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A comparative study of optimized and unoptimized
finite-difference and Runge–Kutta schemes in a 2D CAA

benchmark

You Wei Ho∗ and Edward J. Brambley†
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Dispersion Relation Preserving (DRP) optimized derivatives are widely used in computational
aeroacoustics for efficiently representing waves with fewer points per wavelength. However,
recent studies reveal that these derivatives may not perform as effectively for non-constant-
amplitude waves, arising due to the underlying optimization process assuming a real wavenumber.
Similarly, this limitation also potentially impacts optimized Runge–Kutta schemes, such as the
Low Dispersion and Dissipation Runge–Kutta (LDDRK) schemes. In this paper, we explore
these theoretical insights through a practical example of 2-D wave propagation within a canonical
computational aeroacoustics (CAA) benchmark test case.

I. Introduction
The propagation of waves poses significant challenges across various scientific and engineering fields, including

acoustics, electromagnetics, and seismology. In particular, computational aeroacoustics (CAA) has garnered extensive
focus due to escalating environmental concerns and stringent noise emission standards. Despite the advancements,
simulating aeroacoustic phenomena that involve wave propagation remains a formidable task. This complexity stems
from the demanding computational requirements needed to accurately represent unsteady flow oscillations and the
dispersive and dissipative characteristics of small-amplitude acoustic waves across entire computational domains, all
while simultaneously ensuring numerical stability. In contrast to the typical amplitude scales addressed in Direct
Numerical Simulation (DNS) and Large Eddy Simulation (LES), acoustic wave amplitudes encountered in CAA often
approximate the level of numerical noise, as noted by [1]. Consequently, there is an imperative need for developing
advanced numerical methodologies that enable precise, high-resolution CAA simulations at reduced computational
costs with better numerical stability.

Recently, significant advancements in CAA simulations have primarily focused on optimizing spatial and temporal
schemes for accurate calculation of wave propagation with few points per wavelength and time steps per wave period.
Notably, key developments of optimized spatial derivatives include: the by-now classic 7-point 4th order explicit
DRP schemes [2, 3]; optimized implicit/compact schemes of up to 6th order [4, 5]; prefactored implicit MacCormack
schemes [6]; trigonometrically optimized schemes [7]; 2nd and 4th order 9, 11, and 13 point schemes [8]; and
asymmetric optimized schemes for use near boundaries [9, 10]. For time-stepping, optimized timestepping schemes
include: an optimized Adams–Bashforth scheme [2]; Low Dispersion and Dissipation Runge–Kutta (LDDRK) 5-step,
6-step and alternating 4/6- and 5/6-step schemes [11]; and optimized 5- and 6-step Runge–Kutta schemes [8]. Rona et
al. [12] furthered this by attempting to jointly optimize spatial and temporal schemes for enhanced wave propagation,
although this analysis is dependent on the dispersion relation of the system being simulated, while the previously
mentioned schemes are applicable to general dispersion relations.

In this paper, we consider symmetric finite difference schemes on equally space grids 𝑥 𝑗 = 𝑗Δ𝑥. The theory below
remains valid for implicit (i.e. compact) schemes, while a preliminary study for non-symmetric schemes is given in [13].
Given a function 𝑓 (𝑥) evaluated at discrete points 𝑓 𝑗 = 𝑓 (𝑥 𝑗 ), the derivative 𝑓 ′ (𝑥 𝑗 ) is approximated by a 2𝑁 + 1 point
scheme that can be represented by finite difference in the general form

𝑎0 𝑓
′
𝑖 +

𝑀∑︁
𝑚=1

𝑎𝑚
(
𝑓 ′𝑖+𝑚 + 𝑓 ′𝑖−𝑚

)
=

1
Δ𝑥

𝑁∑︁
𝑛=1

𝑑𝑛 ( 𝑓𝑖+𝑛 − 𝑓𝑖−𝑛) . (1)
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Here, it is called an explicit scheme if 𝑎0 = 1 and 𝑀 = 0; otherwise, it is called an implicit scheme. We will restrict
attention to explicit schemes in the rest of this paper. Traditionally, the choice of 𝑑𝑛 is to give as accurate as possible a
derivative for sufficiently small Δ𝑥. This choice would give 𝑓 ′

𝑗
= 𝑓 ′ (𝑥 𝑗 ) +𝑂

(
Δ𝑥2𝑁 ) , and such 2𝑁th order schemes are

referred to here as maximal-order (MO) schemes. Alternatively, the coefficients 𝑑𝑛 may be chosen to only require that
𝑓 ′
𝑗
= 𝑓 ′ (𝑥 𝑗 ) +𝑂

(
Δ𝑥2𝐿 ) and to use the remaining (𝑁 − 𝐿) degrees of freedom to optimize the resolution performance of

the derivative. Substituting a wave with 𝑓 (𝑥) = Re
(
𝐴ei𝛼𝑥 ) into (1) leads to the numerical dispersion

𝑓 ′𝑗 = Re(i�̄�𝐴ei𝛼𝑥 𝑗 ), where �̄�Δ𝑥 = 2
𝑁∑︁
𝑛=1

𝑑𝑛 sin(𝑛𝛼Δ𝑥). (2)

Hence, we aim for �̄� to closely approximate 𝛼 in wave problems. Tam & Webb[2] chose 𝑁 = 3 and 𝐿 = 2, resulting in a
7-point derivative with fourth-order accuracy. They utilized the additional degree of freedom to minimize the error
norm, given by

𝐸 =

∫ 𝜂

0

���̄�(𝛼)Δ𝑥 − 𝛼Δ𝑥
��2 d(𝛼Δ𝑥), (3)

with 𝜂 = 𝜋/2. Tam & Shen[3] later recommended 𝜂 = 1.1 for a more balanced approach, and this adjustment has
been widely adopted in modern schemes. These optimized methods are known as Dispersion Relation Preserving
(DRP) schemes. Traditionally, these DRP schemes assume 𝛼 is real, thereby restricting the wave oscillations to
be constant-amplitude. However, Brambley[14, 15] recently extended the consideration to non-constant-amplitude
oscillations by allowing 𝛼 to be complex, and demonstrated that DRP schemes are less efficient under these conditions
compared to maximal order schemes. This issue is highlighted in figure 1 and figure 2. Given that non-constant-amplitude
waves frequently occur in aeroacoustics, as evidenced by studies of acoustic linings where wave propagations can
attenuate significantly [16], it is crucial to reassess the performance of these schemes in such practical applications.

Time-stepping schemes, like their spatial counterparts, can be analyzed in the wavenumber/frequency domain to
optimize resolution performance. For instance, the solution to the time-stepping problem d𝑼/d𝑡 = 𝑭(𝑼, 𝑡) for the
𝑝-stage low-storage Runge–Kutta scheme considered by Hu, Hussaini, and Manthey [11] is given by

𝑼(𝑡 + Δ𝑡) = 𝑼(𝑡) + 𝛽𝑝𝑲𝒑 , where 𝑲 𝒋+1 = Δ𝑡𝑭
(
𝑼(𝑡) + 𝛽 𝑗𝑲 𝑗 , 𝑡 + 𝛽 𝑗Δ𝑡

)
, (4)

with 𝛽0 = 0. Assuming 𝐹 (𝑼, 𝑡) is linear in 𝑼 and time-invariant, and transforming the equation to the frequency domain
(e.g., 𝐹 (𝑼, 𝑡) = −i𝜔𝑼) yields

𝑼(𝑡 + Δ𝑡) = 𝑟 (𝜔Δ𝑡)𝑼(𝑡), where 𝑟 (𝜔Δ𝑡) = 1 +
𝑝∑︁
𝑗=1

𝑐 𝑗 (−i𝜔Δ𝑡) 𝑗 and 𝛽𝑝− 𝑗 = 𝑐 𝑗+1/𝑐 𝑗 (5)

with coefficient 𝑐1 = 𝛽𝑝. For perfect time integrations, 𝑼(𝑡 + Δ𝑡) would equal 𝑼(𝑡)𝑟𝑒 (𝜔Δ𝑡), where 𝑟𝑒 (𝜔Δ𝑡) =

exp{−i𝜔Δ𝑡}. However, the numerical time integration by Runge–Kutta schemes present𝑼(𝑡 +Δ𝑡) = 𝑼(𝑡)𝑟 (𝜔Δ𝑡), where
𝑟 (𝜔Δ𝑡) = 𝑼(𝑡) exp{−i�̄�Δ𝑡}. Selecting coefficients 𝑐 𝑗 = 1/ 𝑗! minimizes the error |𝑟 (𝜔Δ𝑡) − 𝑟𝑒 (𝜔Δ𝑡) | = 𝑂

(
(Δ𝑡) 𝑝+1) in

the limit Δ𝑡 → 0, defining this as a maximal order 𝑝th-order accurate scheme. Alternatively, adjusting the coefficients
𝑐 𝑗 can reduce the dispersion and dissipation errors of the Runge–Kutta schemes by minimizing an error of the form

𝐸 =

∫ 𝜂

0
|𝑟 (𝜔Δ𝑡) − 𝑟𝑒 (𝜔Δ𝑡) |2 d(𝜔Δ𝑡), (6)

subject to constraints of a minimum order of accuracy (typically 2nd or 4th order accuracy as Δ𝑡 → 0) and stability
(meaning |𝑟 | ≤ 1 for 0 ≤ 𝜔Δ𝑡 < 𝜂𝑠). Minimization of the error 𝐸 have been performed by Hu et al. [11]. This
minimization is the equivalent of the DRP developments for spatial derivative mentioned above for the spatial
wavenumber 𝛼Δ𝑥. Traditionally, optimizations of time-stepping schemes have assumed 𝜔 to be real. However, recent
work by Petronilia and Brambley [18] considered non-constant-amplitude optimization, that is considering 𝜔 as complex.
They suggested that the LDDRK56 schemes are sub-optimal and would be outperformed by higher order maximal order
traditional Runge–Kutta schemes using longer timesteps at the equivalent computational costs. These findings are
summarised in figure 3 and figure 4.

The objective of this paper is to evaluate the performance of current best practices in computational aeroacoustics
(CAA), including the Dispersion-Relation-Preserving (DRP) scheme by Tam and Shen [3] and the LDDRK schemes
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Fig. 1 Plots of 𝜀𝑝 = | ¯𝛼Δ𝑥 − 𝛼Δ𝑥 | in the complex 𝛼 plane on a logarithmic scale to compare the absolute accuracy
per unit mesh size of non-optimized and optimized explicit finite differences. The plots are divided as follows: (a)
and (b) employ a 7-point scheme, while (c) and (d) utilize a 15-point scheme. Specifically, (a) MO7 and (c) MO15
are maximal-order schemes, and (b) DRP7 and (d) DRP15 are optimized 4th order schemes, developed according
to Tam and Shen [3] and Tam [17], respectively. The dashed-dotted ( ) and dashed lines ( ) represent
variations in 𝛼Δ𝑥 for different mesh sizes Δ𝑥, with and without flow conditions, for the axial wavenumbers
analyzed by Tam et al. [16].
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Fig. 2 Plots of 𝜀𝑝 = | ¯𝛼Δ𝑥 − 𝛼Δ𝑥 | along (a) the real axis (where Im(𝛼Δ𝑥) = 0) and (b) the dash-dotted line
illustrated in figure 1. These plots compare non-optimized and optimized central finite difference schemes for
constant and non-constant-amplitude waves propagation. A horizontal black line marks a 0.1% absolute error
threshold per unit mesh size. Note that MO7 and MO15 represent maximal-order schemes, whereas DRP7 and
DRP15 are optimized 4th order schemes, developed by Tam and Shen [3] and Tam [17], respectively.
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Fig. 3 Plots of 𝜀𝑝 = |𝑟 (𝜔Δ𝑡) − 𝑟𝑒 (𝜔Δ𝑡) | in the complex 𝜔Δ𝑡 plane for single-step maximal-order Runge-Kutta
(RK) schemes with accuracy orders of (a) 4th, (b) 8th, (c) 11th, and (d) 12th, along with optimized two-step
4th-order LDDRK schemes (e) LDDRK46 and (f ) LDDRK56, as described by Hu et al. [11]. The two-step
LDDRK schemes utilize a halved time step of Δ𝑡/2 to ensure fair comparisons. The stability boundary for these
schemes is delineated by a red solid line, indicating where |𝑟 (𝜔Δ𝑡) | = 1.
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Fig. 4 Plots of 𝜀𝑝 = |𝑟 (𝜔Δ𝑡) − 𝑟𝑒 (𝜔Δ𝑡) | along the (a) real axis (i.e., Im(𝜔Δ𝑡) = 0) and (b) dashed-dotted line
shown in figure 3 for maximal-order RK and optimized LDDRK schemes of Hu et al. [11]. The horizontal black
line indicates a threshold of 0.1% absolute error per unit time step. For clarity, the absolute error for RK
schemes outside their stability region (i.e., where |𝑟 (𝜔Δ𝑡) | > 1) are not included, to emphasize the comparison of
their stability limits.
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by Hu et al. [11]), against traditional non-optimized higher-order methods. Our analysis will focus on a standard CAA
benchmark problem to determine whether these optimized schemes significantly improve accuracy and computational
efficiency in practical scenarios, particularly in wave propagation problems featuring 𝑂 (1/𝑟) decay of an expanding
spherical acoustic wave.

II. Comparison with a realistic test case
In this section, the theoretical points above are illustrated through a 2D wave propagation example from Problem 1

of Category 3 of CAA benchmark test case of Hardin et al. [19]. Specifically, the linearized two-dimensional Euler
equations on a uniform mean flow are considered

𝜕𝑸

𝜕𝑡
+ 𝜕𝑬

𝜕𝑥
+ 𝜕𝑭

𝜕𝑦
= 0, (7)

where

𝑸 =


𝜌′

𝑢′

𝑣′

𝑝′


, 𝑬 =


𝑀𝑥𝜌

′ + 𝑢′

𝑀𝑥𝑢
′ + 𝑝′

𝑀𝑥𝑣
′

𝑀𝑥 𝑝
′ + 𝑢′


, 𝑭 =


𝑀𝑦𝜌

′ + 𝑣′

𝑀𝑦𝑢
′

𝑀𝑦𝑣
′ + 𝑝′

𝑀𝑦 𝑝
′ + 𝑣′


, (8)

and 𝑀𝑥 = 0.5, and 𝑀𝑦 = 0 are constant mean flow Mach number in the 𝑥 and 𝑦 direction, respectively. The linearized
equations have been non-dimensionless based on a spatial length scale 𝑑, the ambient speed of sound 𝑐∞ for velocities,
𝑑/𝑐∞ for time scales and 𝜌∞𝑐2

∞ for pressure, with density nondimensionalized by 𝜌∞. The computational domain is
embedded in free space and comprises of 𝑥 ∈ [−120, 120] in the streamwise direction and 𝑦 ∈ [−120, 120] in the
vertical direction. The initial conditions prescribes a circular convective entropy wave and a circular acoustic wave as
Gaussian impulses and are modelled as

𝑝′ = 𝜖1 exp
[
−𝜎1

(
𝑥2 + 𝑦2

)]
,

𝜌′ = 𝜖1 exp
[
−𝜎1

(
𝑥2 + 𝑦2

)]
+ 𝜖2 exp

[
−𝜎2

(
(𝑥 − 67)2 + 𝑦2

)]
,

𝑢′ = 𝜖3𝑦 exp
[
−𝜎3

(
(𝑥 − 67)2 + 𝑦2

)]
,

𝑣′ = −𝜖3 (𝑥 − 67) exp
[
−𝜎3

(
(𝑥 − 67)2 + 𝑦2

)]
,

where the physical parameters 𝜎1 = ln 2/9, 𝜎2 = ln 2/25, 𝜎3 = 𝜎2, 𝜖1 = 1.0, 𝜖2 = 0.1, 𝜖3 = 0.04 are maintained
according to original benchmark problem. All boundary conditions are imposed with the periodic boundary condition to
enable direct application of symmetric finite differences. The domain is discretized using equally-spaced grid on 𝑥 and
𝑦 directions with Δ𝑥 = Δ𝑦 = 2.0, 1.5, and 1.0, respectively. The problem is solved using non-optimized centered finite
difference schemes (i.e., 15-point maximal-order) and optimized (i.e., 7-point DRP and 15-point DRP), respectively.
The single-step maximal-order RK4, RK8, RK12 and the two-step optimized LDDRK46 and LDDRK56 of Hu et
al. [11] schemes are compared. The initial condition and the computed result of density and streamwise velocity
fluctuations at solution time 𝑡 = 57 are shown in figure 5 and figure 6, respectively. The absolute numerical error 𝐿∞ is
calculated using

𝐿∞ = sup
𝑥∈[−120,120]

|𝑸 − 𝑸𝑒𝑥𝑎𝑐𝑡 |, (9)

where 𝑸𝑒𝑥𝑎𝑐𝑡 are the analytical solution for the CAA benchmark problem. The computational effort is defined to be

Effort = 𝑝𝑤(𝑇/Δ𝑡) (𝐿/Δ𝑥) (𝐿/Δ𝑦), (10)

where 𝑝 is the number of Runge–Kutta stages, 𝑤 is the half-width of the spatial derivative scheme (so the total width
is 2𝑤 + 1), 𝑇 = 57 is the total simulation time, 𝐿 = 120 is the simulation spatial length, and Δ𝑡, Δ𝑥, and Δ𝑦 are the
time step and mesh sizes. Comparison of the absolute error against the computational effort for non-optimized RK and
optimized LDDRK schemes using the maximal-order 7-point, optimized DRP 7-point, maximal-order 15-point, and
optimized DRP 15-point central finite difference schemes are shown in figure 7, 8, 9, and 10, respectively.
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Fig. 5 Contour plots of density fluctuation 𝜌′ of the acoustic and entropy waves at both (a) the initial condition
at 𝑡 = 0, and (b) the computed result at 𝑡 = 57, respectively.

III. Conclusion
We solved a two-dimensional computational aeroacoustics (CAA) benchmark problem by applying both standard

and optimized numerical schemes, then evaluating the respective numerical errors against the computational efforts.
The findings reveal that optimized Dispersion-Relation Preserving (DRP) schemes do indeed outperform maximal-order
central finite difference schemes in terms of spatial accuracy, as demonstrated by their lower error noise floors at larger
mesh sizes (i.e., Δ𝑥 = Δ𝑦 > 1.0). However, for temporal accuracy, the optimized two-step Runge–Kutta schemes, such
as LDDRK46 and LDDRK56, fail to provide significant benefits when aiming for an desired error threshold below 1%
(i.e., 𝐿∞ < 0.01), and indeed are outperformed by the RK8 and RK12 classical Runge–Kutta schemes when accuracy is
limited by the time-integration rather than the spatial derivative (e.g. Figs. 9(c) and 10(c)); this is in agreement with the
results of Petronilia and Brambley [18]. Conversely, when a more lenient error threshold above 1% is acceptable (i.e.,
𝐿∞ > 0.01), the classical RK4 method remains the preferred choice due to its greater stability limit per stage.
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Fig. 7 Comparison of the absolute error against the computational effort required for unoptimized and optimized
RK schemes using the maximal-order 7-point central finite difference for (a) Δ𝑥 = Δ𝑦 = 2.0, (b) 1.5, and (c) 1.0.
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Fig. 8 Comparison of the absolute error against the computational effort required for unoptimized and optimized
RK schemes using the optimized DRP 7-point central finite difference for (a) Δ𝑥 = Δ𝑦 = 2.0, (b) 1.5, and (c) 1.0.
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Fig. 9 Comparison of the absolute error against the computational effort required for unoptimized and optimized
RK schemes using the maximal-order 15-point central finite difference for (a) Δ𝑥 = Δ𝑦 = 2.0, (b) 1.5, and (c) 1.0.
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Fig. 10 Comparison of the absolute error against the computational effort required for unoptimized and
optimized RK schemes using the optimized DRP 15-point central finite difference for (a) Δ𝑥 = Δ𝑦 = 2.0, (b) 1.5,
and (c) 1.0.
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