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Acoustics are considered in a straight cylindrical lined duct with an axial mean flow that is
uniform apart from a boundary layer near the wall. Within the boundary layer, which may or
may not be thin, the flow profile is quadratic and satisfies no-slip at the wall. Time-harmonic
modal solutions to the linearised Euler equations are found by solving the Pridmore-Brown
equation using Frobenius series. The Briggs–Bers criterion is used to ascertain the spatial
stability of the modes, without considering absolute instabilities. The modes usually identified as
Hydrodynamic Instabilities are found to interact with the critical layer branch cut, also known
as the continuous spectrum. By varying the boundary layer thickness, flow speed, frequency and
wall impedance, it is found that these spatial instabilities can be stabilised behind the critical
layer branch cut. In particular, spatial instabilities are only found for a boundary layer thinner
than a critical boundary layer thickness ℎ𝑐. The behaviours observed for the uniform-quadratic
sheared flow considered here are further compared to a uniform-linear sheared flow, and a
uniform slipping flow under the Ingard–Myers boundary condition, where this process of
stabilisation is not observed. It is therefore argued that modelling a sufficiently smooth mean
flow boundary layer is necessary to predict the correct stability of flow over a lined wall.

I. Introduction

Aircraft noise, and particularly aeroengine noise, has, over recent years, been subjected to ever stricter limitations.
Aircraft manufacturers are increasingly relying on numerical simulations to optimize new aircraft designs, and

noise limits form a significant constraint on the optimal design. For this reason, acoustic linings are universally used
throughout aeroengines in order to reduce particularly unwanted tonal noise. The design and optimization of such linings
is therefore of considerable interest, but similarly instability of flow over such linings that could reduce aeroengine
efficiency or increase noise are also of interest.

Acoustic linings are typically modelled as an impedance boundary condition at a duct wall. An oscillating pressure
𝑝 = 𝑝0 + Re

(
𝑝 exp{i𝜔𝑡}

)
at the duct wall gives rise to an oscillating flow at the duct wall with normal velocity

𝑣 = Re
(
�̂� exp{i𝜔𝑡}

)
, and the wall impedance is given by 𝑍 = 𝑝/�̂�. In general, 𝑍 is complex and varies with the

frequency 𝜔. For an actual aeroengine single-degree-of-freedom perforated-sheet liner, a model for 𝑍 (𝜔) depending
on the various physical parameters was given by Guess [2]. Due to its complexity, a simpler model often used is
the mass–spring–damper model [3, 4], also known as the three-parameter model [5], and indeed Tam and Auriault
[5] explain how this three-parameter model can be used to efficiently model a liner near particular frequencies in
time-domain simulations. There are constraints on the allowable forms of 𝑍 (𝜔), however, as it must be consistent with
a causal time-domain model [6], and Rienstra [6] showed that many empirical models, including the model of Guess [2],
do not satisfy these constraints. Taking 𝑍 (𝜔) to be a constant independent of 𝜔 also violates these constraints unless 𝑍
is purely real. Rienstra [6] showed the mass–spring–damper model does satisfy these constraints, and then went on
to proposed an Extended Helmholtz Resonator model, similar in form to the model of Guess [2], that also satisfies
these constraints. Here, we will be concerned with time-harmonic modes with a single frequency 𝜔, and so it might
appear that only 𝑍 (𝜔) for one frequency is needed. However, the form of 𝑍 (𝜔) affects the stability analysis, and so it is
important for stability analyses to use a model corresponding to a causal time-domain model. For this reason, here we
will use the mass–spring–damper model, as it is the simplest impedance model that satisfies Rienstra’s constraints [6].
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It is well known that a mean flow that does not satisfy no-slip at the wall, such as a uniform flow, complicates the
impedance boundary condition. The often-used Ingard–Myers [7] boundary condition is illposed in the time domain [8],
leading to both numerical and theoretical difficulties, and does not match well with experimental observations [e.g.
9]. It may be regularized by allowing for a thin boundary layer over the wall [10]; while this regularized boundary
condition also leads to a significant increase in accuracy when solving the linearized Euler equations [11], it too does
not accurately reproduce experimental observations [12]. Various attempts have been made at improved impedance
boundary conditions [e.g. 13–15], but to date no impedance boundary condition matches well with experimental
observations [16, 17]. An alternative is to include a varying mean flow which satisfies the no-slip condition at the duct
wall. This, however, introduces its own complications, including the critical layer, otherwise known as the continuous
spectrum [18].

Most investigations of the interaction of sound and acoustic linings consider duct modes in the frequency domain.
When considering a non-uniform mean flow in the frequency-domain, the pressure perturbation is governed by the
Pridmore-Brown equation [19]. Duct modes are found by solving the Pridmore-Brown equation subject to the impedance
boundary condition at the duct wall. A reasonably general solution is then given as a linear sum of these duct modes,
with amplitudes fitted to emulate a particular sound source. This is the basis of techniques such as mode-matching [e.g.
20, 21]. Modes also occur as poles in complex analytic methods, such as the the Weiner-Hopf technique [e.g. 22–24].
However, since the Pridmore-Brown equation is not self-adjoint, the duct modes are not necessarily complete, and so a
general solution cannot necessarily be described as just a sum of duct modes. This difficulty manifests itself as the
critical layer. Solving analytically for the sound generated by a point mass source in a duct, the solution is found to
consist not only of a sum of modes, but also includes a Fourier inversion integral around the critical layer [18, 25]. This
results in an extra term in the solution downstream of the point mass source, including a neutrally stable non-decaying
term if the source is located within the boundary layer [18, 25, 26]. Despite this, the critical layer is often ignored in
practice, either explicitly or implicitly, with its contribution argued to be small compared to that of the sum of duct
modes, with some justification [18].

One complication of considering duct modes in the frequency domain is determining their direction of propagation;
this can be achieved using the Briggs–Bers criterion [27, 28]. Most modes are stable and decay in their direction
of propagation, but a number of surface wave modes exist with interesting properties [4, 29], and one such surface
wave mode has been labelled a hydrodynamic instability [4]. The hydrodynamic instability is so called because
it only exists with a mean flow and has no counterpart without flow [4]. It has been shown to be a convective
instability growing spatially in the downstream direction using the Briggs–Bers criterion in both the 2D incompressible
case [30] and the 3D compressible case in a cylindrical duct [10]. There is also some experimental [e.g. 31, 32] and
numerical [e.g. 33, 34] evidence of spatial instabilities, although the hydrodynamic instability is in most cases the least
well theoretically-predicted duct mode; this is in part due to deficiencies in the modelling [e.g. 17, 35], and in part due
to the particular sensitivity of the hydrodynamic instability to parameters such as boundary layer thickness (as will be
seen here). Because of this, and because of the inconvenience of dealing with an instability in numerical simulations,
numerical techniques have been developed [e.g. 36–38] which modify the governing Euler equations to avoid triggering
the instability, although care must be taken not to also modify the true acoustical behaviour [34, 39].

Another complication of a frequency-domain analysis is that the frequency of interest must be specified a priori.
However, the Briggs–Bers stability analysis shows that, for some convectively unstable systems, the system can choose
its own preferred frequency rather than the one prescribed. This is termed absolute instability, and (unlike spatial
instabilities) causes the system to grow exponentially in time at the system’s preferred frequency. If the system is not
absolutely unstable, then the frequency-domain assumption of a single frequency is valid, and the system remains
bounded in time. In this case, any instabilities will grow in space but not in time, and are termed spatial, or convective,
instabilities; the hydrodynamic instability mentioned above is one such convective instability. Knowledge about absolute
instability can also be inferred from knowledge about spatial instabilities: if the system is convectively stable at all
frequencies, then absolute instabilities cannot occur. Flow over an acoustic lining is likely to be absolutely unstable for
sufficiently thin boundary layers, with the critical boundary layer thickness leading to absolute instability being found in
both the 2D incompressible case [30] and the 3D compressible case in a cylindrical duct [10]. When the system is not
absolutely unstable, the single-frequency assumption is valid, and the overall stability of the system depends on whether
or not the hydrodynamic instability is present, which is the topic of investigation here.

Interestingly, the hydrodynamic instability has been observed [29] in some cases to move behind the critical layer
branch cut. This then results in a stable situation, but one for which the critical layer contribution might be the dominant
contribution far downstream of the source. However, this has not been investigated further due to the numerical method
being unable to track the hydrodynamically unstable surface wave mode behind the critical layer. The Frobenius
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method [18] is capable of tracking the mode behind the branch cut, but, for the linear boundary layer flow profile used in
that case, the hydrodynamic instability mode never went behind the branch cut. More recently, the Frobenius method
has been used to analyse a quadratic boundary layer profile [25], as will also be considered here, and the hydrodynamic
instability was found to move behind the critical layer branch cut. Hence, not only was the solution then stable, but
the contribution of this hidden mode was included in the Fourier inversion integral around the critical layer, meaning
that this mode could still exhibit cut-on behaviour and the non-modal critical layer branch cut may be dominant in the
far-field, particularly for a sound source close to the wall; in this case, ignoring the critical layer would give inaccurate
results.

In this work, we will examine the stabilization of the hydrodynamic instability as it interacts with and moves behind
the critical layer branch cut. In particular, we will observe the effects on this behaviour of boundary layer thickness,
Mach number, frequency and impedance. In section II we summarise the Frobenius solutions from King et al. [25]
and make use of the code provided. A parameter study is performed in section III. This allows us to find the critical
boundary layer thickness that leads to the stabilization of the hydrodynamic ‘instability’ and comparisons are made to
the uniform-linear shear flow of [18] and a uniform flow under the Ingard-Myers boundary condition.

II. Formulation and Solutions to the Pridmore-Brown Equation

The governing equations for what follows are the Euler equations in cylindrical coordinates for an isentropic flow,

𝜕𝜌

𝜕𝑡
+ 𝜕 (𝜌𝑢𝑥)

𝜕𝑥
+ 1
𝑟

𝜕 (𝑟𝜌𝑢𝑟 )
𝜕𝑟

+ 1
𝑟

𝜕 (𝜌𝑢\ )
𝜕\

= 0,
𝐷𝑝

𝐷𝑡
= 𝑐2𝐷𝜌

𝐷𝑡
, (1)

𝜌
𝐷𝑢𝑥

𝐷𝑡
= −𝜕𝑝

𝜕𝑥
, 𝜌

𝐷𝑢𝑟

𝐷𝑡
−1
𝑟
𝜌𝑢2

\ = −𝜕𝑝
𝜕𝑟
, 𝜌

𝐷𝑢\

𝐷𝑡
+1
𝑟
𝜌𝑢𝑟𝑢\ = −1

𝑟

𝜕𝑝

𝜕\
,

where 𝐷/𝐷𝑡 = 𝜕/𝜕𝑡 + 𝑢𝑥𝜕/𝜕𝑥 + 𝑢𝑟𝜕/𝜕𝑟 + 𝑢\/𝑟𝜕/𝜕\. We write each variable as a steady mean flow plus a small
time-harmonic perturbation of order 𝜖 and frequency 𝜔,

𝜌 = 𝜌0 (𝑟) + Re
(
𝜖 �̂�𝑒i𝜔𝑡 ) +𝑂 (𝜖2), 𝑝 = 𝑝0 + Re

(
𝜖 𝑝𝑒i𝜔𝑡 ) +𝑂 (𝜖2),

𝒖 = (𝑢𝑥 , 𝑢𝑟 , 𝑢\ ) = 𝑈 (𝑟)𝒆𝒙 + Re
(
𝜖
(
�̂�, �̂�, �̂�

)
𝑒i𝜔𝑡

)
+𝑂 (𝜖2), 𝑐2 = 𝑐2

0 (𝑟) +𝑂 (𝜖), (2)

where 𝑝0 is necessarily a constant in order that the steady state should satisfy the Euler equations,𝑈 (𝑟) is an arbitrary
sufficiently-smooth axial velocity profile, and 𝑐0 is the speed of sound for the base flow. While we do not assume a
particular equation of state here, for a perfect gas with ratio of specific heats 𝛾 = 𝑐𝑝/𝑐𝑣 we would have 𝑐2

0 = 𝛾𝑝0/𝜌0.
All perturbations are then expanded using a Fourier series in \ and a Fourier transform in 𝑥. As a result, the pressure
perturbation is given as

𝑝(𝑥, 𝑟, \) = 1
2𝜋

∞∑︁
𝑚=−∞

e−i𝑚\
∫ ∞

−∞
𝑝(𝑟; 𝑘, 𝑚, 𝜔)e−i𝑘𝑥 d𝑘, (3)

and similarly for the density �̂� and the velocity components �̂�, �̂� and �̂�. An important technicality of (3) is that the
correct choice of integral contour must be chosen to ensure causality; this is done here using the Briggs–Bers criterion,
as described in §III. Ignoring terms of order 𝑂 (𝜖2), which allows us to only consider 𝑐2 to leading order, and solving
the Euler equations (1) for the pressure perturbation gives

𝑝′′ +
(

2𝑘𝑈′

𝜔 −𝑈 (𝑟)𝑘 + 1
𝑟
−
𝜌′0
𝜌0

)
𝑝′ +

(
(𝜔 −𝑈 (𝑟)𝑘)2

𝑐2
0

− 𝑘2 − 𝑚2

𝑟2

)
𝑝 = 0 (4a)

with �̃� =
i𝑝′

𝜌0 (𝜔 −𝑈𝑘) , (4b)

where a prime denotes the derivative with respect to 𝑟 . Equation (4a) is the Pridmore-Brown equation [19].
Here, for simplicity, we assume a constant mean density 𝜌0 (𝑟) = 𝜌0, meaning that the flow is homentropic, and

resulting in a constant speed of sound 𝑐0 (𝑟) = 𝑐0. We also, again for simplicity, choose a flow profile 𝑈 (𝑟) that is
uniform except within a boundary layer of width ℎ near the duct wall at 𝑟 = 𝑎, where the flow varies quadratically:

𝑈 (𝑟) =
{
𝑐0𝑀 0 ≤ 𝑟 ≤ 𝑎 − ℎ
𝑐0𝑀 (1 − (1 − 𝑎−𝑟

ℎ
)2) 𝑎 − ℎ ≤ 𝑟 ≤ 𝑎

. (5)
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𝑍 = 𝑝/�̃�

𝑥

𝑟

0

ℎ

ℎ

𝑈 (𝑟)

𝜌0 (𝑟)

\

Fig. 1 Schematic of a cylindrical duct with lined walls containing sheared axial flow. 𝜌0 (𝑟) is the mean flow
density (here taken constant), and𝑈 (𝑟) is the mean flow velocity, here taken to be uniform outside a boundary
layer of width ℎ. 𝑍 is the boundary impedance and defines the boundary condition at the wall of the duct.

Here 𝑀 is the centreline Mach number. This flow profile is not intended to be realistic, but rather sufficiently simple that
the critical layer can be investigated explicitly; in practice, other flow profiles are a better approximation to flow boundary
layers, although away from the boundary layers a quadratic flow profile shows a reasonable fit to experiments [e.g. 9,
§II.B]. Note that we do not need to assume that the boundary layer is thin, so ℎ/𝑎 need not be small, unlike some
asymptotic analyses [e.g. 10, 13]. This situation is represented schematically in figure 1.

We non-dimensionalize speeds by the sound speed 𝑐0, densities by 𝜌0, and distances by the duct radius 𝑎. Under
these assumptions and non-dimensionalizations, the Pridmore-Brown equation (4a) reduces to

𝑝′′ +
(

2𝑘𝑈′

𝜔 −𝑈 (𝑟)𝑘 + 1
𝑟

)
𝑝′ +

(
(𝜔 −𝑈 (𝑟)𝑘)2 − 𝑘2 − 𝑚2

𝑟2

)
𝑝 = 0. (6)

with

𝑈 (𝑟) =
{
𝑀 0 ≤ 𝑟 ≤ 1 − ℎ
𝑀 (1 − (1 − 1−𝑟

ℎ
)2) 1 − ℎ ≤ 𝑟 ≤ 1

. (7)

We require the solution to be regular at the centreline 𝑟 = 0, and to satisfy an impedance boundary condition at the duct
wall 𝑟 = 1. Since our mean flow is nonslipping,𝑈 (1) = 0, this is given by

𝑝(1) = 𝑍 (𝜔)�̃�(1), or equivalently 𝑝′ (1) − i𝜔
𝑍
𝑝(1) = 0, (8)

where 𝑍 (𝜔) is the impedance of the duct wall, and a hard wall corresponds to 𝑍 → ∞.
In Ref. 25, the Pridmore-Brown equation with this constant-then-quadratic flow profile is solved using a Frobenius

method. These solutions are then used to construct a Greens function solution for the inhomogeneous Pridmore-Brown
equation, and the Fourier inversion is found. This was used to explore the non-modal contribution of the critical layer.
Here, we will use the same Frobenius solutions to find the modes of (6). The important features of the solutions
from [25] used here are now briefly summarised.

II.A. Frobenius Solution to the Pridmore-Brown Equation
The Pridmore-Brown equation (6) can be split into two cases according to if we are within the uniform or sheared

flow regions (7). When 𝑟 < 1 − ℎ, we are in the uniform flow region, and

𝑝′′ + 1
𝑟
𝑝′ +

(
(𝜔 − 𝑀𝑘)2 − 𝑘2 − 𝑚2

𝑟2

)
𝑝 = 0, (9)

with solutions in terms of Bessel function of order 𝑚. Requiring regularity at 𝑟 = 0, this gives the solution in the
uniform flow region as

𝑝(𝑟) = 𝐽𝑚 (𝛼𝑟) with 𝛼2 = (𝜔 − 𝑀𝑘)2 − 𝑘2. (10)
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In contrast, when 𝑟 > 1−ℎ, we are in the sheared flow region, and, for this quadratic flow profile, the Pridmore-Brown
equation (6) can be written as

𝑝′′ +
(
1
𝑟
− 2
𝑟 − 𝑟−𝑐

− 2
𝑟 − 𝑟+𝑐

)
𝑝′ +

(
𝑀2𝑘2

ℎ4 (𝑟 − 𝑟+𝑐 )2 (𝑟 − 𝑟−𝑐 )2 − 𝑘2 − 𝑚2

𝑟2

)
𝑝 = 0, (11)

where 𝑟±𝑐 are the locations of the critical layer, given by 𝜔 −𝑈 (𝑟𝑐)𝑘 = 0; note that, in general, 𝑟𝑐 will be complex when
𝑘 or 𝜔 are complex. Since𝑈 (𝑟) is quadratic for 𝑟 > 1 − ℎ, this is a quadratic equation to solve, with two solutions,

𝑟±𝑐 = 1 − ℎ ± ℎ
√︂

1 − 𝜔

𝑀𝑘
. (12)

We choose Re(√· · ·) ≥ 0, so that Re(𝑟+𝑐 ) ≥ 1− ℎ; it turns out that 𝑟+𝑐 is the root we will be most interested in throughout.
As in [25], equation (11) can be solved using Frobenius series expansion about 𝑟+𝑐 , resulting in two linearly independent
solutions

𝑝1 (𝑟) =
∞∑︁
𝑛=0

𝑎𝑛 (𝑟 − 𝑟+𝑐 )𝑛+3, 𝑝2 (𝑟) = 𝐴𝑝1 (𝑟) log(𝑟 − 𝑟+𝑐 ) +
∞∑︁
𝑛=0

𝑏𝑛 (𝑟 − 𝑟+𝑐 )𝑛, (13a)

where 𝑎0 = 𝑏0 = 1 and 𝐴 = −1
3

(
1

𝑟+𝑐 − 1 + ℎ − 1
𝑟+𝑐

) (
𝑘2 +

(
𝑚

𝑟+𝑐

)2)
− 2𝑚2

3𝑟+3
𝑐

, (13b)

and the 𝑎𝑛 and 𝑏𝑛 coefficients are given by a recurrence relation in [25]. While the specifics of these solutions are
omitted here, we comment that matlab code is provided in [25] to compute these solutions.

To solve the Pridmore-Brown equation across the whole of 𝑟 ∈ [0, 1], the two types of solutions above are spliced
together such that the resulting solution and its derivative are continuous at 𝑟 = 1 − ℎ:

𝑝(𝑟) =
{
𝐽𝑚 (𝛼𝑟) 0 ≤ 𝑟 ≤ 1 − ℎ
𝐶1𝑝1 (𝑟) + 𝐶2𝑝2 (𝑟) 1 − ℎ ≤ 𝑟 ≤ 1,

(14)

with 𝐶1 and 𝐶2 chosen to ensure continuity of 𝑝 and 𝑝′ at 𝑟 = 1 − ℎ.
In general, while 𝑝(𝑟) has been constructed to satisfy the regularity boundary condition at 𝑟 = 0 (through the use of

the regular Bessel solution 𝐽𝑚 (𝛼𝑟) and the exclusion of the singular Bessel solution 𝑌𝑚 (𝛼𝑟)), it does not satisfy the
impedance boundary condition (8) at 𝑟 = 1. We therefore search for modal solutions by varying 𝑘 such that 𝑝(𝑟) does
satisfy the impedance boundary condition (8) at 𝑟 = 1. This is performed using the matlab code from [25], which uses a
variant of the Secant method, and has been verified against finite-difference solutions to the Pridmore-Brown equation.
The major advantage of using this method over finite difference is its treatment of the critical layer branch cut.

II.B. The Critical Layer Branch Cut
The most important detail of the solution method used here is the presence of the log term in (13). The branch of

log should clearly be chosen to maintain a continuous solution for 𝑝2 (𝑟), and hence 𝑝(𝑟), along 𝑟 ∈ [1 − ℎ, 1]. Here,
we therefore choose

log(𝑟 − 𝑟+𝑐 ) =
{

log𝑃
(

i(𝑟 − 𝑟+𝑐 )
)
− 𝜋/2 Im(𝑟+𝑐 ) > 0

log𝑃
(
−i(𝑟 − 𝑟+𝑐 )

)
+ 𝜋/2 Im(𝑟+𝑐 ) < 0

, (15a)

where log𝑃 (𝑧) = log( |𝑧 |) + i arg𝑃 (𝑧) with − 𝜋 < arg𝑃 (𝑧) ≤ 𝜋, (15b)

with log𝑃 (𝑧) representing the principal branch of log, which is usually the branch computed by numerical implementations
of log. The direction of the resulting branch cuts is illustrated in figure 2. The only difficulty is when Im(𝑟+𝑐 ) = 0, and
indeed Im(𝑟+𝑐 ) → 0 from below or from above gives different solutions. We therefore exclude values of 𝑘 for which
Im(𝑟+𝑐 ) = 0 and Re(𝑟+𝑐 ) ∈ [1 − ℎ, 1]. This results in a branch cut in the complex 𝑘 plane along the real half line [ 𝜔

𝑀
,∞).

We refer to the branch cut in the complex 𝑘 plane as the critical layer branch cut; this range is also sometimes referred to
as the continuous spectrum.

One of the major advantages of the Frobenius method used here is that we are free to choose the branch of log,
and so we may in effect analytically continue behind the critical layer branch cut. This is achieved by continuing
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0
Re(𝑟)

Im(𝑟)

1 − ℎ 1

𝑟+𝑐

𝑟−𝑐

Branch cut

(a)

0
Re(𝑟)

Im(𝑟)

1 − ℎ 1
𝑟+𝑐

𝑟−𝑐

Branch cut

(b)

0
Re(𝑟)

Im(𝑟)

1 − ℎ 1

𝑟+𝑐

𝑟−𝑐 (-) Branch cut

(+) Branch cut

(c)

Fig. 2 Schematic of possible locations of the 𝑟+𝑐 branch cut in the complex 𝑟-plane. (a) A possible choice of
branch cut when Im(𝑟+𝑐 ) > 0 and Re(𝑟+𝑐 ) < 1. (b) Branch cut choice when Im(𝑟+𝑐 ) < 0 and Re(𝑟+𝑐 ) < 1. (c) When
Re(𝑟+𝑐 ) > 1, either branch cut may be chosen.

Table 1 Parameter Set Values. 𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶1 and 𝐶2, with the subscripts denoting the variation of a single
parameter. The Impedance is given by the Mass Spring Damper model, 𝑍 (𝜔) = 𝑅 + i(`𝜔 − 𝐾

𝜔
).

A B C
Frequency 𝜔 5(1) | 31(2) 10 10

Centre line Mach Number 𝑀 0.5 0.4 0.3(1) | 0.7(2)
Azimuthal order 𝑚 0 24 24

Boundary layer thickness ℎ 0.02 0.001(1) | 0.0075(2) 0.005
Impedance Mass ` 0.15 0.08 0.06

Impedance Spring 𝐾 1.15 6 3
Impedance Damper 𝑅 3 1.6 0.75

Impedance 𝑍 (𝜔) 3 + 0.52i(1) | 3 + 4.61i(2) 1.6 + 0.2i 0.75 + 0.3i

to use one definition of log in (15a), rather than switching between definitions as 𝑟+𝑐 crosses [1 − ℎ, 1]; for example,
defining log(𝑟 − 𝑟+𝑐 ) = log𝑃 (i(𝑟 − 𝑟+𝑐 )) − 𝜋/2 gives the correct solution 𝑝(𝑟) when Im(𝑘) > 0, and gives the analytic
continuation of that solution behind the branch cut for Im(𝑘) < 0. In so doing, we are able to find any modes that are
hidden behind the branch cut. This has two important uses. The first is that modes behind the critical layer branch cut
do still contribute to the pressure perturbation 𝑝(𝑥, 𝑟, \), though they do so as a Fourier inversion integral around the
critical layer branch cut, rather than as an individual mode in its own right; see Ref. 25 for details. Secondly, modes
behind the critical layer branch cut can move across the branch cut and become legitimate modes in the usual sense as
parameters are varied, and we will see later that, as the boundary layer thickness ℎ is reduced, a mode emerges from the
critical layer branch cut and becomes a hydrodynamic instability.

III. Parameter Studies of the Hydrodynamic ‘Instability’

In this section, we will be interested in the values of 𝑘 in the complex 𝑘 plane for which modal solutions exist for
a given frequency 𝜔; such values of 𝑘 (𝜔) are found numerically, as described above. According to the Briggs–Bers
criterion [27, 28], a particular mode 𝑘 (𝜔) is stable if Im(𝑘 (𝜔)) has the same sign as Im(𝑘 (𝜔 − i𝑦)) as 𝑦 → ∞, and is
convectively unstable otherwise. Here, as in [25], this criterion is used to label modes as stable or unstable by numerically
varying the imaginary part of the frequency. This classification ignores the possibility of absolute instabilities, as we
are only concerned here with the behaviour of the modal solutions for given values of the frequency 𝜔, and absolute
instabilities occur at their own chosen instability frequency.

Throughout the following sections we will use the parameter sets given in table 1. These parameters have been
chosen deliberately to demonstrate a variety of behaviours. In particular, while the impedances 𝑍 given in table 1
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Fig. 3 Locations in the complex 𝑘 plane of modal solutions for each of the parameter sets listed in table 1. Stable
modes are indicated in blue. Unstable modes are coloured red. The hydrodynamic instability mode is marked
with a plus (+), while all other modes are marked with a (×). The critical layer branch cut is indicated with by
the thick black line. The green star denotes the 𝑘HI mode hidden behind the critical layer branch cut.

are typical of impedances seen for acoustic linings used in aeroengines, the mass–spring–damper model is used for
simplicity, and is not intended to be an accurate representation of a perforated-plate honeycomb liner. For each of these
parameter sets, the locations of the modes in the complex 𝑘-plane is shown in figure 3, together with an indication of
which modes are stable or unstable. Note that the location of the modes in the complex 𝑘-plane in figure 3 depends only
on the impedance 𝑍 , and not on the individual parameters ` and 𝐾 in the mass–spring–damper model used to calculate
that impedance, although the mass–spring–damper model is necessary for the stability analysis. Throughout this section,
we will refer to the potential hydrodynamic instability mode as 𝑘HI, whether or not it is actually unstable. This stability
may come from either being stabilised by the critical layer, or a change in stability in conjunction with another 𝑘HI mode.

In section III.A we will investigate how the hydrodynamic instability is stabilised by the boundary layer thickness ℎ,
drawing attention to the threshold value ℎ𝑐 that leads to neutral stability. Following this, in III.B we will vary each of
the other parameters and observe how the stability depends on each of these parameters. Finally in III.C we compare the
behaviour seen here as the parameters are varied to that seen for a linear boundary layer flow profile, and to that of a
uniform flow under the Ingard-Myers boundary condition.

III.A. The effect of boundary layer thickness.
Figure 3 shows a hydrodynamic instability in the upper-right 𝑘-plane for parameter set 𝐵1, but not for parameter

set 𝐵2. As the only difference between 𝐵1 and 𝐵2 is the boundary layer thickness, this illustrates that increasing the
boundary layer thickness can stabilize the hydrodynamic instability. Figure 4 tracks how the modal solutions move in
the 𝑘-plane as the boundary layer thickness ℎ is varied. From figure 4(B), it can be confirmed that the hydrodynamic
instability in 𝐵1 stabilizes by crossing the critical layer branch cut as ℎ is increased. By using the Frobenius method to
find modes, we are here able to continue tracking the mode behind the critical layer branch cut as ℎ continues to increase.
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Fig. 4 Location in the complex 𝑘 plane of modal solutions, and their trajectories as the boundary layer thickness
is varied, for the parameter sets 𝐴1, 𝐵1 and 𝐶2 listed in table 1. The boundary layer thickness ℎ ranges from
5 × 10−4 to 0.1 in the direction of the arrows. The hydrodynamic instability mode for parameter set 𝐵2 has also
been included and is circled. Dashed lines denote trajectories hidden behind the critical layer branch cut.

A similar situation is shown for each case in figure 4; in each case, increasing the boundary layer thickness leads
to stability. Moreover, as ℎ → 1, the 𝑘HI mode approaches the branch point located at 𝑘 = 𝜔/𝑀 from behind the
branch cut. This appears to be true independent of the impedance, frequency, and flow speed, suggesting that the purely
parabolic Poiseuille flow corresponding to ℎ = 1 does not exhibit a hydrodynamic instability in any case.

III.A.1. Changes in stability when varying the boundary layer thickness
In cases 𝐵 and 𝐶2 in figure 4, it can additionally be observed that for some value of ℎ the unstable behaviour changes

as the 𝑘HI modes switches to another candidate. In both these cases this mode continues to become more unstable as ℎ
is decreased. While as we increase the boundary layer thickness ℎ these modes move into the usual modal sum while
being stable. When potentially two 𝑘HI modes are present, it has been in all cases observed that only one is found to be
an instability or to have been stabilised by the branch cut, while the other mode behaves as a standard cut-off mode. We
will later observe that, when varying the impedance 𝑍 , the two modes are inter-related.

III.A.2. The critical boundary layer thickness for stability
From the results shown here, since only one mode has been found to be a hydrodynamic instability in each case,

unless it has been stabilised by the critical layer, it can be inferred that the hydrodynamic instability is stabilized by the
critical layer branch cut provided the boundary layer is sufficiently thick. In what follows, we define a critical boundary
layer thickness ℎ𝑐 for which the 𝑘HI mode is located exactly on the critical layer branch cut. As such, the 𝑘HI mode is
stable for ℎ > ℎ𝑐, and is unstable for ℎ < ℎ𝑐. We calculate ℎ𝑐 here numerically by tracking the location of the 𝑘HI mode
as the boundary layer thickness is varied, seeking smaller imaginary parts until a real value is achieved; this is greatly
aided by using the Frobenius solution method of Ref. 25 which allows tracking modes behind the critical layer branch
cut.

III.B. Variation of stability with other parameters
We now proceed to vary the Mach number, frequency and impedance. In each case, we interpret the results both in

terms of the locations of modes in the 𝑘-plane, and in terms of the critical boundary layer thickness ℎ𝑐 that stabilizes the
flow.
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Fig. 5 Movement of the modal solutions in the complex 𝑘 plane as the Mach number is varied from 0.1 to 0.9 in
the direction of the arrows, for parameter sets 𝐴2, 𝐵2 and 𝐶2 given in table 1. The axes have been scaled by 𝑀/𝜔
in order to keep the location of the critical layer branch cut fixed. The location of the unstable 𝑘HI mode for set
𝐶1 has also been included and is circled.

III.B.1. Varying the mean flow Mach number
Figure 5 shows the results of varying the Mach number 𝑀. In order to keep the critical layer fixed as the Mach

number is varied, note that a 𝑘-plane scaled by 𝑀/𝜔 = 1/St is used, where St is the Strouhal number∗. Figure 5 shows
that, as the Mach number is decreased while keeping the boundary layer thickness constant, the flow is stabilised. At
the same time, for lower flow speeds there are fewer cut-on modes, and as 𝑀 → 0 the modes approach their no-flow
equivalents, as expected. When there are two candidate 𝑘HI modes, again we find that only one of them may be unstable,
and the other will be stabilised by moving into the usual modal sum, figure 5(𝐶). It can be noted that in comparison to
figure 4, for this parameter set the other potentially unstable mode experiences stabilisation by the critical layer. Since it
has been observed that only one 𝑘HI can be unstable or hidden behind the branch cut, it is important to observe that
if we were to vary the Mach number and boundary layer thickness together, the same modes and stability would be
found for any particular pair. The same further holds true for each of the other parameters. As a result, ℎ𝑐 appears to
be continuous. When finding the value of ℎ𝑐 it is in many cases easier to find the value for a given parameter set and
continuously vary the other parameters to a different case without having to locate the modes for a given boundary layer
thickness first.

Figure 6 shows how ℎ𝑐 and 𝑘HI (ℎ𝑐) vary as the Mach number is varied. Note that, by definition, 𝑘HI (ℎ𝑐) is real and
located on the critical layer branch cut. As expected from figure 5, we observe that ℎ𝑐 increases as the Mach number is
increased. This appears to follow a remarkably linear trend, with a gradient depending on the other parameters. We
note, however, that numerically it becomes increasingly difficult to track the value of ℎ𝑐 for small Mach numbers, as 𝑘HI
becomes increasingly large for small 𝑀 . Considering the application to aircraft engines it is worth while considering
that the Mach number will vary throughout the flight; thus, for the same liner, it could be expected that different stability
is observed in the model between take off, in flight, and landing.

III.B.2. Varying the frequency
In a similar way to varying the Mach number, we may vary the frequency 𝜔, as shown in figures 7 and 8. Once

again we have scaled the complex 𝑘 plane in figure 7 by 𝑀
𝜔

in order to keep the critical layer branch cut fixed. It can be
observed that a hydrodynamic instability may be present only for a range of intermediate frequencies (𝐵2) and (𝐶2),
with both high and low frequencies being stable for thinner boundary layer thicknesses, while for sufficiently thick
boundary layers (not included here) stability is found at all frequencies. This could be of particular importance for
time domain simulations, where all resolved frequencies are present and consequently where instabilities cannot be
avoided numerically by restricting the frequency range of interest. It can additionally be noted that when two potential
𝑘HI modes are present, which one that stabilises through the critical layer changes as we approach the high and low
frequency range (𝐶2).

∗In dimensional terms, the rescaled axial wavenumber 𝑘𝑀/𝜔 =𝑈 (0)/(𝜔/𝑘 ) , which is the ratio of the mean flow velocity to the perturbation
phase velocity, and does not depend on the sound speed 𝑐0 or the duct radius 𝑎.
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Fig. 6 (Top) Value of ℎ𝑐 plotted as the Mach number is varied. (Bottom) Value of 𝑘HI (ℎ𝑐) for the hydrodynamic
instability as the Mach number is varied.
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Fig. 7 As for figure 5, but for varying frequency 𝜔 from 1 to 50 in the direction of the arrows. Note that 𝑍 (𝜔)
varies as 𝜔 is varied. Plotted are parameter sets 𝐴, 𝐵2 and 𝐶2. The 𝑘HI mode of set 𝐴2 has also been included,
and is circled.
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table 1. Plotted are sets 𝐴1 and 𝐵.

It is worth observing that since we are making use of the Mass-Spring-Damper model for the impedance, the
impedance also varies with frequency, and so it is not immediately clear if the stability being observed is due to the
variation of the frequency, or due to the wall becoming harder in both high and low frequency limits. Because of this, in
figure 8 the values of ℎ𝑐 and 𝑘HI are additionally plotted for a fixed (and therefore unphysical) impedance, with the
value as given in table 1. It may be observed that stabilisation is still observed for both low and high frequencies even in
the fixed frequency case. We therefore hypothesise that the stability is caused by the frequency directly and not by the
varying impedance. We note in passing that 𝑘HI (ℎ𝑐) appears to follow a linear relationship for the fixed wall impedance,
although we do not investigate this further here.

III.B.3. Varying the lining impedance
Figures 9 and 10 show the effect of varying the impedance 𝑍 for fixed frequency 𝜔. In figure 9 we only track the

location of the modes as the reactance, Im(𝑍), is varied. While figure 10 gives a contour plot of the variation of ℎ𝑐 and
𝑘HI (ℎ𝑐) as both real and imaginary parts of 𝑍 , the resistance and reactance, are both varied. This contour plot is limited
for large |𝑍 | due to numerical accuracy, as once again the value of 𝑘HI (ℎ𝑐) becomes too large. However, we may still
conclude that, as |𝑍 | → ∞ and the duct becomes hard walled, the flow is stable for any finite thickness boundary layer.
This is observed in figure 9 by looking at the modal location in both hard wall limits, Im(𝑍) → ±∞, indicated with a
triangle, and in figure 10 by observing that ℎ𝑐 is decreasing as |𝑍 | becomes larger. We comment on this further in
section III.C, as it contrasts with the unstable behaviour predicted for hard walls with other flow profiles.
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In figure 9 it can be seen that stability occurs for both large positive and negative reactance, |Im(𝑍) | → ∞; in fact,
this is also what happens as Re(𝑍) → ∞, or indeed as |𝑍 | → ∞ with any passive impedance Re(𝑍) ≥ 0. In all these
cases, the same modes in the complex 𝑘-plane are recovered, corresponding to a hard wall 𝑍 = ∞, all of which are
stable. Therefore, there are no unstable modes provided the wall is sufficiently hard; this is unlike for the Ingard–Myers
boundary condition, as discussed below and plotted in figure 18. Indeed, in some cases (𝐵2), stability is observed for all
impedances.

In order to investigate the dependence on frequency and impedance further, figure 11 illustrates the value of ℎ𝑐 as
the impedance mass, spring and damping terms are varied. From these graphs two different behaviours may be observed.
Firstly, when varying either the impedance mass or spring coefficient, if we choose to maintain a constant impedance, as
indicated in figure 11 by the dashed lines, as we increase the frequency we do indeed observe a stabilising effect; that
is, as 𝜔 is increased, ℎ𝑐 decreases. However we appear to observe a destabilization as the frequency is decreased at
fixed impedance, although as seen in figure 8, this may be stabilising again for suitably small frequencies. A second
observation is that, when the damping coefficient is small (as in 𝐶1), it is found that the impedances with the largest
ℎ𝑐 are those close to the resonant liner frequency 𝜔 =

√︁
𝐾/` which gives Im(𝑍) = 0. This is shown most clearly in

the right column of figure 11, but is also seen in the bottom left of figure 11 near 𝑅 = 0. Moreover, as the damping
coefficient increases the frequency with the largest value of ℎ𝑐 appears to reduce to zero.

III.C. Comparison to other flow profiles
The Frobenius solution used here to track the modal locations is specific to a quadratic shear flow profile. However,

a similar Frobenius expansion exists for a linear flow profile [18], and an infinitely-thin boundary layer of arbitrary
profile may be modelled using the Ingard–Myers boundary condition [7], such as was used to initially discover the
hydrodynamic instability [4]. We may therefore repeat the analysis above to compare these boundary layer profiles, and
a significant difference is seen.

III.C.1. Comparison with a linear flow boundary layer
Figures 12-15 show comparable results to those given above for the boundary layer thickness, Mach number,

frequency, and impedance, but for a linear rather than quadratic boundary layer flow profile. In each of these it can be
observed that the linear flow profile is unstable for all boundary layer thicknesses, and so no equivalent of ℎ𝑐 exists, and
the hydrodynamic instability will always be present. There is some similarity, however, and for cases where stability
was found for the quadratic shear, in the linear case we instead have a hydrodynamic instability with a small imaginary
part. As a result of this, the growth rate of the mode remains exponential in the linear case, albeit with a small exponent,
and thus it will still dominate eventually in the far-field, though it may be comparable in size within the near field.
In addition, for the linear flow profile we also find an additional stable mode located below the branch cut (and not
behind the branch cut), that may move above and behind the branch cut as the parameters are varied, although this mode
would then stop contributing instead of becoming unstable. This mode, when it is located below the branch cut, has a
contribution that is exactly cancelled by part of the contribution from the critical layer branch cut, and so in all cases it
does not contribute to the final Fourier inversion. For this reason it has not been included in our mode plots for the
linear shear flow.

III.C.2. Comparison with an infinitely-thin flow boundary layer
For comparison, also given here are the modal locations for a uniform flow profile using the Ingard–Myers boundary

condition as parameters are varied, shown in figures 16–18, except that there is no variation of boundary layer thickness
as no equivalent parameter exists. It is worth while observing that the critical layer branch cut also has no equivalent for
the uniform flow case. Instead of requiring a Frobenius Series solution in this case, the solutions are given fully by
Bessel functions, although subjected to a different boundary condition at 𝑟 = 1.

When tracking the mode locations for the uniform flow profile under the Ingard–Myers boundary condition, for the
Mach number we observe a stabilising effect from decreasing the Mach number, with the 𝑘HI mode joining the usual
modal sum, although unlike where this occurs in the sheared flow cases, for example figures 5(C) and 13(C), where
there is still a different 𝑘HI mode, in this case the behaviour just changes. This change of stability is therefore indicative
the problem being ill-posed, i.e. we can not perform the Briggs-Bers Criterion. More information on the ill-posedness
can be found in [8]. This same difficulty is additionally found when the frequency and impedance are varied. When
varying the impedance it can be observed that we do once again find a stable flow profile for hard walled ducts, although
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Fig. 12 As figure 4 varying boundary layer thickness ℎ, for a linear shear flow profile.
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Fig. 13 As figure 5 varying the Mach number 𝑀 , for a linear shear flow profile.
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Fig. 14 As figure 7, varying the frequency 𝜔, for a linear shear flow profile.
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Fig. 15 As figure 9, varying the impedance, Im(𝑍), for a linear shear flow profile.
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Fig. 16 As figure 5 varying the Mach number 𝑀 , for a Uniform flow profile.
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Fig. 17 As figure 7 varying the frequency 𝜔, for a Uniform flow profile.
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Fig. 18 As figure 9 varying the impedance, Im(𝑍), for a Uniform flow profile.

the exact process of this varies depending on how we vary the impedance 𝑍 . As Im(𝑍) → +∞ we observe 𝑘HI to
have increasing real part, and for 𝑍 = ∞ the mode is not present. However, it remains true that for any large but finite
impedance 𝑘HI remains unstable and will continue to dominate the far-field, even if the small contribution and growth
rate result in a negligible effect in the near field. This is unlike what is observed for the quadratic shear flow case, where
a finite wall impedance will lead to stability, and the linear shear flow case where we always have unstable behaviour.
Alternatively, as Im(𝑍) → −∞ the 𝑘HI mode instead regains it’s stability by moving into the usual acoustic modes, once
again suggesting an ill-posedness of the problem.

This same behaviour is retrieved when varying the frequency, due to the relationship between the frequency and
impedance through the mass–spring–damper model used. In both figures 17 and 18, Im(𝑘HI) appears to asymptote to a
positive constant, although owing to the rescaled 𝑘-plane in figure 17, this is actually Im(𝑘HI) growing linearly in 𝜔.

III.D. Modes shapes of the hydrodynamic instability.

Finally, we illustrate the mode shapes of the 𝑘HI modes, both when it is a hydrodynamic instability and when it
has been stabilised by the critical layer branch cut. These are given both as the variation in radius 𝑟 at a particular
axial location 𝑥 (figure 19,) and as contour plots in the (𝑥, 𝑟) plane (figure 20). In both the cases when the 𝑘HI mode is
unstable or stable, it is seen to be localized close to the duct wall, justifying its description as a surface wave mode.
Additionally, it can be seen that when the mode is stable but with a small imaginary part (such as for parameter set 𝐵2),
the resulting mode shape is nearly cut-on and slowly-decaying in 𝑥.

Finally, by way of comparison, figure 21 shows the equivalent of the mode shape for the remainder of the (non-modal)
contribution from the critical layer branch cut taken from Ref. 25, labelled 𝐼 (𝑟, 𝑥) owing to its contribution as an integral,
caused by a point source located either within the sheared flow and within the uniform flow. The critical layer has
multiple contributing terms which decay algebraically in 𝑥, except when the source is located in the sheared flow, where
a neutrally stable (non-decaying) term is also present. Further details can be found in Ref. 25. It can additionally be
observed that the critical layer branch cut has a contribution that, while remaining near the wall, bleeds significantly
further into the uniform flow region than the 𝑘HI modes.

IV. Conclusions

We have considered a cylindrical duct with a parallel mean flow that has a boundary layer that varies quadratically
near the wall; we note again that this boundary layer need not be thin. The MATLAB code from Ref. 25 was used to
solve for the modes using a Frobenius solution method, allowing the modes to be tracked through the critical layer
branch cut. It was shown in Ref. 25 that modes behind the critical layer branch cut no longer appear in the modal sum,
but still contribute to the overall solution through the Fourier inversion integral around the critical layer branch cut; this
can lead to the critical layer being the dominant contribution in the far-field downstream of a source, particularly when
the source is located near the wall of the duct. Here, it is observed that the hydrodynamic instability surface mode 𝑘HI
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Fig. 19 Pressure mode shapes 𝑝(𝑟) for the unstable (𝐴1), (𝐵1) and stable (𝐴2), (𝐵2) 𝑘HI modes, normalized
such that 𝑝(1) = 1.

can be stabilized by its interaction with the critical layer. While it has previously been observed [22, 30] that increasing
the boundary layer thickness has a stabilizing effect on absolute instabilities, here we further find that increasing the
boundary layer thickness can completely stabilize the flow by effectively removing the instability mode by hiding it
behind the critical layer branch cut. From this work, it would seem that the flow is always stable as ℎ → 1 irrespective
of the impedance, flow speed, and frequency, implying that a purely parabolic Poiseuille flow is always stable; however,
this is at present only a well-evidenced conjecture without a formal proof.

The exact boundary layer thickness ℎ𝑐 required for the stability varies depending on the Mach number, the frequency,
and the impedance (figures 6, 8 and 10). When varying the centre-line Mach number, lower Mach numbers lead to
less instability, manifesting as a smaller value of ℎ𝑐. When varying the frequency, high- and low-frequencies are more
stable, with often the hydrodynamic instability only being unstable for an intermediate range of frequencies around
the resonant liner frequency of the boundary; this is true both when accounting for and when ignoring the frequency
dependence of the impedance boundary. For a sufficiently thick boundary layer (depending on the parameters), the
situation may be stable for all frequencies, which is an advantage of parabolic boundary layers that may be helpful
for time-domain simulations compared with using either linear boundary layer profiles or infinitely-thin boundary
layers, such as are implied by the Ingard–Myers boundary condition. When varying the impedance, the picture is more
complicated (figure 11). As the impedance tends to a hard wall, |𝑍 | → ∞, we observe that ℎ𝑐 decreases, leading to
less instability, and suggesting that as |𝑍 | → ∞ we will find that ℎ𝑐 → 0 and any boundary layer thickness over a hard
wall is stable; while this is expected, it contrasts with the linear boundary layer profile [18] which remains unstable as
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Fig. 20 Pressure mode shapes 𝑅𝑒(𝑝(𝑟; 𝑘)𝑒−i𝑘𝑥) in the (𝑥, 𝑟) plane, for the 𝑘 = 𝑘HI modes.

|𝑍 | → ∞. Additionally this is not the same stable behaviour observed for a uniform flow profile under the Ingard–Myers
boundary condition, with stability found for larger but finite impedances in the quadratic shear flow case. However, it
should be noted that numerical difficulty with the Frobenius algorithm is found when |𝑘 | becomes too large, which
limits the values of parameters that may be searched, particularly for very small Mach numbers or near-hard walls.

The stabilisation by the critical layer found here for a quadratic boundary layer profile is in contrast to the constant-
then-linear flow profile of [18], for which the hydrodynamic instability seems to always be unstable. Stabilization by the
critical layer has also been observed in the case of a tanh boundary layer profile, using a finite difference method to
track the mode into the branch cut as the impedance was varied [39]. However, as this method could not analytically
continue the solutions behind the branch cut, no further investigation could take place. We hypothesise this stabilisation
behaviour will be typical of other smooth sheared flow profiles; indeed, it was acknowledged in [18] that the critical
layer in the linear boundary layer profile case is rather artificial, and is caused by the cylindrical duct geometry rather
than the sheared mean flow, unlike in the quadratic case. It is therefore possible that extending the modified-Myers
boundary condition, or other such uniform flow impedance boundary conditions, to account for a quadratic shear flow
profile may reveal important details for correctly predicting the location of the hydrodynamic instability, which has
previously been the least well-predicted mode.

While this work has concentrated on the behaviours of the duct modes, we have not considered the amplitude with
which these modes are excited by any given acoustic source, and how this compares to the nonmodal contribution from
the branch cut itself. The same Frobenius technique [25] may be used to construct the Green’s function for a point mass
source, but how these various contributions would be excited by, for example, an incoming wave in a hard-walled duct
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scattering as it encounters a lined duct section, is still an open question [40, ch. 4]. Moreover, it would be interesting to
investigate how the presence of the critical layer branch cut affects a Briggs–Bers stability analysis of absolute instability,
and the corresponding critical boundary layer thickness needed for an absolute instability to be present, as was analysed
without considering the critical layer branch cut in the 2D incompressible case [30] and the 3D compressible case in a
cylindrical duct [10]. In particular, it would be theoretically possible that the hydrodynamic instability mode, even when
it is behind the branch cut and is therefore stable, might still be able to interact with another upstream-propagating mode
to lead to an absolute instability, and it would be interesting from a theoretical point of view to see whether this absolute
instability could itself be behind the critical layer branch cut. These topics are left for future research.
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