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Abstract. In this work, a new mathematical model for cold rolling pro-
cesses is presented. Starting from the governing equations and assuming
only a narrow roll gap aspect ratio (in effect, large rolls on a thin strip),
we find a solution by introducing two length scales inherent to the prob-
lem. The solution consists of a large scale, along with small (next order)
correction at a small scale. The leading-order solution depends on the
large length scale and matches with slab theory. The next-order correc-
tion depends on both the large and small length scales, and reveals rapid
stress and strain oscillation. These oscillations are also seen in prelim-
inary FE simulations. The oscillations resemble the slip-line fields, and
the FE simulations suggest a strong connection between these oscillations
and the residual stress in the resulting strip. The modelling approach
used here has potential applications for modelling many metal forming
processes, just as the slip-line theory itself did, but with the distinct
advantage of simplicity and quick computation.
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1 Introduction

Many researchers have tried to study cold rolling using various techniques. Ear-
lier models [1,10,11] were established from the equilibrium of forces acting on
each vertical slab of material in the zone of deformation; a method now referred
to as the ‘slab method’. The immediate result of this approach was vertically
homogenous parameter prediction, which is unreasonable in most real-world
rolling operations. Orowan [9] later discarded homogeneous deformation by con-
sidering a more general section of circular arcs intersecting the roll surfaces
perpendicularly.
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These models were subsequently improved by including more complex mate-
rial models and accounting for elasticity by adjusting the roll shape [2,4]. How-
ever, there remain other problems that have yet to be addressed; for example,
to date no model has been able to correctly predict the curvature of the work-
piece induced by asymmetry of the upper and lower rolls, and findings are often
inconsistent and even contradictory [7]. As a second example, the occurrence
of oscillatory patterns in the stress and strain distributions throughout the roll
gap, discovered in recent finite element simulations, remains to be explained or
predicted.

To motivate the modelling which follows, we carried out a systematic study
using simulation in Abaqus software (the full details are published in a separate
paper [3]). Figure 1 shows a plot of σxy (a) and Von-Mises stress distribution (b)
for a 10mm thickness sheet undergoing cold rolling via rollers with a radius of
0.1m. Not only the shear stress, but also other components of stress and strain
follow a similar oscillating pattern beginning at the entry of the roll gap and
continuing until the end of it. These data are post-processed to discover the slip
lines field illustrated in Fig. 1(c). Interestingly, the pattern is quite similar to that
observed in stresses in Fig. 1(a) and 1(b), indicating that the oscillations are not
a numerical error but an intrinsic physical property. Looking at slip lines on the
exit side more closely and comparing them to Von Mises stress distributions,
another remarkable feature of oscillations is revealed: a large amount of residual
stress (about 2/3 of the yield stress) accumulates within a thin layer under the
surface, coinciding with where the slip lines converge after rolling.

(a) Shear Stress (b) Von-Mises Stress

(c) Slip-Line Field

Fig. 1. Results of an FEM simulation of for a symmetric rolling configuration with
parameters (ĥ0, l̂, r, μ, κ) = (5 mm, 15mm, 0.2, 0.1, 1.732 × 108 Pa). Only half of the
strip is shown, with the strip centreline y = 0 being a plane of symmetry. (a) Distri-
bution of shear stress σxy; (b) Von-Mises stress; and (c) slip-line field in the roll gap.
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Inspired by these simulation results, in what follows we provide an alternative
mathematical model that successfully predicts these oscillations, is significantly
faster to compute than the FEM, and may help give insight into the physical
cause of this oscillatory pattern.

2 Governing Equations

Because the emphasis in this study is on the simplest possible model, the mate-
rial is assumed to be perfectly plastic (no hardening), and elastic effects are
ignored. Furthermore, the rolls are assumed to be rigid, and the lateral spread is
assumed to be minimal, allowing a plane-strain model to be applied. This results
in the same assumptions and the same set of equations to be solved as given by
Minton [8], although here we follow a different solution method. In what follows,
we measure all distances in multiples of the strip initial half-thickness ĥ0, as
shown in Fig. 2, so that the distance from the centreline is ŷ = ĥ0y, the distance
from the roll gap entrance is x̂ = ĥ0x, and the half-height of the roll gap is
ĥ(x̂) = ĥ0h(x). The vertical gap between the rolls is then from y = −h(x) to
y = h(x) owning to symmetry, and the roll gap extends horizontally from x = 0
to x = 1/δ, where δ = ĥ0/�̂ is the roll gap aspect ratio. Instead of expressing
equations in terms of Cauchy stresses σ̂, we choose to use the Airy stress function
φ, with the following definition

σ̂xx = κ̂
∂2φ

∂y2
, σ̂yy = κ̂

∂2φ

∂x2
, and σ̂xy = −κ̂

∂2φ

∂x∂y
, (1)

where κ̂ is shear yield stress. This not only reduces the three components of
Cauchy stress to a single unknown φ, but also automatically satisfies the force
balance equations. We are therefore left to solve the yield function subject to
the boundary condition.

Fig. 2. Diagram of symmetric rolling (only half of the configuration is shown)
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The Von-Mises yield criterion is used in this study, which in plane strain is
given by

1
4
(
σ̂xx − σ̂yy

)2 + σ̂2
xy = κ̂2 ⇒ 1

4

(
∂2φ

∂y2
− ∂2φ

∂x2

)2

−
(

∂2φ

∂x∂y

)2

= 1 (2)

The interface between the workpiece and the rollers is assumed to be slipping
throughout the roll gap, and is modelled using Coulomb friction as n · σ · t =
∓μn · σ · n, where n and t are the normal and tangent vectors to the rolls,
and μ is the friction coefficient. In terms of the Airy stress function and the roll
shape h(x), this gives

dh

dx

∂2φ

∂x2
−

(
1 −

(
dh

dx

)2
)

∂2φ

∂x∂y
− dh

dx

∂2φ

∂y2
= ∓μ

[
∂2φ

∂x2
+ 2

dh

dx

∂2φ

∂x∂y
+

(
dh

dx

)2 ∂2φ

∂y2

]
at y = h(x).

(3)

The ∓ sign in (3) accounts for the direction of slip of the sheet over the rolls
before and after the neutral point; throughout this study, the upper signs cor-
respond to the entry region (entrance up to the neutral point), while the lower
signs correspond to the exit region (from the neutral point onwards). In this
derivation, no assumption is made about the roll shape h(x), but, for the results
that follow, we will take it to be cylindrical.

Finally, we have boundary conditions at the entrance and exit of the roll gap,
which here we take to be zero forward and backward tension conditions giving
σ̂xx = 0 at both x = 0 and x = 1/δ.

3 Solution for Narrow Aspect Ratios

The roll gap aspect ratio was defined above as δ = ĥ0/�̂. Here, we are interested
in roll gaps with a narrow aspect ratio, corresponding to small values of δ. This
corresponds to large rolls rolling a thin sheet, although it places no limitations
on the reduction.

There are therefore two length scales in this problem: the small length scale
of the initial thickness of the roll gap ĥ0, by which we have already scaled x̂
and ŷ in the previous section, and the large scale of the length of the roll gap,
�̂. We, therefore, define a large scale variable z = δx such that the roll gap
entrance is at z = 0 and the exit is at z = 1 (in effect, x̂ = �̂z). For example,
the shape of the rolls necessarily vary on this length scale, and so we now write
h(x) = h(z) to demonstrate this dependence. In fact, Minton [8] assumed all
horizontal behaviour was on this large length scale, and consequently did not
see the oscillatory pattern shown in FEM results in Fig. 1, since the oscillations
repeat at intervals much shorter than the length of the roll gap. It is thus nec-
essary to incorporate both small scale and large scale into the mathematical
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model. This is accomplished using a technique known as the Method of Multiple
Scales [5]. It turns out that a useful small scale variable is n(x) which measures
distance through the roll gap based on the number of roll-gap-thicknesses from
the entrance,

n(x) =
∫ x

0

dX

h(δX)
. (4)

If we now assume that our solution φ depends on the short length scale through
n and the long length scale through z, then formally we have φ(x, y) = φ(n, z, y),
and

∂

∂x
=

1
h(z)

∂

∂n
+ δ

∂

∂z
⇒ ∂2

∂x2
=

1
h2

∂2

∂n2
+

2δ

h

∂2

∂n∂z
− δh′

h2

∂

∂n
+ δ2

∂2

∂z2
, (5)

where h′ = dh/dz.
Another small parameter in our model is the friction coefficient, μ. Consid-

ering the balance of horizontal forces over the whole roll gap suggests we should
expect μ to be of the same order of magnitude as the aspect ratio δ, and so
we formally encode this by setting μ = δβ, where β may be thought of as the
normalized friction coefficient.

Substituting these two rescalings into our governing equation (2) and bound-
ary condition (3) gives the rescaled governing equations
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We will look for a solution for φ of the following form:

φ =
1
δ2

φ(−2)(z)+
1
δ
φ(−1)(z)+φ(0)(z, y)+ δφ(1)(n, z, y)+ δ2φ(2)(n, z, y)+O

(
δ3

)
.

(8)
Each term would be generally a function of n, z, and y. However, the first three
terms are specifically chosen not to depend on the small scale parameter, n, as
these terms are related to the leading order pressure, which varies over the large
scale z.

Assuming δ is sufficiently small, we now proceed by collecting similar powers
of δ and solving the resulting equations successively, starting from the lowest
orders of δ.
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3.1 Leading-Order Solution

At leading-order, the solution procedure involves solving the yield function along
with the Coulomb friction neglecting all terms of O(δ) or higher. After some
manipulation, this gives a piecewise differential equation for leading-order pres-
sure, p(0):

(−2
dh

dz
∓ β) ∓ βp(0) =

dp(0)

dz
(9)

This equation should be solved once from the entrance forwards and once from
the exit backwards, with the boundary condition given by the strip tension at
the entrance and exit. These two solutions intersect at the point that defines the
neutral point’s position. Having complete knowledge of pressure, the leading-
order stresses, σ

(0)
xx , and σ

(0)
yy , can also be fully solved in terms of p(0). However,

to find σxy, we need to solve the next order.
It should be noted that solving equation (9) is equivalent to employing equa-

tion (5) in Orowan [9], obtained from balancing the forces exerted on each thin
vertical segment within the roll gap; an analysis that is now referred to as the
slab method.

3.2 First-Order Solution

After solving the leading-order solution, higher-order terms in δ can be solved
subsequently. In the first-order, by only keeping terms order δ in the yield func-
tion (6), the solution to φ(1) is of following form, which is a wave function

φ(1) = A
(
n +

y

h
, z

)
+ A

(
n − y

h
, z

)
(10)

The solution to A can be found using the Coulomb friction on the surface at
first order, but not before knowing φ(2). Therefore, the solving process needs
to continue to the next order. By considering the yield equation at second-
order, and after a considerable amount of algebra, which for the sake of space
is not presented here, we will eventually arrive at the following equation as an
evolutionary equation for A′′(ξ, z), where a ′ denotes ∂/∂ξ:

∂A′′

∂z
− 1

2h3

(
A′′2

)′
+

(
−dp(0)/dz

2
− 2dh/dz

h
∓ β

h

)
A′′ = 0. (11)

In this way, A′′, and therefore, φ(1), is fully determined by knowledge of A′′ in
the boundaries. It should be noted that, since the boundary conditions change
at the neutral point, this equation should be solved separately for the entrance
and exit regions.

Having solved for A(ξ, z), the first-order correction to the pressure and all
the components of the Cauchy stress (σxx, σyy and σxy) can be calculated by
evaluating (1).
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δ = 1

δ = 0.5

δ = 0.2

δ = 0.1

δ = 0.05

Fig. 3. Shear stress fields for varying δ from the current model (right), and the
finite element simulations [6](left). The other parameters used are (ĥ0, r, μ, κ) =
(50 mm, 0.2, 0.1, 1.732 × 108 Pa)
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Slab Method Current Model Abaqus Simulation

Fig. 4. Pressure (top) and shear stress (bottom) distribution from the slab method
(left) current model (centre) and finite element simulations (right) for a symmetric
rolling configuration with parameters (ĥ0, l̂, r, μ, κ) = (5 mm, 25mm, 0.2, 0.1, 1.732 ×
108 Pa)

4 Results and Discussion

In the previous section, the leading-order solution and its first-order correc-
tion were found, where the oscillatory pattern was captured by the wave-like
behaviour of A(ξ, z). At leading-order, the solution is closed by knowledge of
forward and backward tension, which in this study are assumed to be zero. At
first-order, the shear stress also needs to be specified at the entrance. Both the
mathematical model and post-processing of the FE simulations confirm that the
inlet shear stress is linear in y, therefore, the initial findings in this study are
based on the factor of linearity consistent with a magnitude in the simulation.
Nevertheless, further research is required on this entry boundary condition, and
it is expected that the presence of elasticity which is neglected here will be
required to correctly determine the entrance condition.

Figure 3, shows shear stress fields from preliminary findings from the math-
ematical model for sheets with the initial thickness of 100 mm, and varying roll
gap length. The results are verified against finite element results from Minton [6].
Discontinuities at the surface, observed in both model and simulation, are an
unavoidable consequence of Coulomb friction without elasticity or smoothing at
low relative slip speeds. The location of discontinuity identifies the location of
the neutral point and the model can accurately predict it.

Another immediate finding that can be inferred from Fig. 3 is that the number
of lobes increases with the roll gap length. In fact, the roll gap aspect ratio is
inversely proportional to the number of lobes. The present model accurately
captures the amplitude and frequency of oscillations.

Figure 4 compares pressure and shear stress distribution from the slab analy-
sis, current mathematical model, and Abaqus simulation for a 10 mm thickness
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sheet. Unlike Fig. 3, a much thinner sheet is selected here to show the generality
of the model. The slab pressure term in Fig. 4 is plotted using expression (9), and
the slab shear stress term is calculated using the equation (26) in Orowan [9],
τ = μsy/h, with s being normal pressure. In Fig. 4(c), the top half is plotted
without contours for a better view of the lobes.

The pressure hill is the solution predicted by the slab method, which assumes
that pressure is constant in each vertical material section, with a maximum
pressure occurring at the neutral point (Fig. 4(a)). However, the pressure in the
numerical simulation, shown in the Fig. 4(c), clearly displays the characteristic
shear lobes. The new model and the FE show reasonable agreement, with dif-
ferences possibly due to different boundary conditions at the entrance and exit;
in the current mathematical model, back tension is taken to be zero, whereas in
the FE simulation, the horizontal stress at the entrance is not zero owing to an
elastic entrance region. This will be the subject of future work.

Figure 4(d) shows the shear stress calculated using the slab method. A sudden
change on the surface is caused by a change in the slip direction at the neutral
point. However, the discontinuity through the thickness is an artefact of the slab
method assumptions and makes no sense: the tangential force due to σyx will
have the same direction on both sides of the jump, violating force balance which
would demand an equal and opposite force. Despite what is predicted by the
slab method, in which discontinuities occur just once at the neutral point on
a vertical line, these discontinuities occur for both the FE and the new model
repeatedly along diagonal lines reminiscent of slip lines.

Despite inaccuracies surrounding the slab method, the predicted shear stress
and pressure on the surface agree almost identically with those produced by FE
simulation. This explains why the slab method is successful in predicting roll
force and roll torque, and also suggests that accurate roll force and torque are a
poor indication of the correctness of the underlying modelling assumptions.

The mathematical model described in this paper has a significant advantage
over finite element simulations in terms of calculation time. Depending on mesh
size, the finite element simulations take between 15 min and 14 h to run on
a standard desktop computer, making them unsuitable for optimization and
real-time control. In contrast, the unoptimized Matlab code evaluating the new
mathematical model typically takes less than two seconds to run.

5 Conclusion

A mathematical model of rolling for a narrow roll gap aspect ratio is derived by
using multiple scales asymptotic analysis, generalizing and correcting the scaling
assumptions presented in a previous asymptotic model [8]. This new model recre-
ates the conventional pressure hill from slab analysis, in which pressure varies on
the long length scale of the roll gap, while the first-order correction reveals a set
of waves reminiscent of slip lines that vary on the short length scale of the sheet
thickness. These preliminary results were successful in predicting most trends
in the FE shear and pressure fields, particularly the characteristic shear lobes,
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whilst requiring orders of magnitude less time to compute (2 s vs 15 min). This
is important for both real-time monitoring and establishing a control model.

The qualitative improvement in stress distribution may have a minimal influ-
ence on roll force and torque predictions, indicating that the accuracy of roll
forces and torques are poor indications of the accuracy of the entire simulation.
However, these refinements will become significant when studying material prop-
erties, such as the hardening effect or anisotropy. There are also indications that
these refinements are involved in setting the residual stress following rolling.

Further work is needed to define the entry and exit boundary conditions,
likely by the inclusion of an elastic entrance and exit region. Additionally, calcu-
lating higher-order terms may be required to capture other important dynamics.
The slip-line field also suggests the presence of an expansion fan at the entrance,
which should be considered for developing a more robust model. Finally, the
present model’s assumption of perfect plasticity could relatively straightfor-
wardly be generalized to strain-hardening and strain-rate-hardening constitutive
laws, which will be the next topic of study.
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