustis problem above and a linear problem fored by nonlinear quantities of the linear

solution:

L(p0) = q(t) L(p2) = Q(p0, p0)

Now we know the general form of p0:

p0 =

∞
∑

m=−∞

∑

ω∈{ωf ,ω∗(m)}

∑

k∗(ω,m)∈K±

∓Resω∗(Resk∗(p̃0))e
i(ωt−kx−mθ)

where ω∗(m) are any transient modes and k∗(ω,m) are the spatial downstream/upstream modes. If we only

onsider the long time solution we an ignore the ω∗(m) terms. We an then onsider quadrati quantities

of p0:

p0p0 =

∞
∑

m1,m2=−∞

∑

(ω∗),(v∗)∈Q

∑

k∗,l∗∈K±

Resω∗(Resk∗(p̃0))Resv∗(Resl∗(p̃0))e
i(Ωt−Kx−Mθ)

where Ω = ω∗ + v∗, K = k∗ + l∗, M = m1 + m2 and eah sum is now a double sum over every pair of

frequenies/wavenumbers (ω∗, v∗), (k∗, l∗). We an then write down the form for p2:

p2 =
∞
∑

m1,m2=−∞

∑

ω∗,v∗∈Q

∑

k∗(ω∗),l∗(v∗)∈K±

ResΩ(ResK(p̃2(Ω,K,M)))ei(Ωt−Kx−Mθ)

and we an solve for ResΩ∗(ResK∗(p̃2(Ω,K,M))) = p̃2(Ω,K,M) separately for eah mode.
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III. Mathing

Now for eah ω∗ 6= v∗ or k∗ 6= l∗ there is a pair of pairs (ω∗, k∗; v∗, l∗) and (v∗, l∗;ω∗, k∗) in the sum that

will give the same term, so we an ombine these ontributions when solving and inlude a fator of 1/2 to

avoid double ounting.

In region III, the equations for the leading order weakly nonlinear ontribution are:

i(Ω−MK)ρ̃2 − iKũ2 +
ṽ2
r

+ ṽ2r −
iM
r

w̃2 = iKρ̃∗0ũ0 +
iM
r

ρ̃∗0w̃0 −
1

r
(rρ̃∗0ṽ0)r

i(Ω−MK)ũ2 − iKp̃2 = ikũ∗
0ũ0 +

im

r
w̃∗

0 ũ0 − ṽ∗0 ũ0r − i(ω −Mk)ρ̃∗0ũ0

i(Ω−MK)ṽ2 + p̃2r = ikũ∗
0ṽ0 +

im

r
w̃∗

0 ṽ0 − ṽ∗0 ṽ0r − i(ω −Mk)ρ̃∗0ṽ0 +
1

r
w̃∗

0w̃0

i(Ω−MK)w̃2 −
iMp̃2

r
= ikũ∗

0w̃0 +
im

r
w̃∗

0w̃0 − ṽ∗0w̃0r − i(ω −Mk)ρ̃∗0w̃0 −
1

r
ṽ∗0 w̃0

i(Ω−MK)T̃2 − i(Ω−MK)p̃2 = (ikũ∗
0 +

im

r
w̃∗

0)(T̃0 − p̃0)− ṽ∗0(T̃0 − p̃0)r − i(ω −Mk)ρ̃∗0T̃0

where p̃0 = Resω∗(Resk∗(p̃0(ω, k))) = Resω∗(Resk∗(A(ω, k)))Jm(αr) and p̃∗0 = Resv∗(Resl∗(p̃0(ω, k))) and
similarly for all other leading order linear terms. All terms on the left hand side are of the same order and

all terms on the right hand side are O(ε2). When we ombine pairs and substitute our solution for the linear

problem this then beomes:

i(Ω−MK)(γp̃2 − (γ − 1)T̃2)− iKũ2 +
ṽ2
r

+ ṽ2r −
iM
r

w̃2 =
i(Ω−MK)

2
p̃∗0p̃0 − i(Ω−MK)S

i(Ω−MK)ũ2 − iKp̃2 = iKS − iK

2
p̃∗0p̃0

i(Ω−MK)ṽ2 + p̃2r = −Sr +
1

2
(p̃∗0p̃0)r

i(Ω−MK)w̃2 −
iMp̃2

r
=

iM
2r

S − iM
2r

p̃∗0p̃0

i(Ω−MK)T̃2 − i(Ω−MK)p̃2 = − i(Ω−MK)

2
p̃∗0p̃0

where S =
(kl +m∗m/r2)p̃∗0p̃0 + p̃0rp̃

∗
0r

2(ω −Mk)(v −Ml)
, whih simpli�es to:

(

∂2

∂r2
+

1

r

∂

∂r
+ ℵ2 − M2

r2

)(

p̃2 + S − 1

2
p̃∗0p̃0

)

= 0

where ℵ2 = (Ω−MK)2 −K2
. So in region III the leading order solution is:

p̃2 = DJM(ℵr) + 1

2
p̃∗0p̃0 − S ṽ2 =

−ℵDJ ′
M(ℵr)

i(Ω−MK)

where D is an arbitrary onstant that will be found by mathing between eah layer and applying the

impedane boundary ondition at the wall of the dut.

Now in region II the leading order O(ε2/δ2L) equations are:

i(Ω− UK)T̃2 −
Tζ ṽ2
δL

+
T ṽ2ζ
δL

+ iKT ũ2 =
i(Ω− UK)

T
T̃0T̃

∗
0 + iKT̃ ∗

0 ũ0 +
ṽ0ζ T̃

∗
0

δL
− ṽ∗0

δL
(
2T̃0Tζ

T
− T̃0ζ)

i(Ω− UK)ũ2 −
ṽ2Uζ

δL
= ikũ∗

0ũ0 +
ṽ0ũ

∗
0ζ

δL
+

T̃ ∗
0

T
(i(ω − Uk)ũ0 −

ṽ0Uζ

δL
)

i(Ω− UK)T̃2 −
ṽ2Tζ

δL
= ikũ∗

0T̃0 +
ṽ0T̃

∗
0ζ

δL
+

T̃ ∗
0

T
(i(ω − Uk)T̃0 −

ṽ0Tζ

δL
)
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When we substitute the results for the linear aoustis and ombine pairs this beomes:

i(Ω− UK)T̃2 −
Tζ ṽ2
δL

+
T ṽ2ζ
δL

+ iKT ũ2 =
C∗C

2δ2L
(iKTζUζ + i(Ω− UK)Tζζ)

i(Ω− UK)ũ2 −
ṽ2Uζ

δL
=

C∗C

2δ2L
(iKU2

ζ + i(Ω− UK)Uζζ)

i(Ω− UK)T̃2 −
ṽ2Tζ

δL
=

C∗C

2δ2L
(iKUζTζ + i(Ω− UK)Tζζ)

whih we an solve analytially to �nd at leading order:

ṽ2 = − iKC∗C

2δL
Uζ −

B

δL
i(Ω− UK) ũ2 =

C∗C

2δ2L
Uζζ −

B

δL
Uζ T̃2 =

C∗C

2δ2L
Tζζ −

B

δL
Tζ

In Region I we �nd that the foring for the T̃2 and ṽ2 equations are O(ε2/δ2L) while the foring for the

ũ2 equation is O(ε2/
√
εkδ

2
L). This means that ũ2 is independent of T̃2 to O(εk) and ṽ2 is independent of T̃2

to O(
√
εk) so we have:

iKT (0)ũ2 +

√

x

εkx0
T (0)

ṽ2y
δL

= O(1)

i
(

Ω− y

√

εkx0

x
Uζ(0)K

)

ũ2 −
ṽ2Uζ(0)

δL
− kr(γ − 1)2T (0)2ũ2yy =

ṽ∗0 ũ0y

δL

√

x

εkx0
+ ikũ∗

0ũ0 +O(
√
εk)

where ṽ2 ∼ O(ε2/δL) and ũ2 ∼ O(ε2/
√
εkδ

2
L) Now, assuming that the exponential term deays and Ω 6= 0

we have at leading order:

ṽ2 = − iBΩ

δL
− iKC∗C

2δL
Uζ |0

(

1 +

√
ω +

√
v√

Ω
e

− y
√

iΩ√
kr(γ−1)T (0) − e

− y
√

iω√
kr(γ−1)T (0) − e

− y
√

iv√
kr(γ−1)T (0)

)

ũ2 =
C∗CUζ |0

√
ix

2δ2L
√
M(γ − 1)T (0)

(√
ωe

− y
√

iω√
kr(γ−1)T (0) +

√
ve

− y
√

iv√
kr(γ−1)T (0) − (

√
ω +

√
v)e

− y
√

iΩ√
kr(γ−1)T (0)

)

we an then use the impedane boundary ondition to solve for D and we �nd that p̃2 must be O(ε2/δL)
to balane with ṽ2 whih is ampli�ed in the boundary layer to be O(ε2/δL) at the wall. This then gives:

D

(

JM(ℵ)− ΩZ(Ω)
iℵJ ′

M(ℵ)
(Ω−MK)2

)

=
C∗C

2δL

(

iKZ(Ω)Uζ|0
(

1−
√
w +

√
v√

Ω

))

(4)

So we �nd that the nonlinear pressure is a fator of 1/δL greater than would be expeted, due to the

ampli�ation of terms within the boundary layer. Now this solution has a singularity at Ω = 0, whih
orresponds to the aousti streaming modes. This means that we will have to inlude extra terms in the

equations we solve to regularise near Ω = 0.

IV. Aousti Streaming (Ω = 0)

When Ω → 0, Z(Ω) → ∞ whih means that when the boundary ondition is applied at the wall we must

have ṽ2|y=0 = 0. Our solution in region I for ṽ2 is singular and even if we rewrite it in terms of an integral of

ũ2, whih now has a onstant term due to the exponential of Ω, we �nd that we still an't satisfy both the

boundary ondition at y = 0 and the mathing to region II. Also we are ignoring a term of the form

√
εkyũ2

at leading order whih will beome large as y → ∞ in this ase. So we must now onsider both leading order

and next order O(
√
εk) terms of the ũ2 equation together. We an write the ũ2 equation as:

(√

x

x0εk
Ω/K − yUζ(0)

)

ṽ2y + Uζ(0)ṽ2 − kr(γ − 1)2T (0)2
√

x

x0εk

1

iK
ṽ2yyy

=
−C∗CUζ |0

√
ix

2δL
√
M(γ − 1)T (0)

(−iω
√
ωe

− y
√

iω√
kr(γ−1)T (0) + iω

√
−ωe

− y
√−iω√

kr(γ−1)T (0) )− iKC∗C

2δL
Uζ|20 + exponentials
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whih is orret toO(
√
εk). Note that the �rst term on the right hand side isO(1/

√
εk) while the exponentials

that we have ignored are only O(1). We �nd that the dominant ontribution to the partiular solution omes

from the �rst two terms. So we get:

ṽ2 = − iKC∗C

2δL
Uζ|0

(

1− e

− y
√

iω√
kr(γ−1)T (0) − e

− y
√−iω√

kr(γ−1)T (0) + ṽc

)

+O(
√
εk)

where ṽc is the solution to the homogeneous equation with ṽc(0) = 1 and ṽ′c(0) = −
√
iω+

√
−iω√

kr(γ−1)T (0)
. This has

solution:

ṽc = Ay +By

∫ y Ai′(x(−a)1/3)

x2
dx+ Cy

∫ y Bi′(x(−a)1/3)

x2
dx

where a =
√

εkx0

x
iKUζ |0

kr(γ−1)2T (0)2 . Now Ai(x(−a)1/3) ∼ e−2/3x3/2(−a)1/2
and Bi(x(−a)1/3) ∼ e2/3x

3/2(−a)1/2
for

| arg((−a)1/3)| < π/3, so if we take the root of −a that is in this ar then Bi′(x) grows exponentially as x
inreases. This means that to be able to math our solution to region II we must set C = 0.

Now Ai′(x) = − 1
31/3Γ(1/3)

+O(x2) so we get:

ṽc = 1−
√
iω +

√
−iω√

kr(γ − 1)T (0)
y − y

∫ y

0

−31/3Γ(1/3)Ai′(x(−a)1/3)− 1

x2
dx

whih then gives:

ṽ2 = − iKC∗C

2δL
Uζ |0



2− e

− y
√

iω√
kr(γ−1)T (0) − e

− y
√−iω√

kr(γ−1)T (0) − y(
√
iω +

√
−iω)√

kr(γ − 1)T (0)
− y

∫ y

0

Ai′(x(−a)1/3)
Ai′(0) − 1

x2
dx





Now to math to region II we onsider the large y behaviour of ṽ2. ṽ2 ∼ − iKC∗C
2δL

Uζ |0(−y
√
iω+

√
−iω√

kr(γ−1)T (0)
+

Γ(1/3)(−a)1/3

32/3
y + 1), whih must math to − iKC∗C

2δL
Uζ +

iBUK
δL

for small ζ in region II. This gives:

D = − (MK)2

ℵJ ′
M(ℵ)

C∗C

2δL

√
iωx+

√
−iωx√

M(γ − 1)T (0)
+O(ε

−1/3
k ) ∼ O(ε

−1/2
k )

(Note we ould also inlude Ω in our solution by substituting z = y−Ω/KUζ

√

x/x0εk and we �nd that this

regularised solution is valid for Ω ≪ ε
1/3
k so D will be at most O(1/

√
εk).)

A. Osillating Streaming Solutions

So far for the aousti streaming modes we have assumed that |arg(−a)1/3| < π/3 so that the exponential

terms deay. We will now onsider the ase where |arg(−a)1/3| = π/3 (i.e. |arg(−iK)| = π) and these

exponential terms now osillate and must be onsidered when mathing.

In region I the Airy funtion of the seond kind will no longer deay, so the solution an now be written

in the form:

ṽc = 1−
√
iω +

√
−iω√

kr(γ − 1)T (0)
y −By

∫ y

0

Ai′(x(−a)1/3)
Ai′(0) − 1

x2
dx− (1 −B)y

∫ y

0

Bi′(x(−a)1/3)
Bi′(0) − 1

x2
dx

ũ2 = − C∗CUζ |0
√
x

2δ2L
√
M(γ − 1)T (0)

(√
iω(e

− y
√

iω√
kr(γ−1)T (0) − 1) +

√
−iω(e

− y
√−iω√

kr(γ−1)T (0) − 1)

)

+
C∗CUζ |0

√
x

2δ2L
√
εkx0

(−a)2/3

Ai′(0)

(

B

∫ y

0

Ai(x(−a)1/3)dx + (1−B)
Ai′(0)

Bi′(0)

∫ y

0

Bi(x(−a)1/3)dx

)
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we an then use the following approximations for large y[15℄:

Ai(ye±
iπ
3 ) ∼ e

∓ 2i
3 y3/2

2
√
πy1/4e±

iπ
12

, Bi(ye±
iπ
3 ) ∼

√

2

π

e

±πi
6

y1/4
sin(

2x3/2

3
+

π

4
∓ i

2
ln 2),

=⇒
∫ y

0

Ai(x(−a)1/3)dx ∼ 1

3(−a)1/3
− e

− 2
3y

3/2√−a

2
√
πy3/4(−a)7/12

,

∫ y

0

Bi(x(−a)1/3)dx ∼ e

2
3y

3/2√−a

√
πy3/4(−a)7/12

± i

(

1

(−a)1/3
− e

− 2
3y

3/2√−a

2
√
πy3/4(−a)7/12

)

where the ± in the seond integral orresponds to the sign of arg((−a)1/3) = ±iπ/3. We an then use this

to �nd the asymptoti behaviour of ũ2 in region I for large y:

ũ2 ∼
C∗CUζ |0

√
x

2δ2L
√
εkx0

(−a)1/12√
πy3/4

(

(1−B)

Bi′(0)
e

2
√−a
3 y3/2 − e

− 2
√−a
3 y3/2

(

B

2Ai′(0)
± i

(1−B)

2Bi′(0)

))

+ const +O(1/y5/4)

If we now onsider the equations in region II for gradients ∼ 1/
√
εk to order O(

√
εk), ignoring T̃ terms

whih osillate with a di�erent frequeny and will ontribute to an additional solution for ṽ but not for ũ,
we have:

ṽ2ζ
δL

+ iKũ2 = O(
√
εk)

−iKUũ2 −
ṽ2Uζ

δL
−
(

M(γ − 1)2T 2

x
(ũ2ζζ +

Tζ

T
ũ2ζ) + ũ2ζ(

V

δL
+

Uζ

2x
)

)

= O(εk)

We an try a multiple sales solution of the form:

ṽ2 =
F±(ζ)

δL
e

±
∫ ζ

√

−iKUx

M(γ−1)2T2 dζ
ũ2 =

G±(ζ)

δ2L
e

±
∫ ζ

√

−iKUx

M(γ−1)2T2 dζ

and we �nd:

F±(ζ) = ±
√

−iKM(γ − 1)2T 2G±(ζ)√
Ux

G±(ζ) =
G±
U3/4

e

−
∫

ζ
0

x
2M(γ−1)2T2 (Uζ

2x + V
δL

)dζ
=

G±
U3/4

e

−
∫ η(ζ)
0

f
4 dη

where we are assuming here that U , V and T are given by the ompressible Blasius boundary layer and thus

f(η) satis�es the Blasius equation:

U = Mf ′, V = −MδL
2x

(ζf ′ − f/η′), η′ = ρ = 1/(γ − 1)T, f ′′′ +
ff ′′

2
= 0, f ′ → 1 as η → ∞

This means that our additional large osillatory term in ũ2 deays exponentially due to the integral term

in G whih arises only beause we are inluding the non-parallel ontributions. This means that the large

osillatory streaming solution is on�ned to within the boundary layer. This shows that it is neessary

to onsider the non-parallel nature of the boundary layer when solving for the nonlinear modes and the

previously found large osillatory behaviour that extended to the entre of the dut was a artefat of the

parallel �ow assumption.

V. Results

To alulate the aousti pressure �eld we trunate the sum over all streamwise k-modes for |Im(k∗)| > N
and we will only plot the ontribution from a single azimuthal (m) mode.

Figure 3 shows the separate omponents of the aousti pressure �eld for a soure at (r0, θ0, x0) =
(0.8, 0, 10.1) with ω = 10, m = 10 and Z = 3 + 1.5iω − 1.15i/ω we use γ = 1.4, δ = 10−3

and ε = 10−5
. It

an be observed that there is some distortion at x = x0 due to the trunation of the sum.
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(a) Linear pressure p0

(b) Nonlinear aousti pressure p2

() Nonlinear streaming pressure p2

Figure 3: Linear and Nonlinear Aoustis at t = 0.5 for a soure at (r0, θ0, x0) = (0.8, 0, 10.1) with ω = 10,
m = 10 and Z = 3 + 1.5iω − 1.15i/ω, taking only the �rst four k modes in eah diretion
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VI. Conlusion

We have shown that the nonlinear modes that arise due to the linear aoustis are a fator of 1/δL
greater than would be expeted for the nonlinear modes in a hard walled dut. This is a onsequene of

the ampli�ation and subsequent interation of ertain quantities in the boundary layer. We have shown

that the previously found large O(ε2/δL) osillatory nonlinear solution was an artefat of the parallel �ow

assumption. However we have also shown that even when taking into aount the non-parallel e�ets an

O(ε2/δL) ampli�ed nonlinear solution is still permitted. We have also shown that the nonlinear streaming

modes are ampli�ed further by an additional fator of 1/
√
εk.

Our results also show that for the nonlinear aoustis the outer pressure does not obey the e�etive

impedane boundary ondition due to the amplifying mehanisms within the boundary layer. This means

that a single e�etive impedane boundary ondition will not adequately resolve both the linear and the

nonlinear aoustis as they have di�erent e�etive impedanes.
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