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Sound within airraft engines an be 120dB�160dB, and may be ampli�ed by 1000×

within a viso-thermal boundary layer over an aousti lining. This may be expeted to

trigger nonlinear e�ets within the �uid boundary layer (in addition to the well-known

nonlinear e�ets within the holes of the lining). This paper presents a mathematial inves-

tigation into the e�ets of weak nonlinearity on the aoustis within a thin boundary layer

in �ow over an aousti lining in a dut. The analysis ombines the e�ets of sheared mean

�ow, visosity, and nonlinearity into an e�etive impedane boundary ondition. In ertain

ases, a surprisingly large aousti streaming e�et is also found that is not loalized to the

boundary layer but propagates well out into the interior of the dut.

I. Introdution

Aousti liners are an essential part of ivilian airraft engines, enabling them to meet ever striter noise

requirements. Sound within airraft engines is loud, potentially 120dB�160dB, pushing the validity of the

usual assumption of linearised sound over a steady bakground �ow. However, a thin viso-thermal boundary

layer of thikness δ over an aousti lining was reently predited1

to give an ampli�ation by a fator of order

1/δ to ertain elements of the aousti solution. Sine typially δ = 10−3
for aeroengine intakes, even when

the sound within the engine duting may validly be onsidered linear, nonlinear e�ets would be expeted

within the boundary layers over aousti linings. Experimental evidene also suggests nonlinearity beomes

important at lower amplitudes than might otherwise be expeted for �ow over an aousti lining

2

. Here,

these e�ets are investigated by mathematially modelling weakly nonlinear aoustis in a viso-thermal

boundary layer over an aousti lining.

Aousti linings are typially modelled as an array of Helmholtz resonators; the e�et of the aousti

lining is redued to an impedane boundary ondition, whih is a linear relation between the aousti pressure

Re
(

p̃ exp{iωt− ikx − imθ}
)

and the aousti normal veloity Re
(

ṽ exp{iωt − ikx − imθ}) at the boundary,
p̃ = Zṽ, where Z is typially a funtion of the frequeny ω. Singh & Rienstra

3

showed that nonlinearity is

generally unimportant for frequenies away from the resonant frequenies of the resonators, but that near

the resonant frequenies the impedane needs to be modi�ed to inlude a nonlinear term due to the inertia

of the �uid in the resonator neks.

Muh of the work on aoustis in �ow over aousti linings uses the Myers

4

boundary ondition,

p̃
ṽ
=

Zeff = ωZ
ω−Mk

, where Z is the atual boundary impedane and Zeff is the e�etive boundary impedane

seen by the aoustis in the uniform base �ow of Mah number M within the dut. This omes from

mathing the normal �uid displaement at the boundary, and is orret for thin boundary layers, either

at high frequenies

1,5

or for invisid �uid

6,7

. However, the Myers boundary ondition implies an in�nitely

thin boundary layer at the lining, and not only do boundary layers need to be extremely thin for this

to be aurate

6,7

, but it also auses the Myers boundary ondition to be ill-posed

8

. More reent work

9

gave a modi�ed Myers boundary ondition whih aounted for the thin sheared boundary layer of the

bakground �ow, but still ignored the e�et of visosity. However, Renou & Aurégan

10

demonstrated that

to orrelate mathematial and numerial results with the results of experiments, the e�et of visosity within
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Figure 1: Diagram of the dut

Density ρ∗ = ρ∗0ρ Pressure p∗ = c∗20 ρ∗0p

Veloity u
∗ = c∗0u Visosity µ = c∗0l

∗ρ∗0µ

Distane x∗ = l∗x Thermal Condutivity κ∗ = c∗0l
∗ρ∗0c

∗

pκ

Time t∗ = l∗/c∗0t Temperature T ∗ = c∗20 /c∗pT

Table 1: Dimensional and Non-dimensional variables where ∗ denotes a dimensional variable, with lengthsale

l∗, veloity c∗0, density ρ∗0 and spei� heat at onstant pressure c∗p.

the boundary layer must be inluded, while Khamis & Brambley

11,12

demonstrated that the e�et of visosity

on the aoustis are of a omparable magnitude with the e�et of shear, and thus both should be taken into

aount. Visosity within the boundary layer was investigated by Aurégan et al.

5

for weak thin boundary

layers, and by Brambley

1

for stronger thin boundary layers, while investigations of the boundary layer taking

into aount both base �ow shear and visosity have reently been performed by Khamis & Brambley

13,14

.

This approah agrees most losely with results from solving the linearised Navier Stokes equations for the

entire dut. The aim of all this work has been to derive a new boundary ondition in terms of an e�etive

impedane Zeff as a funtion of the atual wall impedane Z. This is the impedane that an invisid uniform

�ow would observe at the boundary given the e�et of the visous boundary layer. None of these studies

have onsidered nonlinearity of the aoustis within the �uid.

In this paper the e�et of nonlinearity is also onsidered. We restrit ourselves to the weakly nonlinear

ase ε ≪ δ ≪ 1, where ε is the aousti amplitude p̃/p0 and δ is the boundary layer thikness.

II. Governing Equations

We onsider the aoustis in a ompressible visous perfet gas inside a ylindrial dut, as depited in

�gure 1. We non-dimensionalise all quantities as shown in table 1, giving the governing equations

15

∂ρ
∂t

+∇ · (ρu) = 0 (1a)

ρDu

Dt
= −∇p+∇ · σ (1b)

σij = µ
(

∂ui

∂xj
+

∂uj

∂xi

)

+
(

µB − 2
3µ

)

δij∇ · u (1)

ρDT
Dt

= Dp
Dt

+∇ · (κ∇T ) + σij
∂ui

∂xj
(1d)

T = p
(γ−1)ρ (1e)

where D/Dt = ∂/∂t + u · ∇ and γ = c∗p/c
∗

v is the ratio of spei� heats. We assume that the visosities

and thermal ondutivity depend linearly on the temperature and are independent of pressure (Prangsma,
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Figure 2: Boundary Layer Pro�le (u left, T right) for M = 0.7, Pr = 0.7, ξ = 1 and δ = 10−3

Alberga & Beenakker)

16

,

µ =
T

T0Re
, µB =

T

T0Re

µB∗

0

µ∗

0

, κ =
T

T0PrRe
(2)

where Re = c∗0l
∗ρ∗0/µ

∗

0 is the Reynolds number based on the sound speed and Pr = µ∗

0c
∗

p/κ
∗

0 is the Prandtl

number. In the dut we use ylindrial oordinates (r∗, θ, x∗) where l∗ is now taken to be the radius of the

dut, so that in non-dimensionalised variables the wall of the dut is at r = 1. We assume that the mean

�ow is uniform and time-independent and has a boundary layer thikness δ∗. We then take the referene

values ρ∗0, T
∗

0 , µ
∗

0, µ
B∗

0 and κ∗

0 to be those of the uniform �ow. This gives T0 = 1/(γ− 1) and p0 = 1/γ. The
non-dimensionalised uniform �ow veloity U0 = M is the Mah number.

At the dut boundary r∗ = l∗ we onsider a steady thin boundary layer of thikness δ∗ = l∗δ. The

boundary layer is haraterised by balaning visous shear with inertia, so that inside the boundary layer

we use the salings

r = 1− δy, ξδ2 = 1/Re (3)

where ξ ∼ O(1) is a parameter adjusting the relative strength of visosity, and ξ = 0 gives an invisid

boundary layer. Any boundary layer pro�le ould be used for what follows, provided it is independent of t
and θ and is in thermal equilibrium with the boundary, Tr(1) = 0. For the results given here, a ompressible

Blasius boundary layer is used, as depited in �gure 2; for further details, see Ref. 1.

For a typial airraft engine at sea level, ρ∗0 ≈ 1.225kgm−3
, c∗0 ≈ 340ms

−1
, µ∗

0 ≈ 2 × 10−5
Pa, c∗p ≈

103m2
s

−2
K, γ ≈ 1.4 and l∗ ≈ 1m. This then gives the order of magnitude estimates Re ≈ 107, and hene

δ ≈ 10−3
. For aousti power between 120dB and 160dB, we �nd ε has an order of magnitude varying

between 5× 10−5
and 5× 10−3

. For the subsequent weakly nonlinear approximation, we will require ε ≪ δ.

III. Small perturbations

We now onsider small perturbations to the uniform �ow of magnitude ε ≪ δ that are the real part of

terms with dependene exp{i(ωt− kx−mθ)}. We will write, for example, the total temperature as T + T̃ ,
where T (r) is the mean �ow value and T̃ is the small harmoni perturbation.

Outside the boundary layer (i.e. within the dut away from the walls) we assume gradients are not large, so

that the visous terms, whih are O(1/Re) = O(δ2) from (2), an be negleted at leading order. This means

that at leading order we an treat the �ow outside the boundary layer as invisid with u = (M+ ũO, ṽO, w̃O),
p = 1/γ + p̃O and T = 1/(γ − 1) + T̃O.

Inside the boundary layer, we resale using (3), so that r = 1 − δy and u = (u + ũ,−δṽ, w̃). From Ref.

1 we know that for the leading order system to be well-posed we require ũ, ṽ, ρ̃ and T̃ to be O(ε/δ) and p̃
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and w̃ to be O(ε) at leading order. This suggests we use the expansion:

ũ =
ε

δ
ũ1 +

ε2

δ2
ũ2 + εũ3 (4a)

ṽ =
ε

δ
ṽ1 +

ε2

δ2
ṽ2 + εṽ3 (4b)

w̃ = εw̃1 +
ε2

δ
w̃2 + εδw̃3 (4)

T̃ =
ε

δ
T̃1 +

ε2

δ2
T̃2 + εT̃3 (4d)

p̃ = εp̃1 +
ε2

δ
p̃2 + εδp̃3 (4e)

where the quantities labelled `1' are the leading order (linear) perturbations, quantities labelled `2' are the

�rst order nonlinear orretion, and quantities labelled `3' are the �rst order in δ linear orretion (i.e. the

�rst terms to involve mean �ow shear). We next expand the governing equations (1) to order O(ε2) and
O(εδ) to give linear system of ODEs for eah of these quantities.

IV. Linear aoustis

In this setion we desribe the proess for solving the governing equations (1) with the asymptoti

expansion (4) for the leading order linear terms (quantities labelled `1'), reproduing the results of Ref. 1.

A similar proedure an be used for the �rst order linear orretion terms (quantities labelled `3'), as was

done in Ref. 13. These equations will be used in setion V to alulate the new nonlinear terms (quantities

labelled `2').

Sine the equations we are working with here are linear, we do not have to take the real parts of the

omplex exponentials when substituting for the perturbations, but may work instead diretly with the

omplex exponentials, as is usual in aoustis.

A. Outer

At leading order the solution for the pressure in the entre of the dut is the standard result involving Bessel

funtions,

p̃O = CJm(αr) where α2 = (ω −Mk)2 − k2, (5)

and C is an arbitrary onstant. The other quantities are then given in terms of p̃O by

i(ω −Mk)ũO − ikp̃O = 0, (6a)

i(ω −Mk)ṽO + p̃Or = 0, (6b)

i(ω −Mk)w̃O − imp̃O/r = 0, (6)

T̃O = p̃O. (6d)

B. Inner

Inside the boundary layer, the expansion of the governing equations (1) at leading order gives

L(ũ1, ṽ1, T1;ω, k) =











i(ω − uk)T̃1 + Tyṽ1 − T ṽ1y + ikT ũ1

i(ω − uk)ũ1 + ṽ1uy − ξ(γ − 1)2T (T ũ1y + T̃1uy)y

i(ω − uk)T̃1 + ṽ1Ty − ξ(γ − 1)2T
[

1
Pr

(T̃1T )yy + T̃1(uy)
2 + 2Tuyũ1y

]











= 0 (7)

whih is a system of linear homogeneous ODEs.
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Figure 3: Surfae plot of |Zeff/Z(1− Mk
ω

)| in the k-plane for ω = 31, M = 0.5, δ = 10−3
, Pr = 0.7 and ξ = 1.

The darker shades of green are where the Myers ondition agrees fairly losely with the visous asymptotis

whereas the lighter shades are where the two shemes disagree.

C. Mathing

The system of equations L is seond order in ũ and T̃ , and (due to the saling used, 4) we have that

ũ1 = T̃1 = 0 at the wall. To get the seond boundary ondition we look outside the boundary layer, where

the gradients of the mean �ow quantities vanish and the mean �ow quantities ahieve their uniform �ow

values, so at y = Y ≫ 1, the system deouples and beomes:

L(ũ1, ṽ1, T1;ω, k) =











η2
∞
T̃1 − 1

(γ−1) ṽ1y +
ik

(γ−1) ũ1

η2
∞
ũ1 − ξũ1yy

η2
∞
T̃1 − ξ

Pr
T̃1yy











= 0 (8)

This an now be solved analytially, with only the deaying solutions kept so that we an math to our

Outer solution in the entre of the dut. This allows the equations at Y to be reformulated to give �rst order

equations suh that only the deaying solutions are admitted:

ũ1y + η∞ũ1 = 0, ṽ1 = ṽ1∞ − η∞(γ − 1)ξ

σ
T̃1 −

ik

η∞
ũ1, T̃1y + ση∞T̃1 = 0 at y = Y

where η2
∞

= i(ω−Mk)/ξ and σ2 = Pr. This gives the results of Brambley1

; where the O(ε/δ) ampli�ation

in the boundary layer does not propagate into the entre of the dut where the aoustis are O(ε). This is
beause both ũ1 and T̃1 deay to zero outside the boundary layer, while −δṽ1∞, whih is O(ε), is mathed

to the outer. It should be noted that taking the deaying solution involves taking the square root of η2
∞

whih has positive real part. This leads to a branh ut in the omplex k-plane, with the branh point at

k = ω/M and the branh ut extending vertially downwards.

Figure 3 shows a plot of |Zeff/Z(1− Mk
ω

)| in the k-plane for the leading order visous asymptotis. This

ompares the e�etive impedane found to the impedane from the Myers boundary ondition. The branh

ut is learly visible at Re(k) = 62 for Im(k) < 0.
For further details of this, inluding various asymptoti solutions of (7) in high- and low-frequeny limits,

the reader is referred to Ref. 1. The same proedure as given here may be used to alulate the �rst order

linear orretion terms (quantities labelled `3' above), and suh an analysis is given in Ref. 13. We now turn

our attention to the nonlinear orretion terms.
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V. Nonlinear aoustis

Having solved for the leading order linear terms, We now solve for the nonlinear orretion terms (quan-

tities labelled `2' in 4). Substituting the asymptoti ansatz (4) into the governing equations (1) and taking

terms of order O(ε2) results in a set of linear ODEs to solve for the nonlinear orretion terms, fored by

terms quadrati in the leading order linear solution. Sine these foring terms are nonlinear, we must take

the real parts of the perturbed leading order quantities before multiplying. For example, the multiple of ũ1

and dṽ1/dx is

Re
(

ũ1 exp{iωt− ikx− imθ}
)

Re
(

− ikṽ1 exp{iωt− ikx− imθ}
)

=
1

2
Re

(

− ikũ1ṽ1 exp{2iωt− 2ikx− 2imθ}+ ik⋆ũ1ṽ
⋆
1 exp{i(ω − ω⋆)t− i(k − k⋆)x}

)

, (9)

where a star denotes the omplex onjugate. This therefore results in two di�erent modes: a mode of double

the frequeny and wavenumber of the leading order aoustis; and a `zero' frequeny mode that has the

purely imaginary frequeny ω − ω⋆
and wavenumber k − k⋆.

A. Inner

The system of equations to solve is now:

L(ũ2, ṽ2, T̃2; Ω,K) = Q(ũ1, ṽ1, T̃1; ũ
⋆
1, ṽ

⋆
1 , T̃

⋆
1 ;ω, k) (10)

where L is as given in (7), Ω = 2ω, K = 2k and the ⋆ is ignored in the double frequeny mode ase, and

Ω = ω−ω⋆
, K = k− k⋆ and the ⋆ means the omplex onjugate in the `zero' mode ase. The foring Q has

the following form:

Q =











































Ty

2T (T̃1ṽ
⋆
1)− 1

4 (T̃1ṽ
⋆
1)y +

T̃1T̃
⋆
1

4T i(Ω− uK) + 1
4 iKũ1T̃

⋆
1

i(ω−uk)
4T (ũ1T̃

⋆
1 ) +

ik
4 ũ1ũ

⋆
1 +

uy

4T (T̃1ṽ
⋆
1)− 1

4 (ṽ1ũ
⋆
1y) +

ξ(γ−1)2T
4 (T̃1ũ

⋆
1y)y

ik
4 (ũ

⋆
1T̃1)− 1

4 (ṽ1T̃
⋆
1y) +

i(ω−uk)
4T T̃1T̃

⋆
1 +

Ty

4T (T̃1ṽ
⋆
1)+

+ ξ(γ−1)2T
4Pr

(T̃ ⋆
1 T̃1y)y +

ξ(γ−1)2T
4 (T ũ1yũ

⋆
1y + 2uyT̃1ũ

⋆
1y)











































(11)

Similarly to the linear ase, when the extrapolation outside the boundary layer at y = Y ≫ 1 is arried

out we get exponential terms ∝ exp(±N∞y) where N2
∞

= i(Ω−MK)/ξ. The double frequeny mode behaves

similarly to the leading order aoustis. The branh ut for N∞ is the same as for η∞, and we an take the

deaying solution and rewrite the equations to ensure only this solution is admitted. However for the `zero'

mode N2
∞

is always real, and the resulting behaviour depends on the sign of N2
∞
. For downstream deaying

modes, N2
∞

< 0, and both exponentials have purely imaginary argument and osillate without deaying.

In e�et, this is beause in this ase the whole lower-half k-plane is the branh ut. This means that the

O(ε2/δ2) `zero' frequeny ampli�ation will propagate into the entre of the dut. For upstream deaying

modes, N2
∞

> 0, and the deaying solution may be taken similarly to the leading order ase.

B. Interation of multiple modes

We might also onsider the nonlinear e�et due to two di�erent frequeny leading order modes interating.

We now take the leading order aoustis as a superposition of two waves,

ũ1 = Re
(

ũ1ae
i(ωat−kax−maθ)

)

+Re
(

ũ1be
i(ωbt−kbx−mbθ)

)

, (12)

We �nally obtain two pairs of nonlinear self-interation modes, as desribed above, as well as two ross-

interation modes. These ross-interations modes will have the forms

ũ2+ = Re
(

ũ2e
i[(ωa+ωb)t−(ka+kb)x−(ma+mb)θ]

)

, ũ2− = Re
(

ũ2e
i[(ωa−ω⋆

b )t−(ka−k⋆
b )x−(ma−mb)θ]

)

. (13)

6 of 12

Amerian Institute of Aeronautis and Astronautis Paper 2017-3376



The system of equations we now have to solve are:

L(ũ2+, ṽ2+, T̃2+; Ω,K) = Q(ũ1a, ṽ1a, T̃1a; ũ1b, ṽ1b, T̃1b;ωa, ka) +Q(ũ1b, ṽ1b, T̃1b; ũ1a, ṽ1a, T̃1a;ωb, kb) (14)

with Q from (11), Ω = ωa + ωb and K = ka + kb, and

L(ũ2−, ṽ2−, T̃2−; Ω,K) = Q(ũ1a, ṽ1a, T̃1a; ũ
⋆
1b, ṽ

⋆
1b, T̃

⋆
1b;ωa, ka) +Q(ũ⋆

1b, ṽ
⋆
1b, T̃

⋆
1b; ũ1a, ṽ1a, T̃1a;−ω⋆

b ,−k⋆b )

with Ω = ωa − ω⋆
b and K = ka − k⋆b .

The magnitude of the mathing outer solution depends on N2
∞

in the same way as the self-interation

modes. For N2
∞

real and negative the outer solution is O(ε2/δ2), and for all other values of N2
∞

it is O(ε2).

C. Outer

In the ase N2
∞

> 0 (when the original mode deays in the upstream diretion) the behaviour of the `zero'

mode outside the boundary layer is similar to the leading order mode, the ampli�ation in the boundary

layer deays and it mathes to a O(ε2) Outer solution whih is given by a fored Bessel's equation:

p̃2rr +
1

r
p̃2r +A2p̃2 −

M2

r2
p̃2 =

(γ − 1)ξ2η2
∞
N2

∞

4
p̃⋆1T̃1 −

(γ − 1)ξ2N4
∞

4
p̃⋆1T̃1

− iKξN2
∞

4
p̃⋆1ũ1 +

ξN2
∞

4
(
ṽ1
r

+ ṽ1r)p̃
⋆
1 +

ξN2
∞

4
ṽ1p̃

⋆
1r −

iMξN2
∞

4r
w̃1p̃

⋆
1

+
iK

4
[ξη2

∞
p̃⋆1ũ1 − ikũ⋆

1ũ1 + ṽ⋆1 ũ1r −
im

r
w̃⋆

1 ũ1]

+
1

4r
[−ξη2

∞
p̃⋆1ṽ1 + ikũ⋆

1ṽ1 − ṽ⋆1 ṽ1r +
im

r
w̃⋆

1 ṽ1 +
1

r
w̃⋆

1w̃1]

+
1

4
[−ξη2

∞
p̃⋆1ṽ1 + ikũ⋆

1ṽ1 − ṽ⋆1 ṽ1r +
im

r
w̃⋆

1 ṽ1 +
1

r
w̃⋆

1w̃1]r

+
iM
4r

[−p⋆1η
2
∞
ξw̃1 + ikũ⋆

1w̃1 − ṽ⋆1w̃1r +
im

r
w̃⋆

1w̃1 −
1

r
ṽ⋆1w̃1] + c.c.

where A2 = −ξ2N4
∞

− K2 = [Ω − MK]2 − K2
and M = 0. This an be transformed to a fored Bessel's

equation of order M. For the double mode the equation for the outer is the same but with M = 2m.

D. Outer for self-interation mode with N2
∞

< 0

In the ase N2
∞

< 0, the extrapolation of the inner gives an osillatory solution. This propagates into the

rest of the dut and as the frequeny of the osillations is ∝ 1/δ, the gradients outside the boundary layer

an no longer be assumed to be small and so the visous terms annot be ignored. However, an approximate

solution to the outer equations may be found using the method of multiple sales. To do this we begin by

de�ning variables y and Y suh that r = Y +δy, so y is the rapidly varying variable and Y the slowly varying

variable. We an then expand all quantities as ũ2 = ε2

δ2
ũO0 +

ε2

δ
ũO1 + ε2ũO2 and expand the equations in

powers of δ. At leading order (O(ε2/δ2)) this gives:

N2
∞
ξũO0 − ξũO0yy = 0 ⇒ ũO0 = A1(Y )eify +A2(Y )e−ify

(15)

where f2 = −N2
∞
. To avoid a seular term at the next order (ũO1) we require:

A′

1 +
A1

2Y
= 0 and A′

2 +
A2

2Y
= 0 ⇒ ũO0 =

1√
Y
(A1e

ify +A2e
−ify). (16)

Now this solution is singular at the origin, so to eliminate one of the two onstants we need to solve for ũO in

an inner-outer region about r = 0 where the 1/r terms beome large. To do this we set r = δx and expand

our equations to leading order in δ. This gives:

N2
∞
ξũO0 − ξũO0xx − ξ

x
ũO0x = 0 ⇒ ũO0 = AJ0(fx). (17)
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For large x this solution an be approximated by the standard result:

ũO0 ≈ A

√

2δ

fπY
cos(fy − π

4
) (18)

This now has to math with our outer solution. This means that the Outer must be:

ũO0 =
ũ2∞√
Y

cos(fy − π

4
) and A =

√

fπ

2δ
ũ2∞ (19)

We an use a similar method to �nd the leading order terms of T̃ , ṽ and p̃:

T̃O0 =
T̃2∞√
Y

cos(fσy − π

4
) (20a)

ṽO0 =
δi(k − k⋆)ũ2∞

f
√
Y

sin(fy − π

4
)− δfξ(γ − 1)T̃2∞

σ
√
Y

sin(fσy − π

4
) + δ2C1(Y ) (20b)

p̃O1 = δ2ξ2N2
∞
(γ − 1)

(

2 +
µB∗

0

µ∗

0

− 2

3
− 1

Pr

)

T̃O0 + δ2D1(Y ) (20)

To �nd the slowly varying terms of ṽO and p̃O, we have to introdue a new slow-slow variable X suh

that r = X/δ+Y + δy. We an then repeat the above method to seond order and �nd that C1(r)and D1(r)
are the same Outer solutions, ṽ2O and p̃2O, as in the ase N2

∞
> 0.

The onstants ũ2∞ and T̃2∞ are both O(ε2/δ2). This orresponds to an ampli�ed aousti streaming,

stronger than the O(ε2) aousti streaming that would be expeted, that is aused by the visous boundary

layer over the aousti lining.

VI. Numerial Method

While asymptoti approximate solutions to equations (7,11,14) are possible (see, e.g. Refs. 1,14, here

these equations are solved numerially using 4th order �nite di�erenes. The resulting 3N × 3N banded

matrix system of equations is solved using the LAPACK_ZGBSV routine. To solve for the �rst order

nonlinear inner, the same matrix is used, now fored by terms nonlinear in the leading order quantities. The

system of equations is solved from y = 0 to y = Y , where Y is large enough so that the mean �ow terms

are approximately there uniform �ow values, and the extrapolation ondition (8) is used as the boundary

ondition.

By way of omparison, we also produe weakly nonlinear solutions to the full Navier Stokes equations,

without any of the asymptoti assumptions in δ and the mathing needed above. The full Navier Stokes

equations are expanded in ε, and a 4th order �nite di�erene sheme is again used for the O(ε) and O(ε2)
equations thus obtained. In this ase we get a 5N × 5N banded matrix equation that is homogeneous in the

leading order ase and fored by leading order terms in the �rst order ase. To aurately resolve the details

in the boundary layer while still solving aross the whole dut, strethed oordinates η = tanh(Sr)/ tanh(S)
are used, where S is the strething fator. This then onentrates the grid points about r = 1 so that the

rapid variations there due to the thin boundary layer are properly resolved. For the results below a strething

fator of S = 2.0 is used. Before solving, the matrix is balaned so that the largest value in eah row is 1;

this ensures that the solution remains stable near the origin, where terms involving 1/r an beome large.

VII. Results

Figure 4 shows plots of the mode shapes for both types of ross-interation modes. The asymptoti

solution an be seen to be in good agreement with the omparable result derived diretly from the expansion

in ε of the full Navier Stokes, alulated without assumptions about asymptotis and mathing. Note that

these solutions are alulated with p̃1 = 1 at the wall, and only the real parts of the solutions are plotted

here.

8 of 12

Amerian Institute of Aeronautis and Astronautis Paper 2017-3376



0.0000 0.0005 0.0010 0.0015 0.0020

-5000

0

5000

10000

15000

PSfrag replaements

ũ
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Figure 4: Inner solutions of ũ2+/ε
2
(left) and ũ2−/ε

2
(right) for wa = 5, ka = 10, ma = 10, wb = 31 + 5i,

kb = 12, mb = 12 for asymptotis (blue) ompared to expanded full Navier Stokes (green), with δ = 10−3
,

M = 0.7, Pr = 0.7 and ξ = 1

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

-200000

-150000

-100000

-50000

0

50000

PSfrag replaements

ũ
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Figure 5: Inner (left) and outer (right) mode shapes of the double frequeny mode ũ2/ε
2
, omparing the

asymptotis (blue) to the �rst term from the expansion in ε of the full Navier Stokes (green). Parameters

are M = 0.7, δ = 10−3
, Pr = 0.7, ξ = 1, ω = 5, k = 5 + i and m = 2

A typial mode shape of the double-frequeny nonlinear mode is given in �gure 5. The nonlinear asymp-

toti solution is shown to be in good agreement with be �rst term from the expansion in ε of the full Navier
Stokes, giving on�dene in the asymptoti method applied. Moreover, both solutions are loalized within

the boundary layer (δ = 10−3
in this ase), on�rming the predition that the O(1/δ) ampli�ation within

the boundary layer

1

does indeed trigger signi�antly more nonlinearity than would otherwise have been

expeted, but that, for the double frequeny mode, it does not bleed out into the rest of the dut.

The omparable `zero' frequeny nonlinear mode, for the ase upstream deaying ase N2
∞

> 0, is plotted
in �gure 6. This shows a similar trend to 5, in that the predited O(1/δ) ampli�ation within the boundary

layer is seen, but does not bleed out into the rest of the dut; the aousti streaming in the entre of the

dut remains the lassial magnitude of O(ε2δ0).
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are M = 0.7, δ = 10−3
, Pr = 0.7 and ξ = 1
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Figure 7: Inner (left) and outer (right) of `zero' mode ũ2/ε
2
for ω = 5, k = 5− i and m = 2 for asymptotis

(blue) ompared to the �rst term from the expansion in ε of the full Navier Stokes (green). Other parameters

are M = 0.7, δ = 10−3
, Pr = 0.7 and ξ = 1

In ontrast, however, �gure 7 shows the mode-shapes in the ase of a downstream deaying mode, for

whih N2
∞

< 0. The solution is seen to osillate rapidly in r with a wavelength of order O(δ). This ampli�ed

rapid osillation does not deay away from the boundary layer and is present throughout the dut, with

an amplitude of O(ε2/δ2). This shows that, in this ase, the ampli�ation within the boundary layer by

a fator of 1/δ previously predited

1

does indeed lead to signi�ant nonlinearity beyond what would have

been expeted within the dut, and that this nonlinearity is not in this ase on�ned to within the boundary

layer but bleeds out into the rest of the dut.

Figure 8 shows the total sum of these e�ets, by plotting the overall perturbation to the streamwise

veloity ũ at di�erent aousti amplitudes. The e�et of the nonlinear streaming is easily seen by the hairy

appearane of the louder plot, although this nonlinear perturbation deays faster in the x diretion than the

damped aoustis, sine the axial wavenumber has twie the deay rate of the linear aoustis.
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Figure 8: Plot of snapshots of the total perturbation for k = 5− i, ω = 31, m = 10 and δ = 10−3
for di�erent

initial amplitudes.

VIII. Conlusion

In this paper, we have investigated how the previously predited

1

ampli�ation of aoustis within a thin

viso-thermal boundary layer over an aousti lining leads to nonlinear e�ets beoming apparent at lower

sound amplitudes than might have otherwise been predited. It is emphasized that the nonlinearity presented

here is nonlinearity within the �uid in the boundary layer, and is separate to the nonlinear behaviour of the

atual boundary, suh as the nonlinear behaviour of Helmholtz resonators near resonane

3

. The mehanism

is that sound of amplitude ε enters the boundary layer of thikness δ and is ampli�ed to order ε/δ. Nonlinear
interations then result in new aoustis with an amplitude of order ε2/δ2. These new aoustis have either

double the frequeny of the inoming sound, or `zero' times the frequeny, the latter orresponding to aousti

streaming. The double frequeny ampli�ed sound is loalized to the boundary layer, but for downstream

deaying sound the `zero' frequeny nonlinear modes bleed into the rest of the dut and show an ε2/δ2

amplitude throughout the dut. This is a fator of 1/δ2 times the magnitude that would be reated by

ordinary nonlinear interations within the dut itself.

Also derived here are equations governing the nonlinear interations of two modes of di�ering frequenies.

As for the self-interating ase, nonlinearity beomes important at lower amplitudes than expeted due to

the 1/δ ampli�ation within the boundary layer. Suh interations may well be important when two well-

damped high azimuthal order spinning modes (for example, orresponding to the number of rotor and stator

blades respetively) interat to produe a poorly-damped low azimuthal order nonlinear mode.

So far, this analysis has not been applied to investigate nonlinearity within surfae modes

17,18

. Sine

surfae modes are loalized lose to the boundary, and sine one of them might be an instability whih might

lead to large amplitudes, investigating the impat of nonlinearity on suh modes in ombination with the

1/δ ampli�ation would prove interesting. For example, it may be that the nonlinearity enhanes ertain

surfae modes and restrains others.

The analysis presented here has assumed a thin boundary layer of width δ, and a small aousti pertur-

bation of amplitude ε, with ε ≪ δ ≪ 1. In pratie this is expeted to be appliable to airraft engines up to

about 160dB, where nonlinear e�ets are expeted to beome important everywhere and not just on�ned

to the boundaries. While the use of the asymptotis simpli�es the governing equations, numerial solutions

are still needed. In the linear ase, other additional methods are used to derive approximate solutions and

an e�etive impedane Zeff that aounts for the behaviour within the boundary layer without having to

numerially solve di�erential equations

1,13,14

, and suh tehniques may well be appliable here.

Sine these modes have only been identi�ed mathematially, it would be interesting to look for their

signature in existing experimental results, suh as those of Aurégan

2

, for example.
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