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Acoustics are considered in a straight cylindrical duct with an axial mean flow that is uniform
apart from a boundary layer near the wall. Within the boundary layer, which may or may not
be thin, the flow follows a quadratic curve to satisfy no-slip at the wall. Modal solutions to the
linearised Euler equations are found by solving the Pridmore-Brown equation using Frobenius
series. The modes usually identified as Hydrodynamic Instabilities are found to interact with
the critical layer branch cut, also known as the continuous spectrum. By varying the boundary
layer thickness, flow speed, frequency and impedance, it is found that the instabilities can be
stabilised behind the critical layer branch cut. In these cases, the effect of these (now stable)
modes is included within the critical layer non-modal contribution, and may be the dominant
downstream effect; this is found to be particularly true for sound sources located near the wall.

I. Introduction

Acoustic linings are typically modelled as an impedance boundary condition at a duct wall. It is well known
that a mean flow that does not satisfy no-slip at the wall, such as a uniform flow, complicates the impedance

boundary condition. The often-used Ingard–Myers [1] boundary condition is illposed [2], leading to both numerical
and theoretical difficulties, and does not match well with experimental observations [e.g. 3]. It may be regularized by
allowing for a thin boundary layer over the wall [4]; while this regularized boundary condition also leads to a significant
increase in accuracy when solving the linearized Euler equations [5], it too does not accurately reproduce experimental
observations [6]. Various attempts have been made at improved impedance boundary conditions [e.g. 7–9], but to
date no impedance boundary condition matches well with experimental observations [10, 11]. The alternative is to
include a varying mean flow which satisfies the no-slip condition at the duct wall. This, however, introduces its own
complications, including the critical layer, otherwise known as the continuous spectrum [12].

Most investigations of the interaction of sound and acoustic linings consider the duct modes in the frequency domain.
A reasonably general solution is then given as linear sum of these modes, with amplitudes fitted to emulate a particular
sound source. This is the basis of techniques such as mode-matching [e.g. 13, 14]. Modes also occur as poles in complex
analytic methods, such as the the Weiner-Hopf technique [e.g. 15–17]. One complication of considering duct modes
in the frequency domain is determining their direction of propagation; this can be achieved using the Briggs–Bers
criterion [18, 19]. Most modes are stable and decay in their direction of propagation, but a number of surface wave
modes exist with interesting properties [20, 21], and one such surface wave mode is thought to be a hydrodynamic
instability. There is also some experimental evidence of instabilities [e.g. 22], although the hydrodynamic instability is
in most cases the least well theoretically-predicted duct mode using the various impedance boundary conditions.

When considering a non-uniform mean flow in the frequency-domain, the pressure perturbation is governed by
the Pridmore-Brown equation [23]. Since the Pridmore-Brown equation is not self-adjoint, the duct modes are not
necessarily complete, and so a general solution cannot necessarily be described as just a sum of duct modes. This
difficulty manifests itself as the critical layer. Solving analytically for the Greens function for a point mass source
in a duct, the Greens function is found to consist not only of a sum of modes, but also includes a Fourier inversion
integral around the critical layer [12, 24]. This results in an extra term in the solution downstream of the point mass
source, including a neutrally stable non-decaying term if the source is located in any region of non-constant mean
flow [12, 24, 25]. Despite this, the critical layer is often ignored, either explicitly or implicitly, with its contribution
argued to be small compared to that of the sum of duct modes, with some justification [12].
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Whatever the effect of the critical layer, it is dominated in the far-field downstream of the source by any hydrodynamic
instability. However, it was found [21] that the hydrodynamic instability could move behind the critical layer branch
cut for certain boundary layer profiles and parameters; this then resulted in a stable situation. However, this was not
investigated further due to the numerical method being unable to track the hydrodynamically unstable surface wave
mode behind the critical layer. The Frobenious method [12] is capable of tracking the mode behind the branch cut,
but, for the linear boundary layer flow profile used in that case, the hydrodynamic instability mode never went behind
the branch cut. However, more recently, the Frobenious method has been used to analyse a quadratic boundary layer
profile [24], and the hydrodynamic instability is found to move behind the critical layer branch cut in this case. In this
case, it was found that not only was the solution then stable, but that the contribution of this hidden pole was included in
the Fourier inversion integral around the critical layer, meaning that this pole could still be dominant in the far-field,
particularly for a sound source close to the wall; in this case, ignoring the critical layer would give inaccurate results.

In this work, we will examine the stabilization of the hydrodynamic instability as it interacts with and moves behind
the critical layer. In particular, we will observe the effects on this behaviour of frequency, impedance, and boundary
layer thickness. In section II we summarise the Frobenious solutions from King et al. [24]. Using the code provided
alongside King et al. [24], a parameter study is performed in section III. This allows us to find the critical boundary
layer thickness that leads to the stabilization of the hydrodynamic ‘instability’.

II. Formulation and Solutions to the Pridmore-Brown Equation

The governing equations for what follows are the Euler equations in cylindrical co-ordinates,
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We write each variable as a steady mean flow plus a small time-harmonic perturbation of order 𝜖 and frequency 𝜔,
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where 𝑝0 is necessarily a constant in order that the steady state should satisfy the Euler equations. All perturbations are
then expanded using a Fourier series in \ and a Fourier transform in 𝑥. As a result, the pressure perturbation is given as
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and similarly for the density �̂� and the velocity components �̂�, �̂� and �̂�. Ignoring terms of order 𝑂 (𝜖2) and solving the
Euler equations (1) for the pressure perturbation gives
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where a prime denotes the derivative with respect to 𝑟 . Equation (4a) is the Pridmore-Brown equation [23].
Here, for simplicity, we assume a constant mean density 𝜌0 (𝑟), meaning that the flow is homentropic, and resulting

in a constant speed of sound 𝑐0 (𝑟) = 𝑐0. We also choose a flow profile𝑈 (𝑟) that is uniform except within a boundary
layer of width ℎ, where it varies quadratically:

𝑈 (𝑟) =
{
𝑐0𝑀 0 ≤ 𝑟 ≤ 1 − ℎ
𝑐0𝑀 (1 − (1 − 1−𝑟

ℎ
)2) 1 − ℎ ≤ 𝑟 ≤ 1

. (5)

Here 𝑀 is the centreline Mach number. Note that we do not assume that the boundary layer is thin, so ℎ need not be
small. This situation is represented schematically in figure 1.
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Fig. 1 Schematic of a cylindrical duct with lined walls containing sheared axial flow. 𝜌0 (𝑟) is the mean flow
density (here taken constant), and𝑈 (𝑟) is the mean flow velocity, here taken to be uniform outside a boundary
layer of width ℎ. 𝑍 is the boundary impedance and defines the boundary condition at the wall of the duct.

We non-dimensionalize speeds by the sound speed 𝑐0, densities by 𝜌0, and distances by the duct radius 𝑎. Under
these assumptions and non-dimensionalizations, the Pridmore-Brown equation (4a) reduces to

𝑝′′ +
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We require the solution to be regular at the centreline 𝑟 = 0, and to satisfy an impedance boundary condition at the duct
wall 𝑟 = 1. Since our mean flow is nonslipping,𝑈 (1) = 0, this is given by

𝑝(1) = 𝑍 (𝜔)�̃�(1), or equivalently 𝑝′ (1) − i𝜔
𝑍
𝑝(1) = 0, (7)

where 𝑍 (𝜔) is the impedance of the duct wall, and a hard wall corresponds to 𝑍 → ∞.
In [24], the Pridmore-Brown equation with this constant-then-quadratic flow profile is solved using a Frobenius

method. These solutions are then used to construct a Greens function solution for the inhomogeneous Pridmore-Brown
equation, and the Fourier inversion is found. This was used to explore the non-modal contribution of the critical layer.
Here, we will use the same Frobenius solutions to find the modes of (6). The important features of the solutions
from [24] used here are now breifly summarised.

A. Frobenius Solution to the Pridmore-Brown Equation
The Pridmore-Brown equation (6) can be split into two cases according to if we are within the uniform or sheared

flow regions (5). When 𝑟 < 1 − ℎ, we are in the uniform flow region, and
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with solutions in terms of Bessel function of order 𝑚. Requiring regularity at 𝑟 = 0, this gives the solution in the
uniform flow region as

𝑝(𝑟) = 𝐽𝑚 (𝛼𝑟) with 𝛼2 = (𝜔 − 𝑀𝑘)2 − 𝑘2. (9)

In contrast, when 𝑟 > 1−ℎ, we are in the sheared flow region, and, for this quadratic flow profile, the Pridmore-Brown
equation (6) can be written as
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)
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where 𝑟±𝑐 are the locations of the critical layer, given by 𝜔 −𝑈 (𝑟𝑐)𝑘 = 0. Since𝑈 (𝑟) is quadratic for 𝑟 > 1 − ℎ, this is a
quadratic equation to solve, with two solutions,

𝑟±𝑐 = 1 − ℎ ± ℎ
√︂

1 − 𝜔
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. (11)
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Fig. 2 Schemetic of possible locations of the 𝑟+𝑐 branch cut in the complex 𝑟-plane. (a) A possible choice of
branch cut when Im(𝑟+𝑐 ) > 0 and Re(𝑟+𝑐 ) < 1. (b) Branch cut choice when Im(𝑟+𝑐 ) < 0 and Re(𝑟+𝑐 ) < 1. (c) When
Re(𝑟+𝑐 ) > 1 we can choose which branch cut to consider.

We choose Re(√· · ·) ≥ 0, so that Re(𝑟+𝑐 ) ≥ 1 − ℎ; it will turn out that 𝑟+𝑐 is the root we will be most interested in
throughout. As in [24], equation (10) can be solved using Frobenius series expansion about 𝑟+𝑐 , resulting in two linearly
independent solutions
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∞∑︁
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and the 𝑎𝑛 and 𝑏𝑛 coefficients are given by a recurrence relation in [24]. While the specifics of these solutions are
omitted here, we comment that matlab code is provided in [24] to compute these solutions.

To solve the Pridmore-Brown equation across the whole of 𝑟 ∈ [0, 1], the two types of solutions above are spliced
together such that the resulting solution and its derivative are continuous at 𝑟 = 1 − ℎ:

𝑝(𝑟) =
{
𝐽𝑚 (𝛼𝑟) 0 ≤ 𝑟 ≤ 1 − ℎ
𝐶1𝑝1 (𝑟) + 𝐷1𝑝2 (𝑟) 1 − ℎ ≤ 𝑟 ≤ 1,

(13)

with 𝐶1 and 𝐶2 chosen to ensure continuity of 𝑝 and 𝑝′ at 𝑟 = 1 − ℎ.
In general, 𝑝(𝑟) does not satisfy the impedance boundary condition (7) at 𝑟 = 1. We therefore search for modal

solutions by varying 𝑘 such that 𝑝(𝑟) does satisfy the impedance boundary condition (7) at 𝑟 = 1. This is performed
using the matlab code from [24], which uses a variant of the Secant method, and has been verified against finite-difference
solutions to the Pridmore-Brown equation. The major advantage of using this method is its treatment of the critical layer
branch cut.

B. The Critical Layer Branch Cut
The most important detail of the solution method used here is the presence of the log term in (12). The branch of

log should clearly be chosen to maintain a continuous solution for 𝑝2 (𝑟), and hence 𝑝(𝑟), along 𝑟 ∈ [1 − ℎ, 1]. The
direction of the resulting branch cuts is illustrated in figure 2. The only difficulty is when Im(𝑟+𝑐 ) = 0, and indeed
Im(𝑟+𝑐 ) → 0 from below or from above gives different solutions. We therefore exclude values of 𝑘 for which Im(𝑟+𝑐 ) = 0
and Re(𝑟+𝑐 ) ∈ [1− ℎ, 1]. This results in a branch cut in the complex 𝑘 plane along the real half line [ 𝜔

𝑀
,∞). We refer to

the branch cut in the complex 𝑘 plane as the critical layer branch cut; this range is also sometimes referred to as the
continuous spectrum.

One of the major advantages of the Frobenius method used here is that we are free to choose the branch of log, and
so we may in effect analytically continue behind the critical layer branch cut. In so doing, we are able to find any modes
that are hidden behind the branch cut. This has two important uses. The first is that modes behind the critical layer
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Table 1 Parameter Set Values.

A1 A2 B1 B2
Frequency 𝜔 31 31 10 10

Centre line Mach Number 𝑀 0.5 0.5 0.5 0.5
Azimuthal order 𝑚 24 24 24 24

Boundary layer thickness ℎ 0.01 0.005 0.005 0.005
Impedance Mass ` 0.01 0.01 0.06 0.1

Impedance Spring 𝐾 10 10 3 5
Impedance Damper 𝑅 0.75 0.75 0.75 0.75

Impedance 𝑍 (𝜔) 0.75 − 0.0126i 0.75 − 0.0126i 0.75 + 0.3i 0.75 + 0.5i

branch cut do still contribute to the pressure perturbation 𝑝(𝑥, 𝑟, \), though they do so as a Fourier inversion integral
around the critial layer branch cut, rather than as an individual mode in its own right; see [24] for details. Secondly,
modes behind the critical layer branch cut can move across the branch cut and become legitimate modes in the usual
sense as parameters are varied, and we will see later that, as the boundary layer thickness ℎ is reduced, a mode emerges
from the critical layer branch cut and becomes a hydrodynamic instability.

III. Parameter Studies of the Hydrodynamic ‘Instability’

Throughout the following sections we will make use the parameter sets given in table 1. These parameters have
been chosen deliberately to demonstrate a variety of behaviours as the parameters are varied, particularly focusing on
the stabilisation of the hydrodynamic instability pole. In figure 3 the pole locations for each parameter set are shown,
with an indication of which poles are stable or unstable. Throughout this section, we will refer to the hydrodynamic
instability mode as 𝑘HI, whether or not it is actually unstable.

In section III.A we will investigate how the hydrodynamic instability is stabilised in the boundary layer thickness ℎ,
drawing attention to the threshold value ℎ𝑐 that leads to neutral stability. Following this, in III.B we will make use of
our ability to find ℎ𝑐 to observe how the stability depends on each of the parameters. Finally in III.C we compare the
behaviour seen here to those of a linearly sheared flow profile.

A. The effect of boundary layer thickness.
Figure 3 shows a hydrodynamic instability in the upper-right 𝑘-plane for parameter set A2, but not for parameter

set A1. As the only difference between A1 and A2 is the boundary layer thickness, this illustrates that increasing the
boundary layer thickness can stabilize the hydrodynamic instability. Figure 4 tracks how the modal solutions move in the
𝑘-plane as the boundary layer thickness ℎ is varied. From figure 4(A), it can be seen that the hydrodynamic instability
in A2 stabilizes by crossing the critical layer branch cut as ℎ is increased. By using the Frobenius method to find modes,
we are here able to continue tracking the mode behind the critical layer branch cut as ℎ continues to increase.

A similar situation is shown in each case in figure 4; in each case, increasing the boundary layer thickness leads
to a stable flow. Moreover, as ℎ → 1, the 𝑘HI mode approaches the branch point located at 𝑘 = 𝜔/𝑀 from behind
the branch cut. Comparing parameters sets 𝐵1 and 𝐵2, both with potentially two 𝑘HI modes, only one is found to be
an instability, and in both cases as the boundary layer is thickened the instability is stabilized, while the other mode
becomes a standard cut-off mode. We will later observe that, when varying the impedence 𝑍 , the two modes are related.

From the results shown here, it appears that the hydrodynamic instability is stabilized by the critical layer branch cut
provided the boundary layer is sufficiently thick. In what follows, we define a critical boundary layer thickness ℎ𝑐 for
which the 𝑘HI mode is located exactly on the critical layer branch cut. As such, the 𝑘HI mode is stable for ℎ > ℎ𝑐, and is
unstable for ℎ < ℎ𝑐. We calculate ℎ𝑐 here numerically by tracking the location of the 𝑘HI mode as the boundary layer
thickness is varied, seeking smaller imaginary parts until a real value is achieved.
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Fig. 3 Locations in the complex 𝑘 plane of modal solutions for each of the four parameter sets listed in table 1.
Stable modes are indicated in blue. Unstable modes are coloured red. The hydrodynamic instability is marked
with a plus (+), while all other modes are marked with a (×). The critical layer branch cut is indicated with by
the thick black line.

Fig. 4 Location in the complex 𝑘 plane of modal solutions as the boundary layer thickness is varied, for the
parameter sets listed in table 1. The boundary layer thickness ℎ ranges from 0.1 to 5 × 10−4. The hydrodynamic
instability mode for parameter set 𝐴1 has been circled.
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Fig. 5 Movement of the modal solutions in the complex 𝑘 plane as the Mach number is varied from 0.1 to 0.9, for
parameter sets A1, B1 and B2 given in table 1. The axes have been scaled by 𝑀/𝜔 in order to keep the location of
the critical layer branch cut fixed.

B. Varying the parameters
Figure 5 shows the results of varying the Mach number 𝑀. In order to keep the critical layer fixes as the Mach

number is varied, note that a scaled 𝑘-plane is used. Figure 5 shows that, as the Mach number is decreased while
keeping the boundary layer fixed, the flow is stabilised. At the same time, for lower flow speeds there are fewer cut-on
modes, and as 𝑀 → 0 the modes approach their no-flow equivalents, as expected. When there are two candidate 𝑘HI
modes, again we find that only one of them may be unstable, although as the Mach number is varied which one is
unstable may change.

Figure 6 shows how ℎ𝑐 and 𝑘HI (ℎ𝑐) vary as the Mach number is varied. As expected from figure 5, we observe
that ℎ𝑐 increases as the Mach number is increased. This appears to follow a remarkably linear trend, with a gradient
depending on the other parameters. We note, however, that numerically it becomes increasingly difficult to track the
value of ℎ𝑐 for small Mach numbers, as 𝑘HI becomes increasingly large for small 𝑀 .

Similarly, we may vary the frequency 𝜔, as shown in figures 7 and 8. It can be observed that a hydrodynamic
instability may be present only for a range of intermediate frequencies, with high and low frequencies being stable for a
thinner boundary layer thicknesses. It is also possible that a sufficiently large boundary layer thickness can be stability
for all frequencies, as is the case for parameter set 𝐴1 here. This could be of particular importance for broadband time
domain simulations.

Figures 9 and 10 show the effect of varying the impeance 𝑍 . In figure 9 we only track the location of the modes as
Im(𝑍) is varied, while figure 10 gives a contour plot of the variation of ℎ𝑐 and 𝑘HI (ℎ𝑐) as both real and imaginary parts
of 𝑍 are varied. This contour plot is limited for large |𝑍 | due to numerical accuracy, as once again the value of 𝑘HI (ℎ𝑐)
becomes too large. However, we may still conclude that, as |𝑍 | → ∞ and the duct becomes hard walled, the flow is
stable for any finite thickness boundary layer. This is observed in figure 9 by looking at the pole location in both hard
wall limits, Im(𝑍) → ±∞, indicated with a triangle, and in figure 10 by observing that ℎ𝑐 is decreasing as |𝑍 | becomes
larger.

The impedance 𝑍 is usually a function of frequency 𝜔, and when the frequency 𝜔 has been varied above we have
assumed a mass–spring–damper impedance 𝑍 (𝜔) = 𝑅 + i(`𝜔 − 𝐾/𝜔), with parameters given in table 1: in particular,
this means that for large and small values of 𝜔 we have Im(𝑍 (𝜔)) → ±∞. It is therefore also worth considering how
the combination of varying the frequency and the impedance model together affects the overall behaviour of the system.
To this end, figure 11 illustrates the value of ℎ𝑐 as the impedance, mass, spring and damper terms are varied alongside
the frequency. From these graphs two different behaviours may be observed. Firstly, when varying either the impedance
mass or spring coefficient, if we choose to maintain a constant impedance, as indicated in figure 11 by the dashed
lines, as we increase the frequency we do indeed observe a stabilising effect; that is, as 𝜔 is increased, ℎ𝑐 decreases.
However we appear to observe a destabilization as the frequency is decreased at fixed impedance, suggesting that our
stabilisation when considering low frequencies is due to the resulting impedance having a large negative imaginary
part, and therefore being spring-like. A second observation is that for a fixed frequency, the impedance giving the most
stability (i.e. with the largest ℎ𝑐), is close to, but not exactly equal to, the optimal damping frequency 𝜔 =

√︁
𝐾/` when

we have a small damping coefficient. Moreover, the frequency with the largest value of ℎ𝑐 has a significant dependence
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Fig. 6 (Top) Value of ℎ𝑐 plotted as the Mach number is varied. (Bottom) Value of 𝑘 (ℎ𝑐) for the hydrodynamic
instability as the Mach number is varied. Figures have been plotted for each parameter set listed in table 1; note
that A1 and A2 only differ in boundary layer thickness and therefore result in the same plot, labelled (A) here.

Fig. 7 As for figure 5, but for varying frequency 𝜔 from 1 to 50. Note that 𝑍 (𝜔) varies as 𝜔 is varied.
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Fig. 8 As figure 6, but for varying the frequency.

Fig. 9 Locations of the modal solutions in the complex 𝑘-plane as the reactance, Im(𝑍), is varied from −∞ to
∞. The hydrodynamic instability for |𝑍 | = ∞ is indicated by a triangle (△). The hydrodynamic instability for
parameter set B1 is circled.
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Fig. 10 Contour plot of ℎ𝑐 (left) and 𝑘 (ℎ𝑐) against Re(𝑍) and Im(𝑍). Values of ℎ𝑐 are indicated on a log10 scale.
The large wrinkled outer circle denotes the limits of numerical resolution.

on the damping coefficient, although their relationship is not clear. This observation is made by noting the peaks of ℎ𝑐
are near the dashed line representing Im(𝑍) = 0 in both the impedance mass and spring graphs, while this is only true in
the impedance damper graph for small damping coefficients. Note that 𝑅 = 0.75 in both parameter sets 𝐴 and 𝐵 when
taken to be fixed.

C. Comparison to a Linear Shear flow profile
The Frobenius solution used here to track the pole locations is specific to a quadratic shear flow profile. However, a

similar Frobenius expansion exists for a linear flow profile [12]. We may therefore repeat the analysis above to compare
the quadratic and linear boundary layer profiles, and a significant difference is seen. This is done in figures 12-15 for the
boundary layer thickness, Mach number, frequency, and impedance. In each of these it can be observed that the linear
flow profile is unstable for all boundary layer thicknesses, and so the hydrodynamic instability will always be present.
There is some similarity, however, and for cases where stability was found for the quadratic shear, in the linear case we
instead have a hydrodynamic instability with a small imaginary part. As a result of this, the growth rate of the pole
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Fig. 11 Contour plots of ℎ𝑐 (on a log10 scale) as the frequency and impedance are varied, performed for
Parameter Set 𝐴 and 𝐵, with the impedance mass, spring and damper terms being varied between 0 and 10 times
their original value. Black dashed lines (−−) indicate lines of constant impedance 𝑍 = 𝑍 (𝜔) with the value of
Im(𝑍) indicated.
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Fig. 12 Tracking of modal solutions in the complex 𝑘-plane for a linear shear flow profile as the boundary layer
thickness, ℎ, is varied, for parameter sets 𝐴 and 𝐵1. The location of the hydrodynamic instability for parameter
set A2 is marked with a circle.

Fig. 13 Tracking of modal solutions in the rescaled complex 𝑘-plane for a linear shear flow profile as the centre
line Mach number, 𝑀 , is varied, for parameter sets A1, and B1.

remains exponential, although with a small exponent, and thus it will still dominate the far-field behaviour eventually,
though it may be comparable in size within the near field. In contrast, for the linear flow profile we can instead find
an additional stable modal pole located below the branch cut (and not behind the branch cut), that may move above
and behind the branch cut as the parameters are varied, although this mode would then stop contributing instead of
becoming unstable. This mode, when it is located below the branch cut, has a contribution that is exactly cancelled by
the contribution of the critical layer branch cut, and so in all cases it does not contribute to the final Fourier inversion.
For this reason it has not been included in our modal plots for the linear shear flow. It may additionally be observed that
despite using the same parameter sets, when considering parameter set B we do have have two 𝑘HI modes, as for the
case of a quadratic shear flow, and again it is understood that we continue to have only one hydrodynamic instability in
all cases.
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Fig. 14 Tracking of modal solutions in the rescaled complex 𝑘-plane for a linear shear flow profile as the
frequency, 𝜔, is varied, for parameter sets A1 (left), and B1 (middle and right). (right) a magnification near the
critical layer branch cut for parameter set B1.

Fig. 15 Tracking of modal solutions in the complex 𝑘-plane for a linear shear flow profile as the imaginary part
of the impedance, Im(𝑍), is varied, for parameter sets A1 and B, with a magnification of parameter set 𝐵 near
the critical layer branch cut (right). Behaviour at |𝑍 | = ∞ is indicated by triangles (△) for the hydrodynamic
instability modes. Location of the hydrodynamic instability for parameter set B2 is circled.
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IV. Conclusions

We have considered a cylindrical duct with a parallel mean flow that has a boundary layer that varies quadratically
near the wall; we note again that this boundary layer need not be thin. The matlab code from [24] was used to solve for
the modes using a Frobenius solution method, allowing the modes to be tracked through the critical layer branch cut.
Modes behind the critical layer branch cut no longer appear in the modal sum, but still contribute to the overall solution
through the Fourier inversion integral around the critical layer branch cut. From [24], it has already been shown that this
can lead to the critical layer being the dominant contribution in the far-field downstream of a source, particularly when
the source is located near the wall of the duct.

It has been observed that the hydrodynamic instability surface mode can be stabilized by its interaction with the
critical layer. As has been observed previously [15], increasing the boundary layer thickness has a stabilizing effect.
Here, we further find that increasing the boundary layer thickness can completely stabilize the flow by effectively
removing the instability mode, which we have called 𝑘HI throughout the main text, by hiding it behind the critical layer
branch cut. We note that this mode was referred to as 𝑘+ in [24].

The exact boundary layer thickness ℎ𝑐 required for the stabilisation of the 𝑘HI mode varies depending on the Mach
number, the frequency, and the impedance, and has been plotted in figures 6, 8 and 10 respectively. When varying
the centre-line Mach number, lower Mach numbers lead to less instability, manifesting as a larger value of ℎ𝑐. When
varying the frequency, high- and low-frequencies are more stable, with often the hydrodynamic instability only being
unstable for an intermediate range of frequencies. The mechanism behind the stabilization at high- and low-frequencies
is however different, with high frequencies seeming to be innately stable, while low-frequencies are only more stable
because of the spring-like impedance boundary. For a sufficiently thick boundary layer (depending on the parameters),
the situation may be stable for all frequencies, which may be helpful for broadband time-domain simulations. When
varying the impedance, the picture is complicated, as shown in figure 11. As the impedance tends to a hard wall,
|𝑍 | → ∞, we find that ℎ𝑐 → 0, implying that any thickness boundary layer over a hard wall is stable; while this is
expected, it contrasts with the linear boundary layer profile which shows instability even as |𝑍 | → ∞. However, it
should be noted that numerical difficulty with the Frobenius algorithm is found when |𝑘 | becomes too large, which
limits the values of parameters that may be searched, particularly for very small Mach numbers or near-hard walls.

This stabilisation by the critical layer found here for a quadratic boundary layer profile is in contrast to the constant-
then-linear flow profile of [12], for which the hydrodynamic instability seems to always be unstable. Stabilization by the
critical layer has also been observed in the case of a tanh boundary layer profile, using a finite difference method to track
the mode into the branch cut as the impedance was varied. However, as this method could not analytically continue
the solutions behind the branch cut, no further investigation could take place. Extending upon this, we believe this
stabilisation behaviour will be typical of other sheared flow profiles; indeed, it was acknowledged in [12] that the critical
layer in the linear boundary layer profile case is rather artificial, and is caused by the cylindrical duct geometry rather
than the sheared mean flow, unlike in the quadratic case. It is therefore possible that extending the modified-Myers
boundary condition, or other such uniform flow impedance boundary conditions, to account for a quadratic shear flow
profile may reveal important details for correctly predicting the location of the hydrodynamic instability, which has
previously been the least well-predicted mode.
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