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A well-posed modified Myers boundary condition
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University of Cambridge, UK

The Myers boundary condition for acoustics within flow over an acoustic lining has

been shown to be illposed, leading to numerical stability issues in the time domain and

mathematical problems with stability analyses. This paper gives a modification to make the

Myers boundary condition well-posed, by accounting for a thin inviscid boundary layer over

the lining, and correctly deriving the boundary condition to first order in the boundary-

layer thickness. The modification involves two integral terms over the boundary layer. The

first may be written in terms of the mass, momentum, and kinetic energy thicknesses of

the boundary layer, which are shown to physically correspond a modified boundary mass,

modified grazing velocity, and a tension along the boundary. The second integral term is

related to the critical layer within the boundary layer.

The modified boundary condition is validated against high-fidelity numerical solutions of

the Pridmore-Brown equation for sheared inviscid flow in a cylinder. Absolute instability

boundaries are given for certain examples, though convective instabilities appear to always

be present for any boundary layer thickness.

I. Introduction

The interaction of acoustics with an acoustic lining is specified using the impedance of the lining. Taking
the fluctuating pressure within the fluid to be p(x) exp{iωt} and the velocity to be v(x) exp{iωt}, the
impedance of the lining is Z = p/(v ·n), where n is the surface normal pointing out of the fluid, and Z will
usually be a function of frequency ω. If the acoustics is on top of a mean flow that slips across the lining,
it is well known that this boundary condition must be modified.1–7 If the fluid velocity at the boundary is
U + u exp{iωt}, then the boundary condition becomes

iωu · n = (iω +U ·∇− (n ·∇U) · n) p/Z. (1)

This follows from matching fluid and solid normal displacement, rather than normal velocity, and is known
as the Myers7 or Ingard4–Myers7 boundary condition, although this equation (apart from the final term)
was earlier given by Miles (ref. 1, equation (3.3)’. This was shown to be the correct asymptotic limit of
a vanishingly-thin inviscid boundary layer, apparently independently, by Eversman & Beckemeyer5 and
Tester,6 though the boundary needed to be extremely thin to attain this limit in some cases.6, 8

Unfortunately, (1) applied with slipping flow leads to numerical instabilities (for example, Refs 9, 10)
and mathematical illposedness.11 In order to circumvent slipping flow, there has been recent interest in
acoustics within sheared mean flow,12, 13 following the foundations set by Pridmore-Brown14 and Mungur &
Plumblee.15 This paper will concentrate on the effect of a thin but finite-thickness inviscid boundary layer
over the acoustic lining by incorporating the first- and second-order corrections in the boundary layer thick-
ness. Such a situation has been investigated before,6, 8, 16–25 at least to first order, but this is the first time
to the authors knowledge that a simple asymptotically-valid Myers-type boundary condition incorporating
a finite-thickness boundary layer has been proposed, compared to high-fidelity numerical simulations of the
Pridmore-Brown equation, and had a stability analysis performed.
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II. Governing equations

Our governing equations are the equations of motion for an inviscid compressible perfect gas,26

∂ρ

∂t
+∇ · (ρu) = 0, ρ

Du

Dt
= −∇p,

Dp

Dt
=

γp

ρ

Dρ

Dt
, (2)

where D/Dt = ∂/∂t+u ·∇, ρ is the density, u is the velocity, p is the pressure, and γ is the ratio of specific
heats.

Although what follows is valid for any geometry, we will concern ourselves here with a circular cylinder,
described by (x, r, θ) coordinates with the x-axis running along the centreline of the cylinder. We take the
flow to be (for real integer m)

u = U(r)ex +
(

ũ(r)ex + ṽ(r)er + w̃(r)eθ
)

exp{iωt− ikx− imθ}, (3a)

p = P + p̃(r) exp{iωt− ikx− imθ}, (3b)

ρ = R(r) + ρ̃(r) exp{iωt− ikx− imθ}, (3c)

where the tilde denotes acoustic quantities which are assumed to be small compared with the steady mean
flow. We nondimensionalize distance by the radius of the cylinder, velocity by the centreline mean-flow
speed of sound

√

γP/R(0), and density by the centreline mean-flow density R(0), implying that pressure is
nondimensionalized by γP where P is the mean-flow pressure. Under this nondimensionalization, the duct
wall is at r = 1, R(0) = 1, P = 1/γ, M = U(0) is the centreline mean-flow Mach number, and ω is the
Helmholtz number.

Substituting (3a–c) into (2) and taking only terms linear in the acoustic quantities gives the linearized
governing equations as

iR(ω − Uk)ṽ = −
dp̃

dr
, iR(ω − Uk)w̃ =

im

r
p̃, iR(ω − Uk)ũ = ikp̃−R

dU

dr
ṽ,

i(ω − Uk)ρ̃ = −ṽ
dR

dr
−

R

r

d(rṽ)

dr
+

i

r
mRw̃ + ikRũ,

i(ω − Uk)p̃ =
1

R

(

i(ω − Uk)ρ̃+
dR

dr
ṽ

)

,

which, after eliminating every acoustic variable but p̃, gives the Pridmore-Brown14 equation in cylindrical
form

p̃′′ +

(

1

r
+

2kU ′

ω − Uk
−

R′

R

)

p̃′ +

(

R(ω − Uk)2 − k2 −
m2

r2

)

p̃ = 0, (4)

where a prime denotes d/dr. The radial velocity ṽ, needed for the boundary condition, is given by ṽ =
ip̃′/(R(ω − Uk)).

At r = 0 we require p̃ to be regular. The boundary condition to be applied at r = 1 is p̃/ṽ = Z, giving

iωZp̃′ − ω2R(1)p̃ = 0.

The Myers boundary condition (1), under the assumption that the mean-flow is constant apart from an
infinitely-thin boundary layer at r = 1, predicts that

iωZp̃′ −
(

ω −Mk
)2
p̃ = 0.

It is this boundary condition that we propose to modify here.

III. Derivation of the modified boundary condition

In this section, we consider a thin boundary layer about r = 1 of typical width δ, outside which the mean
flow is uniform, so that U(r) = M and R(r) = 1 for the majority of the flow. (The boundary condition
derived here turns out to be valid even for nonuniform mean flow outside the boundary layer.)

If the boundary layer did not exist, the solution to (4) regular at r = 0 would be

p̃(r) = EJm(αr) where α2 = (ω −Mk)2 − k2.
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Accounting for the boundary layer, the asymptotics (the details of which are given in appendix A) give a
composite asymptotic solution of

p̃(r) = EJm(αr) − αEJ′m(α)

∫ r

0

1−

(

ω − U(r)k
)2
R(r)

(ω −Mk)2
dr +O(δ2). (5)

This shows very good agreement with the numerics, as shown in section §IV. However, in order to derive
the correction to the Myers boundary condition to O(δ), it turns out to be necessary to derive the pressure
within the boundary layer to O(δ2). This is again done in appendix A, with the result that, evaluated at
the wall lining r = 1,

p̃(1) = EJm(α) − αEJ′m(α)δI0 +O(δ2),

ṽ(1) =
i
(

ω − U(1)k
)

(ω −Mk)2
[

αEJ′m(α) −
(

k2 +m2
)

δI1EJm(α) +O(δ2)
]

,

with

δI0 =

∫ 1

0

1−

(

ω − U(r)k
)2
R(r)

(ω −Mk)2
dr, δI1 =

∫ 1

0

1−
(ω −Mk)2

(

ω − U(r)k
)2
R(r)

dr. (6)

Note that, since the integrands of δI0 and δI1 are identically zero outside the boundary layer, δI0 and δI1
are indeed both of order δ.

We now arrive at our generalization of the Myers boundary condition by stipulating that Z = p̃(1)/ṽ(1),
giving the boundary condition

i
(

ω − U(1)k
)

Z
[

αJ′m(α)−
(

k2 +m2
)

δI1Jm(α)
]

− (ω −Mk)2
[

Jm(α) − αJ′m(α)δI0
]

= 0. (7)

This is the main result of the paper. For most purposes, no slip implies that U(1) = 0, although setting
U(1) 6= 0 in order to model surface roughness23 is also possible.

A. Interpretation of the δI0 term

At least part of the modified Myers boundary condition (7) may be interpreted physically. Let us first define
the boundary layer mass, momentum, and kinetic energy thicknesses of the boundary layer to be

δmass =

∫ 1

0

1−R(r) dr, δmom =

∫ 1

0

1−
R(r)U(r)

M
dr, δke =

∫ 1

0

1−
R(r)U(r)2

M2
dr.

Multiplying out δI0 gives

δI0 =
1

(ω −Mk)2
(

ω2δmass − 2ωkMδmom + k2M2δke
)

,

which, when substituted into (7) gives the boundary condition

αJ′m(α)
[

i
(

ω − U(1)k
)

Z + ω2δmass − 2ωkMδmom + k2M2δke
]

− Jm(α)
[

(ω −Mk)2 + i
(

ω − U(1)k
)

Z
(

k2 +m2
)

δI1
]

= 0.

The δI0 term may therefore be thought of as modifying the impedance from Z to Zmod, where

i
(

ω − U(1)k
)

Zmod = i
(

ω − U(1)k
)

Z + ω2δmass − 2ωkMδmom + k2M2δke.

These terms have a physically significant interpretation. To see this, first consider a theoretical acoustic
lining modelled as a flexible impermeable sheet, whose displacement η in the normal direction pointing out
of the fluid is governed by

d
∂2η

∂t2
= p̃−Kη −D

∂η

∂t
+ T

∂2η

∂x2
, (8)
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where p̃ is a forcing term due to the acoustic pressure, d is a mass density, K is a spring constant, D is
a damping constant, and T is an elastic tension in the sheet. Assuming η and p̃ to have exp{iωt − ikx}
dependence gives

i
(

ω − U(1)k
)

Z =
p̃

η
= −ω2d+ iωD +K + k2T.

The modified impedance Zmod based on this theoretical boundary model is therefore

i
(

ω − U(1)k
)

Zmod =
p̃

ηmod

= −ω2(d− δmass) + iωD +K + k2(T +M2δke)− 2ωkMδmom,

which could be interpreted as a second theoretical boundary with displacement ηmod and governing equation

(d− δmass)

(

∂

∂t
−

Mδmom

d− δmass

∂

∂x

)2

ηmod = p̃−Kηmod −D
∂ηmod

∂t
+

(

T +M2

(

δke +
δ2mom

d− δmass

))

∂2ηmod

∂x2
. (9)

The modified boundary layer term δI0 therefore represents three physical effects:

1. The mass deficit δmass in the boundary layer causes the effective boundary to be lighter.

2. The momentum deficit Mδmom in the boundary layer causes the advection (accounted for in the Myers
boundary condition at a velocity M) to be corrected by the effective velocity deficit of the boundary
layer, Mδmom/(d− δmass).

3. The kinetic energy deficit 1
2
M2δke in the boundary layer, together with the momentum deficit, instan-

tiate themselves as a tension along the boundary.

The effect of tension along the boundary is particularly interesting, since it suggests there may be unforced
travelling waves permitted along the boundary (which would be damped if D 6= 0). Note that if T = 0 the
uncorrected boundary displacement (8) is local and does not support or prevent travelling waves, whereas
the modified boundary (9) is always nonlocal and does support travelling waves. In the limit δ → 0, this
added tension disappears and, at fixed frequency, the wavenumbers for these travelling waves tend to infinity
as δ → 0. This may well correspond to the illposedness and instability of the Myers boundary condition at
arbitrarily short wavelengths.11

B. Interpretation of the δI1 term

The δI1 term is important, in that it is this term that appears to be responsible for the wellposedness of the
modified boundary condition. The interpretation of the δI1 term, though, is more tricky, and no physical
explanation of it is given here. It is worth noting that the presence or absence of a critical layer at r = r∗,
for which ω − U(r∗)k = 0, may have a significant affect on δI1, especially if (1− r∗)/δ ≪ 1.

Asymptotic values of δI1 may be calculated, and it can be shown that, for U(1) = 0,

δI1 ∼

∫ 1

0

1− 1/R(r) dr +
2kM

ω

∫ 1

0

1−
U(r)

MR(r)
dr for ω/k ≫ 1

δI1 ∼
−M2k

ωR(1)U ′(1)
for ω/k ≪ 1

Moreover, for a constant density R(r) ≡ 1 and a linear boundary layer profile,

U(r) =

{

M(1− r)/δ (1− r) < δ

M (1− r) > δ
, (10)

δI1 may be directly calculated to give δI1 = δMk/ω.
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C. The modified boundary condition in the time domain

In order to apply the new modified boundary condition in the time domain, (7) needs some coercing into a
suitable form. One possible way to do this would be to assume that the density is uniform and the boundary
layer profile linear (10) with a given momentum thickness δmom = δ/2. Then (7) may be rearranged to give

∂

∂t

(

∂

∂t
+M

∂

∂x

)

ṽ + 2Mδmom

∂

∂x

(

∂2

∂x2
+

∂2

∂θ2

)

p̃ =

(

∂

∂t
+M

∂

∂x

)2

ṽb,

where ṽb = p̃/Zmod is the velocity of the boundary using a modified boundary model incorporating the δI0
terms from §IIIA above. For example, if the desired boundary model in the time domain were (8), then ṽb
would be given by ṽb = ∂ηmod/∂t with ηmod satisfying (9).

IV. Comparison with numerics

In order to validate the above asymptotics, the asymptotic solution will be compared with a numerical
solution to the full Pridmore-Brown equation (4). The numerical solutions were generated using a 12th order
symmetric finite-difference discretization with unevenly spaced collocation points, so that the collocation
points could be clustered within the boundary layer. Typically 8000 points were used, with at least 400
points within the boundary layer irrespective of the width of the boundary layer. The r = 1 boundary
condition used was p̃(1) = 1. A Newton–Raphson iteration was then used to find roots of the dispersion
relation p̃/ṽ = Z.

The boundary layer profile used for most examples given here was chosen to be the tanh profile of
Rienstra & Vilenski,24

U(r)/M = tanh

(

1− r

δ

)

+
(

1− tanh(1/δ)
)

(

1 + tanh(1/δ)

δ
r + (1 + r)

)

(1− r), (11)

with constant density R(r) ≡ 1.
For this profile with δ = 2 × 10−4, two comparisons between the numerical solution to (4), the first-

order-accurate composite solution (5) and the uniform solution are given in figure 1. Figure 2 gives a
comparison between duct modes satisfying the impedance boundary condition using the numerics, the Myers
boundary condition, and the modified boundary condition (7). Despite this being for such a thin boundary
(δ = 2 × 10−4), the highly cutoff modes and the surface mode in the upper-right quadrant are noticeably
affected by the finite thickness of the boundary layer.

V. Stability and well-posedness

One major need for a generalization of the Myers boundary condition is that the Myers boundary condi-
tion is illposed,11 manifesting itself as numerical instability,9, 10 which we hope to alleviate using this modified
boundary condition (7). Whatever the boundary condition at r = 1, it yields either allowable values of ω if
k is specified, or allowable values of k if ω is specified; these are here referred to as modes. For the problem
to be wellposed, there should be a lower bound to Im

(

ω(k)
)

for real k. For further explanation, see Ref. 11.
Figure 3 shows ω(k) as k is varies with Im(k) = 0. The parameters used are the same as Rienstra &

Vilenski.24 Note that for both the numerical solution and the modified boundary condition, Im
(

ω(k)
)

is
bounded below (say by −5), while the Myers solution is unbounded. Hence, the numerical and modified
boundary condition solutions are wellposed. Since they are wellposed, we may apply the Briggs–Bers stability
analysis27, 28 to these cases. As there are real values of k with Im

(

ω(k)
)

< 0, there is a convective instability
present. However, we must also look for absolute instabilities, where the system chooses its own preferred
frequency and disturbances at that frequency grow exponentially in time. Absolute instability occurs for
values of ω with Im(ω) < 0 for which two modes collide in the k-plane giving a double root. Only if this
collision is between a mode originating for large Im(ω) from the lower-half k-plane and one originating
from the upper-half k-plane does this then signify an absolute instability (see Ref. 11 for details). For this
example, such a pinch does occur (as shown in figure 3), but for Im(ω) > 0, so that in this case no absolute
instabilities are present. However, as the boundary layer thickness δ is reduced, this double root moves into
the lower-half ω-plane and produces an absolute instability. The critical value of δ for which Im(ω) = 0 for
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Numeric

Asymptotic

Uniform

a) k = −44.2 + 1.1i b) k = −44.2 + 1.1i (detail)

c) k = −17.6− 21.0i d) k = −17.6− 21.0i (detail)
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Figure 1. Plots of Re(p̃(r)) against r, comparing the numerical solution to the Pridmore-Brown equation (4),
the first-order asymptotic solution (5), and the uniform-flow solution. ω = 31, m = 24, and U(r) is given by (11)
with M = 0.5 and δ = 2× 10−4. The values of k used correspond to a cuton upstream-propagating mode (a and
b) and a partially cutoff downstream-propagating mode (c and d) if the lining has impedance Z = 2 + 0.6i.
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Numeric

New BC

Myers

a) All modes b) Cutoff modes

400400

200200

00

−200−200

−400−400

−40 −21 −20−20 −190 20 40 60

Figure 2. Comparison of axial wavenumbers k, plotted in the k-plane, for fully numerical solutions and solutions
of the modified (7) and original Myers boundary conditions. ω = 31, m = 24, Z = 2 + 0.6i, and U(r) is given
by (11) with M = 0.5 and δ = 2× 10−4.

Numeric

New BC

Myers

Numeric Instability

New BC Instability

25

20

15

10

5

0

−5

−10
−30 −20 −10 0 10 20 30

Figure 3. Plotted in the ω-plane are trajectories of ω(k) as k is varied with k real, for the fully numerically-
calculated roots, solutions to the modified Myers boundary condition (7), and the original Myers boundary
condition. × and + denote values of ω for which two k-roots coincide (a double root). m = 0, Z = 3 + 0.15iω −

1.15i/ω, with U(r) given by (11) with M = 0.5 and δ = 2× 10−3.

7 of 13

American Institute of Aeronautics and Astronautics Paper 2010–3942



Numeric

New BC

Myers

100

50

0

−50

−100
−20 0 20 40 60 80

Figure 4. Trajectories of modes in the k-plane as ω is varied from 5 to 5 − 5i, with other parameters as for
figure 3. The points are for ω = 5. Since the modes on the far right cross the real k-axis as Im(ω) is varied,
they correspond to downstream-propagating instabilities.

this double root is found numerically to be 8.6×10−4 for the numerics, occurring at ω = 4.3, k = 19.8+95.3i,
and δ = 9.7× 10−4 using the new modified boundary condition, occurring at ω = 3.7 and k = 22.8 + 82.1i.

For values of δ sufficiently large that there is no absolute instability, the system here is convectively
unstable, with a downstream-propagating mode that has Im(k) > 0. This can be seen by applying the
Briggs–Bers27, 28 criterion, which says that no convective instabilities are present provided Im(ω) is sufficiently
negative; i.e. below all ω(k) for real k. We may therefore ascertain the stability of a mode by tracking modes
as ω is varies from sufficiently imaginary to real. This is done for Re(ω) = 5 and Im(ω) ∈ [−5, 0] in figure 4.
All modes but one are seen to be stable. The unstable mode on the far right of figure 4 is the mode previously
suggested by Rienstra29 as a possible hydrodynamic instability mode. Note that the original Myers boundary
condition fails to correctly predict the behaviour of this mode.

There are several different models for the impedance Z. For single-frequency simulations a common
assumption is that Z is constant. However, even in these situations the dependence of Z on ω is important
for stability. The same situation as figure 3, but with Z fixed at a constant value of 3 + 1.39i, is shown
in figure 5. This demonstrates that the new boundary condition also regularizes this problem even if the
impedance is taken to be constant, although in this case an absolute instability is now present, as seen in
the figure.

Recently, Rienstra & Darau25 performed a similar analysis for a flat liner subjected to incompressible
flow, using a linear velocity profile (10) and a Helmholtz resonator model for the impedance, Z = D+ idω−
i cot(ωL). Nondimensionalizing their parameters under the assumption of a 0.2 meter diameter cylindrical
duct (chosen to exaggerate any effect of the cylindrical geometry), the corresponding stability graph of ω(k)
for real k is given in figure 6. In this case, Rienstra & Darau predict absolute instability for δ < 3.6× 10−4.
Here, the modified boundary condition and the numerics both predict a critical value for δ of 3.7 × 10−4,
which is in good agreement with Rienstra & Darau considering they were considering a flat surface and
incompressible flow, and here the duct is cylindrical and the flow compressible.

So far, all of these results have assumed an axisymmetric mode with azimuthal order m = 0. However,
the new boundary condition multiplies the I1 term by k2+m2, and so large values of m may lead to different
behaviour. However, similar simulations to those shown here demonstrate that even in this case the problem
is well posed.
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Numeric

New BC

Myers

Numeric Instability

New BC Instability

4
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Figure 5. Same plot as figure 3 but with Z = 3 + 1.39i.

U(r) profile M m Z δ numerical δ asymptotic

tanh (11) 0.5 0 3 + 0.15iω − 1.15i/ω 8.6× 10−4 9.7× 10−4

tanh (11) 0.5 0 3 + 1.39i 3.0× 10−2 8.2× 10−2

tanh (11) 0.5 24 2 + 0.8iω − cot(0.06ω) 1.7× 10−3 1.7× 10−3

linear (10) 0.176 0 2 + 3.9iω − cot(0.3ω) 3.7× 10−4 3.7× 10−4

Table 1. Table of critical boundary layer thicknesses (δ) for several different situations. For smaller values of
δ, the system is absolutely unstable. For larger values of δ, , the system is at most is convectively unstable.

The critical values for δ found to date are given in table 1. They show a good agreement between the
modified boundary condition and the numerics, with very good agreement for thin boundary layers (as is
to be expected). In all these cases, the system was still convectively unstable for a boundary layer of width
δ = 0.1, though as δ is made progressively larger the frequencies for which instability can occur become
smaller. For very small values of δ the solution approximates the Myers solution until k becomes sufficiently
large that the O(δ) term in the modified boundary condition become important and the problem remains
regularized. Setting δ = 0 yields the Myers boundary condition and the problem once again becomes illposed.

VI. Conclusion

The main conclusion of this paper has to be that the new modified Myers boundary condition, derived
asymptotically for thin boundary layers and given in (7) (with δI0 and δI1 given in equation (6)), solves the
illposedness problem associated with the standard Myers boundary condition. It can therefore be expected
to alleviate the numerical instabilities associated with simulations using the Myers boundary condition in the
time domain (applied, for example, as suggested in §IIIC), as well as allowing a rigorous stability analysis
(which is helpful for numerical simulations in the frequency domain).

The stability analyses conducted on the examples given here indicate that these examples are absolutely
unstable for sufficiently thin boundary layers, and are convectively unstable otherwise. The only unstable
mode found is the one predicted as being a hydrodynamic instability by Rienstra.29
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Numeric
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New BC Instability
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Figure 6. The same plot as figure 3, but with Z = 2 + 3.9iω − i cot(0.3ω), with U(r) given by (10) with M = 0.176
and δ = 3.6× 10−4.

The new terms in the boundary layer are encapsulated with the δI0 and δI1 terms, which are integrals over
the boundary layer and are valid for any boundary layer profile. The δI0 term may be calculated knowing
only the mass, momentum, and kinetic energy thicknesses of the boundary layer. These three terms can be
physically interpreted as a change in boundary mass, change in convected boundary speed, and a tension
along the boundary. The δI1 term is more difficult to classify, but expressions are given in §IIIB in the high-
and low-frequency limits, and an exact expression is given for δI1 for a linear boundary layer profile. It is
the δI1 term that is responsible for regularizing the Myers boundary condition, though it should be stressed
that both terms are important in order that the new boundary condition be asymptotically accurate.

The asymptotics have been derived under the assumption that O(δ2) quantities may be neglected in the
boundary condition; this is only valid provided k, m and ω remain O(1). For example, once k becomes
sufficiently large that a wavelength becomes comparable to the boundary layer thickness, the asymptotics
described in this paper can be expected to be inaccurate.

As well as regularizing the Myers boundary condition, the new boundary condition may be used to gain
insight into the effect of a boundary layer on the modal wavenumbers. This effect is small (i.e. O(δ)), and
is typically of little interest for most of the acoustic modes. However, for surface modes, or when surface
modes and acoustic modes interact, the effect on modal wavenumbers may be important.

For all examples considered here, R(r) ≡ 1, and so δmass = 0. However, cases when δmass 6= 0 are both
realizable in practice and potentially interesting mathematically, especially for ω ≫ 1, since δI0 includes an
ω2δmass term. Such situations will be investigated further in future.

A. Derivation of the boundary layer asymptotics

In this appendix, we derive the acoustic field within a thin boundary layer of width δ correct to O(δ2).
For those not interested in the derivation, a summary of the major results derived here is given in the final
paragraph of this appendix.

Our governing equation is the cylindrical form of the Pridmore-Brown equation (4) for the acoustic
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pressure in a sheared flow,

p̃′′ +

(

1

r
+

2kU ′

ω − Uk
−

R′

R

)

p̃′ +

(

R(ω − Uk)2 − k2 −
m2

r2

)

p̃ = 0,

with the radial velocity given by ṽ = ip̃′/(R(ω − Uk)). Here, U(r) is the mean-flow velocity and R(r) is the
mean-flow density, nondimensionalized so that U(0) = M , the Mach number, and R(0) = 1. We consider
a thin boundary layer about r = 1 of typical width δ, outside of which the mean flow is uniform, so that
U(r) = M and R(r) = 1 for r outside the boundary layer.

If the boundary layer did not exist, the solution to (4) would be p̃(r) = p̃o(r),

p̃o(r) = EJm(αr) α2 = (ω −Mk)2 − k2.

Expanding this for r = 1− δy gives

p̃o(1 − δy) = EJm(α) − δyαEJ′m(α) − 1
2
δ2y2E

[

αJ′m(α) +
(

α2 −m2
)

Jm(α)
]

+O(δ3). (12)

This is our outer expansion, that the inner expansion within the boundary layer must match with.
To consider the boundary layer, it is helpful to first rearrange the governing equation to give

(

rp̃′

(ω − Uk)2R

)

′

+

(

r −
k2r +m2/r

(ω − Uk)2R

)

p̃ = 0. (13)

Substituting r = 1− δy into (13) and using a subscript y to denote d/dy gives

(

p̃y
(ω − Uk)2R

)

y

= δ

(

yp̃y
(ω − Uk)2R

)

y

− δ2
(

1−
k2 +m2

(ω − Uk)2R

)

p̃+O(δ3).

In a slight but obvious abuse of notation, U(y) is used to represent U(r) with r = 1 − δy, and similarly for
R. We pose the solution p̃ = p̃0 + δp̃1 + δ2p̃2 +O(δ3).

To leading order,

p̃0 = A0 +B0y −B0

∫ y

0

1−

(

ω − U(y′)k
)2
R(y′)

(ω −Mk)2
dy′.

Matching with the outer solution (12) at leading order gives A0 = EJm(α) and B0 = 0. Since B0 = 0, at
first order we similarly find

p̃1 = A1 +B1y −B1

∫ y

0

1−

(

ω − U(y′)k
)2
R(y′)

(ω −Mk)2
dy′,

while matching with the outer solution (12) gives B1 = −αEJ′m(α) and A1 = B1I0, with

I0 =

∫

∞

0

1−

(

ω − U(y)k
)2
R(y)

(ω −Mk)2
dy.

At second order we find

p̃2 = A2 +B2

∫ y

0

(

ω − U(y′)k
)2
R(y′)

(ω −Mk)2
dy′ +B1

∫ y

0

y′
(

ω − U(y′)k
)2
R(y′)

(ω −Mk)2
dy′

−A0

∫ y

0

(

ω − U(y′)k
)2
R(y′)

∫ y′

0

1−
k2 +m2

(

ω − U(y′′)k
)2
R(y′′)

dy′′ dy′.
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Rewriting this in terms of bounded integrals gives (to help with matching with the outer solution) gives

p̃2 = A2 +B2y −B2

∫ y

0

1−

(

ω − U(y′)k
)2
R(y′)

(ω −Mk)2
dy′ +B1

∫ y

0

y′

(

(

ω − U(y′)k
)2
R(y′)

(ω −Mk)2
− 1

)

dy′ + 1
2
B1y

2

−A0

∫ y

0

(

(

ω − U(y′)k
)2
R(y′)

(ω −Mk)2
− 1

)

∫ y′

0

(ω −Mk)2 −
(

k2 +m2
) (ω −Mk)2
(

ω − U(y′′)k
)2
R(y′′)

dy′′ dy′

−A0

(

k2 +m2
)

∫ y

0

(

∫ y′

0

1−
(ω −Mk)2

(

ω − U(y′′)k
)2
R(y′′)

dy′′ − I1

)

dy′

−A0
1
2

(

(ω −Mk)2 − k2 −m2
)

y2 −A0I1(k
2 +m2)y,

where all the integrals are bounded provided

I1 =

∫

∞

0

1−
(ω −Mk)2

(

ω − U(y)k
)2
R(y)

dy

We now match this to the outer solution (12). The O(y2) terms match identically using our definitions of
A0 and B1 above. Matching the O(y) terms gives B2 = A0I1(k

2+m2), while matching the O(1) terms gives

A2 = B2I0 +B1

∫

∞

0

y

(

1−

(

ω − U(y)k
)2
R(y)

(ω −Mk)2

)

dy

+A0

∫

∞

0

(

(

ω − U(y)k
)2
R(y)

(ω −Mk)2
− 1

)

∫ y

0

(

ω −Mk)2 −
(

k2 +m2
) (ω −Mk)2
(

ω − U(y′)2
)

R(y′)
dy′dy

+A0(k
2 +m2)

∫

∞

0

(

∫ y

0

1−
(ω −Mk)2

(

ω − U(y′)2
)

R(y′)
dy′ − I1

)

dy.

Fortunately, for the modified Myers boundary condition we do not need to evaluate A2!

A. Summary

Now that we have the inner solution through the boundary layer, we may calculate p̃ and ṽ at the wall r = 1,
y = 0. Using ṽ = ip̃′/(R(ω − Uk)), we find that

p̃(1) = EJm(α) − αEJ′m(α)δI0 +O(δ2),

ṽ(1) =
i
(

ω − U(1)k
)

(ω −Mk)2
[

αEJ′m(α) −
(

k2 +m2
)

δI1EJm(α) +O(δ2)
]

,

where we may write δI0 and δI1 in terms of integrals over r as

δI0 =

∫ 1

0

1−

(

ω − U(r)k
)2
R(r)

(ω −Mk)2
dr, δI1 =

∫ 1

0

1−
(ω −Mk)2

(

ω − U(r)k
)2
R(r)

dr.

To first order, we may form the composite solution for the pressure,

p̃c(r) = Jm(αr) − αJ′m(α)

∫ r

0

1−

(

ω − U(r)k
)2
R(r)

(ω −Mk)2
dr.+O(δ2).
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