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The acoustics of curved and lined

cylindrical ducts with mean flow

Edward James Brambley

This thesis considers linear perturbations to the steady flow of a compressible inviscid perfect

gas along a cylindrical or annular duct. Particular consideration is given to the model of the

duct boundary, and to the effect of curvature of the duct centreline.

For a duct with a straight centreline and a locally-reacting boundary, the acoustic duct

modes can be segregated into ordinary duct modes and surface modes. Previously-known

asymptotics for the surface modes are generalized, and the generalization is shown to provide

a distinctly better approximation in aeroacoustically relevant situations.

The stability of the surface modes is considered, and previous stability analyses are shown to

be incorrect, as their boundary model is illposed. By considering a metal thin-shell boundary,

this illposedness is explained, and stability analysed using the Briggs–Bers criterion. The

stability of a cylindrical thin shell containing compressible fluid is shown to differ significantly

from the stability for an incompressible fluid, even for parameters for which the fluid would

otherwise be expected to behave incompressibly.

The scattering of sound by a sudden hard-wall to thin-shell boundary change is considered,

using the Wiener–Hopf technique. The causal acoustic field is derived analytically, without the

need to apply a Kutta-like condition or to include an instability wave, as had previously been

necessary.

Attention is then turned to a cylindrical duct with a curved centreline and either hard or

locally-reacting walls. The centreline curvature (which is not assumed small) and wall radii

vary slowly along the duct, enabling an asymptotic multiple scales analysis. The duct modes

are found numerically at each axial location, and interesting characteristics are explained using

ray theory. This analysis is applied to a hard-walled RAE 2129 duct, and frequency-domain

solutions are convolved to give a time-domain example of a pulse propagating along this duct.

Finally, some numerical work on the nonlinear propagation of a large-amplitude pulse along

a curved duct is presented. This is aimed at modelling a surge event in an aeroengine with a

convoluted intake.
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Chapter 1

Introduction

One of the main motivations for the work presented here is an analysis of aircraft jet engine

intakes, and in particular, long and curved intakes that are commonly found on military aircraft,

such as shown in figure 1.1. Within such an intake during flight there is a significant subsonic

mean flow, typically of the order of Mach number 0.5. On top of this mean flow are small

perturbations, such as sound, and it is predominantly these perturbations that we investigate

here. A more detailed understanding of the effects of the intake curvature on sound propagation

may lead to new intake designs that are quieter, such as is being considered by the Silent Aircraft

Initiative (Law & Dowling, 2006).

Another sort of event that can occur in aircraft engines is known as surge. This is when, for

whatever reason, the compressor blades in the interior of the jet engine stall, and the engine

depressurizes rapidly, both out the back of the engine through the turbines, and through the

front of the engine through the fan and the intake. The pressure increase in the intake during

such a surge is significant, typically peaking at two or three times the mean flow pressure. This

is significant enough that shock waves can form as the surge pulse propagates along the intake.

The details of how a surge is affected by the curvature of the intake are at present not well

understood. A better understanding could lead to lighter and safer aircraft engine intakes.

Acoustic waves in a straight cylindrical rigid duct are very well understood, with solutions

in terms of Bessel’s functions of the first kind. If the duct boundary is not rigid but is allowed

to oscillate with the flow, as modelled by Myers (1980), the solution becomes more complicated.

Rienstra (2003a) noted that for high frequencies, the modes of such a duct could be classified

into acoustic modes and surface modes, the latter being localized about the duct boundary

and having interesting stability properties. Formally, Rienstra considered asymptotics in the

limit ω → ∞ with m fixed for modes of the form f(r) exp{iωt − ikx − imθ}, where the duct
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Figure 1.1: A Lockheed Martin F-16, showing its curved engine intake. Photograph by Kevin

Boydston.

cross-section is described in polar coordinates r and θ with x in the axial direction. A good

agreement between the asymptotic and exact results was demonstrated even for modest values

of ω, but provided m . ω.

McAlpine & Wright (2006) considered noise in the intakes of high-powered aeroengines with

supersonic fan blade tips. They suggested the dominant noise contribution to be the rotor-alone

Blade Passing Frequency (BPF) fundamental mode. For the parameters they provided as being

representative of a typical aeroengine, ω and m are of comparable order, and the asymptotic

predictions of Rienstra are notably inaccurate. In chapter 2, an alternative asymptotic treat-

ment of the surface modes is given in order to deal with such situations.

Rienstra (2003a) went on to predict some of the surface modes to be unstable and expo-

nentially growing, similar in nature to the Kelvin–Helmholtz shear layer instability. In order

to perform the stability analysis a model for the boundary mechanics is needed, and Rienstra

chose a mass–spring–damper model (also known as the three parameter model, Tam & Auriault,

1996). The response of the duct boundary is characterized by its impedance Z = p/v, where a

pressure forcing p exp{iωt−ikx−imθ} produces a radial boundary velocity v exp{· · · }. A mass–
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spring–damper model (effectively a modified Winkler foundation) assumes the radial boundary

displacement w to be governed by

a
∂2w

∂t2
+R

∂w

∂t
+ bw = p, ⇒ Z = R+ iaω − ib/ω, (1.1)

where a, b, and R are positive real constants representing the mass, spring, and damping terms

respectively. The lack of x and θ derivatives in this model causes Z to be independent of both

k and m, and corresponds to the assumption that the boundary (in Rienstra’s case a thin

vortex sheet close to the acoustic lining) is infinitely flexible and locally reacting. However, in

chapter 2 the stability analysis performed by Rienstra is shown to be incorrect. The difficulty

with analysing the stability of the mass–spring–damper boundary model is that this model

turns out to be illposed.

There are various methods by which stability may be analysed. A commonly used and

proven stability analysis is the Briggs–Bers criterion (Briggs, 1964; Bers, 1983). As described by

Briggs, this involves introducing a harmonic point-forcing term δ(x)H(t) exp{iωf t}, for which it

is required that the solution be identically zero for t < 0 in order to satisfy causality. For large t,

it is hoped the system will have time dependence exp{iωf t}; the direction of propagation of each

mode is then given by whether the mode occurs in x < 0 or x > 0. However, Briggs showed that

another situation might arise, for which the solution grows exponentially in time with dominant

frequency ωp, termed the pinch frequency. This is referred to as absolute instability, while a

spatially-growing instability at the driving frequency ωf is referred to as convective instability.

Technically, the Briggs–Bers criterion is only applicable provided Im(ω(k)) is bounded below

for real k, or in other words, provided the temporal growth rate of the system is bounded for

any initial conditions. Unfortunately, the mass–spring–damper boundary model turns out to

belong to a class of problems, also including the Kelvin–Helmholtz vortex sheet instability, for

which this is not the case, and so the Briggs–Bers criterion is inapplicable.

Various authors have considered systems with unbounded Im(ω(k)). Jones & Morgan (1972)

analysed the stability of a vortex sheet subject to an acoustic line source, and discovered that

this problem has an unbounded temporal growth rate which caused problems with imposing

causality (Jones & Morgan, 1972, pp. 478–479). For the impulsive forcing δ(x)δ(t), they derived

an explicit causal solution in terms of ultradistributions. In a later paper, Jones & Morgan

(1974, p. 25) stated that the time harmonic solution ψ(ω, x) is causal if and only if it is an

analytic function of ω in the lower half plane and ψ(ω) exp{(b + id)ω} = O(|ω|s) as |ω| → ∞
in the lower half plane, for real constants b, d, and s with d > 0. This stability criterion was

extensively used at the time (e.g. Morgan, 1975; Munt, 1977). It is correct if only convective
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instabilities are present, although neglects the possibility that ψ might have a pole at ωp in the

lower-half ω-plane, leading to an absolute instability while not contradicting causality provided

the ω inversion contour is taken below ωp.

Crighton & Leppington (1974) considered the scattering of an acoustic line source by a

semi-infinite plate shedding a vortex sheet. They discovered that by taking the time-harmonic

solution with ω purely imaginary and analytically continuing the solution to real ω, a desir-

able but unproved Kutta condition (Crighton & Leppington, 1974, pp. 394–396) was satisfied

at the trailing edge of the plate and the solution was unbounded downstream. They pro-

posed (Crighton & Leppington, 1974, p. 406), although left unproved, that in similar problems

to their own, for ψ(ω, x) to be causal it must be analytic in the lower-half ω-plane and ψ → 0

as Im(ω) → −∞ with Re(ω) fixed. They went on to consider the impulsive forcing δ(x)δ(t),

and again derived an explicit causal solution in terms of ultradistributions.

Note that neither Jones & Morgan (1972, 1974) nor Crighton & Leppington (1974) consid-

ered the causal solution for a harmonic forcing as was done by Briggs (1964), but rather the

Fourier transform of the causal solution to an impulsive forcing, more similar to the analysis of

Bers (1983); Bers showed how the two are related. It would be flawed to interpret the Fourier

transform of the impulsive forcing solution as the large-t response of the system to harmonic

forcing, and indeed both Briggs and Bers showed the dominant large-t response may in fact be

at a frequency other than the forcing frequency if absolute instabilities are present.

An alternative stability criterion was used by Rienstra (2003a) to analyse the stability

of the surface modes mentioned above. This method, first suggested by Rienstra (1985) as a

misinterpretation of Jones & Morgan (1974) and described in detail by Rienstra & Tester (2005)

and Rienstra (2007) as the “Crighton–Leppington” criterion, involves analytic continuation for

|ω| fixed with arg(ω) running from −π/2 to 0. However, this method is not universally valid,

and additionally does not consider absolute instability (see §2.2).

How does one, therefore, go about analysing the stability of the surface modes? One answer

is to regularize the problem, by including some previously neglected phenomenon that bounds

the temporal growth rate, while recovering the original problem in a suitable limit. The vortex

sheet problem mentioned above was regularized by Jones (1977), by considering a shear layer

of finite thickness h. Jones concluded that for h small but nonzero an instability was present

that could be represented in terms of conventional functions, which in the limit h→ 0 yielded

the previously discovered ultra-distribution result.

A duct boundary model suitable for stability analysis is developed in chapter 3, for which the
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duct boundary is modelled as a thin shell using Flügge’s equations. The mass–spring–damper

boundary is recovered in the limit of the shell thickness tending to zero. The stability of a

cylindrical thin shell bounding an incompressible fluid was analysed by Peake (1997), using the

similar Donnell thin-shell equations. Peake built on the flat plate results of Crighton & Oswell

(1991), and using the Briggs–Bers criterion, predicted the oscillations of the boundary to be

stable, convectively unstable, or absolutely unstable, depending on the mean flow velocity and

the thickness of the duct boundary; instabilities of either kind were only possible for exceedingly

small shell thicknesses. Here, for compressible flow and the Flügge thin-shell boundary, it is

shown that the boundary is either stable or absolutely unstable, and is not found to support

only convective instabilities. The parameters that lead to either stable or unstable behaviour

are also analysed. By considering the limit of the shell thickness tending to zero, the illposedness

of the mass–spring–damper boundary is demonstrated and explained.

Recently, Rienstra (2007) analysed the scattering of a downstream-propagating hard-wall

acoustic mode as it encounters a sudden transition at x = 0 to a locally-reacting lined duct,

using the Wiener–Hopf technique. Assuming all modes to be stable, the surface streamline

was found to be O(x1/2) as x → 0, giving a cusp in the boundary at x = 0. Treating one

surface mode as an instability, an extra degree of freedom became available which could be

chosen to satisfy a Kutta-like condition, giving the surface streamline behaviour as O(x3/2) at

the boundary transition. In chapter 3, this problem is reconsidered using the newly-derived

thin-shell model, and the surface streamline is shown to be O(x2) at the boundary transition,

without necessarily including an instability.

Attention is then turned to a duct with a curved centreline. Keefe & Benade (1983) used

ideas of impedance matching to study the propagation of very long waves along a curved pipe.

Pagneux and coworkers have developed multi-modal techniques to describe propagation in vari-

ous sorts of curved ducts with zero mean flow (Pagneux et al., 1996a ,b; Felix & Pagneux, 2001,

2002). Felix & Pagneux (2004) have also studied sound attenuation round a lined bend, in-

cluding a raytracing explanation of the effects of curvature, although this was still for zero

mean flow. More analytically-based studies have tended to use specific limits, including slen-

der curved ducts (Ting & Miksis, 1983) and weakly curved ducts in two and three dimen-

sions (Gridin & Craster, 2003; Adamou, Gridin & Craster, 2005).

In a different direction, including mean flow for a straight duct with a circular cross-section

that varies slowly in the axial direction, Rienstra (1999) derived a multiple scales approxima-

tion for the unsteady field. This approximation has been validated by Rienstra & Eversman

(2001) by comparison against finite element computations. Rienstra’s analysis has been ex-
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tended in a number of ways: by Rienstra (2003b) to the case of arbitrary duct cross-section;

by Cooper & Peake (2001) to the case of swirling mean flow; and by Ovenden (2005) to a

uniformly-valid solution that allows modes to undergo cuton–cutoff transition. However, all of

this has been for straight ducts. In chapter 4, Rienstra’s analysis is extended to the case of a

curved duct with mean flow. In the straight-duct case, the cross-duct differential equation is

solvable analytically in terms of Bessel’s functions. In the curved-duct case this is not possible,

and a pseudospectral numerical method as described by Khorrami, Malik & Ash (1989) is used

instead. Interesting behaviour is discovered for the curved-duct equivalent of a plane wave,

which becomes localized on either the inside or the outside of a bend, or possibly both, de-

pending on the mean flow Mach number, the curvature, and whether the mode is propagating

upstream or downstream. This is explained, at least for high frequencies, using a raytracing

approximation.

Keller & Rubinow (1960) constructed a raytracing method for determining the eigenval-

ues of eigenmodes in closed chambers at high frequencies. Their procedure was adapted

by Babic & Buldyrev (1991, chapter 5) to closed domains of arbitrary shape with a varying

wave speed. Two asymptotic extremes of wave modes are studied, termed bouncing-ball and

whispering-gallery modes. Bouncing-ball modes are concentrated about an extremal ray, which

is a ray that intersects the boundaries at each of its ends at right angles, and effectively consist

of rays bouncing backwards and forwards about this extremal ray. Not all extremal rays sup-

port bouncing-ball modes; to do so, the geometry of the boundary locally about the points of

reflection must satisfy a stability condition. Babic & Buldyrev (1991, chapter 5, p. 107) refer

to this as being stable in the first approximation. At the other extreme, whispering-gallery

modes consist of rays running around the perimeter of the boundary, bouncing a large number

of times at very short intervals. They are named after the whispering galleries found in cathe-

drals, where a whisper close to the wall on one side of the whispering gallery may be heard on

the opposite side. In mathematical terms, bouncing-ball modes are modes of high radial order,

while whispering gallery modes are modes of high azimuthal order (for example, large m for

a mode with exp{imθ} dependence). As well as using raytracing to explain the localization

of plane waves on the inside or outside of a duct bend, the axial wavenumber predictions of

Babic & Buldyrev (1991) using raytracing are compared to the numerical wavenumbers in §4.7.

Finally, we begin to consider nonlinear waves in a curved duct, although in this case only in

two dimensions. To do this, we use a first-order-accurate conservative shock-capturing Godunov

(finite-volume) scheme. The inspiration for using this method comes from Igra et al. (2001),

who used a similar second-order-accurate Godunov scheme to predict the behaviour of shocks
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around a Z-shaped bend with sharp corners. They presented both numerical and experimental

results, and demonstrated remarkable similarity between the two.

The history of this scheme starts with attempts to generalize Godunov’s first-order-accurate

one-dimensional scheme to second-order accuracy (van Leer, 1979; Ben-Artzi & Falcovitz, 1984).

In the first-order Godunov scheme, the fluid is divided up into intervals, and the fluid parame-

ters are considered to be constant within each interval. The arbitrary jump between consecutive

intervals forms a Riemann problem (see §5.1.1 for a detailed explanation), which is solved ex-

actly for a small time interval during which the disturbances from the neighbouring jumps do

not interact. The fluxes of the conserved quantities mass, momentum, and energy are then

calculated, and once all of these are known, the conserved quantities within each interval are

updated. To generalize this to second-order accuracy, the fluid parameters are considered to be

piecewise linear within each interval. This leads to a Generalized Riemann Problem (GRP) at

each interval boundary, which must be solved to second-order accuracy in time and space. A

monotonicity argument is also necessary to ensure stability, and to allow discontinuities such

as shocks to be modelled accurately (van Leer, 1979, §3.3). A detailed scheme encompassing

all of this was given by Ben-Artzi & Falcovitz (1984), and it was this scheme that was used so

successfully by Igra et al. (2001). Their scheme involves some slightly messy changes of frame

from Eulerian (static) to Lagrangian (comoving with the fluid) and back, and recently a fully

Eulerian scheme was published by Ben-Artzi et al. (2006); however, this was probably first de-

rived much earlier by Men’shov (1990). Another approach was taken by Colella & Woodward

(1984), who modelled the flow parameters as being piecewise parabolic within each interval

and named their scheme the Piecewise Parabolic Method (PPM). A review of these methods,

together with some testcases which are reproduced in §5.2, was given by Woodward & Colella

(1984).

All these second-order-accurate schemes have been for one-dimensional flows. To generalize

them to two dimensions, Strang splitting (Strang, 1968) is almost unanimously used. General-

izing the boundary conditions to two dimensions is more tricky, since oblique boundaries may

be present which do not lie along the numerical grid. Oblique boundaries are dealt with only in

passing in the literature (see, for example, Ben-Artzi & Falcovitz, 2003), and so are dealt with

in detail in §5.1.2.

Since computing power and memory have increased dramatically since these studies, the

discretization used here is far finer than that used in the references above, and hence it was

found sufficient to use only the first-order-accurate Godunov method. In order that the code

could be generalized to second-order accuracy if the need arose, Strang splitting was still used.
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This code was then given the task of calculating the flow in a two-dimensional version of the

RAE 2129 intake, with a significant disturbance modelling a surge event being introduced at

the upstream end of the intake. Results from this calculation are given in §5.3.

1.1 Governing equations and dispersion relation for a straight

cylinder

A straight cylindrical duct of radius r0 and of infinite extent in the x direction is considered.

An inviscid steady uniform axial flow of speed U , density D, pressure P , and sound speed C

flows down the inside of the duct in the positive x direction. All parameters are nondimen-

sionalized to simplify the notation. Speeds are nondimensionalized by the speed of sound C,

so that U becomes the mean flow Mach number, henceforth considered subsonic. Distances are

nondimensionalized by the duct radius r0, time by r0/C, densities by D, and pressures by DC2.

Note that this gives the nondimensionalized mean pressure as 1/γ for a perfect gas, where γ is

the ratio of specific heats.

Neglecting entropic and vortical disturbances, a small potential perturbation φ(x, r, θ, t) is

considered to the steady state, with corresponding velocity perturbation u = ∇φ, pressure p

and density ρ. The linearized governing equations given by Goldstein (1978) in this case become

D2φ

Dt2
−∇2φ = 0 and p = ρ = −Dφ

Dt
,

where D/Dt = ∂/∂t + U∂/∂x is the convective derivative with respect to the mean flow. A

solution is sought of the form φ = f(r) exp {iωt − ikx− imθ}. With the nondimensionalization

above, ω is the Helmholtz number, k is the axial wavenumber, andm (an integer) is the azimuthal

wavenumber. Making this substitution, the radial equation for f(r) is found to be

r2
d2f

dr2
+ r

df

dr
+
(
α2r2 −m2

)
f = 0, where α2 = (ω − Uk)2 − k2. (1.2)

This is Bessel’s equation, up to a scaling of r. The solution is required to be non-singular at

r = 0, giving the solution in terms of Bessel’s functions of the first kind as f(r) = AJm(αr),

for some constant amplitude A. This solution satisfies the linearized governing equations in the

fluid, although the boundary condition at the duct wall imposes further restrictions on α.

The boundary is modelled as a flexible impermeable surface with impedance Z(k, ω,m).

Rienstra (2003a) used this as a model for an aeroengine acoustic lining, since in the limit of

vanishing viscosity the boundary layer along the wall reduces to a vortex sheet, and it is this

vortex sheet that is modelled as a flexible impermeable surface. The motion of the boundary

13



complicates the no-flux boundary condition u · n̂ = 0 applied on the surface, since both the

position of the surface and the direction of the surface normal n̂ are unsteady and depend on

the flow. For a general geometry and impedance, Myers (1980) derived the first order no-flux

boundary condition to be

iωu · n = (iω + U · ∇ − (n · ∇U) · n) p/Z, (1.3)

where n is the unperturbed surface normal out of the fluid, U is the mean flow, u and p are the

linearized velocity and pressure, and all quantities are evaluated on the unperturbed boundary.

Substituting the solution for φ into this yields the dispersion relation

1 − (ω − Uk)2

iωZ

Jm(α)

αJ′m(α)
= 0. (1.4)

Note that since Jm(−r) = (−1)mJm(r), it does not matter which branch is chosen for α. For a

hard-wall boundary, no flow through the boundary implies the dispersion relation J′m(α) = 0;

this may be obtained from (1.4) by taking the limit Z → ∞.

Following Rienstra (2003a), the reduced axial wavenumber σ is introduced,

σ = U +
β2

ω
k, giving α2 =

ω2

β2

(
1 − σ2

)
, (1.5)

where β2 = 1−U2. This is so as to remove the Doppler effect of the mean flow, and to scale σ

to be O(1) irrespective of ω. With this transformation, the dispersion relation (1.4) becomes

1 − ω

iZβ4
(1 − Uσ)2

Jm(α)

αJ′m(α)
= 0. (1.6)

1.2 Discussion of modes in a straight cylinder

For a fixed azimuthal wavenumber m and frequency ω, the dispersion relation (1.4) yields

an infinite discrete set of solutions for k. In the hard-wall limit Z → ∞, the dispersion relation

simplifies to J′m(α) = 0, with solutions for α along the positive real axis. Figure 1.2(a) plots the

axial wavenumbers k for a hard-wall duct (+). It shows a finite number of real wavenumbers

corresponding to propagating (cuton) modes, and an infinite discrete set of complex wavenum-

bers corresponding to exponentially decaying (cutoff ) modes. Also shown are the wavenumbers

for an impedance boundary with Z = 2 − i (×). The boundary damping causes all modes to

have complex axial wavenumbers and decay in space, although there is still a structure simi-

lar to the cuton–cutoff behaviour of the hard-wall duct. The majority of modes have nearly

real radial wavenumbers α, and indeed Im(α) tends to zero as the modes become more cutoff

(see §1.3). However, there are two series of modes, shown in figure 1.2(b), for which α has
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wavenumbers (+) and impedance boundary with Z = 2 − i (×). (b) Larger view showing two

surface mode series, for Z = 2 − i.

a significant imaginary part. These series, one in the lower left and one in the upper right

k-plane, contain one mode for each azimuthal wavenumber m. The leading order asymptotics

for Bessel’s functions of large complex argument (see e.g. Abramowitz & Stegun, 1964, p. 364)

give
|Jm(αr)|
|Jm(α)| ∼ r−1/2 exp{−|Im(α)|(1 − r)}

for large |Im(α)|. Thus, modes for which α has a large imaginary part decay exponentially with

distance from the duct wall; these are the surface modes discovered by Rienstra (2003a). Other

modes for which α is close to the real axis decay at most algebraically with distance from the

duct wall, and are termed acoustic modes.

1.3 Asymptotics for high-order modes

In figure 1.2, the impedance boundary wavenumbers cross the vertical line of hard-wall

wavenumbers, and appear to be tending to an oblique asymptote (as marked). These modes,

excluding the surface modes, correspond to large and nearly real values of α, and are termed

high-order modes. We now develop an asymptotic approximation for these modes in the limit

α→ ∞.
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In terms of α, the dispersion relation (1.6) is

1 − ω

iZβ4

(
1 ∓ U

√
1 − β2

ω2
α2

)2
Jm(α)

αJ′m(α)
= 0.

The branch cut for σ(α) is taken along the positive imaginary (1 − β2α2/ω2) axis, and the

branch is selected to be positive for downstream-propagating modes and negative for upstream-

propagating modes, denoted by ±. This branch cut was selected so as to yield the correct cuton

to cutoff behaviour, with propagating modes transitioning into exponentially-decaying modes.

Expanding the dispersion relation in powers of α gives

1 +
ω

iZβ4

[
U2β2

ω2
α∓ 2iUβ

ω
−
(
1 + U2

)
α−1 +O(α−2)

]
Jm(α)

J′m(α)
= 0. (1.7)

For the leading order terms to balance, Jm/J
′
m = O(α−1), so that α must be close to a zero of

Jm. Let jmn be the nth zero of Jm. By differentiating Bessel’s equation and setting Jm to zero,

it is found that

J′′m(jmn)

J′m(jmn)
= − 1

jmn

J′′′m(jmn)

J′m(jmn)
=
m2 + 2

jmn
2 − 1,

so that
Jm(jmn + j)

J′m(jmn + j)
= j

[
1 +

1

2jmn
j +

µ

3
j2 +O(j3)

]
,

where µ = 1− (m2 + 1/2)/jmn
2. Note that as m→ ∞ for fixed n, jmn = m+O(m1/3), so that

µ = O(jmn
−2/3), while as n → ∞ for fixed m, µ = O(1); µ therefore represents the bouncing

ball coefficient.

By substituting α = jmn + j into (1.7) and equating the leading order coefficients, it is seen

that j = O(jmn
−1). Expanding in powers of j, (1.7) becomes

iZβ4

ω
jmn

−1 = −U
2β2

ω2
j± 2iUβ

ω

j

jmn
+
(
1 + U2

) j

jmn
2 −

3U2β2

2ω2

j2

jmn
−U

2β2µ

3ω2
j3+O(jmn

−4). (1.8)

Solving for j yields

α = jmn − iZβ2ω

U2
jmn

−1 ± 2Zβω2

U3
jmn

−2

+
iZω2

U4

[(
β2 + 2

)
ω − 3

2
iZβ4 − Z2β6ω

3U2
µ

]
jmn

−3 +O(jmn
−4),

k = ∓ i

β
jmn − ωU

β2
∓
(
Zβω

U2
− iω2

2β3

)
jmn

−1 − 2iZω2

U3
jmn

−2

∓
(
Zω2

βU4

[
3

2
iZβ4 +

Z2β6ω

3U2
µ− 3

2

(
1 + β2

)
ω

]
− iω4

8β5

)
jmn

−3 +O(jmn
−4). (1.9)

Figure 1.3 shows how the amount by which this solution fails to satisfy the dispersion relation
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decreases with |α|. It verifies the correctness of the above asymptotics by demonstrating an

O(|α|−3) error, as is expected from (1.8).

Figure 1.4 compares the values of α and k generated numerically and from the above asymp-

totics. While the match is far from perfect, the asymptotic results do show the correct charac-

teristics. Since the asymptotic results have been validated by showing they satisfy the dispersion

relation to the correct order, it is to be expected that the asymptotic results will match in-

creasingly better for higher order modes. Higher order modes were not computed numerically,

owing to the computational cost.

These asymptotics show that the high order modes do not tend to an oblique asymptote,

despite what one might have expected from figure 1.2(a). In fact, from (1.9), the high-order

modes tend to solutions to the pressure-release boundary Jm(α) = 0, obtained from (1.4) in

the limit Z → 0.
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Chapter 2

Surface waves and their stability

Analysing acoustic waves in a straight cylindrical duct with an impedance boundary and a

mean flow, Rienstra (2003a) discovered that the wave modes could be classified into acoustic

modes and surface modes, the latter being localized exponentially about the duct boundary;

examples of these surface modes are labelled in figure 1.2. Formally, Rienstra considered asymp-

totics in the limit ω → ∞ with m fixed for modes of the form f(r) exp{iωt − ikx − imθ}. A

good agreement between the asymptotic and exact results was demonstrated even for modest

values of ω, provided m . ω. However, as m ∼ ω, the surface mode predicted to be in the

lower-right σ-plane shifts over to the lower-left, as labelled in figure 1.2. For rotor-alone noise

produced in aeroengines, m is an integer multiple of the number of fan blades B, and typically

B = 24 and ω = 31 (McAlpine & Wright, 2006), so that m ∼ ω.

Rienstra went on to consider the stability of the surface modes, and tentatively identified

one surface mode as an instability. The nature of these surface modes is therefore important,

and here we generalize Rienstra’s surface mode asymptotics to arbitrary azimuthal orders m,

before reconsidering the issue of their stability.

2.1 Surface-mode asymptotics

Rienstra (2003a) investigated surface modes using asymptotics for large ω. Here, we are

interested in both large m and ω, and so we fix Ω = ω/m and consider the high-frequency

asymptotics in this case. From the definition of reduced axial wavenumber in (1.5), it is expected

that σ = O(1) and α = O(ω). This motivates the definitions

ω = mΩ, α = mζ, λ =
Ω

β
, ζ2 = λ2(1 − σ2).
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Note that Ω was used by Rienstra to represent a different quantity.

The high-frequency limit is obtained by taking m → ∞ with Ω held fixed. The solutions

are expected to be surface waves confined to a thin neighbourhood of the duct boundary, and

it turns out the distinguished scaling is obtained by substituting r = 1 − y/m into (1.2), with

y = O(1), yielding

(m− y)2
d2f

dy2
− (m− y)

df

dy
+m2

(
ζ2(1 − y

m
)2 − 1

)
f = 0.

To leading order in m, the first and third terms balance, giving

f(y) = e−µy, µ2 = 1 − ζ2, Re(µ) > 0.

The boundary condition (1.3) gives the dispersion relation

µ− λ

iZβ3
(1 − Uσ)2 = 0, (2.1)

or, in terms of the primitive variables ω and k,

√
k2 +m2 − (ω − Uk)2 − (ω − Uk)2

iωZ
= 0. (2.2)

2.1.1 Recovery of Rienstra’s asymptotics

Rienstra’s reduced radial wavenumber is γR = ζ/λ, so that the dispersion relation (2.1), on

division by λ, may be written

(
1

λ2
− γR

2

)1/2

− 1

iZβ3
(1 − Uσ)2 = 0.

Rienstra defined γR such that Im(γR) < 0, while µ is defined so that Re(µ) > 0. Hence,

multiplying throughout by −iZβ3 and letting λ→ ∞, the dispersion relation becomes

(1 − Uσ)2 + β3ZγR = 0.

This is exactly Rienstra’s (2003a , equation 11) dispersion relation, and hence the asymptotic

dispersion relation (2.1), or equivalently (2.2), is seen to be a generalization of Rienstra’s to the

case of finite λ.

2.1.2 Number of surface modes

In this chapter, we consider only impedance boundaries for which Z is independent of

k or, equivalently, σ. This simplification was implicitly assumed by Rienstra (2003a), and

corresponds to the assumption that the boundary is locally reacting.
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(a) Im(Z) =
2U

β3
(b) Z =

2iU

β3
√

1 + τ2

(c) Z =
U

β3

5 + 4τ2 − 3
√

1 + 8τ2

√
2
√

1 + 8τ2 − 2 − 4τ2
(d) Z =

U

β3τ

(e) Z =
(
(1 − τ̃2) + 2iτ̃

)
s (f) Z =

(
(τ̃2 − 1) + 2iτ̃

)
s

(g) Z =
2U

β3
√
τ̃2 − 1

(
(τ̃2 − 1) + i

√
2τ̃2 − 1

)

Table 2.1: Labelled points in figure 2.1. τ = U
√

1 − λ−2, and τ̃ = U
√
λ−2 − 1 are used to

simplify the notation. The lines (e) and (f) are parametrized by s ∈ [0,∞).

On taking the right hand term of the dispersion relation (2.1) to the right hand side and

squaring both sides, a quartic equation for σ is found,

(
1

λ2
− 1

)
+ σ2 +

1

Z2β6

(
1 − Uσ

)4
= 0. (2.3)

There are therefore exactly four solutions counting multiplicity, although some of these solutions

may have Re(µ) < 0 and so must be discounted. Modes satisfying (2.3), but with Re(µ) < 0,

are termed fake surface modes. A change in the number of valid roots can therefore only occur

when one of the roots crosses the line Re(µ) = 0. This line corresponds to the surface mode

becoming an acoustic mode, no longer being localized about the duct boundary, and hence the

asymptotics above breaking down; in other words, the line Re(µ) = 0 is an anti-Stokes line.

Mapping this anti-Stokes line into the complex Z-plane segregates the Z-plane into regions with

different numbers of surface modes.

Figure 2.1 shows the anti-Stokes lines mapped into the Z plane for U = 0.5. The limit

λ = ∞ corresponds to Rienstra’s (2003a) figure 5. For 1 < λ < ∞, Rienstra’s results are

still qualitatively correct, although quantitatively some variation is seen as λ approaches unity.

Specifically, the point (d) approaches positive real infinity as λ → 1. At λ = 1 a qualitative

change is seen, and for λ < 1 a different regime is entered. As τ̃ from table 2.1 approaches one,

the points (b) tend to ±i∞, and the boundaries of regions 0 and 4 approach the imaginary axis.

This corresponds to λ approaching λn ≡ 1/
√

1 + U−2. For λ < λn a third regime is entered

in which regions 0 and 4 are absent, and as λ → 0 region 2 expands to fill the whole of the

Z-plane. The numbering of the regions reflects the number of surface modes present for that

region. This explains why there are only two surface-mode series seen in figure 1.2(b) for large

m, instead of the three predicted by Rienstra, since Z = 2 − i lies in region 2 for sufficiently

large m.

21



(a)

(c)

(b)

(d)

(e)

(f) (g)

0

4

3

1

2

0

4

3

1

2

4

2

0
0

4

2

3′

1′

1′

2

3′

2

3′

1′

-4

-2

0

2

4

0 0.5 1 1.5 2 2.5 3 3.5 4

λ = ∞

-4

-2

0

2

4

0 0.5 1 1.5 2 2.5 3 3.5 4

λ = 1.5

-4

-2

0

2

4

0 0.5 1 1.5 2 2.5 3 3.5 4

λ = 1

-4

-2

0

2

4

0 0.5 1 1.5 2 2.5 3 3.5 4

λ = 0.7

-4

-2

0

2

4

0 0.5 1 1.5 2 2.5 3 3.5 4

λ = λn

-4

-2

0

2

4

0 0.5 1 1.5 2 2.5 3 3.5 4

λ = 0.3

Figure 2.1: The anti-Stokes line Re(µ) = 0 mapped into the Z-plane for U = 0.5, giving

λn ≈ 0.45. The labelled points are displayed in table 2.1. The dashed line and filled circle are

described in §2.1.3.
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2.1.3 Wavenumbers of the surface modes

The line Re(Z) = 0 is an important boundary, separating an energy absorbing duct wall

(Re(Z) > 0) from an energy producing one (Re(Z) < 0). It was pointed out by Rienstra

(2003a) that, since only energy absorbing duct boundaries are considered, no surface mode can

cross this boundary, and it turns out that this boundary separates the individual surface modes

from one another. Using this, a schematic of the allowable positions in the σ-plane for each

of the four surface modes, labelled a, b, c, and d, is shown in figure 2.2. The trajectories of

the surface modes in the σ-plane for Re(Z) = 0 give an egg-shaped contour for large enough λ,

exactly as described by Rienstra (2003a) in the case λ = ∞. The egg-shaped contour remains

qualitatively correct for all λ > 1, and indeed a very similar contour is found for λ just less

than unity. At λ = 1 the two branches along the real σ axis meet at the origin, and for λ < 1

a new double root of (2.3) becomes present on the negative real σ axis. As λ approaches a

critical value λp (determined below), the two double roots on the negative real σ axis coalesce,

and for λ < λp a topological change is seen, with Re(Z) = 0 now mapping to a mushroom-

shaped contour. The critical value λn discovered earlier is seen to be where the overhang on the

underside of the mushroom disappears, along with region 4 of the Z-plane which corresponds

to the presence of surface mode c inside the overhang.

As mentioned above, the quartic equation (2.3) for σ permits a double root for certain values

of Z; an obvious quadruple root is given by σ = U−1, Z = 0, corresponding to the right of the

egg or the top of the mushroom. A value of Z leading to a double root in σ will be termed a

double root singularity. A double root is indicated by the derivative (with respect to σ) of (2.3)

being zero, in addition to (2.3) being satisfied. Requiring a zero derivative gives

σ

2U
=

1

Z2β6

(
1 − Uσ)3.

For Z 6= 0, substituting the above into (2.3) to eliminate the Z dependence yields a quadratic

equation for σ, giving solutions

σ± = − 1

2U
±
√

1

4U2
+ 2

(
1 − 1

λ2

)
, Z±

2 =
2U

β6

(
1 − Uσ±

)3

σ±
,

the branch of Z± being chosen such that Re(µ) > 0. The coincidence of the double roots with

Z 6= 0 occurs when σ+ = σ−, implying σ = −1/(2U) and λ = λp ≡ 1/
√

1 + U−2/8. For λ < λp,

Z+ and Z− move off the imaginary Z axis; one into the half plane Re(Z) > 0, the other into

Re(Z) < 0.

The question of where in the σ-plane the surface modes exist, and which disappear when

crossing an anti-Stokes line, may now be attended to. The existence of a double root singularity
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Figure 2.2: Schematic of the σ-plane showing the allowable locations of the surface modes a, b,

c, and d. Re(Z) = 0 maps to the solid lines, with the shaded areas corresponding to Re(Z) < 0.

The dashed line and filled circle are images of those in figure 2.1. The boundary between

regions 2 and 3′ maps to the dash-dot line. U = 0.5, giving λp ≈ 0.82 and λn ≈ 0.45.
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a b c d

0

1 x

1′ x

2 x ↑ ↓
3 x x x

3′ x x x

4 x x x x

Table 2.2: Table showing which surface modes of figure 2.2 are present for each region of

figure 2.1. Key: x) present. ↑) present above a branch cut, or with no branch cut. ↓) present

only below a branch cut. blank) not present.

in the interior of the half plane Re(Z) > 0 for λ < λp complicates matters, since tracing modes

as Z moves in a closed circle around such a singularity would show the b and d surface modes

exchanging places. The position of the double root is shown as a filled circle in both figure 2.1

and figure 2.2 (the other double roots having either Re(Z) < 0 or Re(µ) < 0). Also shown

is a dashed line extending from the double root singularity to the imaginary Z axis, and its

projection into the σ-plane. Taking this as a branch cut, the image of the branch cut may be

used to distinguish between the b and d modes. The arrows shown in figure 2.2 show how the b

and d modes would exchange places if Z were allowed to transition upwards across the branch

cut. Above the dash-dot line corresponds to Z belonging to region 2 and only one of the b or

d modes being present, while below the dash-dot line corresponds to Z belonging to region 3′

and both b and d modes being present; it is in the latter case that the modes switch places.

With the branch cut as shown in figure 2.1, the existence of each of the surface modes a, b,

c, and d depends on which region Z is in, and is tabulated in table 2.2. The orientation of the

branch cut is arbitrary; using a different branch cut would only change the labelling of some b

surface modes to d, and vice versa. The branch cut used here was chosen for simplicity.

2.1.4 Accuracy of the asymptotics

Figure 2.3 shows the trajectories of modes in the k-plane as Im(Z) is varied, with Re(Z)

fixed. Figure 2.3(a) takes ω = 5, m = 1, and U = 0.5, giving λ ≈ 5.8, and corresponds to

the top-left diagram of Rienstra’s (2003a) figure 7. For such a relatively small value of ω the

asymptotics do not show a perfect match, as the asymptotic results were obtained in the limit
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Figure 2.3: Comparison of the new asymptotics (short dashed line), Rienstra’s asymptotics

(long dashed line) and exact results (solid line) for the axial wavenumber k. Re(Z) = 3,

Im(Z) ∈ (−∞,∞), and U = 0.5. The bottom diagrams show some of the modes in more detail.

ω → ∞. In particular, both asymptotics switch from approximating one mode to approximating

another, missing the fact that these modes are distinct. Nonetheless, both the new asymptotics

and those of Rienstra provide a good indication of the exact results. Figure 2.3(a) also shows

how the surface modes transition into acoustic modes, with the other acoustic modes switching

places to accommodate the new mode. This was discussed by Rienstra (2003a), and since this

behaviour is no different in the present case, it is not discussed further here.

Figure 2.3(b) uses ω = 31, m = 24, and U = 0.5, which are realistic parameters for

aeroengine intake noise at takeoff, or sideline (McAlpine & Wright, 2006), and lead to λ ≈ 1.5.

The figure shows a very good agreement between the new asymptotic and exact results, while

Rienstra’s predictions are noticeably less accurate. The other two surface modes are present,

although not shown in figure 2.3(b) due to the scale used, and are both accurately predicted

by both asymptotic approximations.
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2.2 Stability

The Briggs–Bers criterion (Briggs, 1964; Bers, 1983) is commonly used to analyse the sta-

bility of linear systems. Consider the linear system

∆

(
i
∂

∂x
,−i

∂

∂t

)
G(x, t) = 0.

As described by Briggs, a harmonic point-forcing term δ(x)H(t) exp{iωf t} is introduced on

the right hand side, and it is required that the solution be identically zero for t < 0 in order

to satisfy causality. The equations are Fourier transformed in both space and time, giving

∆(k, ω)φ(k, ω) = −i/(ω − ωf ), where φ(k, ω) is the Fourier-transform of G(x, t). Inverting this

gives the solution

G(x, t) =
1

4π2

∫

Cω

∫

Ck

−i exp{iωt − ikx}
(ω − ωf )∆(k, ω)

dkdω.

The poles of the integrand occur in the ω-plane at ωf and ω(k), where the possibly multi-valued

function ω(k) satisfies the dispersion relation ∆(ω, k) = 0. The Briggs–Bers procedure looks

at the long-time behaviour of G(x, t), for which it is hoped all transients of the initial sudden

start at t = 0 will have died away and the system will have a time dependence exp{iωf t}.
Initially Ck is taken along the real k axis (as in a standard Fourier transform) and Cω is taken

below Im(ω(k)) for any real k (as in a standard Laplace transform), so that for t < 0 Jordan’s

Lemma may be applied giving G(x, t) ≡ 0. The Cω contour is then deformed upwards onto the

real ω axis to pick up the pole at ωf in the long-time limit. In so doing, to maintain analytic

continuity the Ck contour must be deformed so that no poles of the integrand cross the contour.

This leads to three distinct possibilities:

(a) Such a deformation of Cω is possible, and the Ck contour need not be deformed. Applying

Jordan’s Lemma for the k integral shows that, in the long-time limit, poles in the upper-

half k-plane occur in x < 0, while poles in the lower-half k-plane are present for x > 0,

and in both cases the long-time time-dependence is exp{iωf t}. There is no exponential

growth, and the system is therefore stable.

(b) The Cω contour deformation is possible, but the Ck contour must be deformed off the real

k axis. Similarly to (a), the long-time time-dependence is therefore exp{iωf t}, but now

there is at least one pole that is either in the upper-half k-plane below Ck or in the lower-

half k-plane above Ck, which is picked up through Jordan’s Lemma in x > 0 or x < 0 and

so corresponds to a right- or left-propagating instability respectively. Such an instability

is referred to as a convective instability, since its leading-order long-time behaviour grows

exponentially in space but is bounded in time at each spatial location.
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(c) The Cω contour cannot be deformed onto the real ω axis, since there is a frequency ωp for

which two poles in the k-plane coincide, one originating from above Ck and the other from

below, which pinch the Ck contour. Briggs (1964) showed that in this case a branch cut

at ωp is necessary, and that this frequency, rather than the driving frequency ωf , is the

dominant time dependence of the solution at large times. Since Im(ωp) < 0, the long-time

solution grows exponentially in time at each point in space, with a spatial distribution

exp{−ikpx}, where kp is the location of the pinch in the k-plane. Such an occurrence is

referred to as an absolute instability.

The above is obviously only possible provided Im(ω(k)) is bounded below for real k, or in

other words, provided the temporal growth rate is bounded. If this is not the case, the problem

is illposed, since the the conditions of the Hille–Yosida theorem (Rudin, 1991) are not satisfied;

in other words, there are initial conditions for which the solution at t = 0 does not match with

the solution at t = ε in the limit ε → 0 (i.e. the solution instantly blows up). There may

not even be a sensible answer to the question of spatial stability for such systems given a time

harmonic forcing, although they are certainly temporally unstable for certain initial conditions.

The mass–spring–damper impedance model considered by Rienstra (2003a) turns out to

belong to a class of problems, which also includes the Kelvin–Helmholtz vortex sheet instability,

for which Im(ω(k)) is not bounded below for real k (see §3.3), and so the Briggs–Bers criterion

is inapplicable. An alternative stability criterion was used by Rienstra (2003a) to analyse the

stability of surface waves. This method, suggested by Rienstra (1985) as a misinterpretation

of Jones & Morgan (1974), and described in detail by Rienstra & Tester (2005) and Rienstra

(2007) as the “Crighton–Leppington” criterion, involves analytic continuation for |ω| fixed with

arg(ω) running from 0 to −π/2. However, this method is not universally valid, and two examples

are provided below for which the method fails to predict the correct stability.

2.3 Comparison of Briggs–Bers and Rienstra’s stability criteria

Here, we consider a simple model which demonstrates that Rienstra’s (1985) method does

not, in general, give the (correct) results of the Briggs–Bers procedure.

Consider the self-exciting advection–diffusion equation with harmonic point forcing

∂G

∂t
+ u

∂G

∂x
− ∂2G

∂x2
−G = δ(x)H(t) exp{iωf t}, (2.4)

where u is a constant, subject to G ≡ 0 for t < 0. Upon Fourier-transforming, this gives

∆(k, ω)G̃(k, ω) = −i/(ω − ωf ),
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where the Fourier-transformed operator ∆(k, ω) = i(ω − uk) + k2 − 1. The zeros of ∆(k, ω) in

the ω and k-planes occur at

ω = uk − i(1 − k2) and k± = iu/2 ±
√

1 − u2/2 − iω.

Inverting the Fourier transform gives the solution

G(x, t) =
1

4π2i

∫

Cω

∫

Ck

eiωt−ikxdkdω

(ω − ωf )∆(k, ω)
,

with initially the Ck contour taken along the real k axis (as in a standard Fourier transform)

and the Cω contour taken below all poles of the integrand to ensure G ≡ 0 for t < 0 (as in a

standard Laplace transform). Note that Im(ω) is bounded below by −1 for any real k and u,

so that this may always be achieved.

2.3.1 Convective instability

Figure 2.4 shows the Briggs–Bers criterion applied to (2.4) for u = 3. Initially the Ck

contour is along the real k axis, while the Cω contour is taken along the real ω axis everywhere

but in a finite region approximately −5 < ω < 5, where it is deformed to lie below the image

of Im(k) = 0. The Cω contour is then deformed upwards onto the real ω axis to pick up the

pole contribution at ω = ωf . In so doing, the zeros of ∆(k, ω) move in the k-plane, and the Ck

contour is deformed upwards to prevent them from crossing the contour in order to maintain

analyticity. The dashed arrowed lines show the motion of various parts of the Cω contour (for

fixed Re(ω) as numbered), and their images in the k-plane. The final shape of the Ck contour is

also shown. Zeros of ∆(k, ω) (corresponding to poles of the k integrand) above Ck correspond to

left-propagating modes, while zeros of ∆(k, ω) below Ck correspond to right-propagating modes.

It can be seen from the dashed arrowed lines that for the range of frequencies −3 < ω < 3, the

k− modes have crossed the real k axis but are below the Ck contour and therefore represent

exponentially-growing right-propagating convective instabilities.

Figure 2.5 shows the same system analysed using Rienstra’s (1985) method. Again, the

dashed arrowed lines show the motion of the modes as ω is varied, although this time with

|ω| fixed (as numbered) and arg(ω) varied from the negative imaginary ω axis to the real ω

axis. Those modes that finish in the upper-half k-plane that started in the lower half are then

predicted by this method to be right-propagating instabilities. However, this criterion shows

this happening only for 1 < |ω| < 3, in contradiction to the Briggs–Bers criterion. Since all the

assumptions of the Briggs–Bers criterion are justified for this example, the Briggs–Bers criterion

gives the correct results, and hence Rienstra’s criterion incorrectly predicts the instabilities of

this system.
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2.3.2 Absolute instability

If instead the Briggs–Bers criterion is applied to (2.4) with u = 1, as the Cω contour is

deformed onto the real ω axis, k+ and k− coincide at kp = i/2 when ω = ωp = −3i/4 and pinch

the Ck contour. Continuing to deform the Cω contour onto the real ω axis as far as possible

yields the Cω
′ contour shown in figure 2.6. The dominant large-time contribution comes from

the part of the Cω contour with the most negative Im(ω), which is at ωp, leading to an absolute

instability.

Figure 2.7 shows Rienstra’s method applied to (2.4) with u = 1. Since no modes end

up having crossed the real k axis because of the Cω deformation, this method predicts no

instabilities at all, in stark contrast to the Briggs–Bers criterion. An erroneous result for this

case is unsurprising, since Rienstra’s criterion does not consider the possibility of absolute

instability.
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Chapter 3

Thin-shell boundaries

In this chapter, we consider a hollow cylindrical duct with mean axial flow, the boundary

of which is a linear-elastic (e.g. metal) damped thin shell. This is considered partly as an

interesting problem in its own right, and partly as a possible regularization of the mass–spring–

damper boundary model used in chapter 2. After first describing and analysing this model, we

will use it to demonstrate how the problems with the mass–spring–damper model arise.

3.1 Impedance of a thin-shell boundary

Consider a straight cylindrical duct with inviscid steady uniform axial flow, exactly as

in §1.1. Rather than the simplified mass–spring–damper boundary model, however, the duct

boundary is here modelled as a thin shell, the outside of which is sprung and damped. The

equations of motion of a Flügge thin shell used here are taken from Päıdoussis (2004, p. 576). Let

u, v, and w denote the axial, azimuthal and radial displacement of the shell from equilibrium,

as shown in figure 3.1, and let p∗ = p − bw − R∂w/∂t be the net outward force per unit area

on the shell. Here, p is the linearized acoustic pressure in the duct at the duct boundary,

and b and R represent a spring force and damping respectively, assumed to originate from the

exterior of the shell, as in the mass–spring–damper model. All variables p, u, v, and w are

taken to have exp{iωt− ikx− imθ} dependence, and the impedance Z(k, ω,m) is sought, where

Z = p/(∂w/∂t). We assume that the thin-shell thickness h≪ 1. Additionally, we assume that

that 2m2 − 1 ≪ (k2 +m2)2, which is almost always true and simplifies the thin-shell equations

significantly. The Fourier-transform of Flügge’s equations then give

Z = R− i
(
cl

2d+ b
)
/ω + idω − icl

2d

ω

(
h2

12

(
k2 +m2

)2 −Q1
iu

w
−Q2

iv

w

)
, (3.1a)
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Figure 3.1: Schematic of a cylindrical duct with a sudden change from hard-wall boundary for

x < 0 to thin-shell boundary for x > 0. The small unsteady perturbations to the position of

the thin shell are given by u, v, and w.

Fluid Solid cl ρs ν

Air Aluminium 15.8 2 200 0.33

Water Steel 3.6 7.85 0.3

Table 3.1: Nondimensionalized thin-shell parameters for different materials, at standard tem-

perature and pressure (STP).

where 
 a11 a12

a12 a22




 iu/w

iv/w


 =


 Q1

Q2


 (3.1b)

a11 = k2 +
1 − ν

2
m2 − ω2

cl
2

a12 =
1 + ν

2
mk Q1 = k

[
ν +

h2

12

(
k2 − 1 − ν

2
m2

)]

a22 = m2 +
1 − ν

2
k2 − ω2

cl
2

Q2 = m

[
1 +

h2

12

3 − ν

2
k2

]
, (3.1c)

and cl
2 = E/(ρs(1 − ν2)) is the square of the speed of longitudinal compressive waves in the

boundary material, h is the radial shell thickness, d = ρsh, and the properties of the boundary

material ρs, E and ν are the density, Young’s modulus, and Poisson’s ratio respectively. All of

these quantities are assumed to be nondimensional, as described in §1.1. Some typical values

are given in table 3.1.
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If k is large, m/k . O(1) (of particular interest for stability analysis), and the determinant

of (3.1b) is non-zero, then u/w = O(h2k), v/w . O(h2k), and Q1u/w + Q2v/w = O(h4k4).

Neglecting the terms involving Q1 and Q2 in (3.1a) is therefore justified in this limit, and

the thin-shell impedance takes the form of a modified mass–spring–damper system (c.f. equa-

tion 1.1), with the thin shell providing a spring force cl
2d in addition to that provided by the

modified Winkler foundation, together with a bending stiffness B = cl
2dh2/12.

The determinant of (3.1b) is zero when k = ±kl or k = ±kt, where

kl
2 = ω2/cl

2 −m2 and kt
2 = ω2/ct

2 −m2 (3.2)

and ct = cl

√
(1 − ν)/2 is the speed of transverse waves in the duct boundary. The imaginary

parts of kl and kt are here taken negative, or if zero the real parts are taken positive, so that

they represent right-propagating longitudinal and transverse waves in the thin-shell boundary.

The zero determinant implies that these boundary waves propagate independently of the radial

shell displacement w, and consequently independently of the fluid within the shell.

3.2 Surface modes

As shown in §2.1.2, for a locally-reacting boundary such as the mass–spring–damper bound-

ary, Z is independent of k, and (2.2) may be rearranged to give a quartic equation for k. There

would therefore be at most four roots for any given ω and m; the nature and position of these

four surface modes is discussed in §2.1. For the thin-shell impedance (3.1), (2.2) is still valid,

only now Z is also a function of k. Rearranging (2.2) gives an 18th order polynomial in k for

fixed ω, or a 14th order polynomial in ω for fixed k. For a given frequency, there are therefore a

maximum of 18 surface modes, although some of these may be fake surface modes. Figure 3.2

gives an example of these surface modes. Figure 3.2(a) demonstrates the accuracy with which

the surface modes are predicted by (2.2); the modes shown as a + alone are acoustic modes,

and so are not described by the surface-mode asymptotics (2.2). Figure 3.2(b) shows, as well

as can be in a two-dimensional plot, the behaviour of the surface modes in the limit h→ 0.

From considering a large number of plots such as figure 3.2 for different parameters and in

different regimes, some interpretation of the nature and physical mechanisms supporting these

surface modes may be speculated. Of the 18 potential surface modes, one real surface mode and

one fake surface mode tend to each of kl, kt, −kl, and −kt (defined in 3.2), and surface modes

of this type are here termed quasi-solid surface modes. It should be emphasized, however,

that these surface modes are distinct from the solid boundary waves with wavenumbers exactly
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Figure 3.2: Surface modes in the k-plane for air within an aluminium boundary (see table 3.1).

ω = 31, U = 0.5, R = 3, b = 1, and m = 24. (a) Comparison between analytic modes (+)

and solutions to (2.2) (×), for h = 10−3. (b) Surface modes for varying h for thin-shell (lines)

and mass–spring–damper (diamonds). Dashed lines and hollow diamonds denote fake surface

modes. As h→ 0, modes tend to infinity, to one of the diamonds, or to ±kl or ±kt.

equal to ±kl and ±kt; the quasi-solid modes are fluid modes occurring in the vicinity of the

boundary, whereas the solid boundary waves correspond to zeros of the determinant of (3.1b)

and therefore produce no disturbance in the fluid. Of the remaining 10 surface modes, four fake

and two real surface modes tend to infinity as h → 0, while the other four tend to the mass–

spring–damper values. This suggests that of the 18 potential surface modes, 8 are sustained by

compressional and twisting solid mechanisms, 6 are supported by bending solid mechanisms,

and four are supported by effectively mass–spring–damper mechanisms.

If the terms involving Q1 and Q2 in (3.1a) may be neglected (recall that this is the case

when k is large), a considerable simplification is possible. In this case, (2.2) can be rearranged

to give

(
k2 +m2 − (ω − Uk)2

) ((
cl

2d+ b
)

+ iωR− dω2 +B
(
k2 +m2

)2)2
− (ω − Uk)4 = 0. (3.3)

This is now a polynomial of 10th order in k, or of 6th order in ω. In the author’s experience, this

dispersion relation is remarkably accurate, even for modest values of k for which the previous

argument for neglecting Q1 and Q2 is not appropriate. Of course, this simplification neglects

the compressional and twisting components in the solid, and consequently the 8 quasi-solid

surface modes are not modelled by (3.3).
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3.3 Stability

Having investigated the possible wavemodes supported by our model, we now turn to the

question of their stability. To do this, we employ the Briggs–Bers criterion (Briggs, 1964; Bers,

1983), as described in §2.2.

In order for the Briggs–Bers criterion to be applicable, the image of the real k axis mapped

into the ω-plane must have its imaginary part bounded below, which is shown below not to

be true for the mass–spring–damper model. The validity of the Briggs–Bers criterion is now

verified for the thin-shell model. The acoustic modes are stable, being analogous to the stable

hard-wall duct modes, and do not therefore preclude the Briggs–Bers criterion from being

applied. Utilizing (2.2), and noting from (3.1a) that |Z| → ∞ as |k| → ∞, two classifications

of surface modes emerge in the limit |k| → ∞,

ω = Uk ±
√
k2 +m2 +O

(
k−5

)
,

ω = ±
√
B/d

(
k2 +m2 + 1/2

)
+

i

2d
(R± 1) +O

(
k−1

)
,

where the two ± in the last equation are independent. These have the leading-order large-k

behaviour of a hard-wall duct mode and a bending wave in an unforced cylindrical thin shell

respectively; these two classifications are therefore termed fluid and bending surface modes.

Although not demonstrated by the above equations, the fluid surface modes and two of the

bending surface modes become the four mass–spring-damper surface modes in the limit h→ 0,

while the other two bending surface modes tend to infinity as h → 0, as mentioned in the

previous section. Accounting for zeros of the determinant of (3.1b) gives an additional surface

mode classification, consisting of eight modes of the form

ω = ±clk +O
(
k−1

)
or ω = ±ctk +O

(
k−1

)
.

These are the quasi-solid surface modes of the previous section.

The regularity of (2.2) when rearranged into a polynomial in ω and k means that ω(k)

is continuous, and consequently ω(k) is bounded for k in any finite interval, just as for the

mass–spring–damper boundary model. However, the benefit of the thin-shell boundary model

is that all of the above surface modes have a bounded Im(ω) for real k as |k| → ∞. Hence, the

image of the real k axis in the ω-plane has bounded imaginary part, and so the Briggs–Bers

criterion can be used.

The boundedness of Im(ω(k)) for real k as |k| → ∞ does not hold for the mass–spring–

damper system. To see how this is regularized by the inclusion of bending stiffness for h 6= 0,
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Figure 3.3: Trajectories of ω(k) for k real. For clarity, only modes with Re(ω) > 0 are shown;

the behaviour for Re(ω) < 0 may be inferred from −ω̄(−k̄) = ω(k), where the bar denotes

complex conjugation. The fluid is air at STP and the boundary is aluminium. h = 10−3,

U = 0.5, R = 3, b = 1, and m = 24.

set ω = N
√
k in (3.3) to find, to leading order as |k| → ∞,

N2 = −U
2

βd
+
B

d
k3,

where β =
√

1 − U2. The unbounded ω = −iU
√
k/(βd) behaviour found by Rienstra & Peake

(2005) is therefore seen to hold only for moderate values of |k| for which

|k| ≪
(
U2

βB

)1/3

, (3.4)

giving an estimate of the magnitude of k for which bending stiffness becomes important for

stability. An example demonstrating this is given in §3.3.2.

3.3.1 A stable example

Figure 3.3 shows the real k axis mapped into the ω-plane for an air-filled aluminium duct,

with m = 24, R = 3, and b = 1. The duct may be thought of as having a 1m radius and

a shell thickness of 1mm. The many near-parallel trajectories in figure 3.3(a) correspond

to the acoustic modes. The bending surface modes with Re(ω) = O(k2) form the parabola

apparently intersecting the acoustic modes (shown in red), while the quasi-solid surface modes

with Re(ω) = O(k) are the two parabolic-looking trajectories within the region of acoustic
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Figure 3.4: Trajectories of modes in the k-plane for −100 ≤ Im(ω) ≤ 0 with Re(ω) = 31 and

crosses at Im(ω) = 0. Parameters are as for figure 3.3.

modes. The fluid surface modes with Re(ω) = O(k) correspond to the borders of the region

of acoustic modes (shown in blue). As |k| increases, the bending surface modes enter the

region of acoustic modes, leading to the trajectories in figure 3.3(b). These consist of acoustic

modes jumping order, with an acoustic mode with nearly real ω being displaced by one of

its neighbours, transitioning briefly into a bending surface mode with nonzero Im(ω), before

displacing its other neighbour and once again becoming an acoustic mode. A similar behaviour

is seen as the acoustic modes and quasi-solid modes coalesce, although the change in Im(ω)

during this transition is so small as to be imperceptible in figure 3.3(b). Note that no modes

are present with Im(ω) < 0, so that the temporal inversion contour Cω may be taken arbitrarily

close to the real ω axis. Hence, any mode with complex k(ω) corresponds to an exponentially

decaying mode, while if k(ω) is real, the mode is left propagating if Re(cg) < 0, and right

propagating if Re(cg) > 0, where cg = ∂ω/∂k is the group velocity, and there is no possibility

of absolute instability. This is exactly as might have been naively expected without a detailed

stability analysis, and shows that for these parameters the system is stable.

As an example of the typical Briggs–Bers treatment given in the literature, figure 3.4 shows

the trajectories of modes in the k-plane as Im(ω) is varied with Re(ω) = 31, again for m = 24

and R = 3 (these parameters were suggested by McAlpine & Wright, 2006 as being realistic

parameters for tonal fan-noise in aeroengine intakes). No modes cross the real k axis, and thus

all modes are seen to be either exponentially decaying or propagating in the direction of the
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Figure 3.5: Trajectories of ω(k) for k real. Parameters are as for figure 3.3, but with h = 10−5.

Solid lines correspond to the thin-shell impedance, while the dashed lines show the equivalent

mass–spring–damper trajectories. The value given by (3.4) as when bending stiffness becomes

important to stability is |k| ≈ 1850, shown by the long-dashed vertical lines.

group velocity, as predicted. It should be emphasized that just this analytic continuation alone

does not guarantee the stability of the system, without first having ascertained that Im(ω(k))

is bounded below for real k, and having checked that no absolute instabilities are present.

3.3.2 An example of instability

Using the same parameters as above, but with a very thin shell thickness h = 10−5, leads

to the situation shown in figure 3.5. In this case, (3.4) suggests that bending stiffness is

unimportant provided |k| ≪ 1850, and indeed for small k the mass–spring–damper model is

indistinguishable from the thin-shell model. The two surface modes in the lower-half ω-plane

in figure 3.5(b) demonstrate the predicted Im(ω) ∝
√
k behaviour, although for large k this is

regularized by the bending stiffness of the thin shell, and Im(ω) is bounded below by −100.

This is not the case for the mass–spring–damper impedance, for which these modes continue

to arbitrarily negative imaginary values of ω, prohibiting the Briggs–Bers criterion from being

applied.

A naive application of the Briggs–Bers criterion would involve, say, analytically continuing

from Im(ω) = −100 to Im(ω) = 0 with Re(ω) = 1. Figure 3.6 shows this would cause the upper-

right and far-right surface modes to be identified as right- and left-propagating instabilities

40



-100

-50

0

50

100

-40 -20 0 20 40 60 80 100

-1000

-500

0

500

1000

-2000 -1500 -1000 -500 0 500 1000 1500 2000

Figure 3.6: Trajectories of modes in the k-plane for −100 ≤ Im(ω) ≤ 0 with Re(ω) = 1 and

crosses at Im(ω) = 0. Parameters are as for figure 3.5.

respectively. This stability analysis is not complete, however, without considering the possibility

of absolute instability.

If a pinch frequency ωp exists, Briggs (1964) showed that this gives rise to an absolute

instability, present simultaneously upstream and downstream of the driver, that dominates the

solution at large times. Writing the dispersion relation (1.4) as ∆(k, ω) = 0, a pinch point

occurs at a double root, given by ∂∆/∂k = 0. The complexity of this dispersion relation means

that the pinch points must be found numerically. Satisfying ∆(k, ω) = 0 gives the possibly

multi-valued function ω(k), and an equivalent condition for a pinch point is that dω/dk = 0.

Peake (1997) used a Newton–Raphson iteration to solve this latter equation, using an analytic

result for the absolute instability frequency of a flat plate as a starting point. Using a Newton–

Raphson iteration requires knowledge of the second derivative of ω(k), for which Peake used the

Cauchy integral representation, and since ω(k) is itself calculated numerically using Newton–

Raphson iteration, this is numerically expensive. Here, a more simple iteration is used, based

directly on ∆(k, ω) and without the need to calculate ω(k) explicitly.

It is required to find values of ω and k for which both ∆(k, ω) = 0 and ∆k(k, ω) = 0, where
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the subscript k denotes differentiation with respect to k. For small δk and δω,

 ∆(k + δk, ω + δω)

∆k(k + δk, ω + δω)


 =


 ∆

∆k


+


 ∆k ∆ω

∆kk ∆kω




 δk

δω


+O

(
δk2 + δω2

)
,

the right hand side being evaluated at k and ω. A two-dimensional Newton–Raphson iteration

therefore gives

 kn+1

ωn+1


 =


 kn

ωn


− 1

∆k∆kω − ∆ω∆kk


 ∆kω −∆ω

−∆kk ∆k




 ∆

∆k


 ,

where the right hand side is evaluated at kn and ωn. This iteration is performed with starting

points located on a grid covering the relevant areas of the k- and ω-planes. The values of ω

found are shown in figure 3.7, along with the image ω(k) of the real k axis, below which the

Briggs–Bers temporal inversion contour Cω must be initially taken to satisfy causality.

It remains to check which of these are modes originating from Im(k) > 0 on the initial

temporal inversion contour Cω colliding with modes originating from Im(k) < 0, and that

therefore correspond to a pinch point. The majority of the double roots involve the collision of

two modes, both of which originate from the same half of the k-plane, and so do not correspond

to pinch points. The modes labelled surface mode in figure 3.7 are all caused by the the surface

mode in the lower-left of the k-plane interacting with the acoustic duct modes, as shown in

figure 3.8. The arrows in figure 3.7 point in the direction of increasing |Im(k)| for the double

root, and show the surface mode interacting with progressively more cutoff acoustic modes.

Since all the modes involved in these double roots originate from the lower-half k-plane, none

of these correspond to absolute instabilities. The same is true of the double roots located

at ωp = ±0.9 − 0.5i (figure 3.9), ωp = ±10.6 − 19.6i (figure 3.10), and ωp = ±13.3 − 10.0i

(figure 3.11), so that none of these correspond to absolute instabilities. The dominant double

roots that do correspond to pinch points are found to be ωp = ±13 − 54i; the nature of this

double-root is demonstrated to be a pinch point in figure 3.12.

The previously identified convective instabilities are still present, in that when excited at

a particular axial location at a frequency ωf = 1, there do exist two unstable modes that,

after long times, are seen to grow exponentially in space with the predicted axial wavenumbers.

However, these are exponentially small compared to the dominant contribution to the solution

at large times, which grows exponentially in time with frequencies ωp = ±13 − 54i, and whose

spatial distribution is governed by the axial wavenumbers kp = ±1170 + 3.69i. The extreme

parameters needed to demonstrate this instability may be thought of as a 1m duct radius with

a boundary thickness of 0.01mm and a mean flow Mach number of 0.5, which is not easily

realized in practice!
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Figure 3.12: Briggs–Bers trajectories in the k plane for Re(ω) = 13.0 (solid lines) and Re(ω) =
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Figure 3.13: Values of h and U giving an absolute instability, for m being 0, 1, 5, and 24. The

critical shell thickness hc is given by short dashed lines for b = 0, solid lines for b = 1, and

long dashed line for the asymptotic incompressible predictions of Peake (1997). The results are

independent of R. The material parameters are given in table 3.1.

3.3.3 The boundary between stable and unstable behaviour

The question now arises, how small a shell thickness is needed for there to be an absolute

instability? By first finding the dominant pinch frequency ωp, and then tracking this pinch

frequency as h is varied, the critical value h = hc giving Im(ωp) = 0 may be found. For h < hc

we have Im(ωp) < 0, giving an absolute instability, while for h > hc we have Im(ωp) > 0, and

the Cω contour may be deformed onto the real ω axis, so that no absolute instability is present.

Figure 3.13 plots these values of hc for a variety of parameters; the amount of external damping,

R, is found to have no effect on the critical shell thickness hc, and so figure 3.13 only considers

R = 3. For small U the dominant parameter is the Winkler foundation spring constant b, while

the azimuthal order m plays little role. As U approaches unity the situation is reversed, and m

becomes the dominant parameter, while b plays little role.

The approximate critical shell thickness found by Peake (1997, equation 3.3) is also plotted

in figure 3.13. This result was derived for an incompressible fluid in the small-mean-flow limit,

and was shown to give a very accurate approximation to the true critical boundary for an

incompressible fluid. Figure 3.13(a) shows that for the light fluid-loading given by air within

aluminium, the system is stable for a wider range of shell thicknesses than if the fluid were

incompressible. However, figure 3.13(b) shows that for the heavy fluid-loading given by water
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within steel, the system may be stable for a wider or smaller range of shell thicknesses than if

the fluid were incompressible, depending upon the situation. This is especially true if there is

no externally-applied spring forcing, so that b = 0.

For a double root to correspond to a pinch, one mode must originate from the upper-half

k-plane and one from the lower-half. Hence, at least one of these modes must cross the real k

axis, shown as a solid line in figure 3.7 making two fingers in the lower-half ω-plane. As h is

increased, these two fingers shrink, until at a certain value of h there are no modes with real

k in the lower-half ω-plane, and so there can be no instabilities (either absolute or convective).

The dominant pinch frequency ωp is located towards the ends of these fingers, and the critical

shell thickness hc turns out to be exactly the value of h for which these fingers disappear from

the lower-half ω-plane. This implies the interesting result that the system is either absolutely

unstable or stable, but never only convectively unstable. Why this should be the case, rather

than the pinch point crossing the boundary of one of the fingers and producing convective

instability, is unclear. Since the two fingers of ω(k) for real k shrink down to ω = 0, the critical

value of ωp, defined as Im(ωp) = 0, actually occurs at ωp = 0. Using this, (3.3) tells us that

this borderline is given by ∆ = ∂∆/∂k = 0, where

∆ ≡
(
k2 +m2/β2

) ((
cl

2d+ b
)
/B +

(
k2 +m2

)2)2
− U4k4

B2β2
(3.5)

and β2 = 1 − U2. These two equations give a simple algebraic expression for hc and the value

of k = kp for which this occurs, in terms of the parameters cl
2ρs, m, b, and U , assuming of

course that the borderline frequency does in fact occur at ωp = 0. Note that the boundary

damping R does not occur in (3.5), explaining why the curves in figure 3.13 are independent

of R. However, the general solution of ∆ = ∂∆/∂k = 0 involves solving simultaneously a 10th

and 8th order polynomial. Progress may be made by considering the case for which kp ≫ m/β,

which will turn out to be valid provided U is sufficiently small. Neglecting the terms involving

m2 in (3.5) then gives

1

kp
2 ∆ ≡ kp

8 + 2λkp
4 − k0

6kp
2 + λ2 = 0,

1

2kp

∂∆

∂k
≡ 5kp

8 + 6λkp
4 − 2k0

6kp
2 + λ2 = 0,

where λ = (cl
2d+b)/B, and k0 = (U2/(βB))1/3 is the value of k given in (3.4) for which bending

becomes important to stability (note that k0 is the value of kp for which the kp
8 and kp

2 terms

of ∆ balance). Solving these two equations gives

hc = − b

2cl
2ρs

+
1

2

√(
b

cl
2ρs

)2

+

(
9U4

(1 − U2)cl
4ρs

2

)2/3

. (3.6)
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Figure 3.14: Comparison between asymptotic approximations and numerical results for hc,

for b = 1 and m ∈ {0, 1, 5, 24}. Solid lines give the numerical results, short dashed lines give

the asymptotics of (3.6) and the power laws derived from it, and long dashed lines give the

incompressible asymptotics.

If U ≪ 1, this reduces to two cases, depending on whether U ≪ Uc or U ≫ Uc, where

Uc =

(
8b3

9cl
2ρs

)1/4

.

If U ≪ Uc, the Winkler foundation spring force b dominates the thin-shell spring force cl
2d,

and (3.6) gives an hc = O(U8/3) power law,

hc ≃
cl

2ρs

b

(
9U4

8cl
4ρs

2

)2/3

.

Alternatively, if U ≫ Uc it is the thin-shell spring force that dominates, and we get an hc =

O(U4/3) power law,

hc ≃
(

9U4

8cl
4ρs

2

)1/3

.

Note that if b = 0, corresponding to no Winkler foundation spring force, the hc = O(U4/3)

power law is universally valid for U ≪ 1.

Figure 3.14 shows these three predictions, and the incompressible predictions, against the

numerically found values of hc. As U approaches unity, the m2/β2 factor in (3.5) becomes

significant, and the above asymptotics breaks down provided m 6= 0. However, for small and

moderate U , the asymptotics derived above show a very good agreement to the numerical

results, and the U8/3 and U4/3 scaling laws are clearly demonstrated.
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Figure 3.15: Comparison of Briggs–Bers trajectories in the k plane between a mass–spring–

damper and thin-shell boundary, for U = 0.5, m = 0, ω = 1. The mass–spring–damper has

b = 1, d = 0.1, and R = 1, and the thin shell has h = 1.75 × 10−2 and ν = 0.33 (and cl
2 = 10,

ρs = 5.7, b = 0). These parameters correspond to Rienstra & Peake (2005, figure 4).

3.3.4 Recovery of the mass–spring–damper boundary for small shell thick-

nesses

We now summarise the stability results of the thin-shell boundary in the limit h → 0,

which we know recovers the mass–spring–damper impedance. From figure 3.13, we know that

the thin-shell boundary is absolutely unstable provided h is sufficiently small, with dominant

frequency ωp. As h → 0, Im(ωp) → −∞, so that for arbitrarily small shell thicknesses the

absolute instability grows arbitrarily quickly. The pinch leading to this absolute instability

occurs because two of the surface modes coincide and pinch the Ck contour, and one of these

surface modes is a surface mode that disappears to infinity as h→ 0, as shown in figure 3.2(b).

We therefore conclude that when interpreting the mass–spring–damper as a thin shell of zero

thickness, there is an absolute instability present of infinite temporal growth rate, and there are

two surface modes that are at k = ∞. Of course, we knew already that the mass–spring–damper

boundary supported arbitrarily large temporal growth rates, as shown in figure 3.5.

As a comparison between the thin-shell and mass–spring–damper boundaries for a naive

Briggs–Bers application, consider figure 3.15. This appears to show the thin shell to be stable

at this frequency and the mass–spring–damper boundary to admit a convective instability.

However, as we have discovered, one must always consider the possibility of absolute instability
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in a Briggs–Bers analysis, and in fact for these parameters the thin shell is absolutely unstable

with a dominant frequency ωp = ±0.937 − 1.01i.

3.4 Scattering by a hard-wall to thin-shell boundary transition

Rienstra (2007) considered the scattering of an acoustic duct mode at a transition from a

hard-wall to a locally-reacting boundary. As there was some question over the stability of the

surface modes, Rienstra considered both stable and unstable cases. We now investigate how

this scattering is altered by modelling the boundary as a thin shell.

Consider the duct shown in figure 3.1, which for x < 0 has a hard-wall boundary with

boundary condition ∂φ/∂r = 0, while for x > 0 the boundary is a thin shell, as described by

Flügge’s equations. The thin-shell boundary is clamped to the rigid boundary at the intersection

x = 0. All quantities are assumed proportional to exp{iωt− imθ}. A rigid-wall duct mode with

pressure pin(x, r) = exp{−ikinx}Jm(αinr)/Jm(αin) is inbound from upstream, where αin
2 =

(ω − Ukin)2 − kin
2 and J′m(αin) = 0, so that pin satisfies the wave equation and the hard-wall

boundary condition for x < 0. Since this mode does not satisfy the boundary condition for

x > 0, as it encounters the boundary transition it scatters into other duct modes, some of

which are reflected back upstream. A similar method to Rienstra (2007) is used to solve for the

scattered solution using the Wiener–Hopf technique, as described by Noble (1958).

3.4.1 Solution in the fluid

If w(x) is the small unsteady radial deflection of the boundary, as shown in figure 3.1, then

the governing equations and boundary condition give

D2φ

Dt2
−∇2φ = 0, subject to

∂φ

∂r
=

Dw

Dt
at r = 1. (3.7)

We split the fluid pressure into the sum of the incoming imposed pressure and a scattering

pressure, so that the total pressure is p = −Dφ/Dt = pin − Dψ/Dt, where ψ is the potential of

the wave scattered by the impedance boundary change at x = 0.

In order to achieve a causal solution, and for the convergence of the integrals that follow,

it turns out to be convenient to consider ω = ωr − iε with ωr real, and ε positive and chosen

such that Im(ω(k)) > −ε for all real k and for both the hard-wall and the thin-shell dispersion

relations. Since by definition of ω there are no modes with real k, it is assumed that there

exists some positive δ(ε) such that the strip S given by |Im(k)| < δ is free of any rigid-wall or
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thin-shell modes. The Briggs–Bers criterion then dictates that, for this frequency, all modes

that originate at x = 0 decay exponentially as |x| → ∞, and from the definition of S it follows

that they decay at least as fast as exp{−δ|x|}. It will also turn out to be useful to require δ

to be small enough so that ω/(U ± 1), kl, and kt all lie outside S. Analytic continuity of the

solution to ε = 0 will eventually be sought.

The Fourier transform of ψ is given by

ψ̃(k, r) =

∫ ∞

−∞
ψ(x, r)eikx dx,

which, because of the choice of ε, for k in S converges absolutely and is therefore analytic. The

Fourier-transformed differential equation (3.7) is solved as before in terms of Bessel’s functions,

giving ψ̃(k, r) = A(k)Jm(α(k)r), where A(k) is an as yet undetermined function representing

the spectrum of the scattered wave, and α(k)2 = (ω−Uk)2 − k2. The branch cuts for α(k) are

taken parallel to the imaginary axis and away from the real axis, as shown in figure 3.16, and

α(k) is defined as

α(k) = iβ

∣∣∣∣k +
ω

1 − U

∣∣∣∣
1/2 ∣∣∣∣k −

ω

1 + U

∣∣∣∣
1/2

exp

{
i
θ1 + θ2

2

}

so that α(k) is analytic and Im(α(k)) > 0 in a neighbourhood of the real k axis. These branch

cuts will turn out to be unnecessary, as before, although this will only become apparent a

posteriori.

For x < 0 the duct wall is rigid and therefore w(x) ≡ 0. The Fourier transform of w(x) is

therefore given by the positive-half-range transform

H+(k) =

∫ ∞

0
w(x)eikx dx,
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which is an analytic function of k for Im(k) > −δ. For positive-half-range Fourier transforms,

note that ∫ ∞

0
f ′(x)eikx dx = −f(0) − ik

∫ ∞

0
f(x)eikx dx

assuming appropriate decay at infinity (which is ensured in all cases here by taking k ∈ S).

Hence, the boundary condition from (3.7) gives

α(k)A(k)J′m(α(k)) = i(ω − Uk)H+(k), (3.8)

yielding A(k) in terms of the unknown function H+(k). Equation (3.7) is now satisfied, for any

function H+(k), or equivalently for any boundary deflection w(x). The physics of the boundary

remain to be satisfied.

3.4.2 Imposing the thin-shell boundary

For a thin-shell boundary, the boundary deflection w(x) is related to the fluid pressure

p(x, 1) at the boundary by Flügge’s equations, the full-range Fourier transforms of which are

given in (3.1). Here, we are interested in the positive-half-range Fourier transform of Flügge’s

equations, in order to derive H+(k). Since the thin shell is clamped at x = 0, so that w(0) =

w′(0) = u(0) = v(0) = 0, the positive-half-range Fourier transforms of Flügge’s equations give

∫ ∞

0
p(x, 1)eikx dx = iωZ1(k)H

+(k) + iωZ0(k), (3.9)

where

iωZ1(k) = cl
2d+b+iωR−dω2+B

(
k2 +m2

)2−cl
2d

Q1
2a22 − 2Q1Q2a12 +Q2

2a11(
ω2

cl
2
− (k2 +m2)

)(
ω2

cl
2
− 1 − ν

2
(k2 +m2)

) ,

(3.10)

iωZ0(k) = icl
2d

Q1C1a22 − (Q1C2 +Q2C1)a12 +Q2C2a11(
ω2

cl
2
− (k2 +m2)

)(
ω2

cl
2
− 1 − ν

2
(k2 +m2)

) + iBC3k −BC4, (3.11)

C1 = u′(0) − h2

12
w′′(0), C2 =

1 − ν

2
v′(0),

C3 =

(
1 − h2

12

)
w′′(0) − C1, C4 =

(
1 − h2

12

)
w′′′(0) + 2imC2.

The equality u′′(0) = w′′′(0)h2/12+imv′(0)(1+ν)/2, implied by the axial component of Flügge’s

equations, has been used to write C4 in the given form. These constants bear a great similarity

to the forces and moments exerted on the hard-wall section by the thin shell at the clamp at
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x = 0. We shall consider these constants later, but for the moment we assume their values to

be known.

Since the positive-half-range transform of pin(x, 1) is i/(k − kin), the positive-half-range

transform of p(x, 1) may be manipulated to give

∫ ∞

0
p(x, 1)eikx dx =

i

k − kin
− i(ω − Uk)A(k)Jm(α(k)) − P−(k), (3.12)

where P−(k) is the negative-half-range Fourier transform of the scattered pressure at the bound-

ary,

P−(k) =

∫ 0

−∞
−Dψ

Dt
(x, 1)eikx dx,

and is analytic for Im(k) < δ. Equating (3.12) and (3.9) gives

P−(k) − i/(k − kin) + iωZ0(k) = H+(k)K(k), (3.13)

where

K(k) =
(ω − Uk)2Jm(α(k))

α(k)J′m(α(k))
− iωZ1(k) (3.14)

is the Wiener–Hopf kernel. Equations (3.13) and (3.14) form the Wiener–Hopf problem.

3.4.3 Factorizing the Wiener–Hopf kernel

Continuing with the Wiener–Hopf method, in order to solve this problem we would like

to factorize K(k) = K+(k)/K−(k), where K+(k) is analytic and nonzero for Im(k) > −δ,
and K−(k) is analytic and nonzero for Im(k) < δ. Similarly, we would also like to split

iωZ0(k)K
−(k) into F−(k) + F+(k). In order to do this, we must first investigate the poles of

the Wiener–Hopf kernel. K(k) has poles which are zeros of J′m(α(k)), zeros of α(k), or poles

of iωZ1. Zeros of J′m(α(k)) correspond to rigid-wall duct modes, while the poles of iωZ1 are

due to the determinant of (3.1b) being zero, and occur at ±kl and ±kt. The zeros of K(k) are

given by the zeros of χ(k), where

χ(k) = (ω − Uk)2Jm(α(k)) − iωZ1(k)α(k)J′m(α(k)), (3.15)

and hence correspond to duct modes for a duct boundary with impedance Z1 (c.f. equation 1.6).

Hence, by definition of ε, the strip S defined by |Im(k)| < δ contains no poles or zeros of K(k).

The factorization method used here is as described by Noble (1958), and is very similar to the

method used by Rienstra (2007). It follows from (3.10) that K(k) = −B(1− h2/12)k4 +O(k2)

as |k| → ∞. Hence,

L(k) ≡ − K(k)

B(1 − h2/12)(k2 +X2)2
= 1 +O(k−2),
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as |k| → ∞, where X > δ is an arbitrary positive constant. Since both K(k) and (k2 +X2)2

are analytic and non-zero in the strip S, so too is L(k), and hence logL may be defined so as

to be analytic in S. Using Cauchy’s integral representation,

2πi log(L(k)) =

∫ Y −iδ

−Y −iδ
+

∫ Y +iδ

Y −iδ
+

∫ −Y +iδ

Y +iδ
+

∫ −Y −iδ

−Y +iδ

log(L(ξ))

ξ − k
dξ,

where the integration contours are straight lines between the endpoints, and k lies inside this

closed contour. Since log(L(ξ))/(ξ − k) = O(ξ−3), the end integrals tend to zero as Y → ∞
and the other two integrals converge, so that

log(L(k)) =
1

2πi

∫ ∞−iδ

−∞−iδ

log(L(ξ))

ξ − k
dξ − 1

2πi

∫ ∞+iδ

−∞+iδ

log(L(ξ))

ξ − k
dξ. (3.16)

The first integral is analytic for Im(k) > −δ, and similarly the second integral is analytic for

Im(k) < δ. Calling the first integral log(L+(k)) and the second integral log(L−(k)) gives the

decomposition L(k) = L+(k)/L−(k). Hence

K+(k) = i
(
B(1 − h2/12)

)1/2(
k + iX

)2
L+(k) (3.17a)

K−(k) = −i
(
B(1 − h2/12)

)−1/2(
k − iX

)−2
L−(k) (3.17b)

gives the required decomposition K(k) = K+(k)/K−(k).

The decomposition of iωZ0(k)K
−(k) into F+(k)+F−(k) is more straightforward. The only

poles of iωZ0(k)K
−(k) in the lower half plane are the simple poles of iωZ0 at kl and kt. Hence,

F−(k) = iωZ0(k)K
−(k) − F+(k), where

F+(k) =
Rl

k − kl
+

Rt

k − kt
, (3.18)

Rl =
icl

2dK−(kl)

2klω2/cl
2

(
kl

2

(
ν +

h2ω2

12cl
2

)
+m2

)
(klC1 +mC2),

Rt =
icl

2dK−(kt)

2ω2/cl
2

m

(
1 − ν +

h2ω2

12cl
2

)
(ktC2 −mC1).

(3.19)

The above Rl and Rt are the residues of iωZ0(k)K
−(k) at kl and kt, and hence F−(k) has

removable singularities at these points.

Substituting these factorizations into (3.13) yields

P−(k)K−(k) − i (K−(k) −K−(kin))

k − kin
+ F−(k) = H+(k)K+(k) +

iK−(kin)

k − kin
− F+(k). (3.20)

The left hand side is analytic for Im(k) < δ, while the right hand side is analytic for Im(k) > −δ.
Hence, (3.20) defines an entire function E(k).
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3.4.4 Asymptotic behaviour of E(k)

The asymptotic behaviour of E(k) for large k is now considered. Noble (1958, p. 15,

theorem C) states that L+ and L− found using the method above remain bounded as |k| → ∞
provided logL = O(k−q) as |k| → ∞ for q > 0, although no proof is given. Here, we prove the

slightly stronger result that L+ and L− tend to unity as |k| → ∞ under the more restrictive

condition that logL(k) = O(k−1), as is certainly the case for the problem considered here (in

fact, logL(k) = O(k−2), as already mentioned). Defining f(ξ) = log(L(ξ − iδ))/(2πi), L+(k)

may be cast into the form

log
(
L+(k − iδ)

)
=

∫ ∞

−∞

f(ξ)

ξ − k
dξ,

and with similar definitions L−(k) may also be cast into this form. In both cases f(ξ) is bounded

for real ξ, f(ξ) = O(ξ−1) as ξ → ±∞, and it is required to show that the integral tends to zero

as |k| → ∞.

Lemma Let f : R → C be bounded, and f(ξ) = O(ξ−1) as ξ → ±∞. Then the integral

F (k) =

∫ ∞

−∞

f(ξ)

ξ − k
dξ

tends to zero as |k| → ∞ provided Im(k) 6= 0.

Proof. Let k = x+iy, with x and y real and y 6= 0. Since f(ξ) = O(ξ−1) as |ξ| → ∞, there exist

positive constants R and C such that |f(ξ)| < C|ξ|−1 for |ξ| ≥ R. Since f(ξ) is also bounded,

there exists a positive constant M such that |f(ξ)| < M for |ξ| ≤ R. Thus

|F (k)| ≤
∫ R

−R

M√
(ξ − x)2 + y2

dξ +

∫ ∞

R

2C

ξ
√

(ξ − |x|)2 + y2
dξ

The second integral may be integrated to give

∫ ∞

R

2C

ξ
√

(ξ − |x|)2 + y2
dξ =

4C√
x2 + y2

tanh−1

( √
x2 + y2

R+
√

(R− |x|)2 + y2

)
.

Let x = r cos θ and y = r sin θ. In the limit r → ∞ with θ 6= 0, leading order asymptotics

and a trivial bound on the first integral give

|F (k)| ≤ 2RM

r| sin θ| +
2C log r

r
+O(r−1).

For the case θ = 0, the limit |x| → ∞ with y 6= 0 fixed is taken. Assuming |x| > R gives a

trivial bound on the first integral, and the leading order asymptotics for the second integral

give

|F (k)| ≤ 2RM∣∣R− |x|
∣∣ +

6C log |x|
|x| +O(|x|−1).
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Hence, in both limits |F (k)| is seen to tend to zero at least as quickly as log(|k|)/|k|. �

Thus, L+(k) and L−(k) both tend to unity as |k| → ∞ provided k remains in their regions

of analyticity. The large k behaviour of K+ and K− is therefore seen to be

K+(k) = ik2
√
B(1 − h2/12) +O

(
k log(k)

)
,

K−(k) = −ik−2/
√
B(1 − h2/12) +O

(
k−3 log(k)

)
.

Requiring K+/K− = K with K+ and K− analytic and non-zero in their respective half

planes determines K+ and K− up to multiplication by an arbitrary analytic non-zero function.

Since the asymptotic behaviour of these specific K+ and K− is known, they are in fact specified

up to multiplication by an arbitrary constant. This is the degree of freedom provided by the

arbitrary constant X above. However, it will turn out that this degree of freedom has no effect

on the final solution (see equation 3.22).

The large k behaviour of F+ and F− is easily derived from (3.11), (3.18), and the asymp-

totic behaviour of K−(k), giving F+(k) = O(k−1) and F−(k) = O(k−1) as |k| → ∞. Using

integration by parts, if g(x) = O(xn) as x → 0 then the half-range Fourier transform of g

is O(k−(n+1)) as |k| → ∞. Assuming the fluid pressure at the duct boundary at x = 0 to

be finite, P−(k) = O(k−1), while the clamped boundary conditions w(0) = w′(0) = 0 imply

H+(k) = O(k−3).

Putting this all together, both the left and right hand sides of (3.20) are O(k−1) as |k| → ∞.

By Liouville’s theorem, we deduce the entire function E(k) ≡ 0.

3.4.5 The Wiener–Hopf Solution

Since E(k) ≡ 0, both the left and right hand sides of (3.20) are zero. Equating the right

hand side to zero gives

H+(k) =
−i

K+(k)

[
K−(kin)

k − kin
+

iRl

k − kl
+

iRt

k − kt

]
. (3.21)

This is an equation for H+(k) in terms of known functions and involving only the constants C1

and C2 (through Rl and Rt). From this, (3.8) gives the scattering wave spectrum A(k), and

hence the total pressure field is

p(x, r) = pin(x, r) +
1

2πi

∫ ∞

−∞

(ω − Uk)2Jm(α(k)r)

α(k)J′m(α(k))K+(k)

[
K−(kin)

k − kin
+

iRl

k − kl
+

iRt

k − kt

]
e−ikx dk,

(3.22)
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where Rl and Rt given in (3.19) are from F+(k). Note that multiplying K+ and K− by the

same arbitrary constant has no effect on this solution, as mentioned above. Since the integrand

is O(k−2) as |k| → ∞, for x < 0 the integration contour may be closed in the upper half plane

and Jordan’s lemma applied. Technically, the contour is deformed around the branch cut of α in

the upper half plane, but since Jm(αr)/(αJ′m(α)) is a meromorphic function of α2, the integrand

is identical on either side of the branch cut and the contribution from integrating around the

branch cut vanishes. The singularity at α = 0 corresponds to a removable singularity for m 6= 0,

while for m = 0 it is included in the following analysis provided it is taken that m2/α2 = 0. The

integral is therefore 2πi times the sum of the residues of the integrand in the upper half plane.

These poles are given by J′m(α(k)) = 0 and correspond to rigid-wall duct modes. Denoting the

jth positive root of J′m(α) = 0 by αjm = α(kjm) with Im(kjm) > 0, for x < 0 the total pressure

is given by

p(x, r) =
Jm(αinr)

Jm(αin)
exp{−ikinx} +

∞∑

j=1

Rjm
Jm(αjmr)

Jm(αjm)
exp{−ikjmx}, (3.23)

Rjm =
(ω − Ukjm)2

(Uω + β2kjm)(1 −m2/αjm
2)K+(kjm)

[
K−(kin)

kjm − kin
+

iRl

kjm − kl
+

iRt

kjm − kt

]
.

Similarly, for x > 0 the integration contour in (3.22) may be closed in the lower half plane and

Jordan’s lemma applied. Writing αJ′m(α)K+(k) as K−(k)χ(k), where χ(k) is given in (3.15),

the poles of the integrand of (3.22) are given by zeros of χ(k), and therefore correspond to duct

modes for a duct boundary with impedance Z1. The pole at kin exactly cancels the incoming

pressure pin. The two poles at kl and kt correspond to zeros of the determinant (3.1b), so are

also poles of χ(k); the integrand therefore has removable singularities at these points. Denoting

the jth zero of χ(k) by τjm with Im(τjm) < 0, the pressure for x > 0 is given by

p(x, r) =

∞∑

j=1

Tjm
Jm(α(τjm)r)

Jm(α(τjm))
exp{−iτjmx}, (3.24)

Tjm = −(ω − Uτjm)2Jm(α(τjm))

K−(τjm)χ′(τjm)

[
K−(kin)

τjm − kin
+

iRl

τjm − kl
+

iRt

τjm − kt

]
.

The solution within the fluid has now been derived as a sum of duct modes, with reflection

coefficients Rjm and transmission coefficients Tjm, in terms of the constants C1 and C2.

The thin-shell deflection w(x), which is also the surface streamline, may also be expressed as

a sum of modes. Again using αJ′m(α)K+(k) = K−(k)χ(k) and inverting the half-range Fourier

transform (3.21) gives

w(x) =
1

2πi

∫ ∞

−∞

α(k)J′m(α(k))

K−(k)χ(k)

[
K−(kin)

k − kin
+

iRl

k − kl
+

iRt

k − kt

]
e−ikx dk,
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where the integration contour is taken above all poles so that w(x) ≡ 0 for x < 0. As in (3.24),

the two poles at kl and kt correspond to poles of χ(k), and so are removable singularities of

the integrand. This time, the pole at kin is cancelled by a zero of J′m(α(k)) (since kin satisfies

the hard-wall dispersion relation), and so kin also corresponds to a removable singularity of the

integrand. Hence, the only poles that contribute to w(x) are the zeros of χ(k), giving

w(x) =
∞∑

j=1

α(τjm)J′m(α(τjm))Tjm

(ω − Uτjm)2Jm(α(τjm))
exp{−iτjmx}. (3.25)

3.4.6 Determining the constants C1 to C4

By examining (3.22), the dependence of the solution on the constants C1 to C4 occurs only

through Rl and Rt, which themselves depend only on C1 and C2 and are independent of C3

and C4. In fact C3 and C4 may be calculated (in terms of C1 and C2) from our solution for

H+, since by integrating by parts

H+(k) = −iw′′(0)/k3 + w′′′(0)/k4 +O(k−5) as k → ∞, (3.26)

giving w′′(0) and w′′′(0), and hence C3 and C4. This is possible because, in determining H+,

we required the pressure to be bounded at x = 0, implying P−(k) = O(k−1) as |k| → ∞. In

general, however, setting the left hand side of (3.20) to zero gives P−(k) = O(k). Satisfying the

finite pressure assumption therefore requires the constants C3 and C4 to be chosen such that

− iK−(kin)

k − kin
+ F+(k) = iωZ0K

−(k) +O(k−3),

and this can be shown to give the same condition as (3.26). This may be interpreted as the

shell bending at x = 0 in the only way that does not necessitate an infinite pressure in the fluid

at the boundary. As C3 and C4 do not appear in the solution (3.22), it is never necessary to

solve the above equations to calculate C3 and C4, and we may now forget about C3 and C4

completely.

We now turn our attention to the constants C1 and C2, which we determine by imposing

causality. The inversion contour in (3.22) is chosen along the real k axis within the strip S.

By definition of ε, the Briggs–Bers criterion shows that this gives the causal solution to a

disturbance in the fluid originating at x = 0. However, the solid waves in the boundary with

axial wavenumbers ±kl and ±kt are decoupled from w and produce no disturbance in the fluid

for x > 0. It is therefore necessary to impose a further condition that no solid waves are inbound

in the boundary from x = +∞. The positive-half-range Fourier transforms of the axial and
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azimuthal boundary displacements u(x) and v(x) for x > 0 are denoted U+(k) and V +(k), and

are given by the half-range version of (3.1b) as

 U+

V +


 =

1

a11a22 − a12
2


 a22 −a12

−a12 a11




 −iQ1H

+ − C1

−iQ2H
+ − C2


 . (3.27)

This shows that U+(k) and V +(k) are O(k−2) as |k| → ∞. Taking the inversion contours for

u(x) and v(x) above all poles of U+ and V +, Jordan’s lemma may be applied to give u ≡ v ≡ 0

for x < 0, while for x > 0, u and v are given as a sum of residues. In general, the poles of U+

and V + are those of H+. The zeros of the determinant a11a22−a12
2, which occur when k = ±kl

or k = ±kt, lead to four additional poles of U+ and V + which correspond to two inbound and

two outbound solid boundary waves. In order that there be no incoming waves, it is required

that the poles of U+ and V + at both −kl and −kt have zero residue (recall that kl and kt

were chosen so as to represent downstream-propagating waves). While this would appear to be

four conditions, the singularity of the matrix at these points reduces this requirement to two

independent conditions,

kl

(
iQ1(−kl)H

+(−kl) + C1

)
−m

(
iQ2(−kl)H

+(−kl) + C2

)
= 0,

m
(
iQ1(−kt)H

+(−kt) + C1

)
+ kt

(
iQ2(−kt)H

+(−kt) + C2

)
= 0.

Since H+(k) is a linear function of C1 and C2, so too are the above two equations. Satisfying

them specifies the constants C1 and C2 (which in turn specifies u′(0) and v′(0)), and ensures

that the only permissible solid boundary waves are those that propagate outward from x = 0.

It is interesting to note that outward-propagating solid boundary waves, corresponding to

the other two zeros of the determinant in (3.27) at k = kl and k = kt, also both have zero

residue for any choice of C1 and C2. This may be seen by evaluating H+ at kl and kt to give

H+(kl) = i
klC1 +mC2

klQ1(kl) +mQ2(kl)
and H+(kt) = i

mC1 − ktC2

mQ1(kt) − ktQ2(kt)
,

and substituting this into (3.27). The poles at kl and kt therefore correspond to removable

singularities, and once C1 and C2 have been chosen as above so that the poles at −kl and −kt

also correspond to removable singularities, the only poles of U+ and V + are those of H+. The

wave scattering is therefore seen to excite none of the solid waves in the thin shell, although it

can and in general will excite the quasi-solid surfaces modes in the fluid.

The values of all four constants C1 to C4 have now been specified, giving a unique solution,

with the only assumptions being bounded pressure and causality. Since the thin shell was

assumed clamped at x = 0, w(0) = w′(0) = 0, and hence the deflection of the surface streamline

is O(x2) as x→ 0.
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3.4.7 Analytic continuation to real frequencies

So far, Im(ω) = −ε has been taken, with the results for real ω to be inferred by analytic

continuation in the limit ε → 0. In this limit the rigid-wall modes approach the real k axis,

and the factorizing contour and the strip S must therefore be deformed around such modes

to maintain analyticity. This is exactly the same situation as for the Briggs–Bers criterion; in

other words, in choosing the position of the contours and the strip S, it is necessary to consider

the stability of the modes. It is also necessary for kl and kt to lie below and −kl and −kt to lie

above S, since H+(−kl), H
+(−kt), K

−(kl) and K−(kt) appear in the solution, and H+ is only

defined above the factorizing contour, while K− is only defined below it. From a Briggs–Bers

point of view, this may be seen as requiring kl and kt to be right-propagating and −kl and −kt

to be left propagating.

3.4.8 Numerical evaluation

Our first task is to compute the locations of the poles kjm and τjm, as defined in §3.4.5.

The values of kjm were obtained using a Newton–Raphson iteration to find the (real) roots αjm

of J′m(α) = 0, using asymptotics from Abramowitz & Stegun (1964, p. 371) as starting points

for the iteration. The values of τjm were obtained using a Newton–Raphson iteration to find

the roots of χ(k) = 0, using kjm and the surface mode asymptotics of §2.1 as starting points.

In addition, a grid of starting points was used to discover any other thin-shell modes not close

to these starting points.

The factorization of K(k) into K+(k)/K−(k) was done by numerically integrating (3.16)

along a contour k(ξ) with ξ ∈ R (see equations 3.28 and 3.29), using a change of variables

ξ = s/(1 − s2) to get a finite integration range. Care must be taken to ensure that the

numerically calculated log(L(ξ)) remains analytic along the contour, and does not jump by a

multiple of 2πi at any point. The coefficients Rjm and Tjm were then calculated, and finally

the modes were summed to give the total pressure. The summations were truncated once the

magnitude of the coefficients became sufficiently small.

3.4.9 Numerical results

Figure 3.17 shows the numerically calculated hard-wall and thin-shell poles in the k-plane

for an air-filled aluminium duct (see table 3.1) of 1m radius and 1mm shell thickness, with ω

and m as suggested by McAlpine & Wright (2006) as being representative of rotor-alone fan
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noise in aeroengine intakes. The boundary change at x = 0 may be interpreted as a model of the

transition from a hard fan casing to a thin-shell nacelle casing for rearward-propagating tonal

fan noise in an aeroengine, although in reality such a configuration would have an annular,

rather than cylindrical, duct cross-section. A model of an aeroengine intake is obtained by

taking U negative, since nowhere has it been assumed that U > 0; the results for U = −0.5

are very similar to those presented here. The majority of thin-shell modes are almost identical

to their hard-wall counterparts. There are, however, eight thin-shell modes for which there

is no hard-wall equivalent, and the four below the contour are labelled SM. The Briggs–Bers

stability analysis of figure 3.4 has been superimposed on figure 3.17, showing the motion of the

thin-shell modes as ε is varied, and consequently the stability of these modes may be verified; it

was shown in §3.3.1 that the Briggs–Bers criterion is valid in this case, and that no absolute or

convective instabilities are present. The factorizing contour and the inversion contour coincide

and are labelled Ck, which has been chosen both to give the correct stability and also with

regard to kl and kt. The equation of this curve (following Rienstra, 2007) is

k =
ω

1 − U2

(
ξ − U + iY

4(ξ/q)

3 + (ξ/q)4

)
, ξ ∈ R, (3.28)

with in this case Y = 0.5 and q = 1.0.

Figure 3.18 shows the numerically evaluated scattering response to an inbound 1st radial or-

der mode for the parameters used in figure 3.17. The 1st radial order mode is the hard-wall duct

mode with the most positive Re(k) shown in figure 3.17, and nearly coincides with a thin-shell

mode. Figures 3.18(a) and 3.18(b) show that the response to the inbound wave is dominated

by this thin-shell mode, with little scattering or reflection taking place. Figure 3.18(b) also

shows how the reflection and transmission coefficients decay as |Im(k)| increases, justifying the

numerical truncation of the infinite summation. Figure 3.18(c) plots contours of the pressure

perturbation amplitude. The x-range of this plot is very large, as the dominant thin-shell mode

has Im(k) so small that the mode is seen to decay only over large distances. The thin-shell is

seen to act almost exactly as a rigid duct, with very little scattering taking place.

3.4.10 Further results

The example above used realizable parameters, and found the thin-shell to act almost exactly

as a rigid duct, with very little scattering taking place. As another example, for what follows the

parameters used are U = 0.5, R = 0.5, b = 0, m = 1, and ω = 16, for a 1m radius aluminium

duct with boundary thickness 0.1mm. The thinner shell, smaller damping, lower azimuthal
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Figure 3.17: Duct modes in the k-plane for hard-wall (+) and thin-shell (×) boundaries. Sur-

faces modes present for x > 0 are labelled SM. The dashed lines show the Briggs–Bers trajec-

tories of the modes. Parameters are as for figure 3.4.
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Figure 3.18: Scattering response to an inbound 1st radial order mode. (a) and (b) plot the

scattering coefficients |Rjm| (+) and |Tjm| (×) against Re(k) and Im(k). (c) shows the contours

of the acoustic amplitude |p(x, r)|. Parameters are as for figure 3.17.
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Figure 3.19: Duct modes in the k-plane for hard-wall (+) and thin-shell (×) boundaries, together

with the Briggs–Bers trajectories (dashed lines) for the thin-shell modes. One surface mode is

not shown owing to the scale used. The 1st and 6th radial order incoming (right-propagating)

hard-wall modes and the 6th radial order reflected (left-propagating) hard-wall mode are labelled

I1, I6, and R6 respectively. Parameters are for an air-filled aluminium duct (see table 3.1) with

R = 0.5, b = 0, h = 10−4, ω = 16, U = 0.5, and m = 1.

order and different frequency all contribute to give rise to more scattering by making the thin-

shell modes distinctly different from their hard-wall counterparts. Referring to figure 3.13, no

convective or absolute instabilities are present for these parameters. Figure 3.19 shows the hard-

wall and thin-shell modes in the k-plane in a similar fashion to figure 3.17, with the Briggs–Bers

trajectories showing the Ck contour to have been chosen to give the correct stability. The simple

Ck contour in (3.28) does not provide enough flexibility to do this, and the more general contour

given by

k =
ω

1 − U2

[
ξ − U + iY

4(ξ/q)

3 + (ξ/q)4

(
1 − 1 + g

1 + g(ξ/f + 1 − U/f)2

)]
, ξ ∈ R (3.29)

was used, with Y = 1.0, q = 0.4, f = 0.1, and g = 0.1.

Figure 3.20 shows the scattering response for the incoming 1st radial order mode labelled I1

in figure 3.19. The surface modes play a major role near x = 0 in order to match the hard-wall

and thin-shell solutions smoothly, although for large x these modes still have a negligible effect

owing to their large Im(k) and corresponding fast exponential decay. For large positive x the

dominant mode is the 1st radial order thin-shell mode. However, note also the comparably large

coefficient for the 6th radial order reflected (left-propagating) mode labelled R6, showing that

both transmission and reflection are important in this situation.

Figure 3.21(a) shows the amplitude of pressure oscillations, obtained from summing the
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Figure 3.20: Scattering coefficients |Rjm| (+) and |Tjm| (×) due to an incoming 1st radial order

hard-wall mode I1. Parameters are as for figure 3.19.
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Figure 3.21: Amplitude of pressure oscillations |p(r, x)| due to an inbound I1 mode. (b) is a

more detailed plot of (a). Parameters are as for figure 3.19.
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Figure 3.22: The surface streamline near the boundary transition from hard wall to thin shell,

for an incoming 1st radial order mode. (c) demonstrates the predicted O(x2) behaviour. Pa-

rameters are as for figure 3.21.

above coefficients. In x < 0, the sum of two modes is prominently seen: the inbound 1st radial

order I1 mode (maximum amplitude at r = 1 and zero amplitude at r = 0), and the 6th radial

order R6 reflected mode (visible as six horizontal bands). Figure 3.21(b) shows a more detailed

view around the boundary transition at x = 0 where the surface modes are important, and

demonstrates the continuity between x < 0 and x > 0 which is less apparent in figure 3.21(a).

Since solutions for x < 0 and x > 0 are calculated by summing two different series, (3.23)

and (3.24), this continuity provides a good check on the numerical results.

The surface streamline was also calculated for this example, by numerically summing (3.25).

The streamline is shown over several different scales in figure 3.22 and shows the predicted O(x2)

behaviour at x = 0, providing a further check on the validity of the numerical results.

The above is for an inbound 1st radial order mode I1. If instead the 6th radial order hard-

wall mode, labelled I6 in figure 3.19, is incident, the transmitted pressure disturbance almost

completely disappears. Figure 3.23 shows the reflection and transmission coefficients for this

case. Once again the surface modes are important in matching the solutions for x < 0 and

x > 0, although their influence for large x is once again small. The dominant transmitted

and reflected modes are both the 6th radial order modes, although the thin-shell one of these
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Figure 3.23: Scattering coefficients |Rjm| (+) and |Tjm| (×) due to an incoming 6th radial order

hard-wall mode I6. Parameters are as for figure 3.19.
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Figure 3.24: Amplitude of pressure oscillations |p(r, x)| due to an inbound I6 mode. Parameters

are as for figure 3.19.

66



is strongly damped. This is also evident from figure 3.24, which plots the amplitude of the

pressure oscillations, and shows a 6th radial order standing wave for x < 0 and virtually no

transmitted wave in x > 0.
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Chapter 4

Slowly-varying curved torsionless

ducts

We now consider the case of a curved cylindrical duct. After deriving and solving the

relevant equations, we apply them to a standard testcase, the RAE 2129 Inlet Diffuser duct.

This duct is a typical example of the sort of curved intake that might be found on a military

aircraft. It is similar in shape to the F-16 intake shown in figure 1.1, although the RAE 2129

intake remains cylindrical, where as the F-16’s intake has a slowly deforming cross-section that

becomes oval towards the intake lip.

4.1 Steady flow

We consider a duct, as shown in figure 4.1, whose centreline possesses nonzero curvature but

zero torsion (i.e. the centreline lies in a plane). The duct has a circular cross-section in planes

normal to the centreline, and can be either hollow or annular. We pick out two lengthscales

for such a duct. The first, ℓ∗ (∗ denotes dimensional variables), is the lengthscale associated

with the geometry of the duct at a given axial location, so that the inner and outer duct radii

a∗1,2 are of order ℓ∗ and the duct curvature κ∗ is of order 1/ℓ∗. The second lengthscale, L∗,

is the shortest lengthscale along the duct centreline over which these parameters vary. These

scalings mean the radius of curvature is on the same scale as the duct radius; were these two of

different scales some asymptotic simplification becomes possible, but here we deal with the full

generality. The cases of a slender curved duct or a straight duct of varying radius then follow

as special cases.

Let us now be more specific. Let s∗ be the arc-length along the duct centreline. Far
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Figure 4.1: Schematic of the duct geometry.

upstream (s∗ → −∞) the duct is assumed to be straight and of uniform outer radius ℓ∗. The

radii of the inner and outer walls and the centreline curvature then vary along the duct on

the lengthscale L∗, so that the inner and outer radii a∗1,2 and the centreline curvature κ∗ are

functions of S ≡ s∗/L∗. The requirement of slow variation along the axis is then equivalent

to ǫ ≡ l∗/L∗ ≪ 1. The duct carries a mean flow, which far upstream has uniform density

D∗
∞, speed U∗

∞ and sound speed C∗
∞. In what follows speeds are non-dimensionalized by C∗

∞,

densities by D∗
∞, distances by ℓ∗, times by ℓ∗/C∗

∞, and pressures by (C∗
∞)2D∗

∞. We introduce

the duct-centred coordinate system (s, r, θ), where r, θ are polar coordinates in planes normal

to the duct centreline, and s is the arc-length along the centreline. The duct inner and outer

radii are a1,2(S) and the centreline curvature is κ(S), where S = εs is the nondimensionalized

slow coordinate over which the duct geometry varies.

The curvilinear coordinates and vector calculus identities used here are detailed in ap-

pendix B. The steady velocity in the duct is written U = Ues +V er +Weθ, and it is assumed

that all steady mean flow variables are functions of r, θ, S, i.e. vary slowly down the duct. The

geometric factor associated with the curvilinear coordinate s is hs = 1−κ(S)r cos θ. We assume

an inviscid irrotational perfect gas with ratio of specific heats γ. We apply the steady continuity

condition ∇ · (DU) = 0,

ε

hs

∂

∂S
(DU) +

1

rhs

∂

∂r
(rhsDV ) +

1

rhs

∂

∂θ
(hsDW ) = 0,

together with the condition for irrotational mean flow, ∇∧ U = 0,

1

r

∂

∂r
(rW ) − 1

r

∂V

∂θ
= 0,

1

rhs

∂

∂θ
(hsU) − ε

hs

∂W

∂S
= 0,

ε

hs

∂V

∂S
− 1

hs

∂

∂r
(hsU) = 0,

and the irrotational form of Bernoulli’s equation,

1

2
U2 +

1

γ − 1
Dγ−1 = H, (4.1)
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where the enthalpy H = U∞
2/2+1/(γ−1) is a constant which has been determined at upstream

infinity. For the steady flow, the duct walls are considered perfectly hard and impenetrable,

with the corresponding boundary conditions

V − ε

hs

daj

dS
U = 0 at r = aj(S) j = 1, 2 . (4.2)

We assume no leading-order potential swirl, so that W vanishes to leading order. Putting all

these assumptions together, we find that

D = D0 +O(ε2), U = U0 +O(ε2), V = εV1 +O(ε3), W = εW1 +O(ε3),

where

U0(S, r, θ) =
U†(S)

hs(r, θ, S)
, D0 =

[
(γ − 1)

(
H − 1

2
U0

2

)]1/γ−1

.

The quantity U† may be found in terms of U∞ by applying conservation of mass at different

axial locations, to yield the implicit equation

M(U†, S) ≡
∫ 2π

0

∫ a2

a1

U0D0r drdθ = πU∞

(
1 − a1(−∞)

)2
. (4.3)

In general, (4.3) is not solvable for U† in closed form. M has a maximum when

∂M
∂U†

≡
∫ 2π

0

∫ a2

a1

D0

hs

(
1 − U0

2

C0
2

)
rdrdθ = 0,

where C0
2 = D0

γ−1. If U† = 0 then M = 0, and similarly M = 0 when D0 = 0 in the zero

curvature case. However, with nonzero curvature U† cannot be bigger than the smallest value

for which D0 = 0 at some point across the duct. The shape of M(U†, S) is shown in figure 4.2.

Equation (4.3) therefore has two, zero, or in special cases one root. In the case of two roots, the

roots are “subsonic” and “supersonic”, in the sense that they are either side of ∂M/∂U† = 0.

Equation (4.3) was therefore solved numerically by first finding the maximum of M(U†, S), and

then using Newton-Raphson iteration on each side of the maximum.

In what follows, it turns out that the value of the radial velocity V1 is only required on

the walls, and can be found simply from the O(ε) terms in the boundary condition (4.2). The

value of the O(ε) tangential velocity W1 will not be required at all in our final answer for the

unsteady flow.

4.1.1 Small curvature steady flow

Suppose that κ is small. Then

U0D0 = U†D† + κr cos(θ)U†(D† − U†
2/C†

2) +O(κ2),
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Figure 4.2: Mass flux in a curved annular duct with U∞ = 0.5, a1 = 0.4, and a2 = 1.0.

whereD† isD0 evaluated with κ = 0 (and is therefore independent of r and θ), and C†
2 = D†

γ−1.

Hence, (4.3) becomes

π(a2
2 − a1

2)U†D† = π
(
1 − a1(−∞)2

)
U∞ +O(κ2),

since the O(κ) term in U0D0 integrates to give zero by symmetry. If the duct cross-sectional

area is the same as far upstream, then setting U† = U∞ + u† and dividing through by the

cross-sectional area gives

U∞ + u†(1 − U∞
2) +O(u†

2) = U∞ +O(κ2),

so that u† = O(κ2). Hence, provided the duct cross-sectional area is the same as far upstream,

U† = U∞ +O(κ2). This results is used in §4.7.2.

4.2 Unsteady flow

Consider a small time-dependent perturbation (u, p, ρ) with time dependence exp{iωt} to

the mean flow (U , P,D). Introducing a scalar potential u = ∇φ, and neglecting vortical and

entropic perturbations, the equations for the unsteady linearized flow due to Goldstein (1978)

reduce to

D

Dt

(
1

C2

Dφ

Dt

)
− 1

D
∇ ·

(
D∇φ

)
= 0, p = C2ρ = −DDφ

Dt
, (4.4)

where D/Dt = iω + U · ∇ is the convective derivative with respect to the mean flow, and

C2 = Dγ−1 is the square of the wave speed. This equation is to be solved subject to the usual

Myers (1980) boundary condition for a lined duct, namely

iωn · ∇φ =
{
iω + U · ∇ −

[
(n · ∇)U

]
· n
}

(p/Zj) on r = aj(S) for j = 1, 2 , (4.5)
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where Z1,2(S) are the wall impedances and n is the corresponding wall normal pointing out of

the fluid.

In order to account for the slowly-varying duct geometry and mean flow we follow Rienstra

(1999) and pose the multiple scales WKB ansatz (see for instance Hinch, 1991, chapter 7)

φ = A(S, r, θ) exp

{
iωt− i

ε

∫ S

0
k(S′) dS′

}
. (4.6)

For brevity, define the linear operators

Λ̃ = ω − kU

hs
D̃ =

U

hs

∂

∂S
+
V

ε

∂

∂r
+
W

εr

∂

∂θ
,

so that D/Dt = iΛ̃ + εD̃. Note that, since V and W are O(ε), D̃ is an O(1) operator. Substi-

tuting (4.6) into (4.4) gives

1

hsD

[
1

r

∂

∂r

(
rhsD

∂A

∂r

)
+

1

r2
∂

∂θ

(
hsD

∂A

∂θ

)]
+

(
Λ̃2

C2
− k2

hs
2

)
A

=
iε

hsDA

[
hsDD̃

(
A2Λ̃

C2

)
+

∂

∂S

(
DkA2

hs

)]
+ ε2

[
D̃
(

1

C2
D̃A
)
− 1

hsD

∂

∂S

(
D

hs

∂A

∂S

)]
, (4.7)

subject to the boundary conditions (from 4.5)

± ∂A

∂r
− Λ̃2D

iωZj
A = −iε

[
± k

hs
2

daj

dS
A+

1

A
D̃
(

Λ̃DA2

iωZj

)
+

DΛ̃

iZjω

(
daj

dS

∂

∂r

(
U

hs

)
− ∂(V/ε)

∂r

)
A

]

+ ε2
[
± 1

hs
2

daj

dS

(
∂A

∂S
+

1

2

daj

dS

∂A

∂r

)
−
(

daj

dS

∂

∂r

(
U

hs

)
− ∂(V/ε)

∂r
+ D̃

)(
D

iωZj
D̃A
)]

+O(ε3)

(4.8)

at r = aj, where the positive sign is taken for j = 2 and the negative sign for j = 1.

Define the first order linear operators

Λ = ω − kU0

hs
D =

U0

hs

∂

∂S
+ V1

∂

∂r
+
W1

r

∂

∂θ
,

so that Λ̃ = Λ + O(ε2) and D̃ = D + O(ε2). Expanding A = A0 + εA1 + O(ε2) in (4.7) gives,

to leading order,

LA0 ≡ 1

hsD0

[
1

r

∂

∂r

(
rhsD0

∂A0

∂r

)
+

1

r2
∂

∂θ

(
hsD0

∂A0

∂θ

)]
+

(
Λ2

C0
2 − k2

hs
2

)
A0 = 0 , (4.9)

subject to the boundary conditions (from 4.8)

∂A0

∂r
= ±Λ2D0

iωZj
A0 at r = aj , j = 1, 2. (4.10)

Equations (4.9) and (4.10) are the leading order equations that we will solve numerically in

the next section. One crucial difference here from the case of a straight circular duct is the
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highly nontrivial dependence of A0 on θ. When κ = 0, (4.9) and (4.10) can be solved using

separation of variables, as in §1.1, to yield solutions proportional to exp{−imθ} for integer m

and depending on Bessel functions in the radial direction. But when κ 6= 0, (4.9) is no longer

separable. Equations (4.9) and (4.10) must therefore be solved numerically to determine the

axial wavenumber k(S) and the corresponding wave function A0(S, r, θ). For definiteness, we

normalize the solution so that

A0(S, r, θ) = N(S)Â0(S, r, θ),

∫ 2π

0

∫ a2

a1

D0U0ω

C0
2 Â0

2
r dr dθ = 1. (4.11)

The reason for this strange-looking normalization is that it becomes much more natural when

we consider turning points in §4.5. The unknown amplitude N(S) is determined by a solvability

condition following the procedure given by Rienstra (1999), which we now derive.

At O(ε), (4.7) gives

LA1 =
i

hsD0A0

[
hsD0D

(
A0

2Λ

C0
2

)
+

∂

∂S

(
D0kA0

2

hs

)]
, (4.12)

where L is the operator defined in (4.9), subject to the boundary conditions (from 4.8)

±∂A1

∂r
− Λ2D0

iωZj
A1 = ∓ ik

hs
2

daj

dS
A0 −

1

A0
D
(

ΛD0A0
2

ωZj

)
− D0Λ

Zjω

(
daj

dS

∂

∂r

(
U0

hs

)
− ∂V1

∂r

)
A0 (4.13)

at r = aj , with ± being + at r = a2 and − at r = a1 (this convention will be assumed from

here on). Note that, by using integration by parts to move derivatives from A1 onto A0 and

the fact that LA0 = 0,

∫ 2π

0

∫ a2

a1

A0L(A1)hsD0 rdrdθ =

[∫ 2π

0

(
A0
∂A1

∂r
−A1

∂A0

∂r

)
rhsD0 dθ

]a2

a1

, (4.14)

where the [· · · ]2π
0 terms that would also have appeared on the right hand side of (4.14) above

are zero owing to 2π periodicity. Multiplying (4.12) by A0hsD0r and integrating over r and θ,

and then substituting for ∂A0/∂r and ∂A1/∂r using the boundary conditions (4.10) and (4.13)

therefore gives

− i

∫ 2π

0

[(
k

hs
2

daj

dS
A0

2 ±D
(

ΛD0A0
2

iωZj

)
± D0ΛA0

2

iωZj

(
daj

dS

∂

∂r

(
U0

hs

)
− ∂V1

∂r

))
rhsD0

]a2

a1

dθ

= i

∫ 2π

0

∫ a2

a1

rhsD0D
(
A0

2Λ

C0
2

)
+ r

∂

∂S

(
D0kA0

2

hs

)
drdθ. (4.15)

Note that, since ∇ · (DU) = 0, for any function f(S, r, θ), ∇ · (DUf) = εDDf , and hence

rhsD0Df = r
∂

∂S
(D0U0f) +

∂

∂r
(rhsD0V1f) +

∂

∂θ
(hsD0W1f).
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Using this to eliminate the D operator from (4.15), substituting V1 = (daj/dS)(U0/hs) from

the mean flow boundary conditions at r = aj and rearranging gives

Q1 +Q2 +

∫ 2π

0

∫ a2

a1

∂

∂S

(
D0kA0

2

hs
+
A0

2D0U0Λ

C0
2

)
rdrdθ

+

∫ 2π

0

[
r
daj

dS

(
D0kA0

2

hs
+
A0

2D0U0Λ

C0
2

)]a2

a1

dθ = 0, (4.16)

where, setting fj = ΛD0
2A0

2r/(iωZj),

Qj =

∫ 2π

0

[
∂

∂S
(U0fj) +

∂

∂r
(hsV1fj) + hsfj

(
daj

dS

∂

∂r

(
U0

hs

)
− ∂V1

∂r

)]
dθ

∣∣∣∣
r=aj

,

and a term involving W1 integrates to give zero owing to 2π periodicity. Expanding out the

∂/∂r terms and again using V1 = (daj/dS)(U0/hs) gives

Qj =

∫ 2π

0

[
∂

∂S
(U0fj) +

daj

dS

∂

∂r
(U0fj)

]
dθ

∣∣∣∣
r=aj

=
d

dS

(∫ 2π

0

U0ΛD0
2A0

2

iωZj
rdθ

∣∣∣∣
r=aj

)

︸ ︷︷ ︸
Ij(S)

. (4.17)

Hence, (4.16) may be rearranged, moving the ∂/∂S derivative to the other side of the integrals

as we just have done for Qj above, to finally get

d

dS

(
I1 + I2 +

∫ 2π

0

∫ a2

a1

D0A0
2

(
ωU0

C0
2 +

k

hs

(
1 − U0

2

C0
2

))
rdrdθ

︸ ︷︷ ︸
F (S)

)
= 0,

with I1,2 defined in (4.17). Using the normalization (4.11) and using Â0 rather than A0 in I1,2

and F gives the final secularity condition

d

dS

{(
F (S) + I1(S) + I2(S)

)
N(S)2

}
= 0. (4.18)

Notice that (4.18) involves Â0
2
, rather than |Â0|2, which has arisen from the non-self-

adjoint nature of L (in fact the adjoint solution is the complex conjugate of A0). In the case of

rigid walls, (4.18) reduces to the condition that F (S)N(S)2 is constant along the duct, which

for cuton modes can be interpreted as conservation of energy. Rienstra & Hirschberg (2001,

chapter 2, p39–40) give the energy flux for a linearized perturbation to a steady base flow as

I =
(
Du + ρU

)(
(C2/D)ρ+ U · u

)

In this case, the axial component of the energy flux is

Is = Re

[
− 1

2
ωD0A0

2

(
ωU0

C0
2 +

k

hs

(
1 − U0

2

C0
2

))
exp

{
2iωt − 2i

ε

∫ S

0
k(S′) dS′

}

+
1

2
ωD0|A0|2

(
ωU0

C0
2 +

k

hs

(
1 − U0

2

C0
2

))]
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The first term is oscillatory with a time-average of zero. The second term is therefore the

time-averaged axial energy flux. When k is real, it is the conservation of this quantity and

continuity of phase that is implied by the secularity condition (4.18).

Putting all this together, we now have the leading-order solution (4.11) for the unsteady

flow, in which the local axial wavenumber and mode shape are determined by numerical solution

of (4.9) and (4.10) and the slowly varying amplitude is then given by (4.18).

4.3 Numerical solution

Our task is to solve the leading-order eigenvalue problem (4.9) and (4.10) so as to determine

the local axial wavenumbers k and corresponding eigenfunctions as functions of the slow arc

length S. The leading-order equation for A0 and k is recast, by introducing B0 = kA0, as the

generalized eigenvalue problem




Q 0

0 1







A0

B0


 = k




2ωU0

hsC0
2

1

hs
2

(
1 − U0

2

C0
2

)

1 0







A0

B0


 , (4.19)

where

QA0 =
1

hsD0

[
1

r

∂

∂r

(
rhsD0

∂A0

∂r

)
+

1

r2
∂

∂θ

(
hsD0

∂A0

∂θ

)]
+

ω2

C0
2A0,

subject to the boundary conditions

±∂A0

∂r
+

iωD0

Z1,2
A0 = k

(
2iU0D0

hsZ1,2
A0 −

iD0U0
2

hs
2ωZ1,2

B0

)
, (4.20)

where the negative sign is taken for the inner boundary (if one is present), and the positive sign

for the outer boundary.

We use a pseudospectral method with Chebyshev polynomials as the radial basis (see for

example Khorrami, Malik & Ash, 1989; Boyd, 2001, chapter 18.6) and trigonometric polyno-

mials in the azimuthal direction. The number of collocation points in the radial and azimuthal

directions are denoted by nr and nθ respectively (note that nθ must be odd, since all trigono-

metric polynomials have an odd number of degrees of freedom). The numerical domain will

consist of collocation points

(rj , θℓ) =

(
a1 + a2

2
+
a1 − a2

2
cos

(
jπ

nr − 1

)
,

2ℓπ

nθ

)
j = 0, . . . , nr − 1,

ℓ = 0, . . . , nθ − 1.

For a hollow duct, a1 is replaced by a small nonzero constant, typically of the order of the

spacing between neighbouring collocation points at the centre, a1 ≈ a2π
2/(2nr − 2)2. This
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allows both annular and hollow cases to be calculated using the same numerical code, and

offers the potential to treat a hollow-to-annular transition (as pointed out by Rienstra, 1999).

Alternative discretizations are known for a hollow duct that give cleaner numerical results (see

Boyd, 2001, chapter 18.5, pp386–391), although the annular and hollow cases would then need

treating separately.

Since this is a pseudospectral method, the computational values stored are the values of

functions at these collocation points, bjℓ = f(rj, θℓ), which represent the unique interpolating

function of the form

f(r, θ) =

nr−1∑

j=0

nθ−1

2∑

ℓ=
nθ−1

2

ajℓTj(r)e
iℓθ (4.21)

where ajℓ are the spectral coefficients, and the Chebyshev polynomials are

Tj

(
a1 + a2

2
+
a1 − a2

2
cos θ

)
= cos(jθ).

Hence, multiplication of two functions simply multiplies their stored values pointwise, while

differentiation by r and θ is represented by the matrices Dr and Dθ respectively, where

Dθ(ℓ,m)(j,k) =





(−1)m+k

2 sin
(

π(m−k)
nθ

) if m 6= k and ℓ = j

0 otherwise

,

Dr(ℓ,m)(j,k) =
−2

a2 − a1
δmkAℓj ,

and

Aℓj =
cℓ
cj

(−1)ℓ+j

ξℓ − ξk
if ℓ 6= j

Ajj =
−ξj

2(1 − ξj
2)

A00 =
2(nr − 1)2 + 1

6
= −A(nr−1)(nr−1),

where cj = 2 if j is 0 or nr − 1, and cj = 1 otherwise.

Our system is discretized for an annular duct by requiring the boundary conditions (4.20)

to be satisfied at collocation points (0, ℓ) and (nr − 1, ℓ) for ℓ = 0, . . . , nθ − 1, and (4.19) to be

satisfied at collocation points (j, ℓ) for ℓ = 0, . . . , nθ−1 and j = 1, . . . , nr−2. For a hollow duct,

equation (4.19) is also required to be satisfied at collocation points (0, ℓ) for ℓ = 0, . . . , nθ−1, and

the inner boundary condition is dropped. This gives a generalized eigenvalue problem which is

2nθnr square. This was solved using the QZ algorithm, as implemented in the LAPACK library

routine ZGGEV (Anderson et al., 1999).
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4.3.1 Computational simplification for a hard-wall boundary

If the boundary is hard-walled, so that the boundary condition is simply ∂A0/∂r = 0 at

r = a1,2, then some substantial computational simplifications are possible. First of all, a hard-

wall boundary implies that all the components of the discretized matrices are real, and so the

LAPACK library routine DGGEV (Anderson et al., 1999) may be used. This reduces the memory

required by half.

Let Q be the matrix obtained by discretizing Q (using the Dr and Dθ matrices and pointwise

multiplication) at the interior collocation points, and let G1 and G2 be the matrices representing

multiplication by (2ωU0)/(hsC0
2) and (1−U0

2/C0
2)/hs

2 at the interior collocation points. Let

Dbound be the matrix evaluating the radial derivatives on the boundaries, derived from Dr.

Then the hard-wall discretized problem may be written




Dbound 0

Q 0

0 I




︸ ︷︷ ︸
F




bjℓ

b∗jℓ


 = k




0 0

G1 G2

I 0




︸ ︷︷ ︸
G




bjℓ

b∗jℓ


 , (4.22)

where bjℓ are the values of A0 at the (j, ℓ) collocation points, and b∗jℓ = kbjℓ. The values of b∗jℓ

are only needed at the interior points, and not at points where the boundary condition is being

enforced. Hence, if d is the number of boundaries (so d = 2 for an annular duct, and d = 1 for

a cylindrical duct), then the first column is nθnr wide, the second column is nθ(nr − d) wide,

the first row is dnθ deep, and the second and third rows are nθ(nr − d) deep. bjℓ contains one

value for every collocation point, and b∗jℓ contains one value for every interior collocation point.

Note that G is singular, since its top dnθ rows are zero to enforce the boundary conditions.

Using column operations, the first dnθ rows of F may be diagonalized. Letting H denote the

matrix of column operations, this may be represented as

FHv = kGHv,

where the top dnθ rows of FH are diagonal. Since only column operations were used, the top

dnθ rows of GH are still zero. This implies vj = 0 for j = 0, . . . , dnθ − 1. Let F ∗ and G∗ be

formed from FH and GH by throwing away the first dnθ rows and dnθ columns, and let v∗ be

formed from v by deleting the first dnθ elements. Then an equivalent problem to (4.22) is

F ∗v∗ = kG∗v∗. (4.23)
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Once this has been solved, the solution to (4.22) may be recovered by

bjℓ
b∗jℓ


 = H


 0

v∗


 .

The generalized eigenvalue problem (4.23) is now 2nθ(nr − d) square. While this reduction

in size does not save any significant computational time, it yields a non-singular matrix G∗,

and hence the results are numerically more robust.

4.3.2 Spurious eigenvalues and filtering

It is well known (e.g. Boyd, 2001, chapter 7) that pseudospectral methods are prone to giving

spurious eigenvalues and eigenfunctions that are numerical artifacts. That is, because of the

numerical resolution, it is possible that highly-oscillatory functions which are badly resolved

at a chosen resolution do satisfy the discretized problem, without satisfying the underlying

eigenvalue problem (4.19).

In order to avoid spurious eigenvalues, two filtering processes were used. The first, based

loosely on the description by Boyd (2001, pp137–139), attempts to remove any eigenvalues which

vary significantly with the discretization used. Let the numerical eigenvalues calculated with

nr and nθ be λj , and the numerical eigenvalues calculated with a slightly different resolution

be µℓ. Define the eigenvalue continuity of an eigenvalue λm to be

continuity =
infℓ |λm − µℓ|√
(d1

2 + d2
2)/2

,

where di is the distance between λm and the ith nearest λj with j 6= m. That is, the eigenvalue

continuity is the distance moved by an eigenvalue between the two resolutions, normalized by

the distance to the next closest eigenvalue so as to be scale free. The reason for the averaging

over d1 and d2 is to deal with doubly-degenerate eigenvalues. A small eigenvalue continuity

indicates the eigenvalue is stable under small changes to the discretization, and hence that it

is a good candidate for a physical eigenvalue.

Figure 4.3 shows how continuity varies with the imaginary part of the eigenvalue. The

regions of large continuity correspond to the well cutoff modes, as these modes are the most

oscillatory, and are therefore the poorest resolved and most susceptible to numerical errors. A

threshold of 0.01 is shown, which is typical of the threshold used for the results below. Also

plotted in figure 4.3 is the continuity of the same results, having first been filtered using the

resolvedness test described below with a threshold of 0.01. As can be seen, both tests yield

very similar decisions for which modes to keep and which to remove.
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Figure 4.3: Graph showing the continuity of eigenvalues for U∞ = 0.5, κ = 0.1, a1 = 0.4,

a2 = 1.0, γ = 1.4, ω = 10, nr = 21, nθ = 81, compared against nr = 25, nθ = 75 with the same

settings.

A continuity based on infℓ |λm − µℓ|/|λm|, the absolute change in the eigenvalue between

discretizations, was also considered. However, when the two were used in conjunction, the

absolute continuity made no discernible difference. Either continuity could have been used

on its own, and the former was selected, since it depends only on the relative distribution of

eigenvalues and therefore does not make a biased choice based on where in the complex plane

the eigenvalues occur.

The second filtering attempts to remove eigenvectors for which nr or nθ are not large enough

to properly resolve the true eigenfunction. In order to do this, the eigenvector is decomposed

into its spectral representation apq, given in (4.21). This decomposition is performing via a

discrete cosine transform in the r direction and a discrete Fourier transform in the θ direction,

implemented using the FFTW library’s dft 2d transform (Frigo & Johnson, 2005). Figures 4.4

and 4.5 show the spectral coefficients for two numerical eigenfunctions, one of which is well

resolved, and one of which is not. For the well resolved eigenfunction, the outlying spectral

coefficients are of the order of the machine precision (2 × 10−16), where as for the unresolved

mode the outlying spectral coefficients are significant. Motivated by this figure, for a well

resolved eigenvector, the spectral coefficients apq should be small for nr − br ≤ p < nr for some
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Figure 4.4: The spectral coefficients for a well resolved eigenfunction with eigenvalue k =

−17.77. U∞ = 0.5, κ = 0.1, a1 = 0.4, a2 = 1.0, γ = 1.4, ω = 10, nr = 21, nθ = 81.
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Figure 4.5: The spectral coefficients for a badly resolved eigenfunction with eigenvalue k =

208.0 − 6.649i. U∞ = 0.5, κ = 0.1, a1 = 0.4, a2 = 1.0, γ = 1.4, ω = 10, nr = 21, nθ = 81.
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Figure 4.6: Graph showing the resolvedness of eigenfunctions for U∞ = 0.5, κ = 0.1, a1 = 0.4,

a2 = 1.0, γ = 1.4, ω = 10, nr = 21, nθ = 81, br = 2, bθ = 4.

border width br, and for (nθ + 1)/2 − bθ ≤ |q| < (nθ + 1)/2 for some border width bθ. Calling

these borders B, the resolvedness of an eigenvector with spectral coefficients apq is defined to

be

resolvedness =

sup
(p,q)∈B

|apq|

sup
all p,q

|apq|
.

Using br = 2 and bθ = 4, the eigenfunction of figure 4.4 has a resolvedness of 2.021 × 10−12,

and the eigenfunction of figure 4.5 has a resolvedness of 0.9344.

Figure 4.6 shows how the resolvedness varies with the imaginary part of the eigenvalue;

note the similarity with figure 4.3. Also plotted on the same graph is the resolvedness of the

eigenvalues that pass the continuity test with a threshold of 0.01. As can be seen, the two test

are very similar in which eigenvalues they exclude and include. A threshold line of 0.01 is also

shown on figure 4.6, which was a typical threshold used for the results below.

Since the resolvedness depends only on the shape of the eigenfunction, it is unaffected by

any previous filtering. However, since the continuity depends on which other eigenvalues are

present, filtering based on resolvedness affects the continuity. This means the order in which the

filtering is performed affects the outcome. However, in practice it seems there is little difference
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between the two different filtering orders. It may be argued that the continuity filtering is most

useful when performed directly on the raw data. Hence, for the results below, the continuity

filtering was applied before the resolvedness filtering. While this involves more computational

time, the total time for all filtering processes was negligible compared with the time taken by

LAPACK to solve the generalized eigenvalue problem.

4.3.3 Code validation

In the case of a straight duct with hard walls it is well known (for example, see Rienstra,

1999) that (4.9) can be solved analytically in a similar manner to §1.1, with solutions in terms

of Bessel’s functions A(r, θ) = (PJm(αr) + QYm(αr))e−imθ. Requiring a non-trivial solution

satisfying the boundary conditions ∂A/∂r = 0 yields the dispersion relation

Jm
′(αa1)Ym

′(αa2) − Jm
′(αa2)Ym

′(αa1) = 0 , (4.24)

with solutions α = αmn for n = 1, 2, ... . Since Bessel’s equation is self-adjoint, with weight

function w(r) = r, and since the trigonometric polynomials are orthogonal, each of these

solutions are orthogonal to one another with respect to the inner product

〈φ,ψ〉 =

∫ 2π

0

∫ a2

a1

φ(r, θ)ψ(r, θ)r dr dθ, (4.25)

where the overbar denotes the complex conjugate. As a means of validation, the numerically

generated solutions for a straight duct with hard walls were compared with the analytic so-

lutions. For eigenvalues, the measure of accuracy was taken to be the eigenvalue continuity

defined in the previous section. For eigenvectors, the numerical solutions were separated into

a component in the direction of the analytic solution and an orthogonal component, with re-

spect to the above inner product, and the error was taken to be the norm of the orthogonal

component.

The numerical solutions were calculated at varying values of (nr, nθ) from (21, 21) to (41, 81).

These were compared to all the analytic modes that passed the resolvedness test at the (21, 21)

resolution. Figure 4.7 shows the accuracy of the eigenvalues and eigenvectors. Since the analytic

modes have e−imθ dependence, which are also the azimuthal basis functions for the pseudospec-

tral method, all analytic modes considered were well resolved in the azimuthal direction and

so little variation was seen beyond nθ = 21. For small values of nr some modes were not accu-

rately resolved, explaining the initial plateau. For large values of nr computational rounding

errors become apparent. In the intermediate region, an exponential decrease in error is seen,

82



10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

20 25 30 35 40

nr

(a) Eigenvalues

Error
Aebnr

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

20 25 30 35 40

nr

(b) Eigenfunctions

Error
Aebnr

Figure 4.7: Mean numerical error. U∞ = 0.5, a1 = 0.4, and a2 = 1.0, ω = 10. The line shown

has slope (a) b = −1.4, (b) b = −1.3.

as is expected from a pseudospectral method. While the arithmetic mean error for all modes is

plotted, similar results were obtained from taking the geometric mean and the maximum error.

The numerical method was verified for an impedance boundary by computing the duct

modes for a straight duct, and verifying the results satisfied the analytic dispersion relation (1.4),

or its annular equivalent. The value of m to use for this was obtained from each numerically

calculated eigenfunction by using a discrete Fourier transform and then averaging the azimuthal

orders. Figure 4.8 plots the amount by which the dispersion relation is not satisfied for a

numerically generated solution with nr = 31 and nθ = 61, against the imaginary part of the

eigenvalue k. The errors for modes close to the real k axis are only a few orders of magnitude

larger than machine precision, while the errors increase with the magnitude of the imaginary

part of k as these higher-order modes are less well resolved, although remain small compared

with unity.

4.4 Results

4.4.1 Local mode shapes

The numerics above were first applied to a hypothetical duct, with upstream conditions

U∞ = 0.5 and γ = 1.4. The curvature of the duct was considered to vary slowly from κ = 0

upstream to κ = 0.1, at which point the wave modes were calculated for ω = 10.
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Figure 4.8: Magnitude of the left hand side of the analytic dispersion relation (1.4) for a straight

lined duct. nr = 31, nθ = 61, U∞ = 0.5, Z = 2 − i, and ω = 10.

The numerically-generated eigenvalues for an annular duct with this geometry and a1/a2 =

0.4 are shown in figure 4.9(a,b). Figures 4.9(c,d) show examples of cross-sectional modal shapes.

Both of these are upstream propagating modes, and the fundamental mode (the curved-duct

equivalent of a plane-wave mode) in figure 4.9(c) is seen to be localized in the inside of the

bend. The downstream propagating modes have similar shapes, but are localized on the outside

of the bend. Figures 4.9(e,f ) show typical higher order modes, both of which are cutoff modes.

These modal shapes are termed bouncing ball and whispering gallery type modes respectively,

in light of the ray-tracing approximations in §4.7.

One interesting feature of the spectrum is the diagonal vanes of eigenvalues occurring peri-

odically across the usual line of cutoff modes in figure 4.9(a), shown in close-up in figure 4.9(b).

This only seems to appear in the presence of both non-zero mean flow and non-zero curvature,

and can perhaps be associated with the asymmetric mean flow and asymmetric mode shapes

leading to slightly different Doppler shifts experienced by each mode.

These vanes are also present for a cylindrical duct geometry, although with real parts in a far

smaller range than for the annular case, as shown in figure 4.10(a). Figures 4.10(c,d,e,f ) give

the hollow duct equivalents of figures 4.9(c,d,e,f ). Hollow and annular cases are very similar

with the exception that the hollow bouncing ball mode in figure 4.10(e) is not localized on the

inside of the duct bend, but is free to explore the whole duct.

We now consider a lined (Z = 2−i) curved (κ = 0.1) hollow duct with mean flow (U∞ = 0.5),
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Figure 4.9: Results for a hard-walled annular duct, (b) being a close-up of the cutoff modes in

(a). The modes in (c–f ) are all downstream propagating, with the inside of the bend on the

right. U∞ = 0.5, ω = 10, a1/a2 = 0.4, and κ = 0.1.
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Figure 4.10: Results for a hard walled, cylindrical duct. U∞ = 0.5, ω = 10, and κ = 0.1.
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some results for which are presented in figure 4.11. The additional series of eigenvalues in the

lower-half k-plane corresponds to a series of surface modes, exactly as for surface modes in a

straight duct described in chapter 2. Figure 4.11(d) shows how such modes are strongly lo-

calised near the boundary, while figure 4.11(c) shows the upstream-propagating acoustic mode

of the same order. This latter mode is a whispering gallery mode, and while still being localised

close to the outer boundary is noticeably more pervasive into the duct than the surface mode.

(The true difference is that 4.11c decays algebraically away from the boundary, while 4.11d

decays exponentially.) At the other extreme is the bouncing-ball mode shown in figure 4.11(b).

These modes are similar to the high-order modes in a hard-wall duct, except that for the

lined duct there is very little oscillation at the duct wall. Figures 4.11(e) and 4.11(f ) show

the fundamental duct modes, and illustrate the dramatic asymmetry between upstream- and

downstream-propagating modes. The upstream-propagating mode is removed from the bound-

ary, similar to a mode with a pressure-release boundary condition, while the curvature biases

the mode slightly to the inside of the bend (the right hand side). The downstream-propagating

mode, in contrast, is strongly localised on the outside of the bend, and is oscillating significantly

on the duct boundary; it is very similar in form to a hard-wall duct mode.

Figure 4.12 shows how the axial wavenumbers k vary with the curvature κ. Note that owing

to the left–right symmetry for κ = 0, two distinct modes with κ 6= 0 may merge into a double

mode as κ→ 0. As the curvature increases from zero, the first few downstream modes (on the

right of figure 4.12b) become more damped, as do the first few upstream modes. In contrast,

the surface modes (i.e. the lower branch in the right half plane) for k . 5 become less damped,

while most of the well cutoff acoustic modes maintain the same rate of decay, although their

phase speed shifts slightly towards upstream.

4.4.2 Partially lined boundary

The numerics described in §4.3 above do not require the impedance Z to be azimuthally

constant, or even continuous. Since the results in figure 4.11 suggest that different modes are

localized in different sections of the duct cross-section, a natural generalization is to only line

part of the boundary, leaving the remainder hard walled. Figure 4.13 demonstrates this, for a

lining of impedance Z = 2+i that extends 35 degrees either side of the inside of the duct bend,

the rest of the duct wall being rigid.

Figure 4.13, and a number of similar results for different impedances, curvatures, frequencies,

and lining angles, give the conclusion that a considerable improvement in sound attenuation

87



-60

-40

-20

0

20

40

60

-20 -15 -10 -5 0 5

(a) Eigenvalues

(b) A bouncing-ball mode

(c) A whispering-gallery mode (d) A surface mode

(e) The upstream fundamental mode (f ) The downstream fundamental mode

Figure 4.11: Results for a lined curved duct. U∞ = 0.5, κ = 0.1, Z = 2 − i, and ω = 10.
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Z = 2 − i, U∞ = 0.5, and ω = 10.0. (b) shows a close up of the nearly cuton modes in (a).

is given by lining the entire duct; even for a mode localized on the inside of the bend, only

lining the duct on the inside of the bend gives a considerably lower attenuation than lining

the entire duct. An explanation of this is that the curvature leads to certain modes being

algebraically large on the inside of the bend compared with the outside, while the wall lining

leads to exponential decay. Therefore, a mode that would have been localized on the inside of

the bend had the entire duct been lined becomes localized on the outside if only the inside of

the bend is lined; the inner part of the mode being exponentially damped by the boundary. For

example, figure 4.13(c) is localized on the outside of the bend, but would have been localized

on the inside (similarly to figure 4.11e) had the entire duct been lined.
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Figure 4.13: Modes for a partially-lined duct; the lined section is the thicker boundary shown

in (c)–(f ). Z = 2 + i, ω = 10, U = 0.5, and κ = 0.1.
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The pseudospectral method described in §4.3 is not best suited to discontinuous boundary

impedance changes, such as in figure 4.13. This is because the eigenmodes tend to change rapidly

in the neighbourhood of impedance discontinuities, and so a far larger number of azimuthal

modes nθ are needed than in the uniform boundary case. In fact, it may well be that the spectral

accuracy is lost in the neighbourhood of the impedance discontinuities, with the solution only

converging algebraically fast. One method to alleviate these problems would be to smoothly

vary the boundary from lined to hard; however, this was considered unrealistic and was therefore

not attempted here.

Another partially-lined situation that was considered was that of liner splices. A typical

aeroengine liner is manufactured in sections that are then fitted together; along the join is a liner

splice, which is a thin hard-walled section that runs axially along the duct. Typically, two or

four splices are present, each covering less than 0.06 radians azimuthally (McAlpine & Wright,

2006). Since this impedance discontinuity is so localized, an extremely large number of az-

imuthal modes nθ would be needed to accurately resolve the effects of the splices. This is

computationally impractical using the pseudospectral code developed in §4.3, and so no results

are presented here for liner splices. Some suggestions for modifications that would allow liner

splices to be investigated are given in §6.1.

4.4.3 Global mode shapes

The results given above in §4.4.1 are for one particular axial location. In a slowly varying

geometry, the axial wavenumber k(S) and the mode shape A0(S; r, θ) will vary slowly along the

duct. In order to compute numerically the global mode shape along the entire duct, the above

local analysis must be performed at a number of different axial locations, and then modes in

one axial location must be matched to the same mode at the neighbouring axial locations.

Suppose we have a mode with eigenvalue λ and eigenfunction φ(r, θ) at one axial location,

and we have calculated numerically the eigenvalues µi and ψi(r, θ) at a neighbouring axial

location. We require the eigenvalue µ and eigenfunction ψ(r, θ) at the new axial location that

correspond to the original eigenvalue λ and eigenfunction φ(r, θ).

There are four threshold values we will use in deciding on this matching. The first is

the partner threshold, Tp, which determines whether two eigenfunctions span an eigenspace of

dimension two. Suppose that the closest eigenvalue to µ1 is µ2, and the second closest is µ3.

Define d1 = |µ1 − µ2| and d2 = |µ1 − µ3|. Then the eigenfunctions ψ1 and ψ2 are considered to
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be part of the same eigenspace (i.e. ψ1 and ψ2 span an eigenspace of dimension two) if

d1√
(d1

2 + d2
2)/2

< Tp.

We try in turn to match φ with the eigenfunctions ψi, trying the ψi with the smallest

|λ− µi| first, and then proceeding in order of |λ− µi|. First, we determine if ψi has a partner

eigenfunction ψj using the partner threshold test above. If so, we decompose φ = aψi + bψj + ζ,

with ζ being a function orthogonal to ψi and ψj according to the inner product (4.25). If ψi

has no partner, so that it corresponds to an eigenspace of dimension one, the decomposition is,

as would be expected, φ = aψi + ζ where ζ is orthogonal to ψi. The residual is then defined to

be res =
√

〈ζ, ζ〉/〈φ, φ〉.

We then proceed as follows. If res < Ts, where Ts is the sort threshold, then we have found a

match so good that we need try no more, and we terminate the search. Otherwise, we proceed

until |λ − µi| > Td, where Td is the distance threshold, in which case the eigenvalues differ by

so much that we consider them not to match. In this case, we just pick the match that had

the smallest value of res we have found so far. Finally, if res > Tf , where Tf is the function

threshold, then the match still is not good enough, and we discard this axial location and move

on to the next closest neighbour in search of a matching eigenfunction.

Typically, for the results that follow, Tf = 0.25, Td = 4, Tp = 10−2, and Ts = 10−3 were

used.

4.4.4 The RAE 2129 inlet diffuser duct

The RAE 2129 Inlet Diffuser duct is a much studied reference duct geometry (as considered

by Menzies, 2002). It is a curved cylindrical duct with varying diameter. A cross-section along

the RAE 2129 duct centreline is shown in figure 4.14, along with the mean flow for a uniform

inlet Mach number U∞ = 0.5. The duct geometry is defined in terms of the lateral offset of the

centreline, y∗, from its position at the intake s∗ = 0 (as shown in figure 4.1), with

y∗(s∗) = −h
∗

2

(
1 − cos

(
πs∗

L∗

))
⇒ κ∗(s∗) =

π

L∗
cos

(
πs∗

L∗

)

√
4L∗2

π2h∗2 − sin2

(
πs∗

L∗

) , (4.26)

where the formula for κ∗ is given in (B.1). The lateral offset at the downstream exit (s∗ = L∗)

is then −h∗. The duct itself is hollow, with outer radius varying quartically between upstream
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Figure 4.14: Contours of axial mean flow Mach number in the RAE 2129 Inlet Diffuser. Far

upstream is a uniform inlet Mach number of 0.5.

(radius ℓ∗) and downstream (radius a∗f ) as

a∗(s∗) − ℓ∗

a∗f − ℓ∗
= 3

(
1 − s∗

L∗

)4

− 4

(
1 − s∗

L∗

)3

+ 1 .

For the RAE 2129 duct,

L∗/ℓ∗ = 7.1, h∗/L∗ = 0.3, (a∗f/ℓ
∗)2 = 1.4.

This leads to a value of ε based on the duct length of ε = 1/7.1, for which it is reasonable

to suppose that the small-ε asymptotics will work well. In fact, since max |dκ/dS| ≈ 0.24

and max |da/dS| ≈ 0.33, the lengthscale over which the slow parameters vary by order 1 is

really ∼ 20ℓ∗, giving ε ∼ 0.05, for which the small-ε asymptotics can be expected to give fairly

accurate results.

The cuton eigenvalues for the RAE 2129 intake are plotted against the position along the

duct centreline in figure 4.15, for a realistic aeroengine rotor-alone frequency. As can be seen,

many modes which are cuton at the fan face (s = 7.1) will propagate all the way to the intake

(s = 0). In figure 4.16 we plot the sound pressure level (SPL) of one such cuton mode (in the

initial straight portion of the duct this corresponds to the m = 24 first radial order mode, a

typical aeroengine rotor-alone mode), and in this case the amplitude varies rather little along

the duct and the mode is concentrated close to the duct wall all the way along. The curvature

does give an amplification of 4dB to the mode, occurring on the inside of the left-most bend.

For these parameters, there are also several duct modes which transition from cuton to cutoff

within the duct (e.g. four around s ≈ 2 etc). These transitions correspond to wave reflection by
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Figure 4.16: SPL for the first radial order, 24th azimuthal order mode propagating from right

to left. The axial wavenumber k for this mode is shown in figure 4.15 as the middle solid line.
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the changing geometry and flow, and will be described in detail in the next section. The cutoff

transition confines these modes to the fan end of the duct. The amplitude of one of the reflected

modes is shown in figure 4.17, using the analysis of the next section, and shows a standing-wave

pattern formed by the mode and its reflection. In the initial straight portion of the duct, this

mode corresponds to the m = 24 second radial order mode, a harmonic of a typical aeroengine

rotor-alone mode. This suggests the possibility of acoustic resonance, in which acoustic modes

are trapped upstream of the fan by the cutoff transition and are prevented from propagating

downstream by the swirl in the rotor-stator gap (see Cooper & Peake, 2000).

4.5 Turning points and wave reflection

For a hard-walled duct, the secularity condition (4.18) represents continuity of axial energy

flux. Since a cuton mode has a non-zero energy flux and a cutoff mode has no energy flux, it

is to be expected that the secularity condition breaks down in the neighbourhood of a cuton–

cutoff transition. The secularity condition (4.18) becomes singular when F (S) becomes zero, a

so-called turning point. This is well understood in straight ducts (see, for example, Rienstra,

2003b), and here we now derive the turning point behaviour incorporating curvature.

Define

G(S) =

∫ 2π

0

∫ a2

a1

D0

hs
Â0

2
(

1 − U0
2

C0
2

)
r dr dθ,

so that k = (F (S)−1)/G(S). Since G(S) varies little over the transition region, F (S) transitions

from real when the mode is cuton to complex when the mode is cutoff. For example, figure 4.18

shows the variation in F (S)2 for a mode in the RAE 2129 intake that undergoes a cuton–cutoff

transition; in the neighbourhood of the cutoff region, F (S)2 is seen to be a linear function of

S, and goes through zero as the mode transitions from cuton to cutoff.

The problem stems from the fact that there is a εd2/dS2 term in the secularity condi-

tion (4.18) that has been neglected. This is justified provided the d/dS term in (4.18) is

non-zero, which is not true at a turning point. These missing terms come from the fact that the

right hand side of (4.12) has an O(ε) term coming from the O(ε2) terms in (4.7). Including only

higher order terms involving d2/dS2 and following the same procedure to derive the secularity

condition as in §4.2, the secularity condition becomes

d

dS

(
FN2

)
+ iεGN

d2N

dS2
= 0. (4.27)
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Figure 4.17: The second radial order, 24th azimuthal order mode propagating from the fan face

(on the right) towards the intake (on the left), before being reflected by the duct geometry

and propagating back towards the fan face. The axial wavenumbers k for these modes are

shown as the upper solid lines in figure 4.15. (a) shows the real part of the wavefunction

φ = A0 exp{
∫

ik(S′)/εdS′}, while (b) shows the modulus of the wavefunction |φ|.
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Diffuser.

Let the turning point be at S0, so that

F (S0 + ∆S) =
√
a∆S +O(∆S), G(S0 + ∆S) = G(S0) +O

(
(∆S)1/2

)

for some a. The correct branch cut for the square root is along the positive imaginary axis. For

an inbound downstream propagating mode, the branch is chosen so that
√

1 = 1; for an inbound

upstream propagating mode (as in the RAE 2129 duct), the correct branch is
√

1 = −1. For

simplicity of algebra, in what follows an inbound downstream propagating mode is considered,

although the same analysis is valid for an upstream propagating inbound mode. Note that in

the case considered, a is negative. By introducing the inner variable

x = ∆Sε−2/3G(S0)
−2/3a1/3,

(4.27) becomes

N ′′ + 2i
√
xN ′ +

iN

2
√
x

= O
(
ε1/3

)
,

with leading order solution

N =
(
AAi(−x) +BBi(−x)

)
exp

{
−2i

3
x3/2

}
.

Using asymptotic expansions of Airy function for large |x| (see Abramowitz & Stegun, 1964,

pp448–449), N has the large-x behaviour

N ∼ eiπ/4

2
√
πx1/4

[
(A− iB) exp

{
−4i

3
x3/2

}
− i(A+ iB)

]
as x→ ∞,

N ∼ 1

2
√
π|x|1/4

[
A+ 2B exp

{
4

3
|x|3/2

}]
as x→ −∞.
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The outer solution to (4.18) about the singular point S0 is

N =





N0

(a∆S)1/4
for S < S0

TN0e
iπ/4

|a∆S|1/4
for S > S0

Expanding in terms of the inner variable x and matching with the inner solution gives B = 0

and T = 1. However, there is still an unmatched term as x→ ∞. This term is

Aeiπ/4

2
√
πx1/4

exp

{
−4i

3
x3/2

}
∼ iN0√

F (S)
exp

{
2i

ε

∫ S

S0

F (S′)

G(S′)
dS′

}
.

The inbound downstream propagating mode has k = (F (S) − 1)/G(S). The corresponding

upstream propagating mode would have k̃ = (−F (S) − 1)/G = k − 2F (S)/G(S). Hence, the

upstream propagating mode from the singular point would have the form

RN0√
F (S)

exp

{
− i

ε

∫ S

S0

k̃(S′) dS′

}
=

N0√
F (S)

exp

{
− i

ε

∫ S

S0

k(S′) dS′

}
×R exp

{
2i

ε

∫ S

S0

F (S′)

G(S′)
dS′

}

This is exactly the solution needed to match with the extra term in the inner solution, provided

R = i.

The inbound mode therefore gives rise to a reflected outbound propagating mode with

reflection coefficient R = i, and an evanescent wave with transmission coefficient T = 1, exactly

as if the duct were straight. This is perhaps surprising, since the inner region over which

the mode transitions from cuton to cutoff occurs over an O(ε−1/3) range of values of s, and

hence the duct is significantly curved over this region, albeit with a constant curvature. It

might therefore have been expected that the curvature would cause a significantly different

cuton–cutoff behaviour.

An example of the results of this matching behaviour is shown in figure 4.17, as previously

discussed. Note that only the outer solution for φ is plotted in figure 4.17, and therefore a

singularity at the reflection point is shown. This singularity is not physical, and is smoothed

over by the inner Airy function solution. A method for obtaining a uniformly valid solution,

incorporating both the inner and outer solutions, is given by Ovenden (2005), motivated by in-

vestigating cuton–cutoff transition near the ends of the duct (especially for civilian aeroengines,

where the ducts are very short). This was not investigated further here, as the reflection points

for a curved duct tend to occur in the centre of the duct, and away from this reflection point

the accuracy of the outer solution is unaffected by the singularity. In particular, the reflection

and transmission coefficients derived above, which are arguably the most important result of

this section, are correct without needing to resort to a uniformly valid solution.

98



-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-6 -4 -2  0  2  4  6

P
re

ss
u
re

Time, in multiples of engine revolutions

Figure 4.19: The pressure difference from steady state, introduced as a plane wave at the fan

face. The vertical lines show the times of the snapshots in figures 4.20–4.22.

4.6 Time domain pulse propagation

All the derivation above has been at a single fixed frequency. By taking a periodic signal

and decomposing it into its frequency components, each of these frequencies may be analysed

as above, and then summed to give a time-domain solution for the propagation of that signal

through a curved duct.

As an example, consider the pressure signal given in figure 4.19. This signal was suggested

by J. Longley (2006, private communication) as being representative of the pressure at the

engine fanface for a surge event. Note that the time axis has been given in terms of the number

of engine revolutions, as this is how the surge signal is thought to scale. A surge event is a

strong pressure disturbance that breaks the linearized small disturbance assumptions of the

derivation above. The surge signal is used here to demonstrate the time-domain synthesis from

the frequency-domain analysis above, as it is a less artificial signal than a purely hypothetical

pulse.

The surge signal is initiated in a straight section of duct as a plane-wave that does not vary

across the duct cross-section. This straight section of duct is then smoothly curved to fit onto

the downstream end of the RAE 2129 intake, and the upstream end of the RAE 2129 intake is

similarly connected to a section of duct that smoothly curves to become straight again. This

is so that both ends of the duct are straight and the curvature varies smoothly along the duct.

These extra duct sections are given in terms of their lateral offset y(s). They are required

to satisfy y(0) = y′(0) = 0 to fit smoothly onto the RAE 2129 intake, and y′′(0) = κ0 and

y′′(d) = 0 to smoothly vary the curvature from κ0 to zero over a distance d (see equation B.1).

Here, d = L/8 is chosen, and the function used is

y(s) = κ0

(
1

2
s2 − 1

6d
s3
)
. (4.28)
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The propagation of a surge pulse through this modified RAE 2129 intake, with a nondimen-

sionalized engine blade-tip speed of unity, is shown in figures 4.20–4.22. These figures plot the

pressure difference from steady state. As shown in figure 4.21, the curvature and narrowing of

the intake cause a peak pressure on the intake wall of 1.6 times the peak pressure at the fan

face. This peak pressure is highly localized on the inside of the bend closest to the intake lip.

The peak underpressure also occurs at the same position, as shown in figure 4.22, and reaches

−0.6, while the peak underpressure at the fan face was only −0.4.

4.7 Raytracing

Consider the Helmholtz equation

∇2ψ + α(x)2ψ = 0.

If α is large, say α = O(1/δ) for δ ≪ 1, then the variation in α is small on the length scale of a

wavelength. This motivates the raytracing ansatz (a special case of Multiple Scales), introducing

a slow vector X = x and a fast scalar θ(x) with ∇θ = S(X)/δ, for some function S(x) to

be specified below. Then, with ∇ denoting differentiation with respect to X, the Helmholtz

equation becomes

1

δ2
‖S‖2 ∂

2ψ

∂θ2
+

2

δ
S · ∇∂ψ

∂θ
+

1

δ
(∇ · S)

∂ψ

∂θ
+ ∇2ψ + α2ψ = 0.

As for a standard multiple scales analysis, the wavefunction ψ is expanded in powers of δ as

ψ = ψ0 + δψ1 + · · · . Then the leading order equation becomes

‖S‖2 ∂
2ψ0

∂θ2
+ δ2α2ψ0 = 0,

suggesting the choice ‖S‖2 = δ2α2, so that ‖∇θ‖2 = α2, and ψ0 = A0 exp{−iθ}. The fast

scalar θ is now seen to represent the phase of a wave, with amplitude A0. A path everywhere

orthogonal to planes of constant θ (i.e. in the direction ∇θ) is called a ray. The amplitude is

given by the avoidance of a secular term in the first-order equation. The order 1/δ equation is

‖S‖2 ∂
2ψ1

∂θ2
+ δ2α2ψ1 =

i

A0
∇ ·

(
SA0

2
)
e−iθ.

The term on the right hand side would resonate and lead to a secular solution, unless the

secularity condition ∇ · (SA0
2) = 0 is satisfied. This represents conservation of flux along a ray

tube. The evolution of the direction of the ray is given by taking the gradient of ‖∇θ‖2 = α2,

yielding (
∇θ

‖∇θ‖ · ∇
)

∇θ = ∇α. (4.29)
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Figure 4.20: The pressure difference from steady state at time t = −0.7.
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Figure 4.21: The pressure difference from steady state at time t = 1.0.
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Figure 4.22: The pressure difference from steady state at time t = 2.7.
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This enables the rays to be traced.

Consider the boundary condition on ψ

∂ψ

∂n
+ f(x)ψ = 0, (4.30)

where ∂/∂n denotes the normal derivative at the boundary. Allowing for an inbound ray

A
(1)
0 e−iθ1 +O(δ) and an outbound ray A

(2)
0 e−iθ2 +O(δ), this condition becomes

− i

δ

[
A

(1)
0 n · S1e

−iθ1 +A
(2)
0 n · S2e

−iθ2

]
+O(1) = 0.

For this to hold on the fast lengthscale implies that θ2 − θ1 is constant on the boundary, and

without loss of generality it is taken that θ1 = θ2, since this just represents a phase change in

A
(2)
0 . Hence, ∇θ1 and ∇θ2 can only differ in their component perpendicular to the boundary.

Since both have magnitude α, n·∇θ1 = ±n·∇θ2. But if the positive sign were taken, the leading

order boundary condition would imply A
(1)
0 = −A(2)

0 , and the raytracing equation would enforce

θ1 = θ2 everywhere; hence, the two solutions would annihilate. Therefore n · ∇θ1 = −n · ∇θ2

and A
(1)
0 = A

(2)
0 ; that is, the boundary produces normal reflection (to leading order).

4.7.1 Application of raytracing to curved ducts

An application of the above is to trace the modal shape of the duct modes in a hard-wall

curved duct. Note that what follows is two-dimensional raytracing, and is not tracing the real

acoustic rays in three dimensions down the duct. Equation (4.7) may be rearranged to give

1

r

∂

∂r

(
r
∂A

∂r

)
+

1

r2
∂2A

∂θ2
− κ

hs

(
1 +

U0
2

C0
2

)[
∂A

∂r
cos θ − 1

r

∂A

∂θ
sin θ

]

+

[
ω2

C0
2 − 2ωU0k

hsC0
2 − k2

hs
2

(
1 − U0

2

C0
2

)]
A

=
iε

hsD0A

[
hsD0D

(
A2Λ

C0
2

)
+

∂

∂S

(
D0kA

2

hs

)]
,

and then, by making the substitution ψ =
√
hsD0A (to eliminate the first-order derivatives),

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2
∂2ψ

∂r2

+

[
ω2

C0
2 − 2ωU0k

hsC0
2 − k2

hs
2

(
1 − U0

2

C0
2

)
+

κ2

4hs
2

(
1 + 4

U0
2

C0
2 + (2γ − 3)

U0
4

C0
4

)]
ψ

=
iε

ψ

[
hsD0D

(
ψ2Λ

hsD0C0
2

)
+

∂

∂S

(
kψ2

hs
2

)]
. (4.31)

This is now in the form of a raytracing problem, with parameter

α2 =
ω2

C0
2 − 2ωU0k

hsC0
2 − k2

hs
2

(
1 − U0

2

C0
2

)
+

κ2

4hs
2

(
1 + 4

U0
2

C0
2 + (2γ − 3)

U0
4

C0
4

)
,
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Figure 4.23: Schematic of the rays for a whispering-gallery mode; the rays are reflected with

incidence angle equal to reflection angle, and are then refracted by the spatially nonuniform

effective sound speed 1/α. In this case, α increases from left to right, although this is not

always the case.

and with the raytracing boundary condition given by (4.30) with

f =
κ cos θ

2hs

(
1 +

U0
2

C0
2

)
.

For the raytracing asymptotics to be valid in this case, α needs to be large. This is achieved by

requiring both ω and k to be large, in the sense that k = µω with µ fixed, and letting ω → ∞.

This leads to

α2 =

[
1

C0
2 − 2µU0

hsC0
2 − µ2

hs
2

(
1 − U0

2

C0
2

)]
ω2 +O(1). (4.32)

The small parameter of the raytracing derivation is δ = 1/ω. Note that the term involving κ2

in α2 is neglected. Similarly, the term involving κ in the boundary condition is ignored, since

the raytracing derivation above shows that the function f in the boundary condition should be

neglected to leading order. However, the curvature is still incorporated, as both the mean flow

(U0, C0, and D0) and the derivative factor hs have a strong dependence on the curvature.

Note that α2 is a function of position only through hs, which is only a function of x = r cos θ,

the transverse position towards the inside or outside of the curve of the duct. Theoretical rays

may be thought of bouncing around inside the cross-section of the duct, being reflected normally

by the boundary, subject to a variable wave speed 1/α that varies horizontally from the inside

to the outside of the bend, but not vertically (as shown in figure 4.23). Figure 4.24 gives some

examples of how α2 varies with transverse position across the duct. The values of µ used for

this are for the upstream propagating fundamental mode, a typical cuton–cutoff transition,

and the downstream propagating fundamental mode. The fundamental modes contain regions

where α2 goes from being positive to being negative, and hence trap the fundamental modes in

one side of the duct. This is examined in detail in the next section.
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Figure 4.24: Variation in the raytracing parameter α2 across a cylindrical duct, with U∞ = 0.5,

κ = 0.1, and ω = 10.

4.7.2 Localization of fundamental modes

The plane-wave fundamental modes for a straight duct are uniform across the duct cross-

section. For a curved duct, some fundamental modes are shown in figures 4.9(c), 4.10(c),

and 4.11(e,f ). As mentioned in §4.4.1, for these parameters, the upstream-propagating modes

are located on the inside of the bend, while the downstream-propagating modes are localized

on the outside. However, this is not always the case: figure 4.25 shows that, for κ = 0.2,

U∞ = 0.5, and ω = 31, there are two upstream-propagating fundamental modes, one localized

on the inside of the bend and one on the outside, with the downstream-propagating mode still

localized on the outside. The wavenumbers for these modes are shown in figure 4.26, together

with a left–right weighting

Wx =

∫ 2π
0

∫ a2

a1
r cos(θ)|A0(r, θ)|2 rdrdθ

∫ 2π
0

∫ a2

a1
|A0(r, θ)|2 rdrdθ

.

Modes which are highly localized on the left/right of the duct (i.e. on the outside/inside of the

bend) have a value of Wx close to −1/+ 1 respectively. The presence of a few upstream modes

localized on the outside is clear in figure 4.26. The question is, therefore, what parameters

influence the localization of fundamental modes?
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(a) k = −66.4 (b) k = −62.1 (c) k = 25.1

Figure 4.25: Curved-duct equivalents of the plane-wave mode, for κ = 0.2, U∞ = 0.5, and

ω = 31. The inside of the bend is on the right. (a) and (b) are upstream-propagating modes,

while (c) is a downstream-propagating mode.
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Figure 4.26: The real wavenumbers k for propagating modes against their approximate az-

imuthal order m, for κ = 0.2, U∞ = 0.5, and ω = 31. The vertical axis plots Wx, with modes

localized on the inside and outside have stalks extending upwards and downwards respectively.

Only numerically resolved modes are shown (nr = 23, nθ = 131); the dashed curve denotes the

unresolved region.
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(a) Three dimensional rays (b) Two dimensional rays

Figure 4.27: Schematic of localized fundamental rays. The dashed lines are where α2 = 0. (a)

shows the three-dimensional rays, and (b) shows the two-dimensional representation derived

in §4.7.1.

In three dimensions, the fundamental modes may be thought of travelling nearly axially

down the duct, reflecting occasionally from the duct boundary. In order to do this, the flow

and the geometry must be such that a ray, having just reflected from the boundary, is driven

back towards the boundary, as shown in figure 4.27(a). Figure 4.27(b) shows the corresponding

two-dimensional rays in the duct cross-section, as derived in §4.7.1. The dashed lines are where

α2 becomes negative, as seen in figure 4.24 for the µ = 0.71 and µ = −2.0 modes, and the rays

are restricted to regions where α2 is positive.

A ray travelling purely axially at the local speed of sound along the duct at a fixed horizontal

offset x from the duct centreline would give the raytracing parameter µ±(x) = hs/(U0 ± C0),

with + for downstream and − for upstream. Substituting µ±(x) into (4.32) shows that α2 = 0

at this x position, since such a ray is travelling completely in the axial direction, and therefore

has no motion in the duct cross-section. Here, we are concerned with modes localized on the

inside or outside of the bend, and so (normalizing such that the duct radius a2 = 1), we are

concerned only with µ±(x) at x = 1 (for the inside of the bend) and x = −1 (for the outside

of the bend). Figure 4.28 shows the variation of α2 across the duct for the four cases in which

µ takes one of the values µ+(±1), µ−(±1). Figure 4.28(b) corresponds to figure 4.10, while

figure 4.28(d) corresponds to figure 4.25. By perturbing the value of µ slightly from the values

µ±(±1), it is possible that a small pocket of positive α2 might be created close to the duct wall,

and thus (provided the frequency is high enough) a localized mode on that boundary is possible.

In order for a small perturbation to µ to lead to a localised mode on the boundary, α2(x) must

decrease away from that boundary. This is also the requirement that a ray having just reflected

106



-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-1 -0.5  0  0.5  1

Upstream Outside
Upstream Inside

Downstream Inside
Downstream Outside

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

-1 -0.5  0  0.5  1

Upstream Outside
Upstream Inside

Downstream Inside
Downstream Outside

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-1 -0.5  0  0.5  1

 

Upstream Outside
Upstream Inside

Downstream Inside
Downstream Outside

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-1 -0.5  0  0.5  1

 

Upstream Outside
Upstream Inside

Downstream Inside
Downstream Outside

(a) U∞ = 0.6, κ = 0.1

(b) U∞ = 0.5, κ = 0.1

(c) U∞ = 0.3, κ = 0.1

(d) U∞ = 0.5, κ = 0.2

x

x

x

x

α2

α2

Figure 4.28: The variation in α2(x), for potential upstream- and downstream-propagating

modes localized on the inside and outside of the duct bend.

from the boundary is driven back towards the boundary (see equation 4.29). A change in the

number of localized fundamental modes is therefore seen when the derivative of α2 at x = ±1

changes sign. As an example, figure 4.28(a) demonstrates the possibility of a downstream

fundamental mode localized on the outside of the bend and an upstream fundamental mode

localized on the inside. Figure 4.28(c) demonstrates the possibility of both the downstream

and upstream fundamental modes being localized on the outside of the bend. Figures 4.28(b,d)

both demonstrate the possibility of a downstream fundamental mode localized on the outside,

and two upstream fundamental modes, one localized on the inside and one on the outside. Note,

however, that for the upstream-propagating outside mode on the outside wall in figure 4.28(b),

the derivative of α2 is very close to zero, implying that a very high frequency would be needed

to discover such a mode; this is why such a mode was not seen in figure 4.10.

In order to investigate which values of U∞ and κ give rise to which types of localization

behaviour, we will now look for a change in derivative of α2 at x = ±1. Differentiating (4.32)
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with respect to x gives

∂α2

∂x
=

(γ − 1)κU0
2

C0
4hs

− 2κU0H(γ − 1)µ(2hs − µU0)

C0
4hs

3 − 2κµ2

hs
3

(
1 − U0

2

C0
2

)
, (4.33)

and substituting µ = µ±(x) = hs/(U0 ± C0) gives

∂α2

∂x
=

κ

hs(U0 ± C0)2

[
(γ − 1)

U0
2

C0
2 ∓ 4

U0

C0
− 2

]
. (4.34)

A sign change of ∂α2/∂x for a ray propagating axially down the duct is therefore given by a

zero of the square brackets in (4.34). After some algebraic manipulation, this gives

U0
2 = H

(
1 ±

√
2

γ + 1

)
. (4.35)

Note that the + solution of this (corresponding to a downstream-propagating mode) is very

close to U0
2 = 2H, at which point the mean density becomes zero.

Equation 4.35 may be evaluated to give κ in terms of U∞, or U∞ in terms of κ, for the critical

parameters for which an upstream or downstream propagating mode (− or + in equation 4.35)

may be localized on the inside or outside of a bend (evaluating equation 4.35 at x = 1 or

x = −1). Unfortunately, since U0 depends on both κ and U∞ and is calculated numerically,

(4.35) must in general be solved numerically. However, as mentioned in §4.1.1, if the duct cross-

sectional area is the same as far upstream then U† = U∞ +O(κ2). Hence, if the cross-sectional

area is the same as far upstream and κ is small, (4.35) gives

κ =
1

x


1 − U∞

[
H
(
1 ±

√
2

γ+1

)]1/2


 , (4.36)

with x being either +1 or −1 for the inside or outside of the bend, and H given by (4.1).

Figure 4.29 plots the small-curvature asymptotics given by (4.36) and the numerically cal-

culated solutions of (4.35), assuming the duct cross-sectional area is the same as far upstream.

The numerically generated solutions stop around U∞ = 0.65, since for these parameters the

duct is choked; that is, there is no solution to (4.3) for U† that gives the required mass flow

rate.

Interestingly, the boundaries between the different behaviours of the upstream fundamental

mode intersect at κ = 0, as shown in figure 4.29. At this point, the small-curvature asymptotics

give the exact answer (assuming the duct cross-sectional area is the same as far upstream), and

rearranging (4.36) gives the upstream Mach number for which this occurs as

U∞ =
2

γ − 1

(√
γ + 1

2
− 1

)
.

108



C
u
rv

at
u
re

(κ
)

Upstream Mach number (U∞)

Upstream (asymptotic)
Downstream (asymptotic)
Zero density (asymptotic)

Upstream (exact)
Downstream (exact)
Zero density (exact)

C
h
oked

1.0

0.8

0.6

0.4

0.2

0.0
1.00.80.60.40.20.0

Figure 4.29: The localization of plane waves for varying upstream Mach number (U∞) and

curvature (κ). The sketches show whether modes localized on the inside and outside of the

intake are possible, with downstream being the right-facing arrow. Exact results are from (4.35),

and asymptotic results from (4.36). The zero-density lines are where U0
2 = 2H at x = 1.

For γ = 1.4, as used for all the examples presented here, this gives U∞ ≈ 0.477. This means

that, for U∞ close to this value (and U∞ = 0.5 has been used for most examples presented

here), for all but very small curvatures it is possible for both the upstream localized modes to

be present. Indeed, this can be seen in Figure 4.25, where both inside- and outside-localised

upstream modes are shown.

For low Mach number flows, the geometry keeps both upstream and downstream modes

localized on the outside of the bend, in a similar way to the whispering gallery modes. This

is exactly the result seen by Felix & Pagneux (2004). However, different behaviour is seen

for larger Mach number flows. For large Mach number flows, the mean flow is fastest on the

inside of the bend and slowest on the outside, giving a refraction effect which curves upstream-

propagating rays towards the inside of the bend and downstream-propagating rays towards the

outside. Hence, as the Mach number is increased from zero, the upstream mode first becomes

present on the inner wall, and then disappears from the outside as the Mach number is increased

further. Increasing the curvature makes this effect more pronounced.
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Figure 4.30: SPL for the plane-wave mode propagating from right to left, with a maximum

fan-face wall pressure of 0dB. The axial wavenumber k for this mode is shown in figure 4.15 as

the bottom of the three solid lines.

Figure 4.30 gives an example of an upstream-propagating plane wave in the RAE 2129 duct,

in a similar manner to figure 4.16. In this case, the mode is always localized on the outside

of the bends, and becomes a straight-duct plane wave at the midpoint of the intake where

the curvature passes through zero. On the right (fan-end) of the duct only this localization is

possible. On the left (intake-end) a mode localized on the inside of the bend is also possible,

but is not excited.

While figure 4.29 is for a duct with the same cross-section as far upstream, (4.35) is still

valid even if this is not the case. The small-κ asymptotics of (4.36) do require this restriction,

however. It should also be emphasized that these results, being based on a raytracing approx-

imation, are only valid provided ω is sufficiently large. Presumably, as the boundary between

different behaviour is approached, the frequency necessary for these results to be valid will

become large. This is why figures 4.9 and 4.10 show only an upstream mode localized on the

inside of the bend; the frequency ω = 10 is not high enough for the upstream outside localized

mode to develop, even though the results of this section would suggest that an upstream outside

localized mode would exist for these parameters.

4.7.3 Whispering gallery asymptotics

Keller & Rubinow (1960) used ray theory to construct a method for determining the eigen-

values of the Helmholtz equation in certain closed domains containing a uniform acoustic

110



medium. Their procedure was adapted by Babic & Buldyrev (1991) to domains with a varying

sound speed. One key step in the Keller & Rubinow procedure is the determination of the

shape of a caustic surface inside the domain, which provides an envelope for all possible ray

directions. In the case of a circular domain with a uniform medium these caustics are simply

concentric circles, whose radii are related to the allowed eigenvalues of the problem. However,

for our equivalent variable sound speed it does not appear possible to determine the shape

of this caustic in general, but analytical progress can be made for so-called whispering-gallery

modes. Whispering gallery modes consist of rays running round the perimeter of the boundary,

bouncing a large number of times at very short intervals. They are shown schematically in fig-

ure 4.23, and an example is shown in figure 4.11(c). We now make use of Babic & Buldyrev’s

procedure to obtain analytically-based approximations for the eigenvalues of our curved duct

at high frequency and high azimuthal order, for the case of hard duct walls.

Babic & Buldyrev (1991, section 5.3, p114–121) determined an asymptotic expression for

the eigenvalues of whispering-gallery modes in a circular domain with nonuniform sound speed.

The modes are parametrized by two integers: m ≫ 1, the azimuthal order, and j = 1, 2, . . .,

the radial order. For the case of a curved duct, with the effective sound speed given by (4.32),

their analysis gives

kjm =
πµ

I1(a2)

{
2m+ I2(a2)

[
9m

4I1(a2)

(
j − 3/4

)2
]1/3

}
, (4.37)

where

I1(r) =

∫ 2π

0
α rdθ, I2(r) =

∫ 2π

0
α1/3

(
1

r
+

1

2α2

∂α2

∂r

)2/3

rdθ,
∂α2

∂r
= cos θ

∂α2

∂x
,

with ∂α2/∂x given in (4.33). This expression is valid for both annular and hollow ducts; because

the rays are bouncing around the outer boundary, the inner boundary plays no part. Note

that (4.37) gives kjm(µ) implicitly as a function of µ ≡ kjm/ω, and an iterative method was

therefore needed to find the axial wavenumber kjm for a specified value of ω. Figure 4.31

shows the results of the raytracing asymptotics against numerically calculated eigenvalues. A

frequency of ω = 40 was used for the comparison, so as to allow high azimuthal order modes to

be cuton. The results are plotted against the azimuthal order m so the individual modes can

be distinguished. The agreement is seen to be reasonable, especially for nearly-cutoff large-m

modes, as is to be expected from using large m asymptotics.
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Figure 4.31: Comparison of raytracing asymptotics (×) against numerical results (+). The

azimuthal order for the numerics was estimated using a Fourier transform and averaging. U∞ =

0.5, κ = 0.1, and ω = 40.

4.8 Asymptotics

4.8.1 Smallish curvature limit for a hard-wall duct

Let κ satisfy ε1/2 ≪ κ ≪ 1/a2, so that the leading order acoustic equation (4.9) may be

expanded in powers of κ up to κ2 without the slow variation parameter ε entering. Hence, the
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leading order equation (4.9) for A0 becomes

1

r

∂

∂r

(
r
∂A0

∂r

)
+

1

r2
∂2A0

∂θ2
+

(
ω2

C†
2 − k2(1 −M†

2) − 2ωM†
2

U†
k

)
A0

+ κ

[
−(1 +M†

2)

(
cos θ

∂A0

∂r
− 1

r
sin θ

∂A0

∂θ

)

+A0r cos θ

(
ω2

C†
2M†

2(γ − 1) − k2
[
2 − 4M†

2 −M†
4(γ − 1)

]

−2kωM†
2

U†

[
2 +M†

2(γ − 1)
])]

+ κ2

[
−r cos θ

[
1 + 3M†

2 +M†
4(γ − 1)

] (
cos θ

∂A0

∂r
− 1

r
sin θ

∂A0

∂θ

)

+A0r
2 cos2 θ

(
ω2

C†
2

[
3

2
M†

2(γ − 1) +M†
4(γ − 1)2

]

− k2

[
3 − 10M†

2 − 11

2
M†

4(γ − 1) −M†
6(γ − 1)2

]

−2kωM†
2

U†

[
3 +

7

2
M†

2(γ − 1) +M†
4(γ − 1)2

])]

where C†
2 = (γ − 1)(H − U†

2/2) and M† = U†/C†. Expanding k in powers of κ as k =

k0 + κk1 + κ2k2 + · · · gives

1

r

∂

∂r

(
r
∂A0

∂r

)
+

1

r2
∂2A0

∂θ2
+ α2A0

= κ

[
(1 +M†

2)

(
cos θ

∂A0

∂r
− 1

r
sin θ

∂A0

∂θ

)
+ 2A0

(
ωM†

2

U†
+
(
1 −M†

2
)
k0

)
k1 +R1A0r cos θ

]

+ κ2

[
A0

((
2k2k0 + k1

2
)(

1 −M†
2
)

+
2ωM†

2

U†
k2

)
+R2r cos θ

(
cos θ

∂A0

∂r
− 1

r
sin θ

∂A0

∂θ

)

+ k1R3A0r cos θ +R4A0r
2 cos2 θ

]

where

α2 =
ω2

C†
2 − k0

2
(
1 −M†

2
)
− 2k0ωM†

2

U†

R1 = − ω2

C†
2M†

2(γ − 1) + k0
2
[
2 − 4M†

2 −M†
4(γ − 1)

]
+

2k0ωM†
2

U†

[
2 +M†

2(γ − 1)
]

R2 = 1 + 3M†
2 +M†

4(γ − 1)

R3 = 2k0

[
2 − 4M†

2 −M†
4(γ − 1)

]
+

2ωM†
2

U†

[
2 +M†

2(γ − 1)
]

R4 = − ω2

C†
2

[
3

2
M†

2(γ − 1) +M†
4(γ − 1)2

]
+ k0

2

[
3 − 10M†

2 − 11

2
M†

4(γ − 1) −M†
6(γ − 1)2

]

+
2k0ωM†

2

U†

[
3 +

7

2
M†

2(γ − 1) +M†
4(γ − 1)2

]
(4.38)

113



We now solve this for A0, by expanding A0 = A
(0)
0 + κA

(1)
0 + κ2A

(2)
0 + · · · and assuming

A
(0)
0 = f(r)e−imθ. The leading order equation, on multiplication by r, yields the Sturm–

Liouville eigenvalue problem

(
rf ′
)′ − m2

r
f = −α2rf, α2 =

ω2

C†
2 − k0

2
(
1 −M†

2
)
− 2k0ωM†

C†
,

with weight function w(r) = r. This is Bessel’s equation, and the solutions are expressible as

Bessel’s functions fm(r) = aJm(αr) + bYm(αr). The boundary conditions are ∂f/∂r = 0 at

r = aj. This yields the dispersion relation for α, and hence for k0, for an annular duct as

Jm
′(αa2)Ym

′(αa1) − Jm
′(αa1)Ym

′(αa2) = 0,

and fixes the function f up to multiplication by a constant. In the cylindrical case, b = 0,

and again f is determined up to multiplication by a constant. In either case, the constant is

determined by requiring f to be normalized such that

∫ a2

a1

f(r)2r dr = 1.

The dispersion relation yields an infinite discrete set of eigenvalues αmp, p = 1, 2, . . ., with

eigenfunctions fmp(r), exactly as for a straight duct.

Henceforth m and p are considered fixed, and the correction terms to the corresponding

mode are considered for small but non-zero curvature. Consider the first order perturbation

expanded as a Fourier series,

A
(1)
0 =

∞∑

ℓ=−∞

gℓ(r)e
−iℓθ.

The first order equation is

∞∑

ℓ=−∞

[
1

r

(
rgℓ

′
)′

+

(
α2

mp −
ℓ2

r2

)
gℓ

]
e−iℓθ

=
1

2r

[(
1 +M†

2
)(
rf ′mp(r) −mfmp(r)

)
+R1r

2fmp(r)
]
e−i(m+1)θ

+
1

2r

[(
1 +M†

2
)(
rf ′mp(r) +mfmp(r)

)
+R1r

2fmp(r)
]
e−i(m−1)θ

+ 2

[
ωM†

2

U†
+
(
1 −M†

2
)
k0

]
k1fmp(r)e

−imθ, (4.39)

where R1 is given in (4.38). The final term on the right is exactly the mp-eigenfunction. This

term would resonate with the differential equation on the left, and would cause the solution to

be unable to satisfy both zero derivative boundary conditions. This may be seen formally by

multiplying both sides of equation (4.39) by fmp(r)e
imθ and integrating across the duct cross

section; the left hand side would give zero, and the right hand side would give just the coefficient
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of this resonant term. In order to eliminate this resonant term, it must be that k1 = 0, so that

there is no linear perturbation to the eigenvalue for small κ. This could have been expected, as

a sign change in κ corresponds to reversing the bend from (say) left handed to right handed,

and should have no effect on the propagation of waves down the duct. It would, however, effect

the shape of the modes, and so gℓ are expected to be non-zero.

To find the gℓ corrections, the orthogonality of e−imθ and the Bessel functions is used, as in

the classic Sturm–Liouville theory. Define the coefficients

J
(n)
mpℓq =

∫ a2

a1

fmp(r)fℓq(r)r
n dr, K

(n)
mpℓq =

∫ a2

a1

f ′mp(r)fℓq(r)r
n dr.

Multiplying both sides of the first order equation (4.39) by fℓq(r)e
−iℓθ and integrating across

the duct gives

A
(1)
0 = gm−1(r)e

−i(m−1)θ + gm+1(r)e
−i(m+1)θ, gℓ(r) =

∞∑

q=1

Cℓqfℓq(r),

where

Cℓq =
1

α2
mp − α2

ℓq

[
1

2

(
1 +M†

2
)(
K

(1)
mpℓq ∓mJ

(0)
mpℓq

)
+
R1

2
J

(2)
mpℓq

]
for ℓ = m± 1.

For the second order equation, again consider m and p fixed. Expanding A
(2)
0 in a similar

way to A
(1)
0 ,

A
(2)
0 =

∞∑

ℓ=−∞

hℓ(r)e
−iℓθ,

gives

∞∑

ℓ=−∞

[
1

r

(
rhℓ

′
)′

+

(
α2

mp −
ℓ2

r2

)
hℓ

]
e−iℓθ

=

[
(1 +M†

2)

(
g′m+1(r) cos θ − i(m+ 1)

r
gm+1(r) sin θ

)
+R1gm+1(r)rcos θ

]
e−i(m+1)θ

+

[
(1 +M†

2)

(
g′m−1(r) cos θ − i(m− 1)

r
gm−1(r) sin θ

)
+R1gm−1(r)rcos θ

]
e−i(m−1)θ

+

[
2

(
ωM†

2

U†
+
(
1 −M†

2
)
k0

)
k2fmp +R2

(
f ′mp(r) cos θ − im

r
fmp(r) sin θ

)
r cos θ

+R3fmp(r)r
2 cos2 θ

]
e−imθ,

where R2 and R3 are given in (4.38). Multiplying both sides by fmp(r)e
−imθ and integrating
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over the duct cross section gives the left hand side as zero, and the right hand side as

1

2

∞∑

q=1

[
C(m+1)q

((
1 +M†

2
)[
K

(1)
(m+1)qmp + (m+ 1)J

(0)
(m+1)qmp

]
+R1J

(2)
(m+1)qmp

)

C(m−1)q

((
1 +M†

2
)[
K

(1)
(m−1)qmp

− (m− 1)J
(0)
(m−1)qmp

]
+R1J

(2)
(m−1)qmp

)]

+
1

2
R2K

(2)
mpmp +

1

2
R3J

(3)
mpmp + 2k2

(
k0

(
1 −M†

2
)

+
ωM†

2

U†

)
.

Setting this to zero gives an expression for the quadratic eigenvalue correction k2.

The equations above giving the first non-zero correction terms A
(1)
0 and k2 to the wave-

function and wavenumber are expressed as infinite sums of integrals of products of Bessel’s

functions of different orders and their derivatives. They were therefore not found helpful in

further understanding waves in curved ducts.

4.8.2 Small curvature limit

Consider a duct in which the duct centreline is locally straight, so that κ = εκ̃ = O(ε). In

this case, the cross-duct equation (4.4) becomes

1

r

∂

∂r

(
r
∂A

∂r

)
+

1

r2
∂2A

∂θ2
+ α2A = εκ̃

[(
1 +M0

2
)(

cos θ
∂A

∂r
− sin θ

r

∂A

∂θ

)

−Ar cos θ

(
ω2M0

2(γ − 1)

C0
2 − k2

(
2 − 4M0

2 −M0
4(γ − 1)

)
− 2ωkM0

2

U0

(
2 +M0

2(γ − 1)
))]

+
iε

D0A

[
D
(
A2Λ

C0
2

)
+

∂

∂S

(
kD0A

2
)]

+O(ε2),

where

Λ = ω − kU0, α2 = ω2/C0
2 − k2(1 −M0

2) − 2ωM0
2k/U0,

M0 = U0/C0, D = U0
∂

∂S
+ V1

∂

∂r
+
W1

r

∂

∂θ
.

The leading order solution is exactly the solution for a straight duct, expressible in terms of

Bessel functions. After considerable algebra, the secularity condition becomes

d

dS

(
N2(F + I1 + I2)

)
+ iκ̃N2(H1 +H2) = 0

where

F =

∫ 2π

0

∫ a2

a1

D0A0
2

(
ωU0

C0
2 + k

(
1 −M0

2
))

rdrdθ

Ii =

∫ 2π

0

rD0
2U0ΛA0

2

iωZ

∣∣∣∣
r=ai

dθ

H1 =

∫ 2π

0

[
1

2

(
1 +M0

2
)
D0A0

2r

]a2

a1

cos θ dθ
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H2 =

∫ 2π

0

∫ a2

a1

D0A0
2r cos θ

[
ω2M0

2(γ − 1)

C0
2 − k2

(
2 − 4M0

2 −M0
4(γ − 1)

)

−2ωkM0
2

U0

(
2 +M0

2(γ − 1)
)]

rdrdθ

However, the leading order solution A0 has angular dependence cos(mθ) or sin(mθ). Per-

forming the θ integrals gives H1 = H2 = 0, so that the solution is exactly that of a straight,

slowly varying duct. This result agrees with that of the smallish curvature analysis in §4.8.1,

since it predicts the effects of curvature on wave propagation occur at order κ2. At order κ, the

only effect of curvature is to alter the mode shape, rather than its propagation characteristics.

117



Chapter 5

Nonlinear two-dimensional surge

propagation

For surge in an aeroengine intake, the time-domain signal shown in figure 4.19 is of large

amplitude, typically peaking at three times the ambient pressure. In such situations, nonlinear

effects become dominant, leading to steepening of wave fronts and shock formation. In order

to begin investigating this, a two-dimensional inviscid compressible shock-capturing first-order-

accurate Godunov numerical scheme was written. This was then applied to a two-dimensional

version of the RAE 2129 intake. The advantage of this numerical scheme is that it is quick to

compute and easily parallelizable, requiring about 12 CPU hours to give all the results presented

in this chapter.

5.1 Numerical method

The numerical method used here was inspired by Igra et al. (2001), who used a second-order-

accurate Godunov scheme to predict the behaviour of shocks around sharp corners with remark-

able accuracy when compared with experimental results. The equations of motion of a compress-

ible inviscid perfect gas in two dimensions, written in conservative form, are (Landau & Lifshitz,
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1987, chapter 1)

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
= 0 (5.1a)

∂ρu

∂t
+

∂

∂x

(
ρu2 + p

)
+

∂

∂y

(
ρuv

)
= 0 (5.1b)

∂ρv

∂t
+

∂

∂x

(
ρuv

)
+

∂

∂y

(
ρv2 + p

)
= 0 (5.1c)

∂

∂t

(
1

2
ρ
(
u2 + v2

)
+ ρǫ

)
+

∂

∂x

(
u

(
1

2
ρ
(
u2 + v2

)
+ ρǫ+ p

))

+
∂

∂y

(
v

(
1

2
ρ
(
u2 + v2

)
+ ρǫ+ p

))
= 0,

(5.1d)

where ρ is the density, (u, v) is the velocity, p is the pressure, and ǫ is the specific internal

energy. Assuming a perfect gas,

ǫ = cV T =
1

γ − 1

p

ρ
,

where T is the temperature, cV and cP are the specific heats at constant volume and pressure

respectively, and γ = cP /cV . The local speed of sound is given by c = γp/ρ.

The computational domain is split up into a cartesian grid with spacing ∆x, and the average

velocity, pressure, and density within each grid square is recorded. The system is time-stepped

by computing the fluxes of mass, momentum, and energy across each grid boundary, averaged

over the timestep. This type of numerical method is known as a finite volume method, and

guarantees that mass, momentum, and energy are all conserved; for example, any energy that

is lost by one grid cell is gained by another. For the first-order-accurate Godunov method

used here, at the beginning of each timestep the fluid within each grid cell is considered to be

uniform in space, so that the pressure is equal to the average pressure everywhere within the

grid cell, and so on. This situation is solved exactly for small times; at each grid cell boundary

this involves solving the appropriate Riemann problem (see §5.1.1 below). These solutions are

only valid for small times, for which the disturbance caused by one cell boundary does not

interact with the other cell boundaries. Defining the Courant number C = (c + |u|)∆t/∆x,
this requirement means that the timestep ∆t must satisfy the Courant–Friedrichs–Lewy (CFL)

stability criterion C < 1. In implementing this numerical scheme, the timestep was adapted to

ensure a specified maximum Courant number was adhered to.

Once the Riemann problem has been solved for a cell boundary, the relevant fluxes across

that boundary are calculated from the values of the fluid variable (u, v, p, ρ) that lie on the

boundary for t > 0, using (5.1). For example, the flux of x-momentum across horizontal
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boundaries for a cell centred at x, y gives

ρ(x, y, t+ ∆t)u(x, y,t+ ∆t) = ρ(x, y, t)u(x, y, t)

+
[
ρ(x− ∆x/2, y, t)u(x − ∆x/2, y, t)2 + p(x− ∆x/2, y, t)

− ρ(x+ ∆x/2, y, t)u(x + ∆x/2, y, t)2 − p(x+ ∆x/2, y, t)
]
∆t/∆x,

where variables evaluated at (x, y) are the cell-averaged values, and variables evaluated at

(x±∆x/2, y) are the solutions of the Riemann problem between cells at (x, y) and (x±∆x, y)

evaluated along the interface between the cells. Due to the nature of the Riemann problem,

these values remain constant on the boundary, and so the first-order-accurate Godunov method

may be seen as taking flow variables piecewise-constant in space, and fluxes piecewise-constant

in time. Note that this is the exact solution to the Riemann problem, and not a piecewise-

constant-in-time approximation.

Rather than working out all the boundary fluxes in the x- and y-directions in one go and

then updating the average values, here the x- and y-fluxes were calculated separately, the

average values being updated after each set of flux calculations. This is known as Strang

splitting (Strang, 1968). Let the operation at time t of evolving the system S(t) forward a time

∆t be L∆t(t), so that S(t+ ∆t) = L∆t(t)S(t). Denote by Lx
∆t(t) and Ly

∆t(t) the operations of

evolving the system forward a time ∆t using only fluxes in the x and y-direction respectively.

Then the operation performed here is

L2∆t(t) = Ly
∆t(t+ ∆t)Lx

∆t(t+ ∆t)Lx
∆t(t)Ly

∆t(t).

The reason for using this Strang splitting is that, had the x- and y-flux calculations been second

order accurate, this splitting would have guaranteed that the whole update was second order

accurate, which would not be the case were all fluxes calculated first and then the average

values updated. The decision to use Strang splitting was made before any code was written, to

enable second order accuracy to be added relatively painlessly should it be needed; this splitting

provides no extra benefit in the present case of a first-order-accurate Godunov scheme.

The method used by Igra et al. (2001) was second order accurate. This was accomplished by

using a piecewise-linear approximation to the flow within each grid cell (subject to a monotonic-

ity constraint that limited the gradients within each cell), rather than the piecewise-constant

approximation of the Godunov scheme. Since ∆x and ∆t are linked by the CFL condition, it

makes no sense to be second-order-accurate in space without being second-order-accuracy in

time, and so the Riemann problem must be changed. Rather than solving the solution exactly

for spatially uniform flows on either side of a grid boundary, the Generalized Riemann Problem
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(ul, vl, pl, ρl)

(uc, vl, pc, ρc)

(u∗, vl, p
∗, ρ∗l )

(u∗, vr, p
∗, ρ∗r)

(ur, vr, pr, ρr)

x = u−1 t

x = u+
1 t x = u∗t

x = u3t

t

x

Figure 5.1: A schematic of the general solution to the Riemann problem. On the left is a

centred rarefaction wave (CRW). The solid line on the right is a shock wave, while the dashed

line is a contact discontinuity.

(GRP) is to solve the flow correct to O(∆x2 +∆t2) for spatially linearly varying flows on either

side of a grid boundary (Ben-Artzi & Falcovitz, 1984; Ben-Artzi et al., 2006; Men’shov, 1990).

However, as mentioned previously, here only the first-order-accurate Godunov scheme is used.

5.1.1 The Riemann problem

Suppose we have initial conditions that, at time t = 0, (u, v, p, ρ) are equal to the constants

(ur, vr, pr, ρr) for x > 0, and equal to the constants (ul, vl, pl, ρl) for x < 0. The Riemann

problem is to derive the solution to this initial condition for t > 0 that satisfies (5.1). This

solution may, and usually will, be a weak solution, in that it may contain discontinuities. A

weak solution to (5.1) would satisfy the integral over any volume of (5.1); it would therefore

satisfy (5.1) everywhere that the derivatives are defined, although of course they would not be

defined on any discontinuity.

The Riemann problem may be solved using characteristics (Ben-Artzi & Falcovitz, 2003;

Landau & Lifshitz, 1987, chapters 9 & 10). The general solution is of the form shown in

figure 5.1. The solution is constant in y, and in four distinct regions of the x, t plane. Of

the three boundaries between the four constant regions, the central one is always a contact

discontinuity, along which v and ρ may jump but through which u and p are continuous, and

which moves with the fluid velocity. The left and right boundaries may be either shocks which
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move at supersonic speed into the fluid ahead of them, as shown in figure 5.1 along x = u3t, or

a region known as a centred rarefaction wave (CRW, also known as an expansion fan) shown

between x = u−1 t and x = u+
1 t in figure 5.1, which move at the local speed of sound.

Let us now consider the left boundary of figure 5.1, going from (ul, vl, pl, ρl) to (u∗, vl, p
∗, ρ∗l ).

The right boundary may be treated similarly. If p∗ > pl, this boundary is a shock moving with

velocity u1, and u∗, ρ∗l and u1 are given in terms of p∗ and the given initial conditions by

u1 =
ulρl − u∗ρ∗l
ρl − ρ∗l

u∗ = ul − cl
p∗/pl − 1

γ

√
1 +

γ + 1

2γ
(p∗/pl − 1)

ρ∗l = ρl
(γ + 1)p∗ + (γ − 1)pl

(γ − 1)p∗ + (γ + 1)pl
. (5.2a)

where cl = γpl/ρl. Alternatively, if p∗ < pl, this boundary is a CRW in the region u−1 t < x <

u+
1 t, and in terms of p∗ and the given initial conditions,

u−1 = ul − cl u∗ = ul − 2cl/(γ − 1)
[
(p∗/pl)

(γ−1)/2γ − 1
]
,

u+
1 = u∗ − c∗ ρ∗ = ρl(p

∗/pl)
1/γ , (5.2b)

where c∗ = γp∗/ρ∗. Within such a CRW, the flow is given by

uc =
γ − 1

γ + 1
ul +

2

γ + 1

(
cl +

x

t

)
ρc = ρl

(
uc − x/t

cl

)2/(γ−1)

pc = pl

(
ρc

ρl

)γ

.

The relationships (5.2) above together give u∗(p∗;ul, pl, ρl); the similar equations for the

right boundary may be obtained by changing the sign of the x-direction. The Riemann problem

may now be phrased in the following way: given left initial conditions (ul, vl, pl, ρl) and right

initial conditions (ur, vr, pr, ρr), solve the left and right boundary regions to find the unique

value of p∗ which is consistent with both the left and right initial conditions. As suggested

by Ben-Artzi & Falcovitz (2003), this was implemented numerically using a Newton–Raphson

iteration. This procedure is shown schematically in figure 5.2, which shows the first guess for

(u∗, p∗) made by the Newton–Raphson iteration with pressure pNR. This procedure is then

continued, starting from this value of pNR and the two corresponding values of u∗, until the

final solution is found to a given tolerance.

5.1.2 Boundary conditions

The above method gives the flux between two grid cells, both of which are completely filled

with fluid. However, at the edge of the computational domain, or at an oblique boundary that

cuts through a grid cell, alternative flux calculations are needed. Several sorts of boundary
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Figure 5.2: Schematic of the Newton–Raphson method of solving the Riemann problem. The

first guess of the Newton–Raphson procedure is labelled pNR.

conditions were implemented, all of which still consider a Riemann-like problem in order to

give the correct upwinding (see §5.1.3). Oblique hard boundaries are considered last, with all

other boundaries aligned along the edge of a grid cell.

Hard-wall boundaries

The condition at a hard-wall boundary along the edge of a grid cell is simply no flow through

the boundary, so that u = 0 there, while p, ρ, and v are unconstrained. The flux through such

a boundary is calculated by specifying u∗ = 0 in (5.2) and solving for p∗; this gives the values of

the fluid variables on the boundary, from which the fluxes can be calculated, exactly as between

two neighbouring grid cells.

Subsonic inflow boundaries

For any inflow or outflow boundary, we have a boundary between a real fluid in the compu-

tational domain for which we know (u, v, p, ρ), and a notional fluid outside the computational

domain. We can therefore solve a theoretical Riemann problem, specifying arbitrary jumps

across characteristics that lie within the computation domain. For example, imagine in fig-

ure 5.1 that x < 0 is outside the computational domain and x > 0 is the contents of a grid

cell. This represents a subsonic (u1 < 0) inflow (u∗ > 0) from the left, and we may therefore

specify, as boundary conditions, the jump across x = u3t and x = u∗t. We could also specify
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the jump across the left-most characteristic, but doing so has no affect on the flux across the

boundary, since the flux is calculated along x = 0, which in this case involves (u∗, vl, p
∗, ρ∗l ),

and is therefore independent of the jump across the left-most characteristic.

For a subsonic inflow boundary, the notional fluid outside the computational domain is

given a specified stagnation pressure and temperature. This, in effect, means that we specify

upstream (u0, v0, p0, ρ0); within the Riemann problem, we require that the values of the fluid

parameters on the boundary (u∗, p∗, vl, ρ
∗
l ) be obtainable from (u0, v0, p0, ρ0) using isentropic

Bernoulli,

u∗ =

√

u0
2 +

2c02

γ − 1

[
1 − (p∗/p0)1−1/γ

]
ρ∗l = ρ0(p

∗/p0)
1/γ . (5.3)

This is solved using a Newton–Raphson iteration, similar to the Newton–Raphson iteration

used to solve the Riemann problem, but with (5.3) replacing either (5.2) or its equivalent in

the other direction.

Note that this does not imply that the upstream fluid has parameters (u0, v0, p0, ρ0); it

just means that the fluid upstream has the same stagnation pressure and temperature as

(u0, v0, p0, ρ0).

Subsonic outflow boundaries

At a subsonic outflow boundary, we have one degree of freedom to specify one jump across

the only characteristic lying within the computational domain. This is used to specify the

static pressure of the fluid outside the computational domain. That is, we specify p∗ = p0

in the Riemann problem for some given p0, with all the other variables taking the values

necessary on the boundary to be consistent with the fluid inside the computational domain

and the Riemann problem. This is simpler than the subsonic inflow, since no Newton–Raphson

iteration is needed to find the values of the fluid at the boundary.

Supersonic boundaries

These are even more straightforward than their subsonic cases. For a supersonic inflow,

we must specify all of the fluid parameters, and then these parameters are the values of the

fluid on the boundary used to calculate the fluxes, irrespective of the fluid parameters in the

neighbouring grid cell (provided, of course, the parameters in the neighbouring grid cell specify

that this boundary is indeed a supersonic inflow). For a supersonic outflow, the fluid parameters

at the boundary are just the fluid parameters in the grid cell.
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Figure 5.3: Schematic of a grid cell containing an oblique boundary. Double-headed arrows

denote fluxes.

Nonreflecting boundaries

The requirement for a non-reflecting boundary is that there is no sudden jump in any of the

conserved quantities. This effectively means that the fluid within the computational domain

completely specifies the boundary condition, and so the fluid parameters on the boundary are

taken to be just the average fluid parameters in the grid cell. This is exactly the same boundary

condition as the supersonic outflow, except that the flow does not need to be supersonic, or

even an outflow.

Oblique hard boundaries

Here, we allow only a straight boundary that cuts across a grid cell at an oblique angle, and

only one such boundary per grid cell, as shown in figure 5.3. For such a cell, the volume of that

grid cell is smaller, and so the fluxes into that cell cause a larger effect on the cell average fluid

variables. In order to remain stable and allow a large timestep (for a given Courant number),

if the volume of a cell becomes too small, that cell is combined with a neighbouring cell to

make one larger cell. This is implemented numerically as a post-processing step after all the

fluxes have been calculated and the cell averages updated. The volume-weighted averages of

the conserved quantities across the two combined cells are then calculated, and these are used

to calculate new values for the fluid parameters in the two cells (so that both cells have the
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same fluid parameters) whilst still being conservative.

Suppose n = (nx, ny) is the normal to the oblique boundary, pointing into the grid cell, and

that the oblique boundary extends a distance ℓx in the x direction and ℓy in the y direction, as

shown in figure 5.3. Given a conservation law

∂φ

∂t
+ ∇ · F = 0,

integrating over the grid cell and using the divergence theorem gives

V
dφ̄

dt
+

∫

B
Fxdy − Fydx = 0

where V is the volume of the grid cell, φ̄ is the average of φ of the grid cell, B is the boundary

of the cell described anticlockwise, and F = (Fx, Fy). The Strang splitting splits this flux,

with the y-integral being the flux in the x-direction and the x-integral being the flux in the

y-direction. Note that we could add to F any arbitrary function provided it were everywhere

orthogonal to the boundary normal.

Let us now consider the fluxes in the x-direction. For a grid cell with an oblique boundary

running through it, the fluxes across the grid cell boundaries with other cells are calculated

as above by solving a Riemann problem. The difficulty is in constructing the fluxes across

the oblique boundary. Since u · n = 0 on a hard boundary, the only non-zero fluxes are

those of momentum, (5.1b) and (5.1c). The flux of x-momentum at the oblique boundary is

(p∗, 0), while the flux of y-momentum is (0, p∗), where p∗ is obtained as for a hard boundary

in §5.1.2 by requiring u∗ = 0 at the wall. Naively, therefore, we might set the x-flux of x-

momentum to be p∗ℓy and the x-flux of y-momentum to be 0 (this will be referred to as

boundary type 1). However, recall that, due to the Strang splitting, the x- and y-fluxes are

calculated independently, and the fluid parameters updated in between. This means that when

calculating the x-fluxes at time t, the cell-averaged fluid parameters may be different to what

they were when the y-fluxes were calculated at the same time t. Therefore, this boundary

scheme does not enforce that the force exerted by the wall on the fluid be normal to the wall;

in other words, it does not conserve momentum parallel to the wall.

An alternative would be to have the x-flux of x-momentum p∗nx
2ℓy and the x-flux of y-

momentum p∗nxnyℓy. This is obtained by replacing a flux F by (F · n)n, which is a change

to F that is everywhere orthogonal to n. This has the advantage over the previous boundary

scheme that the force exerted by the wall on the fluid is everywhere normal to the wall, but

has the disadvantage that a fluid at rest at constant pressure does not remain at rest after a

timestep. This will be referred to as boundary type 2.
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A third scheme was considered, which first sets (u∗, v∗) = u− (u ·n)n as the velocity at the

wall, and then gives the x-flux of x-momentum as ℓy(ρ
∗u∗2 +p∗) and the x-flux of y-momentum

as ℓyρ
∗u∗v∗. This third scheme is not conservative, in that it does not enforce that there is

no mass or energy flux through the boundary. However, it is the most stable, as it allows

for cancellations between the flux in through the fluid boundary on one side and the flux out

through the fluid boundary on the other; between the x- and y-timesteps, the boundary acts

as a sponge, absorbing flux from one direction before producing it again in the other direction.

This will be referred to as boundary type 3.

5.1.3 Properties of the numerical method

One property of this numerical method, and the main reason this method was chosen here,

is that it is shock capturing, meaning that it can deal comfortably with discontinuities, such

as across a shock wave (as demonstrated in §5.2 below). This is obviously the case here, as

discontinuities (of arbitrary magnitude) are allowable at all grid-cell boundaries. In fact, higher

order Godunov-type schemes tend to smooth over such discontinuities, and special care must be

taken to ensure such scheme becomes first order in the neighbourhood of a shock so as to capture

the shock correctly; this is usually incorporated into a monotonicity requirement (van Leer,

1979, §3.3).

This scheme is also conservative, in that the total mass, momentum, and energy are ex-

actly conserved. This is because conserved quantities are updated by fluxes across grid cell

boundaries, and so mass, momentum, and energy may be transferred between grid cells, but

never lost. This is, of course, only true provided oblique boundary model 2 is used. Mass,

momentum, and energy may also flow in and out of the computational domain through the

inflow and outflow boundary conditions.

Another property of this numerical scheme is that it satisfies upwinding, meaning that

information flows in the correct direction. This is guaranteed by the Riemann problem, or the

alternative Riemann-like boundary conditions (and is the reason such boundary conditions were

used). For example, if the flow is supersonic, then all the characteristics will lie on the same

side of a grid-cell boundary, and so the values for the boundary fluxes will be derived solely

from the upstream grid cell.

Finally, as mentioned above, the scheme being piecewise-constant in space and piecewise-

steady in time leads to it being first-order-accurate, meaning that the error between the nu-

merical solution and the exact solution decay as O(∆x) as ∆x → 0, although proof of this
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convergence is not given here.

5.2 Test cases

In order to verify the correctness of the numerics, the results generated by this code are

compared with some standard testcases.

The first testcase is a one-dimensional one due to Sod (1978), and was used as the first

testcase by van Leer (1979). A square domain of unit length and hard walls is filled with a

fluid with ratio of specific heats γ = 1.4. Initially, for x < 0.5, (u, v, p, ρ) = (0, 0, 1, 1), while for

x > 0.5, (u, v, p, ρ) = (0, 0, 0.1, 0.125). This is basically a single Riemann problem. A 100× 100

discretization was used with a Courant number of C = 0.9, and the solution computed until

the shock reached x = 0.75. The situation at that time is given in figure 5.4 (c.f. van Leer,

1979, figure 6). The solution is constant in y, and is certainly resolving the analytic solution.

The numerical scheme is overly dispersive for the CRW at 0.35 < x < 0.45 and the contact

discontinuity at x = 0.6; however, the shock at x = 0.75 is sharply resolved, demonstrating the

shock-capturing ability.

In order to test the oblique boundary conditions, this testcase was rotated by cos−1(3/5),

so that the square domain now has oblique walls. What was previously the x-direction is now

labelled the a-direction, and the same initial conditions as before were used, with different

fluid parameters in a < 0.5 and a > 0.5. Figure 5.5 shows some results for this geometry and

a 140 × 140 numerical grid, which is the equivalent of a 100 × 100 grid over the interior of

the unit square containing the fluid. Lines are drawn between neighbouring grid cells in the

x-direction, so that the ends of each line correspond to the edge of the square, and thus lie in

grid squares containing an oblique boundary. The results are slightly more dissipative than the

one-dimensional case, since both the x and y numerical steps are now needed, rather than just

the x step in the one-dimensional version. As can be seen from the ‘hairy’ look of the graphs,

the grid cells on the boundary (which are cut by the oblique boundary) are also a source of

more noise. This noise can also be seen at a = 1. This example uses the oblique boundary

model 2.

The different oblique boundary models are compared in figure 5.6. Boundary models 1 and 3,

shown in figure 5.6(b,d), show far more numerical noise generated by the oblique boundary

around 0.5 < a < 0.75, where there is a significant flow of fluid along the boundary. However,

both models also show much less numerical noise at the end boundary a = 1. This could have

been expected, as boundary model 2 is the most accurate by ensuring conservation of mass,
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Figure 5.4: Exact solution (solid line) and call averages (circles) for Sod’s testcase in one

dimension, at t = 0.147. Initially u = 0, ρ = p = 1 for x < 0, ρ = 0.125 and p = 0.1 for x > 0.

γ = 1.4, C = 0.9, ∆x = 0.01.
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Figure 5.5: Exact solution (red line) and call averages (blue line) for Sod’s testcase, in two

dimensions, at t = 0.142. Initially u = 0, ρ = p = 1 for a < 0, ρ = 0.125 and p = 0.1 for a > 0.

A 140 × 140 grid was used, giving ∆x = ∆y = 0.01. γ = 1.4 and C = 0.8.
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energy, and momentum tangent to the wall, while boundary models 1 and 3 allow a cushioning

effect by allowing momentum (and, in the case of model 3, energy and mass) to be absorbed and

then reproduced by the boundary, yielding better stability when there is a pressure gradient

through the boundary.

Figure 5.6(a) shows the results if the cell-combining stage mentioned in §5.1.2 is not per-

formed. This implies that, in order to satisfy the CFL condition, the time step must be taken

much smaller, since the minimum distance across a cell is given by the smallest boundary cell.

The results are therefore slightly more accurate, but took 3.5 times longer to compute; far more

accurate results would have been obtained using the same computational time if instead the

cell-combining stage had been performed and the resolution had been increased to 210 × 210.

A third test is that of a Mach 3 wind tunnel with a step, which was used as a test case by

Woodward & Colella (1984). The domain has height 1 and length 3, and contains a supersonic

inflow boundary at x = 0 and a supersonic outflow boundary at x = 3, while both the top and

bottom boundaries are hard. Within the domain, a hard-walled step is located in 0 < y < 0.2 for

x > 0.6. The fluid is initially uniformly at (3, 0, 1, 1.4), and γ = 1.4, giving a uniform horizontal

Mach 3 flow. Owing to the step, a shock wave is generated, and the system converges to a

steady state with a near-vertical shock in front of the step. Figure 5.7 shows the evolution of

the density at different times; by t = 10.0 the solution has effectively reached its steady state.

The solution at t = 4 compares well with Woodward & Colella (1984, figure 3).

These testcases give confidence in the numerical code. We now use this code to look at the

propagation of surge through a two-dimensional version of the RAE 2129 intake.

5.3 Surge in a two-dimensional RAE 2129 intake

We consider a two-dimensional version of the cylindrical RAE 2129 intake, by taking the

same centreline given in (4.26), with the walls being a distance ±a∗ from the centreline. That

is, the two-dimensional duct looks the same as the cross-section through the three-dimensional

duct shown in figure 4.14, while the area of the cross-section, and hence the flow, is different.

Tests were performed with a variety of oblique boundary conditions, with boundary condition 2

providing the most accurate solution. This is in agreement with the oblique test case in fig-

ure 5.6, which indicates boundary condition 2 is the most accurate when there is significant

flow parallel to the boundary.

Initially, the duct is filled with fluid of uniform density, pressure, and constant velocity in the
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Figure 5.7: Contours of density within the Mach 3 wind tunnel with a step. Initially (u, v, p, ρ) =

(3, 0, 1, 1.4) everywhere, with γ = 1.4. C = 0.8, and ∆x = ∆y = 1/200.

x-direction, which is then allowed to converge to a steady state. The inflow boundary condition

prescribes a constant stagnation pressure and temperature, while the outflow boundary condi-

tion of a fixed static pressure is tuned to drive the flow at a prescribed upstream Mach number.

Once the flow has converged to a steady state, the inflow boundary condition is changed to a

nonreflecting one, and the outflow static pressure is varied to give the pressure pulse shown in

figure 4.19.

In figures 5.8–5.10, an upstream Mach number of U∞ = 0.5 is prescribed, and the surge

in figure 4.19 is scaled to give a peak overpressure ratio of 2, implying a peak underpressure

of about 0.6. While the imposed pressure profile is smooth, the overpressure shocks midway

through the intake (as shown towards the left in figure 5.8), and the underpressure shocks
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almost immediately on entering the duct (as shown towards the right of figure 5.9). The notable

feature of figures 5.8–5.10 is that the shock front remains planar, and although the front is not

always normal to the duct centreline (especially as the underpressure exits the left-most bend

in figure 5.10), nonetheless it exits the curved section as a plane shock without any reflection

or mutation due to the curved section.
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Figure 5.8: Contours of density at t = 34.75, equally spaced between 0.6 and 1.8 in steps of

0.05.

Figure 5.9: Contours of density at t = 49.75, equally spaced between 0.6 and 1.8 in steps of

0.05.

Figure 5.10: Contours of density at t = 67.25, equally spaced between 0.6 and 1.8 in steps of

0.05.

135



Chapter 6

Conclusion

The surface modes discovered by Rienstra (2003a) in the high-frequency limit ω → ∞ have

been generalized to arbitrary azimuthal order m, by considering a similar high-frequency limit.

Rienstra’s asymptotic dispersion relation for the surface modes is recovered from the generalized

dispersion relation (2.2) in a suitable limit. This is unexpected, since (2.2) was derived assuming

m≫ 1, while Rienstra’s dispersion relation is valid for arbitrary m provided m≪ ω, and shows

that (2.2) is valid in slightly more generality than might at first have been expected. For

realistic parameters for aeroengine intake noise at takeoff, figure 2.3(b) shows the generalized

dispersion relation to be notably more accurate than Rienstra’s. The generalized dispersion

relation is utilized for the thin-shell boundary in §3.2, and figure 3.2(a) also demonstrates the

accuracy of the generalized dispersion relation in this case.

Assuming the impedance boundary to be locally reacting, so that the impedance Z is

independent of the axial wavenumber k, up to four surface modes are present for each az-

imuthal order. The nature of these surface modes, the regions of the complex k-plane they

each occupy, and the regions of the complex Z-plane for which they exist, are analysed in a

similar manner to Rienstra. These factors are found to depend on the nondimensional number

λ = ωr0/(m
√
C2 − U2), and qualitatively different behaviour is seen for λ in each of four dif-

ferent ranges [0, λn], [λn, λp], [λp, 1], and [1,∞], where the critical values λn and λp correspond

to a change in behaviour of the number and position of the surface modes respectively, and are

functions of the mean flow Mach number U/C only. Rienstra’s asymptotics are recovered in

the limit λ → ∞, and so Rienstra predicted only one of these regions. The additional regimes

explain, for example, why there are only two surface-mode series in figure 1.2(b) for large m,

instead of the three predicted by Rienstra, and also why one such series in the lower-right

σ-plane for small m crosses into the lower-left as m increases. It was the latter of these that

136



first highlighted a limitation of Rienstra’s predictions when m is large.

Locally-reacting impedance boundaries such as the mass–spring–damper or Extended Helm-

holtz Resonator (Rienstra, 2006, §6) models have a subtle mathematical problem; they are ill-

posed, in the sense of that they do not satisfy the conditions of the Hille–Yosida theorem (Rudin,

1991). In summary, given initial conditions x0 (living in a suitable normed space), let the opera-

tion of evolving these initial conditions forward a time t be Lt, giving xt = Ltx0. The operators

Lt are called the semi-group for the differential equation being solved. A wellposed problem

that satisfies the Hille–Yosida theorem is guaranteed to yield a continuous semi-group, and in

particular, Lt → I as t → 0 in the operator-norm, where I is the identity. However, for the

mass–spring–damper boundary model, we showed in §3.3 that ω ∼ −iU
√
k/(βd) as |k| → ∞ for

one of the surface modes. This shows that, if arbitrary initial conditions are allowed, arbitrarily

quick growth is possible, so that Lt 9 I as t → 0, and hence the mass–spring–damper model

is illposed. The same also turns out to be true for the Helmholtz resonator boundary model.

This illposedness of the mass–spring–damper boundary manifests itself in various ways.

Mathematically, it is an indication that such a model is incorrect and should not be considered.

Ignoring this, Rienstra (2003a) considered the stability of the surface waves for a mass–spring–

damper boundary. Since the Briggs–Bers stability criterion is inapplicable for exactly the

same reasons as the illposedness mentioned above, Rienstra used an alternative stability analy-

sis (Rienstra, 1985). However, in §2.3, we showed this stability analysis to be incorrect. We will

comment further on how illposedness manifests itself mathematically below, when we consider

the scattering properties in such a system. The illposedness is also very prevalent in computer

simulations. It has long been known (e.g. Tam & Auriault, 1996) that time-domain numerical

methods with these illposed boundary conditions are unstable, with the instability wavelength

comparable with the grid scale, and therefore the instability wavelength changing as the grid

is refined. This has lead to this instability being interpreted as an artifact of the numerical

method, and such instabilities are routinely filtered out using a low-pass filter (Tam & Auriault,

1996; Chevaugeon et al., 2006; Tam & Ju, 2006; Richter & Thiele, 2007). However, we can now

see that such an instability is in fact caused by the numerical code attempting to realize the

underlying arbitrarily-quick growth rate at arbitrarily-small wavelengths. A regularization of

such boundary conditions that is wellposed is obviously needed.

One regularization of the mass–spring–damper boundary is the thin-shell boundary with

external spring and damping forces proposed in §3.1. This model is shown to recover the mass–

spring–damper model in the limit of the thin-shell thickness h→ 0, while it remains wellposed

for all h > 0 (see §3.3). Of course, we do not propose that such a model is an appropriate model
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for an acoustic lining in an aeroengine. The thin-shell model is, however, useful in pointing

out how the illposedness manifests itself mathematically, and demonstrates that modifying the

boundary model for large k with the inclusion of bending stiffness, while retaining mass–spring–

damper like behaviour for small k, can lead to different conclusions about stability from those

reached by Rienstra (2003a), even for modes with a small value of k for which these models

yield a similar impedance Z. The thin shell boundary is also an interesting problem to consider

in its own right.

Since the thin-shell boundary is not locally reacting, the predictions of the existence and

behaviour of up to four surface modes in §2.1.2 is not longer relevant. The asymptotic dispersion

relation (2.2) remains correct, and using it predicts 18 surface modes (see §3.2). Since the thin-

shell problem is wellposed, its stability may be analysed using the Briggs–Bers criterion. We

find it to be either stable or absolutely unstable, depending on the parameters of the fluid and

the thin shell, although it is only unstable for high mean flow velocities or extremely thin shell

thicknesses; examples of these results are given in figure 3.13, and asymptotic predictions of

the boundary between stable and unstable behaviour are given in (3.6). This conclusion is

interesting, as it differs from the predictions of Peake (1997) for the stability of a thin shell

bounding an incompressible fluid. Peake found that convective instabilities were possible, and

that absolute instability was not possible provided the mean fluid velocity was below a certain

threshold, both of which are different from what is seen here in the compressible case.

We considered the Wiener–Hopf problem of a wave scattering off a sudden boundary change

from a hard wall to a thin-shell boundary, in order to regularize the illposed Wiener–Hopf

scattering of a sudden change from a hard wall to a mass–spring–damper boundary analysed

by Rienstra (2007). Assuming all modes to be stable, Rienstra found the surface streamline to

be O(x1/2) as x → 0, where x = 0 is the location of the sudden boundary change. Allowing

one of the surface modes to be an instability gave Rienstra a degree of freedom, which could

be used to satisfy a Kutta-like condition at x = 0 and give O(x3/2) behaviour of the surface

streamline. For the thin-shell boundary (where we consider the thin shell clamped to the hard

wall at x = 0), the boundary streamline is O(x2), without any spare degrees of freedom or

Kutta-like conditions, and without any ambiguity over the inclusion of an instability. This

streamline behaviour is true for any h > 0, even for h so small that the boundary impedance Z

is locally (in k and ω) indistinguishable from that of the mass–spring–damper boundary. Note

that the constants C1 and C2 occurring in the Wiener–Hopf solution in §3.4.5 could have been

specified (incorrectly) by satisfying the Kutta-like condition of O(x4) smoothness of the surface

streamline as x→ 0. However, as shown in §3.4.6, the correct values for C1 and C2 are obtained
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by causality, and applying an O(x4) Kutta-like condition would have necessitated inbound solid

waves in the boundary from x = +∞, and would therefore not give the correct causal solution

to the problem of a wave inbound from x = −∞ scattering off the sudden boundary change.

This demonstrates that Kutta conditions need to be justified by considering additional realistic

physics in a suitable limit, rather than being employed to satisfy reasonable-sounding regularity

constraints.

All of this discussion so far has been for a cylindrical duct with a straight centreline. In

chapter 4, we derived the modal solutions in a duct with a significantly curved centreline,

provided the centreline curvature and duct radii varied slowly. One major difference between

curved and straight ducts is the asymmetry in curved ducts between upstream- and downstream-

propagating modes (see, for example, figure 4.11). Another difference is that the resulting

differential equation in the duct cross-section does not admit analytic solutions for a curved

duct, and so was solved numerically. Despite this, certain features can at least be explained

asymptotically using raytracing.

In §4.7.2, the behaviour of the fundamental modes (the curved-duct equivalent of plane-

wave modes) is explained by a competition between the curved geometry and the refraction

effect of the mean flow. If the duct is sufficiently curved and the mean flow sufficiently slow,

the geometry dominates and the fundamental modes become localized on the outside of the

duct bend. If the mean flow is sufficiently fast or the curvature is sufficiently small, it is the

refraction effect that dominates and the fundamental modes become localized on the inside of

the duct bend. In certain circumstances, both of these possibilities can exist simultaneously.

This situation is summarised in figure 4.29.

The curvature also has an effect on the efficiency of an acoustic lining, as shown in figure 4.12,

with the low-order modes being more heavily damped than they would be in a straight duct

with the same lining. One might have thought this was attributable to the lining on the side

of the duct that the mode was localized on, and that therefore savings could be made by lining

only that part of the duct. However, by considering a partially-lined duct in §4.4.2, this was

shown not to be the case; despite a mode being localized in one part of the duct, the acoustic

lining all round the duct is important. Note that the impedance boundary model used in

chapter 4 is locally reacting, and so is susceptible to exactly the same problems with stability

analysis demonstrated in §2.2. The thin-shell boundary model of chapter 3 assumes a straight

centreline, and so is not applicable to the curved-duct problem without further modification.

One feature that is notable for being the same for a straight or a curved duct (with hard-wall
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boundaries) is the cuton–cutoff transition of a mode by the slowly-varying geometry. This is

surprising, since the asymptotic inner scaling region is of length s = O(ε−1/3), and so is long on

the lengthscale of the duct curvature. The duct is therefore significantly curved over this region,

albeit with a constant curvature, and so it is surprising that there is no curvature dependence

to the transmission or reflection coefficients.

From the asymptotics in §4.8, if the curvature is small, the effects of the curvature on the

wavenumber (and hence the effects on the propagation of the wave) occur at O(κ2), while the

effects of the curvature on the cross-duct mode shape occur at O(κ). This means that, if the

duct curvature is small, the duct may be treated as if it were straight, with the equivalent

length given by the length measured along the duct centreline.

A major assumption of the multiple scales derivation is that viscosity can be neglected. In

real-world applications, this assumption is valid provided the boundary layer along the wall of

the curved duct does not separate. The separation of a boundary layer in an aeroengine intake

is very disadvantageous, since the flow entering the engine would then be highly asymmetric

and cause a very variable load on each fan blade. However, in certain situations the boundary

layer does separate, and in these situations the mean flow derived in §4.1 is not correct.

A limitation of the multiple scales method is that it does not model partial reflection by the

slow variation of the duct. For example, consider a mode originating in a section of duct with

constant parameters. The duct then varies slowly in some arbitrary fashion before returning

to these initial parameters. From one side of the varying part of this duct to the other, the

mode will either have been totally reflected or will have been perfectly transmitted without any

change. Any changes to a transmitted mode would occur as a higher order correction to the

leading order solution given here (for example, in A1). This means that the method presented

here would not, for example, be able to predict the difference in sound generated by a curved

music instrument compared with a similar straight one.

Whilst the linear multiple scales method was used to demonstrate a surge pulse (as shown

in figure 4.19) propagating through the RAE 2129 intake (see figures 4.20–4.22), in reality such

a surge pulse has a large amplitude comparable with the mean flow pressure, and so is not

modelled by linear theory. In particular, wave steepening and shock waves are not modelled

by the linear theory. The results of chapter 5 for a two-dimensional version of the RAE 2129

intake demonstrate such behaviour, with the overpressure shocking midway through the intake

and the underpressure shocking almost immediately. The results shown in figures 5.8–5.10

demonstrate that a disturbance introduced at the downstream end of the duct as constant
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across the duct cross-section remains practically one-dimensional as it propagates along the

curved duct, although the pulse does not necessarily remain constant across the duct cross-

section, nor normal to the duct centreline. This suggests the existence of some underlying

mathematical one-dimensional model, similar to classical straight shock-tube theory (Lighthill,

1978), that incorporates the effects of curvature and varying duct diameter.

6.1 Further research

There are many possible ways of extending the work presented in this thesis, including:

• Developing a better regularization of the mass–spring–damper impedance boundary that

incorporates the relevant physics of the Helmholtz resonator structure used in actual

aeroengine linings. The regularizing parameter h might be the thickness of the viscous

boundary layer lying above such a lining, with the viscous dissipation, it is hoped, pro-

viding the bounded temporal growth rate in a similar way to the bending stiffness for

the thin-shell boundary. The presence of this boundary layer may well be the reason

that impedance measurements of an acoustic lining with and without flow give different

results (Fung et al., 2007). A good starting point for this would be to build on the work

of Auregan et al. (2001).

• Investigating a one-dimensional mathematical model of a shock tube with a curved cen-

treline and varying diameter. As mentioned above, the results from §5.3 give promising

suggestions that such a model exists. For a straight shock tube, the disturbance is im-

plicitly assumed to be constant across the tube, and one difficult question with a curved

tube is what form to assume for the cross-duct disturbance. From figures 5.8–5.10, it

may well be helpful to consider a retarded time which varies across the duct; for example,

t̃ = t/hs
2.

• Modify the pseudospectral method used in chapter 4 to use Bessel functions rather than

Chebyshev polynomials as the radial basis, as suggested by Bi (2007). This has the

advantage that the basis functions have the correct behaviour at r = 0, which is that

basis functions with exp{imθ} dependence must be O(r|m|) as r → 0 . Preliminary results

suggest that far fewer radial basis functions are needed in this case than for Chebyshev

polynomials, and also that far fewer numerically-found eigenfunctions are spurious. This

would then enable a much higher azimuthal order to be used, so that, for example, liner
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splices could be accurately resolved. Moving to a Galerkin spectral method, rather than

the pseudospectral method used here, may also prove advantageous in this regard.

• Allowing for more abrupt changes in the duct parameters, either by considering higher

powers of ε in the multiple-scales expansion (Nayfeh et al., 1980; Adamou et al., 2005),

or by allowing sudden changes in parameters using the Wiener–Hopf technique. For

example, a Wiener–Hopf analysis of a straight duct connected to another section of duct

with constant curvature would be interesting.

• Extending the multiple scales analysis by expanding in powers of the unsteady pressure

amplitude. Such an approximation is called weakly nonlinear, and allows for modelling

effects such as buzz-saw noise, which has application in aeroengines.

• Investigating the effects of adding viscosity into the mean flow derived in §4.1. This

would enable the treatment of the mean flow boundary layers separating within the curved

section of the duct.

• Relaxing the assumption of a cylindrical duct and allowing the duct cross-section to be

arbitrary and slowly varying, in a similar way to Rienstra (2003b) for a straight duct.

This has applications in military aeroengine intakes, which typically distort from nearly

rectangular at the cowl lip to cylindrical at the fan face, in addition to being curved.

• Including torsion, allowing the duct to be coiled as well as curved. While this currently

has no direct application, it might be found that, for example, the addition of torsion

is beneficial to acoustic damping. This is complicated for nonzero mean flow, since the

cross-sectional components V and W become O(1) for nonzero torsion, rather than O(ε)

for zero torsion.

• Investigating further the surge signal that is incident on the downstream end of the intake.

The pressure profile in figure 4.19 was suggested by J. Longley (2006, private communica-

tion) as a generic typical surge profile. Menzies (2002) considered three alternative surge

pressure profiles, some of which had already shocked before entering the intake. Other

considerations are whether the flow reverses, and if so, what stagnation temperature and

pressure are assumed for the incoming fluid from the engine; due to combustion, these

need not be the same as atmospheric. Further experimental measurements would be

helpful to answer some of these questions.
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Appendix B

Curve-centred coordinate system

B.1 Curvature and torsion

Let q(s) denote a curve, parameterised by arc length s. Then the Frenet formulae give

dq

ds
= t

dt

ds
= κn

dn

ds
= τb − κt

db

ds
= −τn

where t is the tangent unit vector, n is the normal unit vector, b = t ∧ n is the binormal, κ is

the curvature and τ is the torsion. Hence

κ =

∥∥∥∥
d2q

ds2

∥∥∥∥ τ =
1

κ

d3q

ds3
.b

If the curve is given specified by y(s), giving q(s) = x(s)ex+y(s)ey in cartesian coordinates

x, y, z, then

κ(s) =

d2y

ds2√

1 −
(

dy

ds

)2 τ(s) ≡ 0. (B.1)

B.2 Coordinates

For a general vector x, write

x = q(s) + r cos
(
θ + α(s)

)
n + r sin

(
θ + α(s)

)
b
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where α(s) is determined below to yield an orthogonal coordinate system (Germano, 1982).

Then

dx = ds
(
t + r cos(θ + α)

(
(τ + α′)b − κt

)
− r sin(θ + α)

(
τ + α′

)
n
)

+ dr
(

cos(θ + α)n + sin(θ + α)b
)

+ dθ
(
− r sin(θ + α)n + r cos(θ + α)b

)

where a prime denotes differentiation by s. Setting α′ = −τ yields an orthogonal coordinate

system:

dx

ds
= hses =

(
1 − κr cos(θ + α)

)
t

dx

dr
= er = cos(θ + α)n + sin(θ + α)b

dx

dr
= reθ = r

(
− sin(θ + α)n + cos(θ + α)b

)

The derivatives of these vectors are

des

ds
= κ cos(θ + α)er − κ sin(θ + α)eθ

der

ds
= −κ cos(θ + α)es

deθ

ds
= κ sin(θ + α)es

der

dθ
= eθ

deθ

dθ
= −er

des

dθ
=

des

dr
=

der

dr
=

deθ

dr
= 0

B.3 Vector calculus

In this new coordinate system,

∇ =
1

hs
es

∂

∂s
+ er

∂

∂r
+

1

r
eθ

∂

∂θ

Consider the vector field u = ues + ver + weθ. Then

∇.u =
1

hs

[
∂u

∂s
+

1

r

∂

∂r
(rvhs) +

1

r

∂

∂θ
(whs)

]

∇ ∧ u = es

[
1

r

∂

∂r
(rw) − 1

r

∂v

∂θ

]
+ er

[
1

rhs

∂

∂θ
(hsu) −

1

hs

∂w

∂s

]
+ eθ

[
1

hs

∂v

∂s
− 1

hs

∂

∂r
(hsu)

]

∇2φ =
1

hs

[
∂

∂s

(
1

hs

∂φ

∂s

)
+

1

r

∂

∂r

(
rhs

∂φ

∂r

)
+

1

r2
∂

∂θ

(
hs
∂φ

∂θ

)]
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