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Abstract

An analytical model for the cold rolling of sandwich sheets is proposed, assuming a rigid-plastic flow rule
and Coulomb friction. Asymptotic analysis is used to solve the equations based on the assumptions of small
aspect ratio and friction coefficient. This model relaxes the assumption, crucial to slab methods, that the
stresses are uniformly distributed through the thickness of each material layer. Thus, our model is able
to predict the through-thickness velocity and stress distributions. The leading-order behaviour is shown
to be consistent with the slab method, and the predictions are compared with finite element simulations.
Computation times are orders of magnitude smaller than finite element calculations.
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1. Introduction

In the rolling of sheet metal, it is often desirable to sandwich a sheet of hard material between two sheets
of softer metal. This can result in benefits such as improved thermal or electrical conductivity, anti-corrosion
or frictional properties. In addition, sandwich sheet rolling is often an effective means of reducing the roll
force required to thin high strength metals, leading to more efficient rolling processes [1].

Although sandwich sheet rolling has been the subject of several experimental studies [2, 3, 4, 5], analytical
studies to date have relied either on the classical upper bound (streamfunction) method [6], or slab theory
[1, 7]. Among these methods, slab theory produces the most accurate description of the stresses within
the roll gap. However, even the most sophisticated slab model [7] assumes that the stress is vertically
homogeneous within each material layer. In order to fulfil modern ambitions to predict and control the
microstructure of materials during forming processes, one requires a model capable of correctly capturing
through-thickness variation of stress and strain. While finite element simulations can deliver the required
level of detail, computations typically take from several minutes to hours. This is too slow to be of practical
use in online process control.

Here, a model is described for sandwich sheet rolling that captures through-thickness variation of the
stress fields while remaining quick to evaluate. The asymptotic approach used by other authors for rolling
[8, 9] and extrusion [10] is modified and extended to account for the sandwich configuration. All of these
models depend upon the assumption that the deformation zone has small aspect ratio, but they differ in their
scaling assumptions and treatment of friction. Domanti & McElwain [8] make an additional assumption that
the reduction of the sheet thickness is small. Although this simplifies the resulting calculation, it severely
limits the range of validity of their model. Another model [9] does not require this assumption, but it employs
a relative slip friction model, rather than the generally-accepted Coulomb friction law. The extrusion model
[10] assumes nothing about the reduction and uses Coulomb friction with a small friction coefficient, which
is appropriate to most industrial rolling processes. The same scaling assumptions and friction model are
applied here to the sandwich rolling configuration.
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Figure 1: Diagram of sandwich sheet rolling. Only one roller and half of the sandwich sheet are shown; the configuration is
symmetric with the x-axis (lower dashed line) as the symmetry axis.

The assumptions made here are consistent with a popular slab model [7], except that here the stresses
are allowed to be inhomogeneous through the thickness of the sheet. It is worth pointing out that the
slab model [7] assumes a small friction coefficient without explicitly stating it as one of its 7 assumptions.
In particular, when determining equation (14) in [7] the author neglects the term µ tan θc. This is only
consistent with the retention of other terms in equation (14) if the friction coefficient is small. Because of
the similarities between our assumptions and those used in [7], any differences between these models arise
solely due to the relaxation of the assumption, crucial to slab theory, that the stresses are homogeneous
through the thickness of the material.

After developing the asymptotic model in Section 2, its predictions are compared with those of a finite
element calculation performed using the Abaqus software [11]. The Abaqus model is described in Section 3,
and the results are presented in Section 4. Finally, the accuracy and significance of our results are discussed
in Section 5.

2. Asymptotic model

A sandwich sheet of total initial thickness 2h0 passes through identical circular rolls as shown in Figure
1. In Figure 1, and in the following analysis, variables with the subscript m refer to the central matrix
layer, which has initial thickness 2αh0 and yield stress km. By contrast, the subscript c identifies variables
that apply to the cladding layers. The cladding layers each have initial thickness (1− α)h0 and yield stress
kc = βkm. Attention is restricted to the region in which the sheet is in contact with the rolls, referred to as
the roll gap. The thickness of the matrix layer as it passes through the roll gap is denoted by 2hm(x), and
is determined as part of the solution.

The rolls are assumed to be rigid, and the rolled material is represented as a non-hardening rigid-
plastic undergoing plane strain. However, the following method could equally well describe the effect of roll
deformation, by incorporating any deformation of the rolls into the roll shape, h(x). It is assumed that there
is no slip between the cladding and matrix layers, and Coulomb friction is imposed with a constant friction
coefficient between the rolls and the cladding. Finally, the method relies on the key assumption that the
aspect ratio of the roll gap,

δ =
h0

L
=

√

h2
0

2R∆h
, (1)

is small.
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Neglecting inertia, a quasi-steady solution is sought for the plastic flow through the roll gap. The relevant
equations to be solved are therefore those of the plane strain stress equilibrium, with the von Mises yield
criterion and the associated Levy-Mises flow rule.

2.1. Scaling and dimensionless equations

Throughout this analysis, horizontal distance is nondimensionalised with the characteristic roll gap
length, L =

√
2R∆h, and vertical distance is scaled with the typical sheet half-thickness, h0. The velocity,

(u, v), scales with the roll velocity, (RΩ, RΩδ). The Cauchy stresses, σxx and σyy, and deviatoric stresses,
Sxx and Syy, are all scaled with the matrix yield stress, km. The shear stress, Sxy, is assumed to scale with
µ̂km, consistent with Coulomb friction. To complete the nondimensionalisation of the problem, the plastic
parameter, λ, is scaled with RΩ/kmL. The assumption that the friction coefficient is small can be expressed
by writing µ̂ = µδ, where µ is a quantity of approximate unit magnitude.

Under these scalings, the dimensionless form of the stress equilibrium (2)-(3), flow rule (4)-(6), and
incompressibility relation (7) are

∂σxx

∂x
+ µ

∂Sxy

∂y
= 0, (2)

∂σyy

∂y
+ µδ2

∂Sxy

∂x
= 0, (3)

∂u

∂x
= λSxx, (4)

∂v

∂y
= λSyy, (5)

∂u

∂y
+ δ2

∂v

∂x
= 2µδ2λSxy, (6)

∂u

∂x
+

∂v

∂y
= 0. (7)

These equations all hold in both the cladding and matrix layers. By contrast, the yield criterion varies
according to the yield stress in each layer:

S2
xx + S2

yy + 2µ2δ2S2
xy =

{

2 for 0 < y < hm(x),

2β2 for hm(x) < y < h(x).
(8)

Symmetry in the horizontal axis requires the boundary conditions

v(x, 0) = 0 and Sxy(x, 0) = 0, (9)

while the absence of flow normal to the roll surface gives

v(x, h(x)) = h′(x)u(x, h(x)). (10)

The roll shape, described by h(x), will typically be circular. However, no assumptions are made about the
roll profile, other than that it varies gradually over a lengthscale comparable to L.

The Coulomb friction condition to be applied on the roll surface may be expressed as

µ
(

1− δ2h′2
)

Sxy + (Syy − Sxx)h
′ = ∓µ

[

σyy + δ2
(

h′2σxx − 2µh′Sxy

)]

, (11)

with all terms evaluated at y = h(x). The ∓ sign in (11) is chosen according to the slip velocity of the sheet
over the rolls.

There exists a position, xN , referred to as the neutral point, where the speed of the sheet surface relative
to the roller is zero. Throughout this analysis, the convention is adopted that the upper signs refer to the
entrance region, x < xN , where the rolls drag the slower-moving material into the roll gap. The lower signs
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refer to the exit region, x > xN , in which the sheet moves faster than the rolls, so friction opposes the
escape of the sheet from the gap. At the neutral point, Coulomb friction gives rise to a sharp jump in shear
stress, which in turn creates discontinuities in the stress and velocity components in this model. This is an
undesirable but unavoidable consequence of using Coulomb friction without some form of smoothing.

The model assumes no slip between the cladding and matrix material, so that

uc = um and vc = vm on y = hm(x). (12)

The shape of the interface, hm(x), is determined by the no-flux constraint

vm = h′

mum on y = hm(x). (13)

Furthermore, the normal and shear stresses are continuous across the interface, thus

[

σyy − δ2
(

2µh′

mSxy − h′2
mσxx

)]c

m
= 0, (14)

and
[

µ(1 − δ2h′2
m)Sxy − h′

m(Sxx − Syy)
]c

m
= 0, (15)

on y = hm(x). These interfacial stresses are important measures of the adhesion needed to maintain the
bonding between the two materials that is assumed by our model.

Assuming that (dimensional) tensions per unit width T̂in and T̂out are applied at the entrance and exit
respectively, the horizontal stress must satisfy the conditions

T̂in

h0km
=

∫ hm(0)

0

σxxm(0, y) dy +

∫ 1

hm(0)

σxxc(0, y) dy, (16)

T̂out

h0km
=

∫ hm(1)

0

σxxm(1, y) dy +

∫ 1−r

hm(1)

σxxc(1, y) dy. (17)

In order to solve the equations (2)-(17) the stress components, velocity components, and plastic parameter
are expanded as asymptotic series in the small parameter δ,

A(x, y) = A(0)(x, y) + δ2A(2)(x, y) +O(δ4), (18)

where A represents any of the expanded variables. The a priori unknown location of the interface between
the matrix and cladding is similarly expanded:

hm(x) = h(0)
m (x) + δ2h(2)

m (x) +O(δ4). (19)

Terms proportional to δ are omitted here because δ only ever appears as δ2 in equations (2)-(17).

2.2. Leading-order solution

The leading-order solution is determined by considering only those terms independent of δ in equations
(2)-(17). Recognising from (6) that u(0) is independent of y in each layer, applying the no-slip condition

(12) at the interface between the layers leads to u
(0)
m = u

(0)
c = u0(x). Volume conservation then requires

that

u0(x) =
hN

h(x)
. (20)

In (20), hN = h(xN ) is defined to be the roll gap semi-thickness at the neutral point, where the choice of

our scaling requires that u
(0)
c (xN ) = 1. Integrating (7),

v(0)m = v(0)c =
yhNh′

h2
. (21)
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Applying conservation of volume to the matrix material requires that h
(0)
m (x) = αh(x).

To determine the stresses, it is observed from (4), (5) and (7) that S
(0)
xx = −S

(0)
yy in each layer, and then

the yield criterion (8) gives

S(0)
xxm = −S(0)

yym = 1, and S(0)
xxc = −S(0)

yyc = β. (22)

The quadratic yield criterion (8) leaves some ambiguity as to the sign of the deviatoric stresses. The signs
chosen in (22) correspond to plastic loading (λ > 0).

At leading order, (3) implies that the leading-order vertical stress, σ
(0)
yy , is also independent of y in each

layer, and continuity of vertical stress (14) implies that σ
(0)
yym = σ

(0)
yyc = σ0(x). Noting further that the

definition of deviatoric stress gives
σxx = σyy + Sxx − Syy, (23)

substituting (23) for σ
(0)
xx in (2) and integrating in y over each region to leads to the differential equation

obeyed by σ0,

αh
dσ0

dx
+ µS(0)

xym|y=αh = 0, (24)

(1 − α)h
dσ0

dx
+ µS(0)

xyc|y=h − µS(0)
xyc|y=αh = 0. (25)

Eliminating the change in shear stress along h
(0)
m (x) = αh using (15) and the roll shear stress using (11),

and then summing (24) and (25) produces the key leading-order result

h
dσ0

dx
∓ µσ0 = 2(αβ − α− β)h′. (26)

The leading-order form of the lateral boundary conditions (16) and (17) provides the boundary conditions
for this differential equation

T̂in

h0km
= σ0(0) + 2 [β(1− α) + α] , (27)

T̂out

(h0 −∆h)km
= σ0(1) + 2 [β(1− α) + α] . (28)

For a general roll gap profile, σ0(x) is found by integrating (26) separately from the entrance and exit,
using the boundary conditions (27) and (28) respectively. By continuity of the longitudinal stress, the
neutral point, xN , must be the point at which these two solutions coincide.

Having obtained σ0(x) by solving (26) numerically or otherwise, one can integrate (2) to determine the

shear stress, using the relation (15) to connect the solutions at y = h
(0)
m (x),

S(0)
xym = −yσ′

0

µ
, (29)

S(0)
xyc = − 1

µ
[yσ′

0 − 2(β − 1)αh′] . (30)

Finally, the plastic parameter in each material can be determined using (4)

λ(0)
m = −hNh′

h2
, (31)

λ(0)
c = −hNh′

βh2
. (32)

5



2.3. O(δ2) correction

Having determined the leading-order solution, this section proceeds to develop the correction resulting
from the terms of order δ2 in equations (2)-(17). The second-order equations are

∂σ
(2)
xx

∂x
+ µ

∂S
(2)
xy

∂y
= 0, (33)

∂σ
(2)
yy

∂y
+ µ

∂S
(0)
xy

∂x
= 0, (34)

∂u(2)

∂x
= λ(2)S(0)

xx + λ(0)S(2)
xx , (35)

∂v(2)

∂y
= λ(2)S(0)

yy + λ(0)S(2)
yy , (36)

∂u(2)

∂y
+

∂v(0)

∂x
= 2µλ(0)S(0)

xy , (37)

∂u(2)

∂x
+

∂v(2)

∂y
= 0, (38)

S(0)
xx S

(2)
xx + S(0)

yy S
(2)
yy + µ2S(0)2

xy = 0. (39)

From equations (34) and (37), it is clear that σ
(2)
xy and u(2) are not independent of y, unlike σ

(0)
yy and u(0).

In each case, the y-dependence is determined by the leading-order solution.
Integrating (37) in each layer and applying the no-slip relation (12) leads to

u(2)
m = u2(x) +

hN

2h3

(

2h′2 − hh′′ + 2hh′σ′

0

)

y2, (40)

and

u(2)
c = u2(x) +

hN

2h3

(

2h′2 − hh′′ +
2hh′σ′

0

β

)

y2

−4α

(

β − 1

β

)

hNh′2

h2
(y − αh) + α2

(

β − 1

β

)

hNh′σ′

0. (41)

The function u2(x) is determined by noting that the correction to volume flux through any vertical surface
must be zero,

∫ h(x)

0

u(2) dy = 0 for all x. (42)

Thus,

u2(x) =
hN

6h

(

hh′′ − 2h′2 − 2hh′σ′

0

β

)

(43)

+
αhN

3h

(

β − 1

β

)

[

6(α− 1)2h′2 + (2α− 3)αhh′σ′

0

]

.

Having determined the correction to u, the correction to v in each layer can be determined by integrating

(38), again applying the no-slip condition (12) to the velocity field at y = h
(0)
m = αh to obtain

v(2)m = −yu2 +
hNy3

6h4

[

6h′3 + h2h′′′ − 6hh′h′′ + 4hh′2σ′

0 − 2h2(h′′σ′

0 + h′σ′′

0 )
]

, (44)
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v(2)c = −yu′

2 +
1
3α

3hN

(

β − 1

β

)

[

2h′2σ′

0 − hh′′σ′

0 − hh′σ′′

0

]

(45)

−α2hN

h2

(

β − 1

β

)

[

4h′3 + h2h′′σ′

0 + h2h′σ′′

0

]

(y − αh)

+
4αhN

h3

(

β − 1

β

)

[hh′h′′ − h′3](y − αh)2

+
hNy3

6h4

(

6h′3 + h2h′′′ − 6hh′h′′ + 4
β
hh′2σ′

0 − 2
β
h2(h′′σ′

0 + h′σ′′

0 )
)

,

where u′

2(x) can be obtained by differentiating (43). Furthermore, the condition that there is no flux
of material across the interface between the two layers (13), expanded about the leading-order interface,
hm = αh, requires that

v(2)m +
∂v

(0)
m

∂y
h(2)
m = αh′

(

u(2)
m +

∂u
(0)
m

∂y
h(2)
m

)

+
dh

(2)
m

dx
u(0)
m , (46)

at y = αh(x). Substituting for the known velocities and integrating leads to

h(2)
m =

h

hN

∫ x

0

v(2)m [t, αh(t)]− αh′(t)u(2)
m [t, αh(t)] dt. (47)

As was the case at leading order, the plane strain assumption together with incompressibility requires

that S
(2)
xx = −S

(2)
yy . The yield condition (39) then gives

S(2)
xxm = − 1

2σ
′2
0 y

2, (48)

S(2)
xxc = − 1

2βσ
′2
0 y2 + 2α

(

β−1
β

)

[

h′σ′

0y − (β − 1)αh′2
]

. (49)

Integrating (34) and using the continuity of normal stress (14) gives the y-dependence of σ
(2)
yy in each layer:

σ(2)
yym = σ2(x) +

1
2σ

′′

0 y
2, (50)

σ(2)
yyc = σ2(x) +

1
2σ

′′

0 y
2 − 2α(β − 1)

[

h′′y − α(hh′′ + h′2)
]

. (51)

The ordinary differential equation for σ2(x) is found by computing the associated longitudinal stresses using
(23), integrating (33) within each layer, and summing the result in the same way as leading to (26), giving

h
dσ2

dx
= − 1

6h
3
(

σ′′′

0 − 4
β
σ′

0σ
′′

0

)

− µ
(

S(2)
xyc|y=h − S(2)

xyc|y=αh + S(2)
xym|y=αh

)

+ 2
3

(

β−1
β

)

α3h3σ′

0σ
′′

0 + α(1 − α)2(β − 1)h2h′′′

−2α(1− α2)
(

β−1
β

)

h2(h′′σ′

0 + h′σ′′

0 )

−2α2(1− α)
(

β−1
β

)

(4− β)hh′h′′. (52)

The shear stresses are obtained by evaluating the boundary conditions (11) and (15) to O(δ2)

µ(S(2)
xyc − S(2)

xym)|y=αh = 2(β − 1)h(2)′

m + α3
(

β−1
β

)

[

4hh′2σ′

0 + h2h′σ′2
0 − 2(β − 2)h′3

]

(53)

µS(2)
xyc|y=h = ∓

[

σ2 +
1
2h

2σ′

0 + (2β + σ0)h
′2
]

− (h′ ± 2µ)hh′σ′

0. (54)

− 1
β
h2h′σ′2

0 + 4α
(

β−1
β

)

hh′2σ′

0

+2α(β − 1)
[(

1− 2α
(

β−1
β

))

h′3 ∓ µ(α− 2)h′2 ∓ µ(α− 1)hh′′

]
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Substituting these into (52), the differential equation for σ2 becomes

h
dσ2

dx
∓ µσ2 = F(x). (55)

The inhomogeneous term in (55) is given by

F(x) = − 1
6h

3σ′′′

0 + 1
β
h2h′σ′2

0 + 2
3βh

3σ′

0σ
′′

0 + (h′ ± 2µ)hh′σ′

0 (56)

± 1
2µσ

′′

0h
2 ± µh′2(σ0 + 2β) + 2(β − 1)h(2)′

m

+α3
(

β−1
β

)

[

4hh′2σ′

0 + h2h′σ′2
0 − 2(β − 2)h′3 + 2

3h
3σ′

0σ
′′

0

]

−2α(β − 1)
[(

1− 2α
(

β−1
β

))

h′3 ∓ µ(α − 2)h′2 ∓ µ(α− 1)hh′′

]

−4α
(

β−1
β

)

hh′2σ′

0 − 2α(1− α2)
(

β−1
β

)

h2 [h′′σ′

0 + h′σ′′

0 ]

+α(1− α)
(

β−1
β

)

[

(1− α)βh2h′′′ − 2α(4− β)hh′h′′
]

.

As before, the upper signs refer to the entrance region, x < xN ; in which the rolls move more quickly than
the sheet; whereas the lower signs refer to the exit, x > xN . The boundary conditions are set at each end
of the roll gap by considering that

∫ h

0

σ(2)
xx dy = 0. at x = 0, 1; (57)

where σ
(2)
xx = σ

(2)
yy + S

(2)
xx − S

(2)
yy in both the cladding and the matrix material.

The correction to shear stress can be computed by integrating (33)

S(2)
xym = − 1

µ

∫ y

0

∂σ
(2)
xxm

∂x
dy′, (58)

S(2)
xyc = S(2)

xyc|y=αh − S(2)
xym|y=αh − 1

µ

∫ y

αh

∂σ
(2)
xxc

∂x
dy′. (59)

Equation (53) is used again to evaluate the jump in S
(2)
xy at the bonded interface.

Finally, the correction to the plastic parameter can be found using (35)

λ(2) =
1

S
(0)
xx

(

∂u(2)

∂x
− λ(0)S(2)

xx

)

. (60)

This asymptotic expansion could be continued to higher orders, the next of which will be at O(δ4).
However, note that all of the equations (2)-(17) involve terms of order at most δ2. This means that the
inclusion of higher order corrections is unlikely to introduce any new qualitative behaviour to the results.
Moreover, for rolling of thin sheets (δ ≈ 0.1) the magnitude of the higher order corrections is likely to be
small enough to be of little practical significance. The asymptotic analysis is therefore concluded here.

To summarise the solution procedure, it is necessary to first integrate the leading-order stress equation
(26) from x = 0 and x = 1 subject to the boundary conditions (16) and (17), in order to find σ0(x) for a
specified gap profile, h(x). One must then evaluate the forcing term given by (56) before integrating (55) to
find the second-order function σ2(x). All of the leading- and second-order velocity and stress components
may be calculated in terms of these functions using the remaining results in this section. MATLAB code to
perform this calculation is provided in the supplementary material.
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2.4. Relation to previous works

As mentioned in the introduction, the assumptions of the present model differ from previous works.
Nevertheless, there are some important similarities that should be highlighted.

Firstly, note that Tzou [7] obtains an equation equivalent to the leading-order stress equation (26) via
slab theory, and goes on to obtain an approximate solution for a parabolic roll gap profile. The predictions
of the slab theory model from [7] are therefore identical to the leading-order solution described in Section
2.2. This is not surprising, because the assumption of small aspect ratio precludes the possibility of through-
thickness variations in stress in the leading-order asymptotic model. For the remainder of this paper, the
leading-order asymptotic solution will be referred to as ‘the slab model’, with the understanding that the
results of both are equivalent.

The second-order correction described in Section 2.3 introduces through-thickness variation in all quan-
tities. It is therefore fundamentally different from the slab theory solution. Although no other authors
have reported such results for sandwich rolling, comparisons can be drawn with other results in the case
of a homogeneous sheet (β = 1). Although no comparable result exists combining the present scaling with
Coulomb friction in the rolling literature, a model for extrusion [10] does use this combination. Because
an extrusion die is typically held stationary, there is no analogue of the entrance region observed in rolling.
However, the present results agree exactly with the extrusion model [10] for the exiting flow in the case of a
homogeneous sheet. The relaxation of assumptions regarding the size of the reduction here also means that
this result is more flexible than that of Domanti & McElwain [8].

Note also that the O(δ2) correction described in Section 2.3 should include a correction to the neutral
point position, xN . Although one might hope to obtain this correction by finding the location at which

the tangential sheet speed matches that of the rolls, the discontinuity in u
(2)
c , which arises from the jump

in S
(0)
xy , means that no unique solution for xN exists. In truth, the dynamics in the vicinity of the neutral

point are more complicated than can be explained by the current model. It is typically asserted (see [8],
for example) that material will stick to a small section of the roll near the neutral point, allowing the shear
stress to change smoothly from one direction to the other. It is thought that this, in turn, causes a sub-yield
elastic plug to form.

While some authors avoid this problem by smoothing the friction discontinuity (either deliberately, see
[12], or through numerical under-resolution) or by using a relative slip model when the velocity of the sheet
relative to the roller is small [9], the correct approach may be to perform an inner asymptotic expansion of
the small region over which the shear stress changes sign, and match this to the outer solution. However,
the conjectured presence of a sub-yield region suggests that elasticity is very important to the dynamics in
this region, and to include this would step outside the scope of this model. For now, it is noted that the
presence of the mild discontinuity near the neutral point is an artefact of rigidly enforcing the Coulomb
friction model, and is an approximation to a rapid but smooth change in reality. In practice this is not
worrying; Section 4.4 demonstrates that reasonable predictions can still be made for the rest of the roll gap.

3. Finite element simulation

In the absence of detailed experimental results, the predictions of the asymptotic model are compared
with finite element simulations using the Abaqus package. All of the simulations used a mild modification
of the plane strain rolling configuration described in Section 1.3.11 of [11], with the sections defining the
matrix and cladding material joined using simple ‘pin’ constraints along the bonded interface. Rolling was
initiated by giving an initially undeformed sheet an initial velocity of magnitude RΩ toward the rolls, which
were forced to rotate at a constant rate. The yield stress of the matrix material was fixed at 300 MPa, while
the yield stress of the cladding was allowed to vary to achieve a range of values for β. Unlike the analytical
model in Section 2, Abaqus requires a degree of elasticity in material behaviour. Each material was given
a Young’s modulus, E, 500 times larger than its plastic yield stress, and a Poisson ratio, ν, equal to 0.35.
This is fairly typical of steel or aluminium alloys. Sensitivity to the exact choice of elastic parameters will be
discussed in Section 4.1. A brief mesh sensitivity study confirmed that the choice of mesh did not strongly
affect the results.
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Figure 2: Variation of (a) force and (b) torque with yield strength ratio, β, for a range of sheet thickness ratio, α. Solid lines
show results from the asymptotic model, dashed lines show the slab model results, and symbols show finite element results.
The error bars indicate the spread of results under variation of Young’s modulus (E = 100k, 500k, 1000k) and Poisson ratio
(ν = 0.3, 0.35, 0.4).

4. Results

In this section, several findings are presented based on the comparison of the model described in Section
2 with the simulations described in Section 3. As mentioned in Section 2.4, the term ‘slab model’ is used to
refer interchangably to both the leading-order asymptotic solution and the actual slab model of Tzou [7].

When investigating the effect of varying the process parameters, it is useful to define a basic case.
For the purpose of this section, we define the basic case by the dimensionless parameters (α, β, δ, r, µ̂) =
(0.7, 0.8, 0.35, 0.2, 0.1). This corresponds to a 10mm thick sheet being reduced to 8mm thickness by rolls of
radius 100mm, which is fairly typical of industrial rolling.

4.1. Similarity to slab theory

Since roll force and torque are the two most important control parameters in rolling, roll force and torque
predictions are used here as a means of comparison between the slab model, asymptotic model, and the finite
element simulations. Predictions and simulated results for a range of α and β are shown in Figure 2.

The most striking feature of the results is that the analytical models consistently under-predict the forces
by up to 10%. The predicted torques are in much better agreement with the simulations, but still tend to
be underestimates. The reason for the discrepancy in forces is likely to involve the elastic effects introduced
in the Abaqus simulation. This will be discussed in more detail in Section 4.4. Nevertheless, the variation of
force and torque in response to changes in sandwich composition relative to the homogeneous case (β = 1) is
well captured qualitatively and quantitatively by both the slab model and corrected asymptotic results. The
intuitive expectation that a thicker and/or softer cladding will result in smaller rolling forces and torques
is met by the results shown. The error bars in Figure 2 show the effect of varying the elastic parameters
that are not accounted for by the asymptotic model. For a range of elastic behaviours consistent with most
steels and aluminium alloys, the results are rather insensitive to the precise elastic parameters chosen.

It is interesting to note that the two analytical models are in close agreement for most parameter values.
If one were to be interested only in predicting the force and torque necessary to roll the sandwich sheet,
one would therefore gain little by including the asymptotic correction. The O(δ2) correction offers a small
improvement in force predictions at the cost of a small reduction in accuracy for torques. However, as noted
earlier, the real advantage of the O(δ2) correction lies in predicting through-thickness variation, as described
in Section 4.3.
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Figure 3: Variation of force and torque with the roller radius R. Panels (a) and (b) compare the force and torque predictions
(lines) with simulation results (symbols), while panels (c) and (d) show the relative errors in force and torque respectively.
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Figure 4: Variation of (a) force and (b) torque with the friction coefficient, µ. In each plot, simulation results (symbols) are
compared with the model predictions (solid lines). In panel (b), the neutral point position, xN , is shown as a dashed line.

4.2. Range of validity

In order to establish the practical range of validity of the asymptotic model, other parameters are now
varied. Figure 3 illustrates the effect of varying δ, via the roller radius, R, for a fixed sheet composition,
(α, β) = (0.7, 0.8). Although the agreement is good for most of the values of R chosen, the relative error in
force is particularly small (less than 4%) for 0.08m < R < 0.15m, which corresponds to 0.29 < δ < 0.40.
This range contains most values of δ appropriate to industrial rolling processes.

Figure 4 illustrates the accuracy of the model under variation of the friction coefficient, µ̂. The predictions
are seen to be reasonably accurate for values of µ̂ in the vicinity of 0.1, but fairly rapidly diverge away from
the simulated results for µ̂ > 0.2. For smaller friction coefficients, the simulated force and torques are more
noisy, but seem to indicate a sharp decrease in the force and torque. Although the force behaviour is not
captured by the asymptotic model, the decrease in torque is represented in the prediction. For small µ̂,
the neutral point lies at the exit of the roll gap, so the entire roller surface acts to pull the sheet through
the roll gap. At approximately µ̂ = 0.08 the neutral point begins to move into the roll gap, introducing an
opposing shear stress to the roller and stabilising the torque. Increasing µ̂ beyond 0.2 breaks the assumption
of a small µ̂, so the equations ought to be rescaled to correctly predict the behaviour here. However, the
asymptotic model performs well for the range of friction coefficients typically occurring in industry.

The sensitivity of the results to the reduction, r = ∆h/h0, was also investigated, and typical results are
shown in Figure 5. The asymptotic model predicts forces and torques reasonably accurately across almost
all of the reductions studied. While the model continues to make predictions for larger reductions than
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Figure 5: Variation of (a) force and (b) torque with the reduction, r = ∆h/h0. In each plot, simulation results (symbols) are
compared with the model predictions (solid lines).

Figure 6: Velocities in the roll gap for a moderate roller radius (R = 0.1m, δ = 0.35). The (a,b) horizontal and (c,d) vertical
velocities are shown for the (a,c) slab model and (b,d) corrected asymptotic model.

those shown without issue, the simulations failed as a result of the velocity-based initiation of the process.
Instead of being captured by the friction of the rolls, the sheet was found to bounce backwards, away from
the rolls. As reductions of 20% or less are most typical of industrial rolling processes, larger reductions have
not been investigated here in any more detail.

4.3. Prediction of through-thickness variation

Although Section 4.1 demonstrated that the slab and asymptotic models are in general agreement when
predicting roll force and torque, the internal stress structure differs substantially between the two models.
The differences result from relaxing the assumption of stress uniformity through the thickness of each
material.

For moderate values of the yield stress ratio, β, the manner in which the asymptotic results differ from
the slab model predictions appears to be qualitatively similar for a wide range of parameters. Thus, the
differences are illustrated by considering just the basic case described at the beginning of this section.

Figures 6 and 7 show typical velocity and stress distributions for the basic case. In order to illustrate the
effect of the asymptotic correction derived in Section 2.3, both the slab theory and asymptotically corrected
solutions are plotted. In each case, the plots are generally quite similar. The horizontal velocity is largely
uniform in y, but the correction adds a small degree of shear, consistent with the action of friction. Similarly,
the stresses are dominated by the typical ‘friction hill’ near x = 0.85, but there is a small local minimum
(in magnitude) in the longitudinal stresses near x = 0.35. This arises due to the competition between the
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Figure 7: Stresses in the roll gap for a moderate roller radius (R = 0.1m, δ = 0.35). The Cauchy stresses (a,b) σxx, (c,d) σyy

and (e,f) Sxy are shown for the (a,c) slab model and (b,d) corrected asymptotic model.

Figure 8: Velocities in the roll gap for a larger roller radius (R = 0.4m, δ = 0.18). The (a,b) horizontal and (c,d) vertical
velocities are shown for the (a,c) slab model and (b,d) corrected asymptotic model.

frictional term (∓µσ0) and the geometric term (proportional to −h′) in the stress equation (26). The former
term acts to pull material into the roll gap, while the latter resists compression by the rolls, leading to a
small plateau where these effects are in balance. The second-order effect of the velocity shear is to increase
the pressure (hence the magnitude of σxx and σyy) near the roller surface. The vertical velocity and shear
stress distributions remain largely unaltered by the O(δ2) correction.

For a larger roller radius (R = 0.4m, δ = 0.18), the velocity and stress distributions (illustrated by Figures
8 and 9 respectively) differ. In this case, friction dominates in equation (26), and a classic ‘friction hill’
shape appears. The geometric term has only a very limited effect near the ends of the roll gap. Other than
that, the through-thickness variation of velocity and stress is slightly weaker than in the case of moderate
roller radius. Nevertheless, the general effect of the O(δ2) correction is essentially the same.

It is worth commenting on the apparent discontinuity in the shear stress at the interface between matrix
and cladding material. This is a consequence of the assumption of continuous tangential stress, combined
with the jump in σxx induced by the change in material yield stress. A similar discontinuity arises at second
order in σyy for the same reason, although it is too small to be clearly visible in Figure 9.
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Figure 9: Stresses in the roll gap for a larger roller radius (R = 0.4m, δ = 0.18). The Cauchy stresses (a,b) σxx, (c,d) σyy and
(e,f) Sxy are shown (b,d,f) with and (a,c,e) without the asymptotic O(δ2) correction derived in Section 2.3.

Figure 10: Stress components and von Mises stress (J2) plotted along the roll surface (y = h(x)) for the larger roller (R =
0.4m, δ = 0.18). Symbols show the simulated results, while curves show the predictions of the asymptotic model.

4.4. The effects of elasticity and smoothed friction

As seen in Section 4.1, neither the slab model nor the asymptotic model agree quantitatively with the
finite element simulations. This is in contrast to Montmitonnet [13], who successfully compared a slab
model with finite element calculations of homogeneous rolling. However, Montmitonnet [13] used a purely
plastic numerical solver. This suggests that the disagreement in the results presented here is mainly the
consequence of the elastic-plastic flow rule used by Abaqus. This hypothesis seems to be supported by
Figure 10, which shows the stress components and von Mises stress evaluated at the roll surface. It is clear
that the predictions of the analytical model are accurate for a large portion of the roll surface, but deviate
significantly around the neutral point and at the entrance to the roll gap. Near the neutral point, numerical
smoothing of the Coulomb friction condition leads to the rounded ‘friction hill’ obtained in the simulation.
At the roll gap entrance, the simulated von Mises stress profile clearly indicates that the material is sub-yield
over the first 20% of the roll gap, meaning that all of the strain is elastic, rather than plastic, in that section
of the roll gap. In the bulk of the roll gap, the small difference between the theoretical von Mises yield
stress and the simulated stress suggests that some small portion of the strain is elastic throughout the roll
gap. Nevertheless, this seems not to influence the prediction of stress too strongly; there is good agreement
between the predicted and simulated stresses for the remaining 80% of the roll gap.
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4.5. Solution times

An important benefit of using the asymptotic model presented in this paper over finite element simula-
tions is a dramatic reduction in the time needed to calculate the stress and strain in the roll gap. A typical
finite element simulation needed to generate one data point in Figure 2, for example, required up to two
hours CPU time on a standard desktop computer. By contrast, the solution to the asymptotic model was
typically calculated in less than two seconds.

Approximately 60% of the CPU time required to calculate the asymptotic solution was needed to de-
termine the leading-order solution. In particular, locating the neutral point was always the most time-
consuming task. Adding the O(δ2) correction contributed less than 40% to the computational cost.

5. Discussion

The results presented here show that the asymptotic model presented in this paper not only agrees
well with the predictions of slab theory, somewhat validating its assumptions, but also provides additional
information regarding the stress and velocity distributions throughout the rolled sheet. As expected, the
slab result provides a good approximation to the stress distribution in the harder material when the yield
stress ratio is particularly large or small.

However, some discrepancies were found between the analytical results and the results of finite element
simulations. As suggested in Section 4.4, it seems to be the case that the elasticity required by Abaqus
is the main reason for the difference. There have been previous attempts to incorporate elastic stresses in
analytical models, particularly by considering a small elastic region at the start of a constriction in extrusion
[10]. In that paper, the authors simply equate the elastic stress to the plastic stress at an arbitrary point
near the entrance to the roll gap, creating an abrupt transition in material behaviour. While this seems
to agree reasonably with their data, their data are relatively sparse and noisy. A more detailed treatment
would be to consider elastic stresses alongside plastic stresses throughout the roll gap. This would add
significant complication to the equations for sandwich rolling, and is perhaps better illustrated for traditional,
homogeneous rolling. Such an analysis has not yet been presented in the literature.

Other future work could extend these results to allow for strain-hardening or work-hardening, temperature-
dependent effects, or asymmetry between the pair of rolls (see [14] for a similar treatment of asymmetry
in homogeneous rolling). Furthermore, one could attempt to remove the discontinuity in the region of the
neutral point by considering alternative, more smooth friction models, such as the relative slip model used
in [9]; or by performing a more sophisticated asymptotic analysis in the vicinity of the neutral point.

In summary, by relaxing the traditional assumption of stress homogeneity, a more detailed analytical
model of the velocity and stress fields in sandwich rollinghas been derived. The slab theory result of Tzou
[7] was shown to be consistent with rolling at small aspect ratio, and the asymptotic model presented here
is shown to give similar predictions for the roll force and torque across a range of material configurations,
material properties, and rolling geometries. In particular, we showed the range of validity of this model under
changes in roll radius, friction coefficient, and reduction. The additional predictions made by the asymptotic
model regarding the stress and strain distributions obtained may be useful in predicting microstructural
changes due to rolling throughout the thickness of the composite product, while the time required for
numerical evaluation is much less than costly finite element simulations, making this model a good candidate
for use in online process control.
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