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Computational aeroacoustics often uses high-order finite difference schemes optimized
to require relatively few points per wavelength; such optimized schemes are often called
Dispersion Relation Preserving (DRP). Here we ask the question: what is the equivalent of
points per wavelength for growing or decaying waves, and how well are such waves resolved
numerically? This paper shows that DRP optimized spatial derivatives perform poorly
for waves that are not of constant amplitude, under performing maximal-order schemes.
Such non-constant-amplitude waves are common in aeroacoustics, whether owing to the
O(1/r) decay of an expanding spherical wave, due to exponential decay caused by acoustic
linings, or because of the decay of high-azimuthal-order modes in the radial direction
towards the centre of a cylindrical duct. An equivalent criterion to points per wavelength
is proposed for non-constant-amplitude oscillations, reducing to the standard definition for
constant-amplitude oscillations and valid even for pure growth or decay with no oscillation.
Using this definition, coherent statements about points per wavelength necessary for a
given accuracy can be made for maximum-order schemes applied to non-constant-amplitude
oscillations. These features are illustrated through a numerical example.

I. Introduction

Computational aeroacoustics often uses high-order finite difference schemes optimized to need relatively
few points per wavelength. Given a series of equidistant points xj = j∆x and function evaluations fj = f(xj),
an explicit symmetric scheme numerically approximates the derivative f ′(xj) by

f ′

j =
1

∆x

N
∑

q=1

dq
(

fj+q − fj−q

)

. (1)

For such schemes, a function f(x) = Aeiαx with derivative f ′(x) = iαAeiαx gives a numerical derivative

f ′

j = iᾱAeiαxj , where ᾱ∆x = 2

N
∑

q=1

dq sin(α∆xq). (2)

Equation (2) represents the harmonic behaviour of the differentiation scheme. A classical choice of dq is to
give as accurate as possible a derivative in the limit ∆x → 0. This choice would give f ′

0 = f ′(0)+O
(

(∆x)2N
)

,
and such 2Nth order schemes are referred to here as maximal-order schemes. An alternative is to specify
that f ′

0 = f ′(0)+O
(

(∆x)2L
)

, and to use the remaining N −L degrees of freedom to optimize the derivative
such that ᾱ is as close to α as possible under some suitable metric. For example, Tam & Webb1 chose N = 3
and L = 2 and optimized the remaining coefficient to minimize

∫ η

0

(ᾱ∆x − α∆x)2 d(α∆x) (3)

with η = π/2, while Tam & Shen2 subsequently suggested η = 1.1 gives a more balanced scheme. These
optimized results are often presented as in figure 1.

The idea of analysing the harmonic behaviour of numerical derivatives in this way dates back at least to
Vichnevetsky & De Schutter5 and is discussed in detail by Vichnevetsky & Bowles6, while Holberg7 con-
sidered schemes based on optimizing the numerical group velocity. Lele8 considered the harmonic accuracy
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Figure 1. Graph of the effective numerical wavenumber ᾱ when calculating the derivative of a wave with actual
wavenumber α using a finite-difference scheme with points separated by ∆x. The 2nd, 4th, 6th and 14th order
schemes are the standard explicit maximum-order schemes involving 3, 5, 7, and 15 point stencils respectively,
while the 8th order tridiagonal implicit scheme uses a 7-point stencil. All DRP schemes are optimized subject
to being 4th order. DRP1 is optimized for |α∆x/π| < 0.5 while DRP2 is optimized for |α∆x/π| < 0.35

of implicit stencils, which were subsequently optimized by Kim & Lee4. Optimized schemes were termed
“spectral-like” by Lele8, “maximum resolution” by Kim & Lee4, and “extended wavenumber” by Zingg &
Lomax9, while Tam & Webb1 coined the term Dispersion Relation Preserving (DRP). This analysis spurred
further investigations, including into 2D spatial derivatives on triangular grids by Zingg & Lomax9, into
larger width optimized stencils by Bogey & Bailly10, into non-equidistant grids by Jakobsson11, and into
anisotropic effects on 2D grids with convection by Chenoweth, Soria & Ooi12, to name but a few. The field is
still being actively investigated, for example by Zhang & Yao13 using sup-norms and a simulated annealing
optimization algorithm, and is regularly rediscovered, as for example by Liu14 in the geophysics context.
For further details, see the excellent comparison by Zingg15, the review by Astley16, and the recent book by
Tam3.

Optimized DRP schemes are designed to require fewer points per wavelength for accurate resolution
of waves. The present paper is partially motivated by the question: what is the equivalent of points per
wavelength for exponentially growing or decaying waves, and how well are such waves resolved numerically?
Exponential growth or decay is often found in aeroacoustics, either due to acoustic linings that cause an
exponential decrease in amplitude as a wave propagates along the lining, or due to the natural decay in
the radial direction from wall to centreline of a high-order spinning mode in a cylindrical duct (such as is
commonly excited by an aeroengine rotor). Surface waves over acoustic linings also exhibit exponential decay
in the direction normal to the lining17–19, while weaker decay is often found due to the O(1/r) decay of a
spherical wavefront, which can be rather quick in the vicinity of a point source generating such a spherical
wave.

As an example, Tam, Ju & Chien20 considered the effect of liner splices on the decay of an upstream-
propagating wave in a cylindrical duct for aeroacoustically-relevant parameters. In nondimensional terms,
the axial wavenumber they needed to resolve was α = −14.7+7.6i in the no-flow case and α = −21.0+12.0i
in the case with flow. In both of these cases, the spatial wavenumber clearly has a significant imaginary
part, and it is unclear how figure 1 applies in such situations; this is the topic of this paper.
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II. Non-constant amplitude harmonic analysis

Here we consider oscillations that grow or decay as well as oscillating. Such oscillations are characterized
by a wavenumber α that is complex; this is the novel insight of this paper. While what follows is equally valid
for any finite difference scheme on any grid, here for simplicity we consider only symmetric finite difference
schemes on regularly spaced grids. We will, however, consider both implicit (i.e. compact) and explicit finite
difference schemes, so that our derivatives are given by

f ′

j +

M
∑

q=1

βq

(

f ′

j+q + f ′

j−1

)

=
1

∆x

N
∑

q=1

dq
(

fj+q − fj−q

)

⇒ ᾱ∆x =
2
∑N

q=1
dq sin(α∆xq)

1 + 2
∑M

q=1
βq cos(α∆xq)

. (4)

For M = 0 this reduces to the explicit (i.e. non-compact) scheme given in (1) and (2) above, with f ′

j

determined explicitly in terms of fj+q. The M = 1 and M = 2 cases are referred to as tridiagonal and
pentadiagonal implicit schemes respectively.

A. Performance of optimized and maximal-order schemes for non-constant-amplitude waves

Equation (4) still holds even for complex α. Considering first the relative phase error εp = |ᾱ/α − 1|, for
several explicit schemes εp is plotted in figure 2. As can be seen, the classical maximum-order schemes
perform better than the optimized DRP schemes when Im(α) 6= 0. This is not surprising, since the DRP
schemes have been optimized to give a good approximation only for real α and we now see this is at the
expense of behaviour for complex α. A similar situation is seen in figure 3 for implicit schemes.

B. Comparison of optimized and maximal-order schemes for non-constant-amplitude waves

Possibly a more relevant summary is to consider which of the maximal-order or DRP schemes is more accurate
for a given α. This is plotted (for values of α for which at least one scheme gives at least 1% relative accuracy)
for the relative phase error εp in figure 4 for explicit schemes, and in figure 5 for implicit schemes. The region
of α for which the optimized DRP schemes are more accurate than the classical maximum-order schemes
can be seen to be rather limited in both cases. Several other schemes have been investigated, including
those based on trigonometric interpolation by Tang & Baeder21, and similar results to those presented here
are seen in all cases considered. In all cases, and for any resolution ∆x, the optimized schemes are seen to
give worse phase accuracy than the maximum-order schemes for the parameters simulated by Tam, Ju &
Chien20.

The same is true when the relative group velocity error is considered. The relative group velocity is given
by differentiating (4),

dᾱ

dα
=

(

∑N

q=1 qdq cos(α∆xq)
)(

1 +
∑M

q=1 βq cos(α∆xq)
)

+
(

∑N

q=1 dq sin(α∆xq)
)(

∑M

q=1 qβq sin(α∆xq)
)

(

1 +
∑M

q=1
βq cos(α∆xq)

)2
. (5)

We define the relative group velocity error following Trefethen22 and Holberg7 as εg = |dᾱ/dα− 1|. Similar
plots to figures 4 and 5 are plotted in figures 6 and 7. The original DRP scheme of Tam & Webb1 and each
of the optimized tri-diagonal implicit schemes can be seen to fare particularly poorly with respect to the
group velocity error.

C. A points-per-wavelength equivalent for non-constant-amplitude waves

Figures 2 and 3 suggest that, for maximal order schemes, the accuracy depends on |α∆x| but is insensitive
to arg(α∆x) at least for small |α∆x|. Hence, the equivalent of points per wavelength for non-constant-
amplitude waves is suggested here to be PPW = 2π/|α∆x|, which reduces to the usual definition when
α is real. Using this definition, a certain accuracy can be guaranteed for a certain number of points per
wavelength if a maximum-order scheme is used. This definition is however not helpful for DRP schemes,
since their accuracy depends both on |α∆x| and arg(α∆x). It is therefore proposed here that, unless specific
a priori knowledge of the exact wavenumbers present in all directions (e.g. axial, radial and azimuthal
directions for waves in a cylinder) are known, computational simulations are likely to be more accurate using
the classical maximum-order schemes than using optimized DRP schemes.
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Figure 2. For explicit schemes, plots of |ᾱ/α − 1| for complex α on a logarithmic scale, giving the relative
accuracy of the numerical derivative. (a) and (b) use 7-point stencils, while (c) and (d) use 15-point stencils.
(a) and (c) are maximum-order schemes, while (b) and (d) are optimized 4th order schemes. Short and long
dashed lines correspond to α∆x for varying ∆x with and without flow respectively for the axial wavenumbers
investigated by Tam, Ju & Chien20.

One obvious class of a priori knowledge would be if waves were known to be of constant amplitude. This
is unlikely in practice, but unfortunately it is common to test DRP schemes by solving the 1D advection
equation

∂f

∂t
+

∂f

∂x
= 0, (6)

for which waves do propagate with constant amplitude. This helps explain why flaws in optimized DRP
schemes for non-constant-amplitude oscillations have not been demonstrated previously. A test case involving
non-constant-amplitude oscillations is given in the next section.
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Figure 3. Plots of |ᾱ/α− 1| for complex α on a logarithmic scale, giving the relative accuracy of the numerical
derivative, for tri-diagonal implicit 7-point schemes from Kim & Lee4. Short and long dashed lines correspond
to α∆x for varying ∆x with and without flow respectively for the axial wavenumbers investigated by Tam,
Ju & Chien20.

III. Numerical Demonstration

In this section, a rather basic numerical example is given to illustrate the theory mentioned above.
In order to avoid the complication of mixing spatial and temporal derivatives, but remaining relevant to
aeroacoustic applications, we here consider numerical solutions of the Pridmore-Brown equation23, given by

d2p

dr2
+

(

2αU ′

ω − Uα
+

1

r
−

ρ′

ρ

)

+

(

(ω − Uα)2ρ− α2 −
m2

r2

)

p = 0, subject to p(0) 6= ∞, (7)

where U(r) and ρ(r) are the velocity and density of the mean flow normalized by the centreline sound speed
and density respectively, ω is the Helmholtz number, α is the nondimensionalized axial wavenumber and m
is the azimuthal wavenumber. Even when U and ρ are constant, for which (7) reduces to Bessel’s equation
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Figure 4. Comparison, for complex wavenumbers α, showing where the maximum-order (red) or DRP (blue)
scheme is most accurate. White areas indicate regions where neither scheme is within 1% accuracy (i.e.
|ᾱ/α − 1| > 0.01). (a) and (b) are 7-point explicitly schemes, while (c) is a 15-point explicit scheme. All DRP
schemes are optimized subject to 4th order accuracy. Short and long dashed lines correspond to α∆x for
varying ∆x with and without flow respectively for the axial wavenumbers investigated by Tam, Ju & Chien20.
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Figure 5. Comparison, for complex wavenumbers α, showing which of the maximum-order (8th order, red)
or maximum-resolution (optimized, blue) 7-point tri-diagonal implicit schemes is most accurate. Optimized
schemes are taken from Kim & Lee4. White areas indicate regions where neither scheme is within 1% accuracy
(i.e. |ᾱ/α − 1| > 0.01). Short and long dashed lines correspond to α∆x for varying ∆x with and without flow
respectively for the axial wavenumbers investigated by Tam, Ju & Chien20.

with exact explicit solution
p = Jm

(

r
√

((ω − Uα)2 − α2)ρ
)

, (8)

this equation still exhibits oscillations with rapid variations in amplitude, and if a thin boundary layer is
introduced into U(r) and ρ(r) then even more dramatic amplitude variations are possible (e.g. figure 1 of
Ref. 24). Moreover, since this equation models the radial distribution of wave modes in a cylindrical duct, it
has several features in common with the equations being solved in the radial direction in time-domain CAA.

Numerical solutions will be sought to (7) through the auxiliary variable ξ(r), where

ξ(r) =
r(ω −Mα)

ρ(ω − Uα)2
dp

dr
⇒

ξ′ + r(ω −Mα)

[

1−
α2 +m2/r2

ρ(ω − Uα)2

]

p = 0

p′ −
ρ(ω − Uα)2

r(ω −Mα)
ξ = 0

(9)

where M = U(0). At r = 0 we specify p(0) = 0 if m 6= 0 or ξ′(0) = 0 if m = 0, and in either case
we also specify that ξ(0) = 0. At r = 1 we specify p(1) = 1 to force a non-zero solution. We discretize
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Figure 6. Comparison, for complex wavenumbers α, showing where the maximum-order (red) or DRP (blue)
scheme is most accurate according to the relative group velocity error εg. White areas indicate regions where
neither scheme is within 1% accuracy (i.e. |dᾱ/dα− 1| > 0.01). (a) and (b) are 7-point explicitly schemes, while
(c) is a 15-point explicit scheme. All DRP schemes are optimized subject to 4th order accuracy. Short and long
dashed lines correspond to α∆x for varying ∆x with and without flow respectively for the axial wavenumbers
investigated by Tam, Ju & Chien20.
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Figure 7. Comparison, for complex wavenumbers α, showing which of the maximum-order (8th order, red) or
maximum-resolution (optimized, blue) 7-point tri-diagonal implicit schemes is most accurate according to the
relative group velocity error εg. Optimized schemes are taken from Kim & Lee4. White areas indicate regions
where neither scheme is within 1% accuracy (i.e. |dᾱ/dα− 1| > 0.01). Short and long dashed lines correspond to
α∆x for varying ∆x with and without flow respectively for the axial wavenumbers investigated by Tam, Ju &
Chien20.

the interval [0, 1] with N + 1 equally spaced points, and write our 2N + 2 degrees of freedom as v =
(p0, ξ0, p1, ξ1, . . . , pN , ξN ). Then discretizing (9) and using the implicit derivative scheme (4) gives

v
′ = Lv + q

Bv
′ = 1

∆x
Dv

⇒
(

BL− 1

∆x
D
)

v = −Bq, (10)

where B is a banded matrix consisting of the βj coefficients (and is the identity for an explicit scheme), D is
a banded matrix consisting of the dj coefficients, and q has only one nonzero element forcing the boundary
condition p(1) = 1. Suitable asymmetric or reduced-width stencils are needed at the edges of the domain;
here, we use explicit stencils at the boundaries for stability, and choose them to be of very high order to
ensure that the global error is dominated by the symmetric stencils of interest within the domain, rather
than coming from the boundaries.

In order to compare with the analytic Bessel’s function solution (8), we take U(r) = M constant and
ρ(r) = 1. Since the solution is already normalized such that p(1) = 1, the maximum absolute error E =
maxNj=0{pj − p(j∆x)} is plotted in what follows. Figure 8(a) shows how the absolute error E varies with
number of points N for the 7-point explicit DRP and maximal order schemes, for parameters typical of an
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aeroacoustic mode near cut-off.
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mode near cut-off.

aeroengine rotor-alone tone near cut-off. Since this is a 9th radial-order mode, it is quite highly oscillatory
(see figure 8(e)), and so DRP schemes might be expected to perform substantially better than non-optimized
schemes in this case. Plots of p(r) for four different grids are given in figure 8(b–e). For small N no scheme
correctly resolves the solution, and the error is greater than one. The heavily optimized Tam & Webb DRP
scheme1 has a local minimum in the error at around N = 41 (c), though this is not enough to accurately
resolve the solution and the error remains above 50%. The more balanced DRP scheme of Tam & Shen2 has
a far more pronounced local minimum at around N = 52 (d); while this local minimum gives a reasonable
looking agreement in figure 8(d), the maximum absolute error E shows the solution does no better than 4%
accuracy, and moreover for finer grids than this the error returns to a clearly unacceptable 10% until the grid
becomes much finer. In order to obtain 1% accuracy N ≥ 99 is needed in this case, and this is achieved first
by the maximum order stencil. Clearly, the DRP schemes are only worth using in their “sweet spot” around
their local error minima, which are rather narrow, and therefore significant a priori knowledge is needed.

Figure 9 shows the E against N curves for two 15-point explicit stencils, a 4th order DRP stencil3 and
a maximum order stencil. For these stencils, 1% accuracy is obtained for N ≥ 45, and both optimized and
maximal order stencils achieve this almost simultaneously. Put another way, the DRP scheme shows no
advantage over the maximal order scheme in this case.

Figure 10 shows a similar plot for the tri-diagonal implicit 7-point schemes of Kim & Lee4. For errors
less than 10%, no advantage is provided by the optimized schemes over the maximal order scheme.

While this section has considered only one set of parameters, a number of other parameters have been
tried and rather similar results observed. Indeed, in cases with less oscillation the maximum order schemes
are observed to perform even better compared to the optimized schemes.

IV. Conclusion

We have reconsidered the rather classical theory of the harmonic behaviour of finite difference stencils,
where a wave with actual wavenumber α gives a numerical derivative with an effective numerical wavenumber
ᾱ. Here, we no longer restrict α to be real; non-real α corresponds to exponentially growing or decaying
waves, which it is argued are ubiquitous in aeroacoustics. Finite difference stencils that have been optimized
over real α are shown to perform worse for complex α than maximal order stencils, for which no such
assumption of real α has been made. This is of course unsurprising, and it is possible that stencils could be
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optimized over a range of complex α; this optimization has not been attempted here.
The accuracy of maximal order stencils appears to depend strongly on |α∆x| but rather weakly if at all

on arg(α∆x), at least for small |α∆x|, as can be seen in figures 2 and 3. Hence, an equivalent of points per
wavelength for non-constant-amplitude waves is suggested here to be PPW = 2π/|α∆x|, which reduces to
the usual definition when α is real. Using this definition, a certain accuracy can be guaranteed for a certain
number of points per wavelength if a maximum-order scheme is used. This definition is however not helpful
for DRP schemes, since their accuracy depends both on |α∆x| and arg(α∆x).

As a single numerical example to illustrate this behaviour, solutions to the Pridmore-Brown equation
have been sought. This equation has non-constant-amplitude oscillatory solutions, and is typical of CAA
solutions in the radial direction for cylindrical duct acoustics. Even for the significantly oscillatory solution
considered, optimized DRP schemes performed poorly relative to maximal order schemes due to the non-
constant-amplitude oscillations. The DRP schemes do have a “sweet spot” with reasonable behaviour, but
this is often rather narrow and neighbouring resolutions have poor accuracy of worse than 10% in the
case considered. Even in the sweet spot the accuracy was no better than 4% for the case considered. It
is therefore suggested here that, unless significant a priori knowledge of the exact wavenumbers present
in all directions is available (e.g. in the axial, radial and azimuthal directions for waves in a cylinder),
computational simulations are likely to be more accurate using the classical maximum-order schemes than
using optimized DRP schemes. In particular, one of the advantages of time-domain CAA simulations is to
consider broadband sound, in which case it is extremely unlikely that all relevant sources coincide with the
same DRP sweet spot.

The optimized schemes also performed worse than the maximal order ones for non-constant-amplitude
oscillations when the group error |dᾱ/dα− 1| rather than phase error |ᾱ/α− 1| was considered. The group
error is not relevant for the Pridmore-Brown example given here, since the Pridmore-Brown solution involves
a matrix inversion (10) which is therefore nonlocal, and hence correct propagation of information at the group
velocity is not tested. This suggests that the rather close behaviour of the 6th order (optimized) and 8th
order (maximal order) tri-diagonal schemes shown in figure 10 might be misleading, as figure 7 shows that
the 6th order scheme performs poorly at maintaining the correct group velocity compared with the maximal
order scheme.

Further possibilities for future research include optimizing numerical derivatives over a range of complex

wavenumbers, and investigating non-constant-amplitude oscillations on 2D grids or for temporal rather than
spatial derivatives, or indeed for combined spatio-temporal schemes (e.g. Refs. 25,26).
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