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Abstract

A new semi-analytic model of the metal rolling process is presented and validated against �nite element
simulations. The model generalises the classical slab method of modelling cold rolling, and for the �rst time,
is able to predict the through-thickness stress and strain oscillations present in long thin roll gaps. The model
is based on the asymptotic method of multiple scales, with the systematic assumptions of a long thin roll
gap and a comparably small Coulomb friction coe�cient. The leading-order solution varies only on a long
length scale corresponding to the roll-gap length and matches with slab methods. The next-order correction
varies on both this long length scale and a short length scale associated with the workpiece thickness,
and reveals rapid stress and strain oscillation both in the rolling direction and through the thickness. For
this initial derivation, the model assumes a rigid perfectly-plastic material behaviour. Despite these strong
assumptions, this model compares well with �nite element simulations that employ more realistic material
behaviour (including elasticity and strain hardening). These assumptions facilitate the simplest possible
model to provide a foundational understanding of the complex through-thickness behaviour observed in the
�nite element simulations, while requiring an order of only seconds to compute. Matlab code for evaluating
the model is provided in the supplementary material.

Keywords: mathematical modelling, plastic deformation, multiple-scales asymptotics, cold rolling,
quick-to-compute, through-thickness.

1. Introduction

Rolling, depicted in Figure 1, is the process of reducing the thickness of a workpiece by passing it between
two work rolls. It is a major industrial process in metal manufacturing, with over 99% of cast steel and two-
thirds of wrought aluminium produced being rolled [1, pp. 54�55]. The rolling process is usually repeated
for several passes until the desired thickness is achieved, either by moving the workpiece backwards and
forward through the same pair of rolls, or by having several roll stands in tandem which the workpiece
passes through in sequence. Usually either one, or both, of the work rolls is mechanically driven, and the
workpiece is pulled through the roll gap by friction between the workpiece and the rolls. In addition to
altering the thickness, cold rolling alters the material's physical properties, a modi�cation which is arguably
of more importance for the �nal product [2].
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Figure 1: Schematic diagram of symmetric rolling with the domain of interest and the boundary conditions. The sheet, which
is wide in the direction into the page, enters the rollgap between the two rolls from the left and exits as a thinner sheet to the
right.

The modelling of strip rolling is highly signi�cant to industry as a potential means of reducing material
waste, and driving towards carbon neutrality and sustainability [3]. Modern set-up and control algorithms
for rolling mills aspire to go beyond controlling only geometry, utilizing models which, in addition to pre-
dicting how key quantities such as roll load and torque depend on the rolling parameters, also include basic
microstructural modelling [4]. Finite Element (FE) simulations are considered the `gold standard' method
of analysing rolling processes [5�7]. However, despite their accuracy, the long computational time of FE
simulations prohibits their deployment in real-time applications. Moreover, FE simulations of rolling have
shown to not include su�cient through-thickness resolution to model �ne through-thickness variations until
recently [8], which is a pre-requisite for accurately modelling microstructural development [9]. These limi-
tations motivate the exploration of fast models that can support real-time process control while including
through-thickness variation. Fast models are often based on equations drawn from physical principles, with
some simplifying assumptions that enable analytical or semi-analytical solution.

Historically, fast rolling models aimed to predict only roll force and roll torque in order to enable gauge
control [10, 11]. These fast models were established from the equilibrium of forces acting on each vertical
slab of material in the zone of deformation; a method commonly known as the `slab method'. Slab models
were subsequently improved by including more complex material models and accounting for roll elasticity, by
adjusting the roll shape [e.g. 12, 13]. However, one consequence of the slab method is the inability to predict
through-thickness variation; in e�ect, the slab method involves an implicit assumption that the deformation
is homogeneous through-thickness.

Orowan [14] was among the �rst to discard the assumption of homogeneous through-thickness deforma-
tion by modifying the shape of the slab to a thin segment bounded by circular arcs. The Nadai [15] solution
is then applied to this new geometry, which enabled the inclusion of through-thickness shear in the model.
This was followed by a series of developments [16�18] which extended Orowan's original work to incorporate
tensions or to simplify the calculation process with additional assumptions.

Models originating from a slab method predict a single pressure peak throughout the roll gap. However,
MacGregor and Palme [19] experimentally demonstrated a wave-like roll pressure with multiple peaks.
Similarly, using the method of sliplines, for a sheet with comparable half thickness and length, Firbank and
Lancaster [20] also found two pressure peaks with a marked drop in pressure between them. This �nding
set the stage for further study where Al-Salehi et al. [21] conducted a series of experiments with di�erent
materials and aspect ratios and measured multiple pressure peaks. This oscillatory pattern was later veri�ed
using FE analyses [8, 22�25], which demonstrates that the wave-like roll pressure observed is a consequence
of a complicated through-thickness behaviour. These �ndings imply that slab models, due to their simpli�ed
through-thickness assumptions, can not accurately model the wave-like oscillations noted to occur in both
experiments and FE simulations. It is clear that the oscillatory patterns are critical in understanding how
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the mechanical material behaviour and the cold rolling process parameters interact. Without accurately
capturing these patterns, the impact of any real-time monitoring algorithms will be severely limited.

A more rigorous mathematical framework for deriving fast approximate models is asymptotic analy-
sis. Asymptotics utilises systematic assumptions of scale, as opposed to simpli�cations through ad-hoc
assumptions of unknown error and limitation [26]. This approach is especially e�ective in situations where
parameters are not of the same magnitude (i.e., one parameter is notably smaller compared to the others).
As such, asymptotics has found successful application in the modelling of rolling, where the presence of
a small parameter is readily identi�able. Smet and Johnson [27] developed the �rst asymptotic formula-
tion of the sheet metal rolling process and accounted for through-thickness variation in the �ow and the
inhomogeneous work hardening it caused. This technique has subsequently been used in other studies with
di�erent perturbation parameters, such as the ratio of yield stress to maximum pressure by Domanti and
McElwain [28], the ratio of entry-gauge thickness to roll-bite length initially by Johnson and Smelser [29]
and more recently for sandwich rolling [30] and asymmetric clad-sheet rolling [26]. Although asymptotic
models incorporate the e�ect of shear evolution through the thickness, they are often only validated at the
workpiece surface, which does not necessarily represent the heterogeneity of through-thickness distribution
[27�29].

FE simulations can be used to validate theoretical models. In fact, validation via FE simulation is
preferable to experimental methods given the di�culty and expense in capturing through-thickness stress
and strain heterogeneity. However, comparisons of theoretical models with FE simulations are infrequent in
the literature. Minton [31] compared his asymptotic models for di�erent rolling processes with results from
the commercial FE package Abaqus [32]. He reported through-thickness oscillatory patterns in the shear
stress �elds for all FE simulations of asymmetric, thick sheet and clad-sheet rolling. Through a careful study,
he demonstrated that the oscillatory pattern is pervasive in rolling, regardless of the material's rigidity or
work hardening properties, the type of solver used (implicit or explicit), and whether the workpiece is three-
dimensional or exhibits plane strain. These oscillatory patterns, however, are not captured in his asymptotic
models [26, 30].

Careful FE simulations [8, 25, 31] show that the through-thickness pattern oscillates rapidly in the axial
direction on the length scale of the sheet thickness; a length scale which previous asymptotic analyses have
ignored as small compared with the overall deformation. The existence of e�ects on two di�erent length scales
in the same axial direction requires a di�erent type of asymptotic analysis, termed multiple scales [33], in
which a fast scale provides rapid small variations about a solution which slowly evolves on the slow scale. The
slowly varying solution is sometimes referred to as a slow manifold, invariant manifold, or centre manifold,
and is a more general concept that is not unique to asymptotics [see, e.g. 34]. These techniques of a fast
variation about a slowly-varying solution have been applied to elastic beams [35], lubricating �ows [36], and
acoustics [37], but to our knowledge have not previously been used in the modelling of rolling.

To predict and manage material microstructures during forming processes, a description of the through-
thickness shear evolution is essential. Through this literature exploration, it is evident that fast rolling
models, with su�cient through-thickness resolution, validated against a reliable source, is an ongoing chal-
lenge. Building upon this inspiration, the current work develops an asymptotic model capable of predicting
inhomogeneous through-thickness shear e�ects. Furthermore, our results are validated against an implicit
FE simulation using Abaqus [32]. Our emphasis is on developing the simplest possible asymptotic model
to provide a foundational understanding of the principles underlying through-thickness variation during the
rolling process. In doing so, we neglect many factors that complicate the dynamics of rolling in reality,
including anisotropic elasto-plastic material deformation in the workpiece, roll �attening, and varying fric-
tion coe�cients on the rolls. Nonetheless, the outcomes obtained are by no means trivial, explaining the
multiple pressure peaks and the seemingly complex FE observations while requiring an order of seconds
to compute. The use of small parameters in the model is justi�ed by the range of parameters involved in
industrial practice. In a typical sheet-rolling schedule, the sheet passes through a sequence of roll stands
with the roll-gap thickness:length ratio typically varying between 1:10 and 3:10. The e�ective Coulomb
friction coe�cient typically lies in the range of 0.05�0.2, depending on the roll characteristics and presence
of lubricant [28]. Consequently, we may assume that both the roll-gap thickness-to-length ratio and the
friction coe�cient are small, although due to the asymptotic framework, they are not neglected entirely.

3



2D Plastic Model

Coordinate system

� Horizontal coordinate x̂

� Vertical coordinate ŷ
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Figure 2: Outline of the development of the asymptotic multiple-scales model in section 2, 3, and 4.

The paper is structured as shown schematically in Figure 2; the governing equations and modelling
assumptions are presented in Section 2 where all the parameters are non-dimensionalised and the equations
are scaled by two length scales using the method of multiple scales. The equations are then solved in
Section 3 by performing asymptotic analysis on the governing equations, and the solution is provided at
di�erent asymptotic orders. The assumption of a perfect plastic material allows for solving the stress �eld
independent of strain, and therefore the solutions for the stress and velocity �elds are provided in separate
subsections 3.1 and 3.2. In Section 4, the solutions are summarised and the computation methods are
explained for stress and velocities in sections 4.1 and 4.2, respectively. We have carefully constructed these
sections so that readers who are not interested in the details of the multiple-scales analysis can skip Section 3
completely, and �nd the key outputs of the analysis and how to compute them in Section 4. Finally, these
outputs are validated against FE simulation results for a range of parameters in Section 5, including against
FE simulations using realistic material hardening parameters in Section 5.3. Implications of this work, and
possibilities for future research, and then discussed in Section 6.

2. Governing Equations

A schematic of the rolling problem under consideration is presented in Figure 1, with the control volume,
boundary conditions and coordinate systems all illustrated. We initially work with dimensional variables,
denoted with a hat, before non-dimensionalising in Section 2.1. The lateral spread in the third dimension is
minimal away from the workpiece edges for su�ciently wide workpieces (width-to-thickness ratio >10 [2]),
reducing the problem to a two-dimensional plane strain problem in coordinates x̂ and ŷ [28]. Since the
system considered here is symmetric about the sheet centre, we need only consider the upper half of the
sheet shown in Figure 1. The rolls are held at a �xed separation that is less than the initial thickness of the
sheet and the top roll rotates anti-clockwise so that the sheet moves in the positive x̂-direction. The sheet
has an initial thickness 2ĥ0 and the reduction r reduces this thickness by rĥ0 top and bottom, giving a �nal
thickness of 2(1− r)ĥ0. Attention is restricted to the region 0 ≤ x̂ ≤ ℓ̂ in which the sheet is in contact with

the rolls, referred to as the roll gap, where ℓ̂ =

√
2rĥ0R̂− r2ĥ2

0 is the length of the roll gap in terms of the

roll radius R̂. Typically, unless the reduction is very small, ℓ̂ is much larger than ĥ0, giving a long thin roll
gap.

The workpiece material is assumed to be perfectly plastic (i.e. non-hardening), and elastic e�ects are
ignored in both the workpiece and the rolls. This results in the same set of equations used by Minton et al.
[26], although here a di�erent solution method is followed. The unknown normal and shear Cauchy stresses,
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σ̂xx, σ̂yy and σ̂xy, follow the von Mises yield criterion and momentum conservation (neglecting inertia),

1

4

(
σ̂xx − σ̂yy

)2
+ σ̂2

xy = κ̂2,
∂σ̂xx

∂x̂
+

∂σ̂xy

∂ŷ
= 0 and

∂σ̂xy

∂x̂
+

∂σ̂yy

∂ŷ
= 0, (1)

where κ̂ is the known yield stress in shear, which relates to the yield stress in tension, Ŷ , by Ŷ =
√
3κ̂.

The interface between the workpiece and the rolls is assumed to be slipping throughout the roll gap and is
modelled using Coulomb friction as t · σ̂ · n = ±µn · σ̂ · n, where n and t are the unit normal and unit
tangent vectors to the surface respectively. The friction coe�cient µ is also assumed to be a known constant.
The ± sign accounts for the direction of slip of the workpiece over the rolls, as shown in Figure 1. Since the
workpiece enters the roll gap slowly and exits it faster while the rolls rotate at a constant rate, there exists
a position, x̂N, referred to as the neutral point, where the speed of the workpiece surface is the same as that
of the rolls.

Acquiring a better understanding of the problem's kinematics is advantageous in interpreting how the
material deforms and undergoes strain, which in turn a�ects the microstructure. The unknown horizontal
(rolling direction) and vertical (through-thickness direction) velocities û and v̂, and the plastic multiplier λ̂,
satisfy mass conservation and �ow rule equations,

∂û

∂x̂
+

∂v̂

∂ŷ
= 0,

∂û

∂x̂
=

1

2
λ̂
(
σ̂xx − σ̂yy

)
, and

1

2

(
∂û

∂ŷ
+

∂v̂

∂x̂

)
= λ̂σ̂xy. (2)

(Note that we use û for the horizontal velocity, and not for the displacement; in what follows, we will always
be dealing with velocities and never with displacements.) The velocity on the roll surfaces is restricted by
the no-penetration condition V̂n = 0, where V̂n is the normal component of sheet velocity.

The boundary conditions at the entrance and exits are a given force per unit width, F̂in/out, at each end
of the roll gap, and the presumed shear stress distribution, τ̂0, at the entrance. Velocity constraints are also
applied at the entrance, where a zero vertical velocity and a constant horizontal velocity Û0 are assumed.
Finally, the model is closed by applying symmetry about the centre line ŷ = 0.

It is sometimes convenient to write the Cauchy stresses σ̂ij in terms of the deviatoric stresses ŝij and
the hydrostatic pressure p̂, where, in plane strain,

σ̂ij = ŝij − p̂δij and −p̂ =
1

2
(σ̂xx + σ̂yy). (3)

Here, compressive stresses are negative, hence the negative sign in the de�nition of hydrostatic pressure.
It will also be useful in the analysis below to use a thickness-averaged description of mass conservation,

describing the mass balance in each through-thickness slice. Integrating the mass conservation law in (2)

from ŷ = −ĥ to ŷ = +ĥ and applying the no-penetration rule v̂ = ûdĥ/dx̂ yields∫ ĥ(x̂)

−ĥ(x̂)

û dŷ = 2Û0ĥ0. (4)

2.1. Scaling and non-dimensionalisation

An important part of the analysis here comes from the exploitation of small dimensionless parameters.
We therefore rescale the variables in terms of the dimensional scales relevant to the problem; hats on variables
denote dimensional quantities, and unhatted variables are their dimensionless equivalents. In what follows,
distances are measured in multiples of the workpiece initial half-thickness ĥ0, shown in Figure 1, so that the
horizontal distance from the roll-gap entrance is x̂ = ĥ0x and vertical distance from the workpiece centre line
is ŷ = ĥ0y. The upper roll surface is located at ŷ = ĥ(x̂) = ĥ0h(x). Therefore, in dimensionless terms, the
vertical gap between the rolls is from y = −h(x) to y = h(x) owing to symmetry, and the roll gap extends

horizontally from x = 0 to x = 1/δ, where δ = ĥ0/ℓ̂ is the reciprocal of the roll-gap aspect ratio, and so is
typically small. All stresses are non-dimensionalised with respect to the yield stress κ̂, and correspondingly,
the entrance and exit tensions per unit width F̂in/out are non-dimensionalised with κ̂ĥ0. Similar to Minton
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[31], velocities are scaled by the upstream workpiece horizontal velocity Û0 = û(0, ŷ). Finally, the plastic

parameter, λ̂, is non-dimensionalised according to its units and the preceding non-dimensionalisations with
Û0/(ĥ0κ̂).

In this study, small values of δ (corresponding to narrow roll gaps) are of interest, which is justi�ed for
cold rolling processes and is commonly assumed in many asymptotic models for cold rolling [26, 28, 38].
Another small parameter in this model is the friction coe�cient, µ, which is typically of the same order of
magnitude as δ. Following previous asymptotic studies [26, 30, 38], we formally encoded this here by setting
µ = δβ, where β may be thought of as the normalised friction coe�cient.

2.1.1. Multiple scales

The horizontal coordinate x̂ was scaled above with a small length scale ĥ0, yielding a rapidly-varying
dimensionless horizontal variable x. While this short scale will be found later to indeed be important, it
contrasts with results from classical slab methods and FE analyses which suggest the pressure on the roll
surface slowly increases and then decreases over the length of the roll gap, ℓ̂, forming a pro�le known as
the �pressure hill�. This indicates a dependence of the result on large length scale ℓ̂ as well as on the short
length scale ĥ0. We therefore incorporate both length scales into the mathematical model using the method
of multiple scales [33].

We de�ne a large-scale dimensionless horizontal coordinate z = δx (equivalently, z = x̂/ℓ̂), such that the
roll-gap entrance is at z = 0 and the exit is at z = 1. The shape of the rolls necessarily varies on this length
scale only, and so h(x) is now written h(x) = h(z) to demonstrate this dependence. In order to capture
small-scale behaviour, rather than using x directly, it turns out to be appropriate to use a WKB variable, n,
which measures distance through the roll gap based on the number of roll-gap-thicknesses from the entrance.
Since the roll-gap thickness is varying, so too is the rate of variation of n, and we therefore have that

dx̂

dn
= ĥ(x̂) ⇒ n =

∫ x̂

0

dX̂

ĥ(X̂)
=

∫ z

0

dZ

δh(Z)
. (5)

We can now think of the roll gap being measured in terms of two lengths; one extending from n = 0 to
n ∼ O(1/δ), and the other, from z = 0 to z = 1. If the solution ϕ(x, y), representing any of the mentioned
variables, is assumed to depend on the short length scale through n and the long length scale through z,
then formally ϕ(x, y) = ϕ(n, z, y), and

∂ϕ

∂x
=

1

h

∂ϕ

∂n
+ δ

∂ϕ

∂z
. (6)

To summarise, non-dimensionalised horizontal distances x, n and z are de�ned as

x = x̂/ĥ0 (7a)

n =

∫ x̂

0

dX̂

ĥ(X̂)
� the rapidly-changing variable (7b)

z = x̂/ℓ̂ = δx � the slowly-changing variable. (7c)

The dependence of results on both the large and small length scales was missing in the previous asymp-
totic study of rolling by Minton et al. [26], who assumed all horizontal behaviour was only on the large
length scale, and this will be shown to have led to inaccurate results.

2.1.2. Non-dimensional governing equations

Based on the non-dimensionalisation and the multiple-scales variables described above, the governing
equations (1) and (2) become
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1

4
(σxx − σyy)

2 + σ2
xy = 1, (8a)

1

h(z)

∂σxx

∂n
+ δ

∂σxx

∂z
+

∂σxy

∂y
= 0, (8b)

∂σyy

∂y
+

1

h(z)

∂σxy

∂n
+ δ

∂σxy

∂z
= 0, (8c)

1

h(z)

∂u

∂n
+ δ

∂u

∂z
+

∂v

∂y
= 0, (8d)

1

h(z)

∂u

∂n
+ δ

∂u

∂z
=

1

2
λ(σxx − σyy), (8e)

∂u

∂y
+

1

h(z)

∂v

∂n
+ δ

∂v

∂z
= 2λσxy. (8f)

The Coulomb friction condition applied on the roll surface y = h(z) is expressed as

δ
dh

dz

(
σyy − σxx

)
+

(
1− δ2

(
dh

dz

)2)
σxy = ∓δβ

(
σyy − 2δ

dh

dz
σxy + δ2

(
dh

dz

)2
σxx

)
, (9)

where ∓ = sgn(x − xN) gives the correct direction of the friction force before and after the neutral point
xN. The latter convention is kept for the rest of the paper, thus the −ve sign in ∓ refers to the zone before
the neutral point (x̂ < x̂N), and the + sign refers to the zone after the neutral point (x̂ > x̂N). In equation
(9), the gradient of thickness is written as dh/dx = δdh/dz, indicating, �rstly, that the shape of the rolls,
h, necessarily varies on the large length scale z, and correspondingly, that the rate of change in thickness is
small which is the result of a long and thin roll gap.

Assuming non-dimensionalised tensions per unit width Fin/out are applied at the entrance and exit, the
horizontal stress must satisfy

Fin/out =

∫ hin/out

−hin/out

σxx(z = n = 0) dy, (10)

where hin = 1 by our non-dimensionalization, and hout is half of the �nal thickness imposed by the rolls.
Velocity and shear stress are also assumed to be prescribed at the entrance as,

u(z = n = 0) = 1, v(z = n = 0) = 0, and σxy(z = n = 0) = δτ0, (11)

where we assume that the imposed shear stress at the entrance is O(δ), and so τ0 = τ̂0/(δκ̂) is the nondi-
mensionalisation used. This will turn out below to be the correct number of boundary conditions to apply,
as will be seen once we have derived the solution.

The no-�ux constraint on the roll surface y = h(z) leads to

v = δ
dh

dz
u. (12)

Finally, symmetry about the centre line at y = 0 is applied,

σxy(y = 0) = 0 and v(y = 0) = 0. (13)

The averaged mass balance (4) becomes ∫ h(z)

−h(z)

u dy = 2. (14)

Our next step is to take the model written in terms of the two longitudinal length scales (8)-(13), and
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analyse it using asymptotic analysis. This procedure is outlined in Section 3 below. We note that the
mathematical description of the rolling system does temporarily become more complicated as a result of the
multiple length scales and asymptotic analysis, but upon completion of the analysis will yield a simpler and
faster-to-compute model. Readers uninterested in the technical details may safely skip the next section, and
refer directly to Section 4 where the outputs of the model are summarised before being compared to FE
simulations in Section 5.

3. Asymptotic Solution

This section details the solution of equations (8)-(13) using an asymptotic expansion in powers of the
small parameter δ. The resulting equations are summarised at the beginning of Section 4, which then goes
on to describe their practical use. Readers uninterested in the technical details in this section may therefore
safely skip forward to Section 4.

In order to solve equations (8)-(13), the stress components, velocity components, and plastic parameter
are expanded as asymptotic series in the small parameter δ,

ϕ = ϕ(0)(z, y) + δϕ(1)(n, z, y) + δ2ϕ(2)(n, z, y) +O(δ3), (15)

where ϕ represents any of the mentioned variables. Under the assumption that δ is small, each power of δ
represents a small correction to the terms preceding it. Note that the leading-order terms in all variables
are set to be independent of n, which is in line with the slab method and will be justi�ed a posteriori.

We now proceed to solve the problem presented in Section 2.1.2 by substituting the expansion (15) into
the non-dimensionalised governing equations (8) and boundary conditions (9) to (13) and collecting terms
with like powers of δ. Anticipating that the stress is independent of velocity, we �rst derive a solution for
the stress components, before returning to the velocities in Section 3.2.

3.1. Solving for the Stresses

By asymptotically expanding in powers of δ and collecting similar terms, equations (8a), (8b) and (8c)
become

1

4

(
σ(0)
xx − σ(0)

yy

)2
+ σ(0)

xy
2
+ δ

(
1

2
(σ(0)

xx − σ(0)
yy )(σ

(1)
xx − σ(1)

yy ) + 2σ(0)
xy σ

(1)
xy

)
(16a)

+ δ2
(
1

4

[
(σ(1)

xx − σ(1)
yy )

2 + 2(σ(0)
xx − σ(0)

yy )(σ
(2)
xx − σ(2)

yy )
]
+ σ(1)

xy
2
+ 2σ(0)

xy σ
(2)
xy

)
+O(δ3) = 1,

∂σ
(0)
xy

∂y
+ δ

(
∂σ

(0)
xx

∂z
+

1

h(z)

∂σ
(1)
xx

∂n
+

∂σ
(1)
xy

∂y

)
+ δ2

(
∂σ

(1)
xx

∂z
+

1

h(z)

∂σ
(2)
xx

∂n
+

∂σ
(2)
xy

∂y

)
+O(δ3) = 0, (16b)

∂σ
(0)
yy

∂y
+ δ

(
∂σ

(1)
yy

∂y
+

∂σ
(0)
xy

∂z
+

1

h(z)

∂σ
(1)
xy

∂n

)
+ δ2

(
∂σ

(2)
yy

∂y
+

∂σ
(1)
xy

∂z
+

1

h(z)

∂σ
(2)
xy

∂n

)
+O(δ3) = 0. (16c)

The Coulomb friction surface boundary conditions for stress from (9) becomes

σ(0)
xy + δ

(
dh

dz
(σ(0)

yy − σ(0)
xx ) + σ(1)

xy

)
+ δ2

(
dh

dz
(σ(1)

yy − σ(1)
xx ) + σ(2)

xy −
(
dh

dz

)2
σ(0)
xy

)
+O(δ3) (17)

= ∓δ
(
βσ(0)

yy

)
∓ δ2

(
βσ(1)

yy − 2β
dh

dz
σ(0)
xy

)
+O(δ3).

Forward/backward tension per unit width at the roll-gap entrance/exit can be expanded as

Fin/out =

∫ 1/hin/out

−1/hin/out

σ(0)
xx (0, y) dy + δ

∫ 1/hin/out

−1/hin/out

σ(1)
xx (0, y) dy +O(δ2). (18)
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Shear stress is assumed to have a known distribution at the entrance, δτ0, and hence

σxy(z = n = 0) = 0 + δτ0 +O(δ2), (19)

Finally, symmetry condition implies that σxy is zero at all orders of δ about the centre line at y = 0.

3.1.1. Leading-order Solution

At leading order, the friction equation (17) implies that σ
(0)
xy is zero on the roll surface, and the momentum

equation (16b) implies that it is independent of y. Hence, we conclude that σ
(0)
xy = 0 everywhere; i.e. the

shear stress σxy is small and of order at most O(δ) throughout the roll gap. Hence, at leading order, the
yield equation (16a) is reduced to

1

4

(
σ(0)
xx − σ(0)

yy

)2
= 1. (20)

Substituting for the leading-order hydrostatic pressure −2p(0) = σ
(0)
xx + σ

(0)
yy , we therefore have

σ(0)
xx = 1− p(0) and σ(0)

yy = −1− p(0), (21)

where we have asserted that σyy is more compressive than σxx. From momentum conservation equation

(16c) at leading order, σ
(0)
yy is independent of y, and so consequently are p(0) and σ

(0)
xx . This implies that both

normal stress components are vertically homogeneous at this order. The solution for p(0)(z) will be dictated
by satisfying the friction expression (17) at O(δ) on the surface, although this involves the as-yet-unknown

σ
(1)
xy , and so we must �rst solve the �rst-order equations before p(0) can be fully determined. Boundary

conditions for p(0) are determined by the prescribed front and back tension at the entrance and exit (18),

p(0)(z = 0) = 1− Fin

2
and p(0)(z = 1) = 1− Fout

2h(1)
. (22)

3.1.2. First-order Solution

By taking the terms of order δ in the yield function (16a), and from the de�nition of hydrostatic pressure,

σ
(1)
xx and σ

(1)
yy are given by

σ(1)
xx (n, y, z) = σ(1)

yy (n, y, z) = −p(1)(n, y, z). (23)

The momentum conservation equations (16b) and (16c) at this order then become

∂σ
(1)
xy

∂y
− 1

h(z)

∂p(1)

∂n
=

dp(0)

dz
and

∂p(1)

∂y
− 1

h(z)

∂σ
(1)
xy

∂n
= 0. (24)

These two equations give wave equations for p(1) and σ
(1)
xy , forced by the leading-order pressure gradient,

with solution

p(1) = A
(
n+

y

h
, z
)
+A

(
n− y

h
, z
)
+D(z), (25a)

σ(1)
xy = A

(
n+

y

h
, z
)
−A

(
n− y

h
, z
)
+ y

dp(0)

dz
. (25b)

The function A(ξ, z) here is the as-yet-unknown wave solution, and we have made use of the fact that p
is symmetric in y and σxy is asymmetric. D(z) is a constant of integration with respect to n and y, and
so is only a function of the slow variable z. Equations (25a) and (25b) are travelling waves in the fast
axial variable n, and hence result in rapid stress oscillations. This �nding distinguishes this study from
previous asymptotic models, where all horizontal behaviour was assumed to be at the long length scale, and
consequently such oscillatory patterns were not captured.
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With the general form of the solution for σ
(1)
xy now known, we may now solve for p(0), which remained

undetermined at leading order. At O(δ), the Coulomb friction equation (17) is

−2
dh

dz
+ σ(1)

xy ∓ β(1 + p(0)) = 0. (26)

Substituting σ
(1)
xy from (25b) into (26) and evaluating at y = h results in

−2
dh

dz
∓ β(1 + p(0)) + h

dp(0)

dz
= −

(
A(n+ 1, z)−A(n− 1, z)

)
, (27)

where the left-hand side is a function of the slow variable z only and is independent of the fast variable n.
We can therefore interpret (27) as a statement that A increases by a constant (with respect to n) when n
increases by 2. If the constant is non-zero, A grows as a function of n, and by the end of the roll gap, p(1)

or σ
(1)
xy would be O(n) = O(1/δ) and the asymptotic ordering we assumed in deriving our equations would

be broken [33]. Therefore, we require this constant to be zero, for p(1) and σ
(1)
xy to remain bounded in terms

of n, i.e.
A(n+ 1, z)−A(n− 1, z) = 0. (28)

We also note that (25) allows A to be shifted by any �nite function of z, which is then absorbed into D; for
simplicity we de�ne D by setting ∫ 1

−1

A(ξ, z) dξ = 0. (29)

Substituting (28) into (27) gives a �rst-order ordinary di�erential equation (ODE) for p(0)(z) as,

−2
dh

dz
∓ β(1 + p(0)) + h

dp(0)

dz
= 0. (30)

This is analogous to the ODE for σ
(0)
yy derived previously by Minton et al. [26] for asymmetric thin sheet

rolling and by Cawthorn et al. [30] for sandwich rolling. This can be solved with the boundary conditions
(22) once from the entrance forwards with −ve sign of the coe�cient of the friction term and once from the
exit backwards with + sign. These two solutions cross at the point which determines the location of the
neutral point zN, and the whole solution gives the expected �pressure hill� obtained from the classical slab
method. In fact, the approximation obtained here by the asymptotic analysis at leading order (by restricting
the e�ect of shear stress to a small contribution on the surface) is identical to that obtained by the slab
method.

Returning to the �rst-order solution presented in (25), we now consider the two unknown functions
A(ξ, z) and D(z). Condition (28) establishes that, as a function of ξ, A is periodic with period 2. This
means A needs only be found for −1 < ξ < 1 as z varies to be fully determined. Finding the z-dependency
of the function A, as well as the unknown D(z), requires further information which will be revealed in the
next order of correction. However, the boundary condition at the entrance provides the initial conditions.
Since Fin has already been satis�ed at leading order, the �rst-order correction to it must be zero. Hence,
according to equation (18) and using condition (29),∫ h0

−h0

σ(1)
xx (y, 0) dy = −

∫ 1

−1

(A(y, 0)+A (−y, 0)−D(0)) dy = 0 ⇒ D(0) = 0. (31)

which is an initial condition for D(z). Moreover, from (23) and (25), at z = 0 where h = 1 and n = 0, we

have σ
(1)
xx (y, 0) = −A(y, 0)−A(−y, 0) and τ0 = A(y, 0)−A(−y, 0) + ydp(0)/dz, and consequently,

A (y, 0) =
1

2

(
τ0(y)− σ(1)

xx (y, 0)
)
− 1

2
y
dp(0)

dz

∣∣∣∣
z=0

, (32)
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where τ0(y) is the known distribution of shear stress at the entrance according to (19). Equation (32)
gives an initial condition for A at z = 0 for a given distribution of normal and shear stress at the entrance

(σ
(1)
xx (y, 0) and τ0(y) respectively), and will be discussed later in Section 4.1.

3.1.3. Second-order Solution

The solution is continued to this order of correction with the goal of �nding the unknown parameters
A(ξ, z) and D(z) from the previous order. Using the stress equations in Section 3.1 at O(δ2), and after
signi�cant algebra detailed in Appendix A, the following expression is derived:

2h
∂A(n+ 1, z)

∂z
+

∂

∂n

(
A(n+ 1, z)

2
)
+

(
h
dp(0)

dz
∓ 2β

)
A(n+ 1, z)− h

dD

dz
∓ βD(z) = 0. (33)

By integrating (33) between n = −2 and n = 0 and imposing (29), we arrive at

−h
dD

dz
∓ βD(z) = 0. (34)

Since D(0) = 0 from (31), we conclude that D(z) ≡ 0. With this, equation (33) then gives an evolution
equation for how A varies as z is increased,

2h
∂A(ξ, z)

∂z
+

∂

∂ξ

(
A(ξ, z)

2
)
+

(
h
dp(0)

dz
∓ 2β

)
A(ξ, z) = 0. (35)

This partial di�erential equation cannot be solved exactly, so a numerical approach is needed. We can
simplify the numerics required by introducing variables α1(z), T (z) and ω(ξ, T ), as shown in Appendix B;

T =

∫ z α1

h(z̄)2
dz̄, ω

(
ξ, T (z)

)
=

A(ξ, z)

(α1/h)
and α1 = exp

{∫ z

0

[
∓ β

2h(z̃)
(p(0)(z̃)− 1)

]
dz̃

}
,

(36a)

⇒ ∂ω

∂T
+

1

2

∂

∂ξ

(
ω2
)
= 0. (36b)

Equation (36b) is a standard Burger's equation which is especially advantageous as it enables the e�ective
handling of the evolution of discontinuities in the form of shocks or expansion fans.

Once (36b) has been solved with suitable initial conditions for ω and hence A, the correction to the

pressure, p(1), and all the components of the Cauchy stress, σ
(1)
xx , σ

(1)
yy and σ

(1)
xy , can be calculated by

evaluating (25a), (23) and (25b) respectively. It should be noted that, since the boundary condition changes
on the surface at the neutral point, equation (36b) should be solved separately for the entrance and exit
regions, with the two regions connected at the neutral point. The behaviour in the vicinity of this neutral
point is discussed further in the next section.

3.1.4. Behaviour near the neutral point

The shear stress σ
(1)
xy , given in equation (25b), is formed of two components: the �rst component involving

A will be seen to cause a wave pattern, while the second one, y dp(0)/dz, varies linearly through the thickness
with a gradient proportional to the gradient of p(0). The term y dp(0)/dz changes suddenly at the neutral
point, which could hypothetically cause a discontinuity in shear stress across a straight line running through
the thickness of the sheet perpendicular to its longitudinal axis, as illustrated in the right panel of Figure 3.
This discontinuity is predicted by many mathematical models for cold rolling that use Coulomb friction
[26, 28, 29, 38]. Physically, the sudden change in sign of the shear stress at the surface is an expected
consequence of Coulomb friction. However, any through-thickness discontinuity must be arti�cial, since
otherwise vertical forces would not balance on the thin vertical slice of material at the neutral point due to
change in the direction of the vertical component of shear stress. Instead, we require σxy to be continuous
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Figure 3: Leading-order pressure (left) and the term y dp(0)/dz (right), which contributes to shear. Results are shown in

dimensionless form, i.e. scaled with κ̂, the yield stress in shear. Parameters used are (ĥ0, δ, r, µ) = (2mm, 0.125, 25%, 0.1).

in z. Introducing the notation (−) and (+) to donate variables to the left and right of the neutral point

respectively, near the neutral point z = zN we require σ
(1−)
xy = σ

(1+)
xy . Therefore from (25b) we obtain,

A(−)
(
n+

y

h
, z
)
−A(−)

(
n− y

h
, z
)
+

hN
2

[(
n+

y

h
, z
)
−
(
n− y

h
, z
)] dp(0−)

dz

∣∣∣
z=zN

= A(+)
(
n+

y

h
, z
)
−A(+)

(
n− y

h
, z
)
+

hN
2

[(
n+

y

h
, z
)
−
(
n− y

h
, z
)] dp(0+)

dz

∣∣∣
z=zN

. (37)

Solving (37) and applying (30) yields

A(+)(ξ, zN) = A(−)(ξ, zN) +
hN
2

(
dp(0−)

dz

∣∣∣
z=zN

− dp(0+)

dz

∣∣∣
z=zN

)
= A(−)(ξ, zN) + βξ

(
1 + p(0)(zN)

)
. (38)

In this derivation, it is assumed that there is no O(δ) correction to the location of the neutral point, and
that the change from A(−) to A(+) happens abruptly. These assumptions are veri�ed via a more thorough
calculation about the neutral point in Appendix C. Since both A(−) and A(+) are periodic in ξ with period
2, equations (38) completely de�ne A(+)(ξ, zN) in terms of A(−), from which equation (35) or (36b) can be
used to evolve A(+) for zN < z < 1, giving the full solution in the entire roll gap. Note that A(−) is known
completely from the initial conditions (32) at z = 0 and then solving equation (35) or (36b) for 0 < z < zN.

3.2. Solving for the Velocities

Having solved for the stresses in Section 3.1, we now begin the calculation of the velocity �eld. The ap-
proach here is the same as was used for the stresses above. By asymptotically expanding equations (8d), (8e)
and (8f) in successive powers of δ and collecting like terms we obtain,

∂v(0)

∂y
+ δ

(
∂u(0)

∂z
+

1

h(z)

∂u(1)

∂n
+

∂v(1)

∂y

)
+ δ2

(
∂u(1)

∂z
+

1

h(z)

∂u(2)

∂n
+

∂v(2)

∂y

)
+O(δ3) = 0, (39a)

δ

(
∂u(0)

∂z
+

1

h(z)

∂u(1)

∂n

)
+ δ2

(
∂u(1)

∂z
+

1

h(z)

∂u(2)

∂n

)
+O(δ3) =

1

2
λ(0)

(
σ(0)
xx − σ(0)

yy

)
+

δ

2

(
λ(0)

(
σ(1)
xx − σ(1)

yy

)
+ λ(1)

(
σ(0)
xx − σ(0)

yy

))
+O(δ2),

(39b)

∂u(0)

∂y
+ δ

(
∂u(1)

∂y
+

∂v(0)

∂z
+

1

h(z)

∂v(1)

∂n

)
+ δ2

(
∂u(2)

∂y
+

∂v(1)

∂z
+

1

h(z)

∂v(2)

∂n

)
+O(δ3)

= 2σ(0)
xy λ

(0) + 2δ
(
λ(0)σ(1)

xy + λ(1)σ(0)
xy

)
+ 2δ2

(
λ(0)σ(2)

xy + λ(1)σ(1)
xy + λ(2)σ(0)

xy

)
+O(δ3).

(39c)
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The surface boundary condition for velocity from (12) is,

v(0) + δv(1) + δ2v(2) +O(δ3) = δ
dh

dz

(
u(0) + δu(1)

)
+O(δ3). (40)

For the velocity initial condition, the sheet is assumed to enter as a rigid stock with a strictly horizontal
velocity, meaning that v(1) ≡ u(1) ≡ 0 at z = 0. Thus, equation (11) is expanded as,

u(z = n = 0) =1 + δ(0) + δ2(0) +O(δ3) and v(z = n = 0) = 0 + δ(0) + δ2(0) +O(δ3) (41)

Finally, symmetry condition (13) implies v is zero at all orders of δ about the centre line at y = 0.

3.2.1. Leading-order

Evaluating (39c) at leading order yields
∂u(0)

∂y
= 0, (42)

indicating u(0) is uniform across the sheet thickness, as was found for the stress components at this order.
Evaluating the averaged mass equation (14) at leading order then yields

u(0)(z) =
1

h(z)
. (43)

The vertical velocity at leading order, v(0), is identically zero. This can be determined by evaluating the
continuity equation (39a) at leading order to show that v(0) is independent of y, and using the no-penetration
boundary condition (40), which imposes zero vertical velocity v(0) on the surface. Based on the tension �ow
rule equation (39b), the leading-order plastic multiplier λ(0) is also found to be zero.

3.2.2. First-order

By only taking terms of order δ, the continuity equation (39a) and the shear �ow-rule equation (39c)
become, respectively,

∂v(1)

∂y
+

1

h

∂u(1)

∂n
= −∂u(0)

∂z
and

∂u(1)

∂y
+

1

h

∂v(1)

∂n
= 0. (44)

Therefore, similar to the stresses at this order, u(1) and v(1) satisfy a wave equation with the general solution

u(1) = B
(
n+

y

h
, z
)
+B

(
n− y

h
, z
)
, (45a)

v(1) = −
[
B
(
n+

y

h
, z
)
−B

(
n− y

h
, z
)]

+
y

h2

dh

dz
, (45b)

where B(ξ, z) is an unknown function. The solution above has accounted for the symmetry of u and
asymmetry of v with respect to y. By substituting the solution for v(1) into the tension �ow-rule equation
(39b), λ(1) is found to be

λ(1) = −∂v(1)

∂y
=

1

h

[
B′
(
n+

y

h
, z
)
+B′

(
n− y

h
, z
)]

− 1

h2

dh

dz
, (46)

with prime denoting ∂/∂ξ. As a result of the no-penetration boundary condition on the surface (40),

v(1)(y = h) =
dh

dz
u(0) ⇒ B(n+ 1, z) = B(n− 1, z), (47)
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which implies that B(ξ, z) is periodic with periodicity 2, similarly to A(ξ, z) for the stresses. This means B
needs only be de�ned for −1 < ξ < 1 for each value of z. Initial condition for B(ξ, z) at the entrance, is
given by setting n = z = 0 in (45) and subtracting equation (45b) from (45a). By imposing zero �rst-order
horizontal and vertical velocities at the entrance from (41) we then have:

B(y, 0) =
y

2

dh

dz

∣∣∣∣
z=0

. (48)

Additional information is required to determine the evolution of this initial condition with respect to z (i.e.
the z dependency of the function B), which is discussed below.

3.2.3. Second-order

The continuity equation (39a) and the shear �ow-rule equation (39c), at order δ2 are, respectively,

∂v(2)

∂y
+

1

h

∂u(2)

∂n
= −∂u(1)

∂z
, (49a)

∂u(2)

∂y
+

1

h

∂v(2)

∂n
= −∂v(1)

∂z
+ 2λ(1)σ(1)

xy . (49b)

By substituting the solutions obtained thus far into equation (49), we arrive at a wave equation for u(2) and
v(2) driven by terms involving A(ξ, z) and B(ξ, z). Details of this and its solution are given in Appendix D.
Avoiding a growing term, as for the stresses, results in an evolution equation in z for B given by

∂B(n+ 1, z)

∂z
− 1

h2

dh

dz
A(n+ 1, z)−

(
1

2

dp(0)

dz
− 1

h

dh

dz

)
B(n+ 1, z) +

1

h
B′(n+ 1, z)A(n+ 1, z) = 0. (50)

This equation can be simpli�ed by de�ning α2(z) = exp
{

1
2p

(0)
}
, to give,

∂

∂z

(
B(ξ, z)

(α2/h)

)
+

A(ξ, z)

h

∂

∂ξ

(
B(ξ, z)

(α2/h)

)
=

1

hα2

dh

dz
A(ξ, z). (51)

This is an advection equation with a velocity of A(ξ, z)/h. It is, however, more convenient to solve the
equation if the excitation term on the right hand side can be included inside the derivatives. Moreover,
when compared to Burger's equation for the stresses (36b), the above equation can be rewritten to have
the same advection speed ω(ξ, z). The derivation of this rearranged equation is also given in Appendix E,
�nally yielding the genuine advection equation

∂

∂T

(
B

(α2/h)
−Qω

)
+ ω

∂

∂ξ

(
B

(α2/h)
−Qω

)
= 0, where Q(z) =

∫ z

0

α1

α2h2

dh

dz̃
dz̃. (52)

Equation (52) or (51) can be solved with a suitable initial condition, and the solution B can be subsequently
used to calculate u(1), v(1) and λ(1) by evaluating (45a), (45b) and (46) respectively.

4. Computing the asymptotic solutions

Above we have derived governing equations for the various components of stress and strain that can be
integrated through the roll gap, either analytically or semi-analytically, starting from initial conditions at
the roll-gap entrance and matching some conditions at the roll-gap exit. In this section, we summarise the
solutions gained thus far and detail a simple numerical procedure for performing these calculations. We
begin by considering the stresses, since they may be solved independently of the velocities.
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4.1. Stresses

The stress pro�les in terms of horizontal distance x, and vertical distance y are written in terms of
horizontal scales n =

∫ x

0
1/hdx and z = δx as

p = p(0)(z) + δ
[
A
(
n+

y

h
, z
)
+A

(
n− y

h
, z
)]

+O(δ2) (53a)

σxy = 0 + δ

[
A
(
n+

y

h
, z
)
−A

(
n− y

h
, z
)
+ y

dp(0)

dz

]
+O(δ2), (53b)

σxx = 1− p, (53c)

σyy = −1− p. (53d)

The leading-order pressure p(0)(z) is given by,

dp(0)

dz
− β(1 + p(0))− 2

dh

dz
= 0, for z < zN with p(0)(z = 0) = 1, (54a)

dp(0)

dz
+ β(1 + p(0))− 2

dh

dz
= 0, for z > zN with p(0)(z = 1) = 1, (54b)

with zN chosen such that p(0) is continuous at zN. The solution for p(0) is chosen to satisfy the forward and
backward tension conditions, which are taken to be zero for the results presented below. Therefore, p(0) is
solved by integrating equation (54a) forward from the entrance, and integrating equation (54b) backwards
from the exit, using the Matlab ODE solver ode45 [39]. This is the same solution as the slab method
and the two curves thus produced are referred to as the friction hill. The location of the intersection of the
curves de�nes the location of the neutral point at leading order.

The �rst-order wave-like oscillatory function A(ξ, z), in the set of equations (53), obeys Burger's equation
once suitably rescaled,

A(ξ, z) =
α1

h
ω
(
ξ, T (z)

)
,

∂ω

∂T
+

1

2

∂

∂ξ

(
ω2
)
= 0 for − 1 < ξ < 1, (55a)

T =

∫ z α1

h(z̄)2
dz̄, α1 = exp

{∫ z

0

(
∓ β

2h(z̃)
(p(0)(z̃)− 1)

)
dz̃

}
, (55b)

with A and therefore ω are periodic in ξ such that

A(ξ + 1, z) = A(ξ − 1, z). (56)

Due to periodicity, it is su�cient to solve Burger's equation for −1 < ξ < 1. Burger's equation (55) is solved
�rst from the entrance at z = 0 to the neutral point at z = zN to give A(−), and is then solved again from
z = zN onwards with the new initial condition at the neutral point to give A(+):

A(ξ, z) =


A(−)(ξ, z) for z < zN with A(−) (ξ, 0) =

1

2

(
τ0(ξ)− σ(1)

xx (ξ, 0)
)
− 1

2
ξ
dp(0)

dz

∣∣∣∣
z=0

A(+)(ξ, z) for z > zN with A(+)(ξ, zN) = A(−)(ξ, zN) + βξ
(
p(0)(zN) + 1

)
.

(57)

For the initial condition at n = z = 0 in (57), the simplest assumption is that σ
(1)
xx is zero and τ0(y) is linear

in y at the entrance. This implies a situation where all material points are a�ected the same by the inlet
tension, and the shear stress linearly increases from zero at the symmetry line to its maximum value at the
surface. While this maximum shear stress can be chosen to give good agreement with FE results, as will

be seen below, an improved estimation is obtained by allowing σ
(1)
xx to vary quadratically (but with average

value zero to maintain the same inlet tension according to (18)). Both scenarios are compared with FE
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results in Section 5. Once A(−) is completely solved from (55) with the initial conditions at n = z = 0, the
solution at zN is used to modify the initial condition at the neutral point. This new initial condition is then
used to solve A(+) from the neutral point to the exit. A(−) and A(+) together give the full solution in the
entire roll gap.

Burger's equation (55) is solved with the �nite volume method in Matlab, and a limiter is applied
to ensure that the numerical solution does not develop new extrema. While the periodicity of A in ξ
means that A will have discontinuities (e.g. at ξ = ±1), these discontinuities form an expansion fan in the
Burger's equation solution, and so are not problematic. Using the unoptimised Matlab code provided in
the supplementary material, solving for all stresses takes of the order of a couple of seconds on a standard
laptop.

4.2. Velocity

The velocity pro�les are given by,

u =
1

h
+ δ

[
B
(
n+

y

h
, z
)
+B

(
n− y

h
, z
)]

+O(δ2), (58a)

v = 0 − δ

[
B
(
n+

y

h
, z
)
−B

(
n− y

h
, z
)
− y

dh/dz

h2

]
+O(δ2), (58b)

where the leading-order slab-like behaviour is controlled directly by the roll-gap thickness imposed by the
rolls, and the wave-like oscillatory correction obeys,

∂

∂T

(
B

(α2/h)
−Qω

)
+ ω

∂

∂ξ

(
B

(α2/h)
−Qω

)
= 0 for − 1 < ξ < 1 with B(ξ, 0) =

ξ

2

dh

dz

∣∣∣∣
z=0

, (59a)

Q(z) =

∫ z

0

α1

α2h2

dh

dz̃
dz̃, α2(z) = exp

{
1

2
p(0)
}
, (59b)

and with periodicity B(ξ + 1, z) = B(ξ − 1, z), as for A(ξ, z).
Similarly to A(ξ, z), the advection equation (59) may be fully solved for B(ξ, z) using suitable initial

conditions at z = 0 for −1 < ξ < 1, with discontinuities at the beginning and end of each interval forced by
the periodic nature of B(ξ, z), similar to A(ξ, z), which again results in an expansion fan.

A subtlety of the solution here, however, unlike the Burger's equation solution for A(ξ, z), is that a
discontinuous initial condition coupled with the advection equation for B(ξ, z) does not completely determine
the solution within the expansion fan. This distinction arises because, in Burger's equation, the function
within an expansion fan is inversely proportional to the slope of characteristic lines, a relationship which
does not apply to the advection equation. Consequently, additional information is needed to specify the
initial condition for the expansion fan for B(ξ, z). Physically, this might come from solving an inner elastic
problem at the contact point at the entrance, a topic not addressed in this study. Consequently, here we
assume that, as for Burger's equation, the expansion fan is initially linear, and instead of specifying B(ξ, z)
at z = 0 and integrating forwards, we specify B(ξ, z) for a small nonzero value of z close to the entrance and
solve for the evolution forward to the exit and backward to the entrance using the advection equation (59).
This allows us to use a continuous initial condition for our solver, chosen such that the solution at the
entrance is the desired one.

The numerical solution to (59) is non-trivial, with the advected velocity depending on both ξ and z
and being positive and negative. Here, an upwinding explicit �nite di�erence method is employed. The
computation time varies with the step size in order to maintain a CFL constraint, but the results plotted
here are obtained in a few seconds using unoptimised Matlab code on a standard laptop.

5. Results and comparison with FE simulation

Since it is extremely di�cult to experimentally observe the stress pattern through thickness during
the rolling process, the predictions of the asymptotic model are here compared with carefully conducted
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FE simulations using the Abaqus package; full details are given by Flanagan et al. [8]. In summary,
simulations are made in Abaqus/Standard with an implicit solver. Only one roll and half the sheet are
simulated following the assumption of symmetry about the sheet's horizontal centre plane. To comply with
the plane-strain assumption, the sheet metal is modelled as a two-dimensional deformable part and the rolls
as a two-dimensional analytical rigid geometry. The contact between the roll and sheet is discretised using
the surface-to-surface method. Since a mesh sensitivity study con�rmed that under-resolution through-
thickness strongly a�ects the results [8], here, 30 CPE4R elements were used through the half-thickness
of the sheet; this showed the best trade-o� between accuracy and computation time [8]. The simulation
consists of two steps: the bite step, where the roll is slowly translated vertically to indent the sheet; and the
rolling step, where the sheet is horizontally displaced due to rotation of the roll. The model is then run for a
su�ciently long time to attain a steady state, as measured by obtaining steady through-thickness stress and
strain distributions, rather than simply by observing roll force and torque [8]. For static Abaqus/Standard
simulations, although stresses are generated directly, velocity must be calculated from the displacement
change between time frames. The computation time for these simulations depends on the aspect ratio, and
an example of δ = 0.125 requires a computation time of 15.89 hours.

For the simulations, the sheet material is chosen to be a mild steel (grade DC04), a common material
used in cold metal forming [40]. While the mathematical model uses κ̂ = 288.67MPa (corresponding to
Ŷ = 500MPa), the FE simulations were performed with two di�erent material models. Initially, simulations
were performed with the yield stress of the material �xed at κ̂ = 288.67MPa, so that the simulation is close
to the perfectly-plastic material assumed in the current asymptotic model; this assumption is then relaxed
and a more typical hardening pro�le is used subsequently, where the material deforms plastically from an
initial yield stress of κ̂ = 275.51MPa and reaches 324.29MPa at a true plastic strain of 0.4 as a result of
strain hardening. The results presented below are for the non-hardening material model unless otherwise
stated. A realistic Young's modulus of E = 206.3GPa and a Poisson ratio ν = 0.3 are used for all FE
simulations.

For the FE simulations, the rolls rotate with a surface speed of 1.28ms−1, the sheet has an initial full
thickness 2ĥ0 = 4mm, and the size and position of the rolls is varied to give the required roll-gap aspect
ratio and a reduction of r = 0.25. The friction coe�cient between the workpiece and the rolls is chosen to
be 0.1, except for short roll gaps with δ = 0.3 and 0.5, for which µ = δ/2 is chosen to guarantee the initial
bite. These choices of material, friction coe�cient, initial thickness, reduction, and roll speed are purely
illustrative, and solutions may be found for any values of these parameters.

5.1. Prediction of through-thickness variation

In Figure 4, we compare the axial stress σxx, hydrostatic pressure −p, and shear stress σxy predicted by
the Abaqus simulation and the current mathematical model for δ = 0.125 with zero backwards/forwards
tensions. The top row shows FE simulation and the two bottom rows show results from the mathematical
model with two di�erent inlet boundary conditions. According to the Abaqus simulation in Figure 4,
even with zero back tension, the distribution of σxx is non-zero at the entrance, which can be attributed
to the elastic deformation at the entrance. If known, this can be included in the mathematical model by
considering the quadratic function as an initial condition as explained in 4.1, and the result of this is shown

in the middle row in Figure 4. In this �gure, the unknown term in (57) is taken to be τ0(y) − σ
(1)
xx (y, 0) =

−2(0.15y2 + 0.5y − 0.05), where the coe�cients are chosen by comparing the results with simulation and
imposing a zero average (18). However, reasonable results can still be obtained by disregarding the initial
distribution of σxx and imposing a linear distribution for shear stress τ0 as the initial condition (see the
bottom row in Figure 4; for this case, τ0 = −1.2y was chosen, which gives a good comparison for all rolling
parameters considered here). Comparing the two bottom rows in Figure 4 also demonstrates that, with the
cost of an extra degree of freedom, the quadratic initial condition results in a rounded pattern which is more
similar to the FE simulation. The mathematical model's prediction of stresses at the roll-gap exit di�ers
from those of the FE simulation due to the workpiece unloading and becoming purely elastic, although this
appears to be localised to the roll-gap exit and does not appear to a�ect the agreement of the solution
elsewhere within the roll gap.
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Figure 4: Comparison of results for δ = 0.125 from FE simulations [8] (top row) with the current model (equation 53), with two
di�erent initial conditions: quadratic initial condition (middle row) and linear initial condition (bottom row). Left: contour plots
of horizontal stress. Middle: contour plots of pressure. Right: contour plots of shear stress. Results are shown in dimensionless
form, i.e. scaled with κ̂, the yield stress in shear. Parameters used are (ĥ0, r, µ, κ̂) = (2mm, 25%, 0.1, 288.67MPa).

The oscillatory pattern in the pressure distribution shown in Figure 4 is very similar to σxx, and with
a similar e�ect of the initial conditions at the roll-gap entrance, as is expected from equations (53c). The
pressure solution is the summation of the leading-order solution describing the �pressure hill� and the O(δ)
correction term causing an oscillatory pattern. As a result of the pressure hill, the pressure is seen to
approximately increase in magnitude up to the neutral point (x̂ ≈ 10.7) and decrease after that up to the
exit point. Nevertheless, this trend is not monotonic within either of the two zones due to the correction
term; each momentary increase in pressure is followed by a subsequent decrease, resulting in the formation
of multiple local peaks. This means that unlike the slab method prediction the maximum pressure does not
necessarily occur exactly at the neutral point.

The shear stress distribution in the last column in Figure 4 also reveals a unique distribution, which is
replicated by the mathematical model. The di�erent initial conditions in the last two rows in the σxy panel
in Figure 4 do not signi�cantly a�ect the shear distribution pattern. This implies that a linear variation of
shear stress is su�cient to model initial condition in (57) for the remainder of this paper. Unlike many other
mathematical models, where the application of Coulomb friction is associated with a vertical discontinuity at
the neutral point (as illustrated in Figure 3), the current model correctly predicts the trend of the changing
sign in shear along the diagonal lines. This is shown more clearly for shorter roll gaps, plotted as the top
rows in Figure 5, where the shear stress �elds from FE (left column) and the mathematical model (right

column) are plotted for varying δ = ĥ0/l̂.
The discontinuity in shear stress at the surface, observed in the mathematical model in Figures 4 and 5,

is an unavoidable consequence of our assumption of Coulomb friction without sticking. The shear stress
discontinuity at the surface for the mathematical model causes a shock to form in the Burger's equation
solution, producing the sharp line starting from the neutral point. The FE simulation, on the other hand,
predicts a sticking region, giving a smoother transition between positive and negative shear at the neutral
point than is observed in the mathematical model. Still, the predicted neutral point is correctly positioned
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compared with the FE simulations for all aspect ratios.
Another interesting feature seen in Figures 4 and 5 is the initial diagonal discontinuity in stresses ema-

nating from the �rst contact point between the workpiece surface and the rolls (e.g. the top left and bottom
left points in each plot); this initial discontinuity subsequently spreads out and weakens. This is the result of
the evolution of the discontinuity in the initial condition (as explained in 4.1) as an expansion fan. This �eld
is quite common in plane-strain problems at die corners or at the location of sudden changes in cross-section
solved by the slip-line method [41], and is also well predicted by the current method. Signi�cant numerical
resolution at the contact points is needed for FE simulations to accurately reproduce the same behaviour.

The trend observed in Figure 5 indicates that the oscillatory pattern is not restricted to a particular
aspect ratio, as similar trends are noted for all values of δ between the FE and the model. The number of
lobes present increase with roll-gap length and are approximately proportional to the aspect ratio of the roll
gap 1/δ. This can potentially be explained by the underlying mechanism of deformation. The deformation
mechanism in the roll gap is e�ectively that of uniaxial extension, with the sheet getting longer and thinner,
although forced by the rolls rather than extensive normal forces at the entrance and exit. This means the slip
lines, along which information about the deformation is carried, align with the local direction of maximum
shear at 45 degrees to the centre line. As information only reaches a material element along slip lines,
information about initial contact with the rolls, friction, the neutral point, etc, all travel at 45 degrees to
the centre line. This sets up an oscillatory pattern that repeats, because of the 45 degree angle, on average
every sheet thickness, meaning the number of oscillations depends on the number of sheet thicknesses that
�t into the length of the roll gap. This becomes more comprehensible when viewed alongside the velocity
distribution in Figure 6.

Figure 6 shows the vertical and horizontal velocity distribution for δ = 0.125 both from FE simulation
and the mathematical model. The frequency at which the pattern in vertical and horizontal velocity recurs
is almost the same as that observed in stresses (Figure 5). In the vertical velocity contour plots in Figure 6,
as expected, the material points are pushed towards the centre line due to the presence of the rolls, although
interestingly this is limited to certain regions, between which there is almost no vertical velocity. Each zone
exhibits distinct horizontal and vertical velocities that are suggestive of a block gliding over its neighbouring
block at a roughly constant speed; this provides another alternative interpretation of the contrasting shear
signs observed in Figure 5.

20



0 2 4 6 8 10
x̂ (mm)

1

1.1

1.2

1.3

1.4
H

o
ri
zo

n
ta

l
v
el
o
ci
ty

o
n

th
e

su
rf
a
ce

a
n
d

ce
n
tr

el
in

e

/ = 0:2

0 3.2 6.4 9.6 12.8 16
x̂ (mm)

/ = 0:125

Current model surface ABAQUS surface Slab method
Current model centreline ABAQUS centreline
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velocity. Other parameters used are (ĥ0, r, µ, κ̂) = (2mm, 25%, 0.1, 288.67MPa).

The horizontal velocity distribution in Figure 6 is also notable. The solution to u(0), and indeed the
classic slab method, both predict a smoothly increasing horizontal velocity from the entrance to the exit
due to the continuity requirement. However, the inclusion of the correction term results in an increasing
horizontal velocity characterised by a series of incremental steps. This can be seen in more detail in �gure 7,
where the horizontal velocity along the surface and along the centreline are compared from three di�erent
methods: the slab method, the current model, and FE simulations. The sheet is introduced into the roll gap
horizontally at a velocity lower than that of the rolls, and initially, while the surface accelerates following
contact with the roll, the centre maintains its initial velocity. This trend then reverses and the centre line
advances more rapidly than the surface. This leapfrogging of surface and centerline continues up to some
point near the exit where the centerline velocity stays higher than the surface, just before the entire block
travels uniformly and exits the roll gap in a horizontal direction. Flanagan et al. [8] showed the regions of
constant velocity at the sheet's surface, or centre, coincide with zero plastic-equivalent-strain-rate regions
where there is no local plastic deformation. While this velocity prediction is suggestive, more investigation is
required to determine the e�ect of velocities on strain and strain rate pro�les, which are critical for studying
texture evolution, particularly in hot rolling.

5.2. Comparison to slab analysis

Since slab analysis is not intended to give through-thickness information, it would be unfair to compare
the results above with the slab method. Instead, here we use the stress �elds on the roll surface to compare
the distribution of roll pressure and roll shear between FE, slab method, and the current model. Results for
two aspect ratios are plotted in Figure 8. The roll pressure marked as the �slab method� is calculated using
the leading-order pressure equation (54), and the �current model� roll pressure curve is from equation (53a).

For roll shear, the �slab method� curve is y dp(0)/dz, and the correction O(δ2) from equation σ
(2)
xy ∓βp(1) = 0

at y = h is added to this term to �nd the �current model� roll shear curve.
The mathematical model accurately captures the oscillations in roll pressure observed in the FE data by

incorporating a correction term of magnitude δ. For short roll-gap lengths, this correction is not necessarily
small, and in fact, the successive pressure peaks completely overcome the classic slab method pressure hill
pro�le, as was observed experimentally by Al-Salehi et al. [21]. These deviations are unrelated to elastic
deformation, roll �attening, or hardening, as those e�ects are not included here. As the sheet length increases,
the stress oscillations become small �uctuations to the pressure hill. These oscillations are averaged out when
integrating the roll pressure and shear over the whole roll surface to produce the roll force and roll torque;
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parameters used are (ĥ0, r, µ, κ̂) = (2mm, 25%, 0.1, 288.67MPa).

this is why both roll force and roll torque are poor measures for the accuracy of a rolling simulation [8], and
why classical slab methods produce reasonable predictions for the total roll force and roll torque.

When considering roll shear, the current model prediction is identical to the slab method to the �rst-
order correction on the surface (see equations (53b) and (56)). However, incorporating the correction of
O(δ2) on the surface accounts for the oscillations detected in the simulation, and this is what is plotted as
�Current model� roll shear in Figure 8. The number of local peaks increases for longer sheet lengths, as also
seen in the shear lobe pattern in Figure 5. As mentioned in the previous section, the observed discontinuity
on the surface at the neutral point is an inevitable consequence of slipping Coulomb friction, while the FE
simulation varies smoothly due to a small zone of sticking friction. This could be improved in future by
incorporating sticking friction in the asymptotic model, although a more rigorous study would be required
also incorporating elasticity, as the friction rule alone is not solely responsible for the behaviour around the
neutral point [8, 14]. Such alternative friction treatments are beyond the scope of the present study. Also,
the sudden changes observed near the entrance in the FE roll pressure and roll shear results are attributable
to elastic deformation, which is not accounted for in the current model.

5.3. Comparison with a work-hardening FE simulation

In the previous sections, the current mathematical model was extensively veri�ed against FE simulations
which used a non-hardening material model, where the yield stress was kept �xed at κ̂ = 288.67MPa.
Here, FE simulation results are presented for a more realistic hardening material. For this, the initial yield
stress is taken to be κ̂ = 275.51MPa increasing to 324.29MPa at a true plastic strain of 0.4 as a result of
strain hardening. Strain-hardening simulations were performed for the whole range of aspect ratios shown
in Figure 5, and although we only present results here for δ = 0.125 for brevity, these results are typical for
all values of δ.

Contour plots of stress and velocity for the hardening material for δ = 0.125 are shown in Figure 9. By
comparison to the equivalent non-hardening results shown in Figures 4 and 6, hardening can be seen to
have a negligible e�ect on the through-thickness oscillatory pattern, with the e�ect of hardening being only
a progressive increase in the magnitude of stress from left to right as the workpiece passes through the roll
gap.

To examine the deviation of the model when the realistic material is concerned, we now compare the
current mathematical model with non-hardening material against the simulation results with hardening
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Figure 9: Contour plots of FE results [8] for δ = 0.125. Material is hardened with the initial yield stress κ̂ = 275.51Mpa
increasing to 324.29MPa at a true plastic strain of 0.4 as a result of strain hardening. Results are scaled with the initial yield
stress κ̂ = 275.51Mpa. Other parameters used are (ĥ0, r, µ) = (2mm, 25%, 0.1).

material. Figure 10 shows pressure and shear distribution on the sheet surface from the current model
and from FE simulation. Since in the mathematical model all stresses are scaled by the yield stress κ̂, the
prediction depends on its magnitude. To see the e�ect, we compare the simulation with the mathematical
model twice: once taking the stress scaling factor as the initial yield stress κ̂ = 275.51MPa; and once
as the average yield stress κ̂ = 288.67MPa from the hardening simulation. The impact of the di�erent
stress scalings is more noticeable on the pressure rather than shear stress, and overall, the larger scaling
(κ̂ = 288.67MPa)) results in better agreement. The agreement is understandably better at the start of the
roll gap, when the sheet undergoes little hardening, and becomes progressively worse as more hardening
takes place. In summary, this comparison between the hardening simulation and non-hardening model
demonstrates that the stress oscillations are una�ected by the hardening characteristics, and that the existing
model remains a useful predictor for hardening materials, even though it was not speci�cally developed
for this objective. Further improvement might be achieved in future by incorporating hardening into the
mathematical model.

6. Conclusion

A semi-analytic model for symmetric rolling under Coulomb friction has been presented. The semi-
analytical solution was achieved via the systematic assumptions that the aspect ratio, 1/δ, is large, and the
friction coe�cient, µ, is correspondingly small, which are common in practice. A simpli�ed material model
was assumed that neglects both elasticity and work-hardening. Despite this, the model is in good agreement
with FE simulations that do not make these assumptions. While the rolls were considered rigid here, the
shape of the rolls in the model (h(z)) is arbitrary and could be iterated to include roll �attening.

Two length scales were introduced which enable the use of a multiple-scales asymptotic analysis: the
large scale of the length of the roll gap, l̂; and the small length scale of the initial sheet half-thickness, ĥ0.
The leading-order solution depends on the large length scale only and recreates the conventional pressure
hill from slab analysis. The next-order correction is an order O(δ) smaller than the leading order, depends
on both the large and small length scales, and provides a new prediction of through-thickness variation
that shows an oscillatory pattern. This work is distinguished by this correction term, and generalises a
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previous asymptotic analysis by Minton et al. [26] that incorrectly neglected these O(δ) correction terms.
It should be noted that the shear stress is zero at leading order, and so this O(δ) �correction term� actually
gives the leading-order behaviour of the shear stress. The �rst-order correction terms reveal two sets of
waves for stress and velocity distribution varying on the short length scale of the sheet thickness. These are
governed by a Burger's equation and an advection equation respectively, and can easily be solved numerically
with suitable initial conditions at the roll-gap entrance. These corrections to the stress distribution have
a minimal in�uence on the overall roll force and torque predictions, indicating that the accuracy of roll
forces and torques are poor indications of the quality and accuracy of the entire simulation. Moreover,
these �ne details in the stress and velocity distribution will likely become signi�cant when studying material
properties, such as the hardening, development of anisotropy, or development of residual stress in the rolled
sheet.

A set of rigorous FE simulations using Abaqus/Standard were performed for steady-state conditions, as
detailed by Flanagan et al. [8]. Signi�cant work was needed for the FE simulation to be su�ciently accurate
to give good agreement with the mathematical model. This highlights another use of the mathematical
model presented here: it can be used to validate FE simulations. To date, the asymptotic solution and FE
simulations shown here demonstrate the highest degree of agreement the authors are aware of in the litera-
ture. The solutions deviate in three places due to the simplifying assumptions of the mathematical model:
the entrance and exit regions are sub-yield and are therefore governed by elasticity, which is neglected in the
mathematical model; and the neutral point demonstrates sticking behaviour in the numerical simulations
while only slipping friction was assumed in the mathematical model. These di�erences do not appear to
a�ect either the quantitative predictions of the mathematical model elsewhere in the roll gap, nor the overall
qualitative predictions of the model in general.

The mathematical model presented in this study o�ers a signi�cant advantage in terms of computational
e�ciency compared to FE simulations. The FE simulations for δ = 0.125 used in this paper took 15.89 hours
CPU time to run on a standard desktop computer, making them unsuitable for optimisation and real-time
control. In contrast, the unoptimised Matlab code evaluating the new mathematical model for the same δ
took 3.45 seconds CPU time to run on a standard laptop which is more than 16,000 times faster compared
to FE simulation.
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Further work could look at the entry and exit boundary conditions, likely by the inclusion of an elastic
entrance and exit region. Similarly, including elasticity and a sticking friction model near the neutral point
would smooth the shock that is seen in the mathematical model but not the FE simulations. Calculating
higher-order terms, for example of O(δ2), may or may not lead to more accurate results, and is unlikely
to uncover new behaviour. It may also be interesting to consider whether more mathematical techniques
investigating slow, invariant, or centre manifolds may give either more insight or further accuracy [34�36]. As
mentioned above, incorporating roll �attening would allow the model to be applied to more extreme rolling
cases such as foil rolling [extending 13], and would involve adding an evolution equation to the roll shape
h(x) which is here taken to be arbitrary but known. The assumption of symmetry could also be relaxed
to enable the prediction of asymmetric rolling [extending 26], and temperature and recrystallisation e�ects
could be included in order to model hot rolling processes. Including heating and heat �ux in the model might
allow the prediction of similar oscillatory patterns observed in the heat �ux during rolling [42]. Another
extension might be to predict the stress �eld in other rolling processes, such as wire rolling [43, 44]. Finally,
the present model's assumptions of perfect plasticity could be generalised to more realistic material models
including strain-hardening and strain-rate-hardening, which is currently work in progress. Of course, all of
these modi�cations would further complicate the model, making it harder to understand and interpret the
fundamental mechanics; we therefore believe the present model represents a good balance between complexity
and understandability, retaining most of the underlying simplicity of slab methods and introducing the wave-
like behaviour needed for reasonable comparison with FE simulations.
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Appendix A. Solving for the second-order stresses

In this appendix, The solution is continued to this order of correction with the goal of �nding the
unknown parameters A(ξ, z) and D(z) from the previous order. From the yield function (16a), at O(δ2),
and substituting the known variables from the previous orders, we �nd that

σ(2)
xx = −p(2) − 1

2
σ(1)
xy

2
and σ(2)

yy = −p(2) +
1

2
σ(1)
xy

2
. (A.1)

At O(δ2), the momentum equations (16b) and (16c) are

∂σ
(1)
xx

∂z
+

1

h

∂σ
(2)
xx

∂n
+

∂σ
(2)
xy

∂y
= 0 and

∂σ
(2)
yy

∂y
+

∂σ
(1)
xy

∂z
+

1

h

∂σ
(2)
xy

∂n
= 0. (A.2)

By substituting in σ
(2)
xx and σ

(2)
yy from equation (A.1), and σ

(1)
xx from (23), we have,

∂σ
(2)
xy

∂y
− 1

h

∂p(2)

∂n
=

∂p(1)

∂z
+

1

2h

∂σ
(1)
xy

2

∂n
and

∂p(2)

∂y
− 1

h

∂σ
(2)
xy

∂n
=

∂σ
(1)
xy

∂z
+

1

2

∂σ
(1)
xy

2

∂y
. (A.3)
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These two equations give wave equations for p(2) and σ
(2)
xy , forced by p(1) and σ

(1)
xy . By substituting p(1) and

σ
(1)
xy from equation (25) into (A.3), we arrive at

∂σ
(2)
xy

∂y
− 1

h(z)

∂p(2)

∂n
=

[
∂A

∂z

(
n+

y

h

)
+

∂A

∂z

(
n− y

h

)]
− dD(z)

dz

+
1

2h

∂

∂n

[
A
(
n+

y

h

)2
+A

(
n− y

h

)2
− 2A

(
n+

y

h

)
A
(
n− y

h

)]
+

y

h

[
A′
(
n+

y

h

)
−A′

(
n− y

h

)](dp(0)
dz

− dh/dz

h

)
(A.4a)

∂p(2)

∂y
− 1

h

∂σ
(2)
xy

∂n
=

[
∂A

∂z

(
n+

y

h

)
− ∂A

∂z

(
n− y

h

)]
+

1

2

∂

∂y

[
A
(
n+

y

h

)2
+A

(
n− y

h

)2
− 2A

(
n+

y

h

)
A
(
n− y

h

)]
+

y

h

[
A′
(
n+

y

h

)
+A′

(
n− y

h

)](dp(0)
dz

− dh/dz

h

)
+ y

((
dp(0)

dz

)2

+
∂2p(0)

∂z2

)
+

dp(0)

dz

[
A
(
n+

y

h

)
−A

(
n− y

h

)]
,

(A.4b)

where prime denoting ∂/∂ξ, and A(n ± (y/h), z) is abbreviated to A(n ± (y/h)) for brevity while the
dependence on z is still acknowledged.

In principle, p(2) can be eliminated from (A.4b) and the resulting second-order di�erential equation can

be solved for σ
(2)
xy , and vice versa. However, we found it more manageable to solve as a system of two coupled

equations, by �nding particular integrals for each of the forcing terms on the right-hand-side. Ultimately,

we �nd the �nal solution for σ
(2)
xy and p(2) as

σ(2)
xy =M

(
n+

y

h

)
−M

(
n− y

h

)
+ y

[
∂A

∂z

(
n+

y

h

)
+

∂A

∂z

(
n− y

h

)]
+

y2

2h

(dp(0)
dz

− dh/dz

h

) [
A′
(
n+

y

h

)
−A′

(
n− y

h

)]
+

y

2

dp(0)

dz

[
A
(
n+

y

h

)
+A

(
n− y

h

)]
+

1

2

[
A′
(
n+

y

h

)
A∧
(
n− y

h

)
−A∧

(
n+

y

h

)
A′
(
n− y

h

)]
− h

2

dp(0)

dz

[
A∧(n+

y

h
)−A∧(n− y

h
)
]
+

y

2h

∂

∂n

[
A
(
n+

y

h

)
2
+A

(
n− y

h

)
2
]
− y

dD(z)

dz
,

(A.5a)

p(2) =M
(
n+

y

h

)
+M

(
n− y

h

)
+ y

[
∂A

∂z

(
n+

y

h

)
− ∂A

∂z

(
n− y

h

)]
+

y2

2h

(dp(0)
dz

− dh/dz

h

) [
A′
(
n+

y

h

)
+A′

(
n− y

h

)]
+

y

2

dp(0)

dz

[
A
(
n+

y

h

)
−A

(
n− y

h

)]
+

1

2

[
A′
(
n+

y

h

)
A∧
(
n− y

h

)
+A∧

(
n+

y

h

)
A′
(
n− y

h

)]
+

y

2h

∂

∂n

[
A
(
n+

y

h

)
2 −A

(
n− y

h

)
2
]
+

y2

2

(
d2p(0)(z)

dz2
+

(
dp(0)(z)

dz

)2
)
,

(A.5b)

where the term M (n+ (y/h))−M (n− (y/h)) represents the complementary solution, which is an as-yet-
unknown wave, and A∧ is the integral of A such that A∧′

= A.
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Substituting this solution into the friction equation at this order, σ
(2)
xy ∓ βp(1) = 0, results in

M(n+ 1, z)−M(n− 1, z) + h

[
∂A(n+ 1, z)

∂z
+

∂A(n− 1, z)

∂z

]
+

h

2

(dp(0)
dz

− dh/dz

z

)[
A′(n+ 1, z)−A′(n− 1, z)

]
+

h

2

dp(0)

dz

[
A(n+ 1, z) +A(n− 1, z)

]
+

1

2

[
A′(n+ 1, z)A∧(n− 1, z)−A′(n− 1, z)A∧(n+ 1, z)

]
− h

2

dp(0)

dz

[
A∧(n+ 1, z)−A∧(n− 1, z)

]
+

1

2

∂

∂n

[
A(n+ 1, z)

2
+A(n− 1, z)

2
]
− h

∂D(z)

∂z
∓ β

[
A(n+ 1, z) +A(n− 1, z) +D(z)

]
= 0.

(A.6)

This equation can be signi�cantly simpli�ed by using the condition (28), to give

2h
∂A(n+ 1, z)

∂z
+

∂

∂n

(
A(n+ 1, z)

2
)
+

(
h
dp(0)

dz
∓ 2β

)
A(n+ 1, z)

− h
dD(z)

dz
∓ βD(z) = −[M(n+ 1, z)−M(n− 1, z)]. (A.7)

Where the term M(n+1, z)−M(n−1, z) is the wave-equation solution for σ
(2)
xy to the homogeneous version

of the coupled problem in (A.3). We do not need to calculateM , however as by the same secularity argument
used for A at �rst order, we require that M is bounded in n, and consequently, we require the right-hand
side of equation (A.7) to be zero. The resulting equation is quoted in (33).

Appendix B. Burger's equation

The evolutionary equation (A.7) for A(ξ, z) was simpli�ed in Section 3.1.3 to equation (35), which is

2h
∂A(ξ, z)

∂z
+

∂

∂ξ

(
A(ξ, z)

2
)
+

(
h
dp(0)

dz
∓ 2β

)
A(ξ, z) = 0. (B.1)

The factor hdp(0)/dz in (B.1) can be replaced with its equivalent in equation (30). Then, equation (B.1)
becomes

∂A(ξ, z)

∂z
+

1

2h

∂

∂ξ

(
A(ξ, z)

2
)
−
(
∓ β

2h
(p(0) − 1)− dh/dz

h

)
A(ξ, z) = 0. (B.2)

Our solution methodology for the partial di�erential equation in (B.2) will involve combining the �rst and
third terms into a single z-derivative. To this end, we �rst rewrite the factor multiplying A as a z-derivative
by de�ning,

α1 = exp

{∫ z

0

(
∓ β

2h(z̃)
(p(0)(z̃)− 1)

)
dz̃

}
, (B.3)

so that,

exp

{∫ z

0

(
∓ β

2h(z̃)
(p(0)(z̃)− 1)− dh/dz

h(z̃)

)
dz̃

}
=

α1

h
. (B.4)

When di�erentiating both sides with respect to z, we then recover(
∓ β

2h
(p(0) − 1)− dh/dz

h

)
=

∂
∂z (α1/h)

(α1/h)
. (B.5)
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Replacing this into the original equation (B.2), this equation can be rewritten as

∂A(ξ)

∂z
−

∂
∂z (α1/h)

(α1/h)
A(ξ) +

1

2h

∂

∂ξ

(
A(ξ)

2
)
= 0. (B.6)

By dividing the equation by α1/h, then, the �rst two terms are z derivative of A(ξ)
(α1/h)

. Thus,

∂

∂z

(
A(ξ)

(α1/h)

)
+

α1

2h2

∂

∂ξ

((
A(ξ)

(α1/h)

)2
)

= 0. (B.7)

Finally, with the following change of variable, Burger's equation is obtained,

T =

∫ z α1

h(z̄)
2 dz̄ and ω

(
ξ, T (z)

)
=

A(ξ, z)

(α1/h)
(B.8a)

⇒ ∂

∂T
(ω) +

1

2

∂

∂ξ

(
ω
2
)
= 0. (B.8b)

Appendix C. The inner solution around the neutral point

As described in Section 3.1.4, in order to avoid a through-thickness discontinuity in σ
(1)
xy as a result of

y dp(0)/dz term (see change in the sign of shear stress through a vertical line at the neutral point in Figure
3), we here investigate carefully an inner region close to the neutral point. We introduce a new coordinate
X measuring distance near the neutral point,

z = zN + δX, (C.1)

where zN is the location of the neutral point obtained from the leading-order solution. We allow for an
O(δ) correction to the location of the neutral point, by considering the neutral point to actually occur at
X = XN, where XN is the correction.

From (C.1), it can be seen that X varies on the same length scale as the workpiece thickness, and so is
comparable to the original x coordinate in (7a). Within the inner region, there is only one length scale, and
so we do not need the multiple-scales variables z and n; stresses are only functions of X and y. Therefore,
the governing equations are

∂σxxinner

∂X
+

∂σxyinner

∂y
= 0 (C.2a)

∂σyyinner

∂y
+

∂σxyinner

∂X
= 0 (C.2b)

1

4

(
σxxinner − σyyinner

)2
+
(
σxyinner

)2
= 1 (C.2c)

δ
dh

dz
(σyyinner

− σxxinner
) +

(
1− δ2

(
dh

dz

)2)
σxyinner

= ∓δβ

[
σyyinner

− 2δ
dh

dz
σxyinner

+ δ2
(
dh

dz

)2
σxxinner

]
at y = h(z).

(C.2d)

The subscript �inner� indicates that the parameters associated with it pertain to the inner region and possess

values that are di�erent from those in the outer region. At the leading order, σ
(0)
xyinner

is zero similar to the
outer region. From momentum conservation (C.2a) and (C.2b) together with the yield function (C.2c), it

28



becomes evident that σ
(0)
xxinner , σ

(0)
yyinner

and p
(0)
inner are all independent of X and y, and are therefore constants,

σ(0)
xxinner

=1− p
(0)
inner and σ(0)

yyinner
=− 1− p

(0)
inner. (C.3)

At O(δ), the yield condition (C.2c) becomes

σ(1)
xxinner

− σ(1)
yyinner

= 0 ⇒ σ(1)
xxinner

= σ(1)
yyinner

= −p
(1)
inner. (C.4)

Substituting this into the momentum conservation equations (C.2a) and (C.2b), the following equations are
obtained, respectively

−∂p
(1)
inner

∂X
+

∂σ
(1)
xyinner

∂y
= 0, −∂p

(1)
inner

∂y
+

∂σ
(1)
xyinner

∂X
= 0. (C.5)

The solution that satis�es the above di�erential equations is the wave-like solution

p
(1)
inner = G

(
X

hN
+

y

hN

)
+G

(
X

hN
− y

hN

)
, (C.6a)

σ(1)
xyinner

= G

(
X

hN
+

y

hN

)
−G

(
X

hN
− y

hN

)
, (C.6b)

where hN = h(zN) is the half-thickness at the unperturbed neutral point and G is an as-yet-unknown wave.

Substituting σ
(1)
xyinner

into the Coulomb friction equation (C.2d) at O(δ) gives a periodicity constraint on G
that

−2
dh

dz

∣∣∣∣
z=zN

+

[
G

(
X

hN
+ 1

)
−G

(
X

hN
− 1

)]
∓ β(1 + p

(0)
inner) = 0, (C.7)

where ∓ = sgn(X −XN).
This inner solution derived above should match with the previously derived solutions both to the left

and to the right of the neutral point, as |X| → ∞. Let us write p(−) and p(+) for the pressure calculated to

the left (−) and to the right (+) of the neutral point, and similarly for σ
(∓)
xy . Then the inner solution should

match with the expansions of these outer solutions when expanded in terms of X, so that, as X → ±∞, we
should have

p = p(0∓)(y, zN + δX) + δp(1∓)
(
nN +X/hN +O(δ), y, zN + δX

)
+O

(
δ2
)

= p(0)(zN) + δ

[
A(∓)

(
nN +

X

hN
+

y

hN
, zN

)
+A(∓)

(
nN +

X

hN
− y

hN
, zN

)
+X

dp(0∓)(zN)

dz

]
+O

(
δ2
)
,

(C.8a)

σxy = σ(1∓)
xy

(
nN +X/hN +O(δ), y, zN + δX

)
+O(δ2)

= δ

[
A(∓)

(
nN +

X

hN
+

y

hN
, zN

)
−A(∓)

(
nN +

X

hN
− y

hN
, zN

)
+ y

dp(0∓)(zN)

dz

]
+O

(
δ2
)
, (C.8b)

where p(1∓) and σ
(1∓)
xy are taken from equation (25), p(0∓) satis�es (30), and A(∓)(ξ, z) is the function A(ξ, z)

used in the outer solution to either the left (−) or the right (+) of the neutral point. The main reason for this
appendix is to calculate the correct link between A(+)(ξ, z) and A(−)(ξ, z). Note that p(0+)(zN) = p(0−)(zN),
as this is how the neutral point zN is chosen, but that dp(0+)/dz ̸= dp(0−)/dz at z = zN (see equation 30).

At leading order, equation (C.8) gives p
(0)
inner = p(0)(zN), as might have been expected, and con�rms that

σ
(0)
xyinner = 0.

We may exactly match σ
(1)
xyinner

and p
(1)
inner given in equation (C.6) with the O(δ) part of equation (C.8)
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with (∓) = (−) by taking

G(ξ) = A(−)(nN + ξ, zN) +
hN
2
ξ
dp(0−)

dz

∣∣∣
z=zN

for ξ <
XN

hN
+ 1. (C.9)

Since A(−)(n + 1, z) = A(−)(n − 1, z) owing to (28), and since p(0−) satis�es (25), this solution for G(ξ)
exactly satis�es the periodicity constraint (C.7) with ∓ = −. However, ∓ = − is only the correct choice for
X < XN , and consequently (C.7) is only satis�ed by this choice of G(ξ) for ξ < XN/hN + 1, as indicated
in (C.9).

Similarly, we may exactly match σ
(1)
xyinner

and p
(1)
inner given in equation (C.6) with the O(δ) part of equa-

tion (C.8) with (∓) = (+) by taking

G(ξ) = A(+)(nN + ξ, zN) +
hN
2
ξ
dp(0+)

dz

∣∣∣
z=zN

for ξ >
XN

hN
− 1. (C.10)

As before, since A(+)(n + 1, z) = A(+)(n − 1, z) owing to (28), this solution for G(ξ) exactly satis�es the
periodicity constraint (C.7) with ∓ = +. However, ∓ = + is only the correct choice for X > XN , and
consequently (C.7) is only satis�ed by this choice of G(ξ) for ξ > XN/hN − 1, as indicated in (C.10).

In order to satisfy both (C.9) and (C.10), for XN/hN − 1 < ξ < XN/hN + 1 we must have

G(ξ) = A(−)(nN + ξ, zN) +
hN
2
ξ
dp(0−)

dz

∣∣∣
z=zN

= A(+)(nN + ξ, zN) +
hN
2
ξ
dp(0+)

dz

∣∣∣
z=zN

(C.11a)

⇒ A(+)(nN + ξ, zN) = A(−)(nN + ξ, zN) +
hN

2
ξ

[
dp(0−)

dz

∣∣∣
z=zN

− dp(0+)

dz

∣∣∣
z=zN

]
= A(−)(nN + ξ, zN) + 2βξ(1 + p(0)(zN )).

(C.11b)

In the outer region, the condition (28) results in
∫
A(∓)(ξ) dξ = 0. Therefore,

0 =

∫
A(+)(ξ) dξ =

∫ X
N

h
N

+1

X
N

h
N

−1

A(−)(nN+ ξ, zN) dξ+

∫ X
N

h
N

+1

X
N

h
N

−1

βξ
(
p(0)(zN) + 1

)
dξ = 2β

(
p(0)(zN) + 1

)XN

hN
. (C.12)

In order for this equality to be satis�ed, we must take XN = 0. This means there is no O(δ) correction to
the location of the neutral point, and the neutral point is located at z = zN, found from equation (30) for
p(0) in the outer region. Equation (C.11b) thus gives the connection between the solutions to the left and
right of the neutral point, which is the solution given in (38) in the main text.

Appendix D. Solving for the second-order velocities

In this appendix, we solve equations (49) in the main text, which describe the velocity at O(δ2). This
does not completely resolve the velocity, as it will be determined only up to an unknown function N(ξ, z)
which would be determined at the next order, O(δ3). However, requiring that v(2) remains bounded, and
in particular that it remains asymptotically smaller than the previous term v(1), does gives us a secularity
condition for the previously unknown function B(ξ, z) which occurs in v(1), and that allows us to completely
determine v(1).

We begin with equation (49), given by

∂v(2)

∂y
+

1

h

∂u(2)

∂n
= −∂u(1)

∂z
(D.1a)

∂u(2)

∂y
+

1

h

∂v(2)

∂n
= −∂v(1)

∂z
+ 2λ(1)σ(1)

xy . (D.1b)
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Substituting the solutions obtained for u(1), v(1), λ(1), and σ
(1)
xy from equation (45), (46), and (25b) into (D.1)

yields

∂u(2)

∂y
+

1

h

∂v(2)

∂n
=

[
∂B

∂z

(
n+

y

h

)
− ∂B

∂z

(
n− y

h

)]
− 2

dh/dz

h2

[
A
(
n+

y

h

)
−A

(
n− y

h

)]
+ y

(
2

h

dp(0)

dz
− dh/dz
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)[
B′
(
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h

)
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h
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+

2

h
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(
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h

)
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h

)][
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(
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y

h

)
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(
n− y

h

)]
− y

(
h(d2h/dz2)− 2(dh/dz)2

h3
+ 2

dh/dz

h2

dp(0)

dz

)
(D.2a)

∂v(2)
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+

1

h

∂u(2)

∂n
= −

[
∂B

∂z

(
n+

y

h

)
+

∂B
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(
n− y

h

)]
+ y
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h2

[
B′
(
n+

y

h

)
−B′

(
n− y

h

)]
, (D.2b)

where A(n± (y/h), z) and B(n± (y/h), z) are abbreviated to A(n± (y/h)) and B(n± (y/h)), respectively,
for brevity while the dependence on z is still acknowledged. The above equations form a coupled wave
equation for u(2) and v(2) forced by A(ξ, z) and B(ξ, z). In principle, u(2) can be eliminated from (D.2) and
the resulting second-order di�erential equation can be solved for v(2), and vice versa. However, we found it
more manageable to solve as a system of two coupled equations, by �nding particular integrals for each of
the forcing terms on the right-hand-side. Ultimately, the solution for v(2) and v(2) are,
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(D.3)
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u(2) =
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(D.4)

where the term − [N (n+ (y/h))−N (n− (y/h))] represents the complementary solution, which is an as-
yet-unknown wave, and B∧ is the integral of A such that B∧′

= B.
Replacing v(2) into the boundary condition (40) at the second order, v(2) = (dh/dz)u(1), results in

dh

dz

(
B(n+ 1) +B(n− 1)

)
=−

(
N(n+ 1)−N(n− 1)

)
− h
(∂B(n+ 1)

∂z
+

∂B(n− 1)

∂z

)
+

dh/dz

h

(
A(n+ 1) +A(n− 1)

)
+

h

2

(
dp(0)

dz

)(
B(n+ 1) +B(n− 1)

)
+

1

2
h2

(
1

h

dp(0)

dz
− dh/dz

h2

)(
−B′(n+ 1) +B′(n− 1)

)
−
(
B′(n+ 1)A(n+ 1) +B′(n− 1)A(n− 1)

)
− 1

2

(
B(n+ 1)A(n− 1) +B′(n+ 1)A∧(n− 1)

)
+

1

2

(
B(n− 1)A(n+ 1) +B′(n− 1)A∧(n+ 1)

)
.

(D.5)

This equation can be extensively simpli�ed on the surface utilising the periodicity of functions A and B,
using equations (28) and (47), to obtain

∂B(n+ 1, z)

∂z
− dh/dz

h2
A(n+ 1, z)−

(
1

2

dp(0)

dz
− dh/dz

h

)
B(n+ 1, z)

+
1

h
B′(n+ 1, z)A(n+ 1, z) = − 1

h
(N(n+ 1, z)−N(n− 1, z)) . (D.6)

Setting the right hand side to zero to avoid a secularity condition and N growing as a function of n results
in the expressions (50) quoted in Section 3.2.3.
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Appendix E. Advection equation

In this appendix, we rearrange equation (51), given as

∂

∂z

(B(ξ, z)

(α2/h)

)
+

A(ξ, z)

h

∂

∂ξ

(B(ξ, z)

(α2/h)

)
− dh/dz

α2h
A(ξ, z) = 0, (E.1)

to include the excitation term within the derivatives, which makes it more convenient to solve. Moreover, if
the advection speed is the same as Burger's equation for the stresses (36b), both equations share the same
characteristics, again aiding numerical solution. This is the aim of the present appendix.

We start transforming equation (E.1) by multiplying it by h2/α1, giving

h2

α1

∂

∂z

( B

(α2/h)

)
+ ω

∂

∂ξ

( B

(α2/h)

)
− dh/dz

α2
ω = 0. (E.2)

To remove the excitation term, we look at the multiple of ω which solves equation (E.2). This factor is
called Q(z). In this case, we can write,

h2

α1

∂

∂z

(
Qω
)
+ ω
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(
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α2
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h2
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∂ω
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+

1

2

∂
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(
ω
2
)]

− dh/dz

α2
ω = 0. (E.3)

The term in the bracket is zero according to Burger's equation (36b). The remaining terms �nd Q(z) as

h2

α1(z)

dQ

dz
=

dh/dz

α2(z)
⇒ Q(z) =

∫ z α1(z̄)

α2(z̄)

dh(z̄)/d(z̄)

h(z̄)2
dz̄. (E.4)

Subtracting equation (E.2) and (E.4) results in

h2

α1

∂

∂z

(B(ξ, z)

(α2/h)
−Q(z)ω(ξ, z)

)
+ ω(ξ, z)

∂

∂ξ

(B(ξ, z)

(α2/h)
−Q(z)ω(ξ, z)

)
= 0. (E.5)

With the same change of domain as (36b), we �nally have,

∂

∂T

( B

(α2/h)
−Qω

)
+ ω

∂

∂ξ

( B

(α2/h)
−Qω

)
= 0, (E.6)

which is the expression given in equation (52).
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