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1 Introduction

Gravitational waves were predicted by Einstein’s 1915 Theory of General Relativity. However, they have
yet to be detected, owing to the tiny effect they are predicted to have on the world around us, and even
the types of waves passing through the Earth are unknown. The Laser Interferometer Gravitational-Wave
Observatory (LIGO) project aims to detect these waves, via interferometry.

The signals from the laser interferometers, as well as other measurements of interest, are digitized and
recorded electronically, 24 hours a day. Each observatory generate between 3 and 6 MB/s of data, which is far
too much for a human to process. One method used to alleviate this is to use software to automatically note
sections of particular interest; these notes are called triggers. One class of artifacts identified are transients,
which are unexpected dramatic, short lived blips in the data. At present, triggers for transients are being
generated many times a second, which precludes human examination of each event. This SURF project is
concerned with the further analysis of these transients, and their detailed classification.

The first progress report detailed the achievements made during the first three weeks of this project.
After a period of familiarization with a sample of the data, a method was developed called “Classical
BlockNormal” (CBN) analysis, which looked for a single change in behavior of the data, whilst assuming
everything was distributed normally. This idea was further developed using the Kolmogorov-Smirnov (KS)
test to look for a single change in behavior, without the normal distribution assumption. In addition, a
program called “manufacturegwa” was created that would provide a framework to try out different ideas
and algorithms, without the overhead of re-writing input/output code. It provided a scripted language with
which to randomly generate various types of signal or read in actual LIGO data, and then perform various
analyses on these data.

2 Data Preprocessing

While statistical procedures are a good method for identifying a signal, they are greatly helped by first
processing the data to eliminate, or at least reduce, some of the noise present. The first method developed
was, as suggested at the end of the first progress report, to look at the different frequencies present in the
data. This yielded a power spectrum, which plots the power present in each frequency against that frequency.
To eliminate bleeding of frequencies into adjacent bands, a Hanning window was used. The power spectrum
allowed the dominant 30Hz signal component to be ignored, and other, more subtle signals to be discovered.
Moreover, since the power spectrum was produced by a Fast Fourier Transform (FFT), this preprocessing
incurs a one-off overhead of complexity only Θ(N log N), where N is the number of data points.
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The problem with the power spectrum was that it gave no time reference for a signal. To combat this, a
method was developed which cut the data into small chunks in time (typically 30ms or so in length), and then
produced a power spectrum of each chunk. Hence, the time evolution of distinct frequency bands (typically
16Hz in width) could be analyzed, giving approximate time and frequency information. This is known as a
spectrographic method, and is what is planned on being used for performing all statistical analysis on. It
also only incurs a one-off overhead of complexity Θ(N).

An additional problem faced was that the data produced by the spectrographic method above was not
distributed normally. Aside from attempting to use other distributions, a Box-Cox transformation was
implemented, which is a family of transformations designed to map positive data into a form more normally
distributed, while not contorting the data too much. The Box-Cox transformation is given by

tλ(x) =

{

x
λ − 1
λ

if λ 6= 0

log(x) if λ = 0

where λ is a real parameter, and x > 0. It is continuous in λ, and monotonically increasing and smooth in x.
The optimal value of λ to get the best normal fit was estimated using a maximum likelihood estimator. The
entire transformation yields a one-off overhead of complexity Θ(N), which is comparable to the spectrograph
generation.

A Box-Cox transformation was also attempted to better fit the spectrographic data to a Gamma distri-
bution. Unfortunately, this did not yield good results, since the Gamma distribution also requires all data
points to be positive, and adapting the Box-Cox transformation to have a strictly positive range as well
as domain proved problematic. It was therefore decided to abandon this line of investigation due to time
constraints.

3 Statistical Procedures

3.1 Methods Assuming a Normal Distribution

The first new statistical procedure developed was a modification of the CBN method which looked for a small
interval of interest, either side of which was background noise. The procedure still assumed all data to be
normally distributed, and hence was termed the Classical BlockNormal Interval (CBNI) method. The CBNI
method showed far more sensitivity to small intervals of interest than the CBN procedure. In addition, it
did not suffer from the edge effects that the CBN was prone to, since the data was in effect wrapped round
on itself. The CBNI procedure, when used with a limit on the maximum size of intervals of interest, is still
of complexity Θ(N), which is comparable to the complexity of the CBN method.

Unfortunately, as mentioned above, the spectrographically process LIGO data ended up not being nor-
mally distributed. In addition to the Box-Cox transformation described above, other methods were inves-
tigated that might provide a better fit. One of these methods was to take the real and imaginary parts of
individual DFT coefficients, rather than the square of their modulus (as taken for the frequency power). If
the original data had been normally distributed, so should these coefficients be. I developed two different,
but related, methods to analyze these frequency coefficients. One involved just looking at both the real
and imaginary parts at the same time, assuming they were distributed normally — this method was termed
the Classical Block Di-Normal Interval (CBDNI) method. A second method was to take into account the
possible correlation of the real and imaginary parts, producing a Classical Block Bi-Variate Normal Interval
(CBBVNI) method. Both of these two methods have complexity Θ(N), so are comparable to the CBNI test.
In practice, the CBDNI method produced better results than the CBBVNI procedure when applied to LIGO
data, as considering the possible correlation of real and imaginary parts produced more false alarms than it
helped pick out strong signals.
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3.2 Other Parametric Methods

The first non-normal distribution considered was the Gamma distribution. This was motivated by the fact
that if the original data had been normally distributed, the real and imaginary coefficients of the DFT
would have also been normally distributed, and hence their moduli squared (i.e. the frequency power) would
have been distributed according to a Scaled Chi-Squared distribution, which is a special case of a Gamma
distribution. In practice, the Gamma distribution shows a much better fit than a Normal distribution to
spectrographically transformed LIGO data, and is a good fit for most of the data, apart from a problematic
band from about 1–3kHz. The Gamma distribution was used to search for intervals of interest in a similar
way to the CBNI method, and hence was termed the Classical BlockGamma Interval (CBGI) method. Best
fitting a Gamma distribution using maximum likelihood estimation proved too computationally expensive,
so the parameters of the maximum likelihood estimators where themselves estimated using the mean and
variance of the data. This proved adequately accurate to give good results, whilst being computationally
cheap; the overall complexity of the CBGI method is only Θ(N), which is comparable to that of the normal
methods. The results of this method tend to be similar to the CBNI method’s, except that false alarm levels
are kept better under control.

An alteration to the CBGI method considered was to consider a Shifted Gamma distribution; i.e. a
Gamma distribution plus a constant. Interval searches based on this distribution were termed Classical Block
Shifted Gamma Interval (CBSGI) methods. Again, maximum likelihood estimation of parameters proved too
computationally expensive, as in this case it would have yielded a Θ(N 2) algorithm. The parameters were
first estimated using mean, variance, and skewness. Unfortunately, this estimation was too inaccurate to
give good results, and ended up performing worse than the CBGI method! A second method was to estimate
the shift by setting it to the minimum value of all data points. This produced more predictable results,
but which were identical to those produced by the CBGI method! It was concluded that only considering a
non-shifted Gamma distribution provided enough flexibility, so the CBSGI method was abandoned.

Another parametric distribution used was the Weibull distribution, since it is similar in form to the
Gamma distribution. This was implemented in the Classical BlockWeibull Interval (CBWI) method. The
Weibull distribution gave just as good a fit to the spectrographically transformed LIGO data as the Gamma
distribution, while fitting much better in the 1–3kHz range. Unfortunately, no shortcuts were found to
estimate the maximum likelihood estimators, and their direct computation was of Θ(N), giving the CBWI
method an overall complexity of Θ(N 2); it was estimated that the CBWI method would take about 5 days
to process one 60 second length of data. Due to these limitations, the CBWI method was also abandoned.

3.3 Non-Parametric Methods

As detailed in the first progress report, the KS method is a good non-parametric method similar to the CBN
test, without assuming normality. An obvious extension to this was to look for intervals of interest, rather
than distribution changes, which was implemented in the Kolmogorov-Smirnov Interval (KSI) test. This test
is unfortunately of complexity Θ(N 2), but in practice takes about 15 minutes to complete on a 60 second
section of spectrographically transformed LIGO data, so is still usable. However, tests on spectrographically
transformed LIGO data showed that this method performed far worse than the CBNI method. This was
probably caused by two factors: parametric methods need far fewer points to give accurate results than the
KSI method does, and for spectrographically transformed data, a 60 second sample probably did not give
enough data to the KSI method to produce good results; also, the Kolmogorov-Smirnov test is known to be
insensitive in the tails of the distribution, and this was exactly where tests for transients occurred.

In an attempt to combat the second of these failings, a modified Kolmogorov-Smirnov test, called the
Anderson-Darling test, was used. The Anderson-Darling test gives more weight to the tails of the distribution,
whilst maintaining the same level of computational complexity. This test was implemented in the Anderson-
Darling Interval (ADI) test. The ADI test gave marginally better results than the KSI method, but was
unfortunately still nowhere near as good as the parametric methods.
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4 Data Analysis Results

Figures 1–4 show the time evolution of power in a selection of frequency bands in a 60 second sample of
LIGO data. They were created by the program “manufacturegwa”, using a spectrographic transformation
of the data. The sample was chosen so that a prominent transient noted by a trigger occurred after about 30
seconds. Figure 1 shows this transient, and is the sort of thing that current analyses can pick out. Figure 2
shows the transient in detail, and demonstrates features such as a number of peaks during the transient, and
a second transient slightly delayed from the first, that it would be useful if the data analysis would pick out;
this is currently work in progress.

Figures 5 and 6 show Figures 1 and 3 respectively, after an optimal Box-Cox transformation to make
them appear more normally distributed.

In order to test how well certain different distributions fit these data, another variant of the Kolmogorov-
Smirnov test (also known by the same name) was applied. This test gives a statistic which represents how
much the data deviates from a given distribution, with higher numbers representing larger deviations, and
a value of zero indicating a perfect fit. An approximate 99.99% confidence level for this statistic is 1.4,
although the precise number depends on the distribution being tested against.

Figures 7–11 show the goodness of fit of several different parametric distributions against varying fre-
quencies of the LIGO data sample. As can be seen, the best fit was achieved by the Box-Cox transformed
Normal test (Figure 8), where the statistic remained well below the threshold for all frequencies. The Gamma
(Figure 10), Weibull (Figure 11), and Di-Normal (Figure 9) distributions also achieved this level of fit, but
only above about 3kHz; between 1kHz and 3kHz, these distributions showed the characteristic deviation
of all but the Box-Cox corrected Normal distribution. Of these, the Di-Normal and Weibull distributions
equally showed the best fit, with the Gamma distribution showing a reasonable fit, although considerably
worse than the first two. The plain Normal distribution (Figure 7) showed the worst fit, with all points well
above the threshold.

Figures 12–17 show the results of running the block interval analyses on this section of LIGO data. The
graphs plot likelihood of a signal being present against the different frequency bands. An ideal graphs would
have a huge peak at 288Hz, indicating the signal present in this channel, and would be as small as possible
everywhere else.

The CBNI method (Figure 12) gave an almost ideal graph. The noise in the 1–3kHz range was probably
due to non-stationarity of the data in this region, in addition to the worse fit the normal distribution
provided in this range, as shown in Figure 7. By preceding the analysis by a Box-Cox transform, the results
in Figure 13 were obtained. This would appear to give worse results, despite the normal distribution being
a better fit. Note the spikes at 4320Hz and 7168Hz, in addition to the noise in the 1–3kHz range.

Figure 14 shows the results of the analyses using the CBDNI and CBBVNI algorithms, and demonstrates
the extra noise caused by considering the covariance of the real and imaginary parts of the DFT coefficients.
The spikes at 4320Hz and 7168Hz were still present, but were of much smaller magnitude than either the
1–3kHz noise, or the transient signal at 288Hz.

The results of the CBGI method are shown in Figure 15. They show very similar features to the CBNI
results, except the noise levels beyond 3kHz were more stable. Tiny peaks at 4320Hz and 7168Hz were
present, but were little more than the general noise. These results seem the most promising.

Figures 16 and 17 show the KSI and ADI results, respectively. As can be seen, they gave very little
information. The main 288Hz transient signal that was so prominent in Figure 1 is shown as less significant
than the 1–3kHz noise, and significant spikes are shown at 4320Hz and 7168Hz. The ADI test demonstrated
more dramatic spikes than the KSI method, but its conclusions are unfortunately no better.

From all the above analysis, the LIGO data sample used showed a large transient at 288Hz, at roughly
the expected time. However, there was a large amount of noise between 1kHz and 3kHz that was probably
caused by the non-stationarity of the signal in these bands. In addition, two isolated frequencies caused
several false signals of significant magnitude — the 4320Hz and 7168Hz bands. Whether there is some
physical significance to these features is a question beyond the scope of this SURF project.
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5 Work in Progress

Currently, the block interval analysis used above picks out the best interval of interest by various methods,
and attempts to classify how interesting it thinks it is. In Figure 2, it generally picks out the first three closely
grouped peaks. However, it would be useful to clarify this further, by noting that there are three grouped
peaks in this first interval, and another close group of three a short while later. Work on an algorithm to
recursively apply the block interval analysis, both to the interval found and on either side of it, is currently
ongoing in an effort to detect these features.

6 What’s Next

The most likely next steps in this project are to:

• Finish work on the recursive block detection.

• Develop post-processing of the results of the recursive block detection, to detect things like repetitive
signals, or trends with neighboring frequency bands. For example, it may well be the case that one
transient excites several different frequencies. At present, each frequency band is analyzed in isolation.
Post processing the recursive block detection results would allow these different frequency responses
to be grouped together as the result of one transient.

• Integrate the current program code (written in C) into the existing DMT C++ framework. The final
product of this SURF project will likely be a derived class which fits into the DMT to automatically
analyze triggers, and flag important results. There are various base classes already in the DMT which
are designed to be extended in this way.

• Run the algorithms on sections of the LIGO data for which there are not any significant known
transients, to detect its ability to discover new signals that may previously have been missed.

Other possible avenues of investigation if time permits are to:

• Look at covariance of the signal in time. This may help eliminate problems in the 1–3kHz frequency
range due to non-stationarity, and possibly reduce overall noise caused by low levels of non-stationarity
else where.

• Investigate other distributions similar in shape to the Weibull and Gamma distributions, which fit
the data better than the Gamma distribution, but are less computationally expensive to fit than the
Weibull distribution.
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Figure 1: The time evolution of power in the 288Hz frequency band, showing a signal around 30 seconds.
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Figure 2: A closeup of the signal in the 288Hz frequency band.

7



Time (in s)

P
ow

er
D

en
si

ty
(i
n

H
z−

1
s−

1
)

6050403020100

1e-05

9e-06

8e-06

7e-06

6e-06

5e-06

4e-06

3e-06

2e-06

1e-06

0

Figure 3: The time evolution of power in the 4320Hz frequency band.
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Figure 4: The time evolution of power in the 7168Hz frequency band.
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Figure 5: The time evolution of power in the 288Hz frequency band, after a Box-Cox transform.
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Figure 6: The time evolution of power in the 4320Hz frequency band, after a Box-Cox transform.

9



99.99% Critical Value
LIGO Data Sample

Frequency (in Hz)

K
-S

S
ta

ti
st

ic

800070006000500040003000200010000

20

18

16

14

12

10

8

6

4

2

0

Figure 7: Goodness of fit of a Normal distribution to the time evolution of frequency powers.
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Figure 8: Goodness of fit of a Normal distribution to the time evolution of Box-Cox transformed frequency
powers.
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Figure 9: Goodness of fit of two Normal distributions to the time evolution of the real and imaginary parts
of the DFT frequency coefficients.
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Figure 10: Goodness of fit of a Gamma distribution to the time evolution of frequency powers.
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Figure 11: Goodness of fit of a Weibull distribution to the time evolution of frequency powers.
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Figure 12: CBNI analysis of the time evolution of frequency powers.
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Figure 13: CBNI analysis of the time evolution of Box-Cox transformed frequency powers.
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CBDNI
CBBVNI
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Figure 14: CBBVNI and CBDNI analyses of the time evolution of the real and imaginary parts of the DFT
frequency coefficients.
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Figure 15: CBGI analysis of the time evolution of frequency powers.
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Figure 16: KSI analysis of the time evolution of frequency powers.
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Figure 17: ADI analysis of the time evolution of frequency powers.
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