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Sound Transmission in Strongly-Curved

Slowly-Varying Cylindrical and Annular Lined Ducts

with Flow

E.J. Brambley∗ N. Peake†

In this paper we consider the propagation of acoustic waves along a curved hollow or

annular duct with lined walls. The curvature of the duct centreline and the wall radii

vary slowly along the duct, allowing application of an asymptotic multiple scales analysis.

This generalises Rienstra’s analysis of a straight duct of varying cross-sectional radius.

The result of the analysis is that the modal wavenumbers and mode shapes are determined

locally as modes of a torus with the same local curvature, while the amplitude of the modes

evolves as the mode propagates along the duct. The duct modes are found numerically at

each axial location using a pseudo-spectral method. Unlike the case of a straight duct, there

is a fundamental asymmetry between upstream and downstream propagating modes, with

some mode shapes tending to be concentrated on either the inside or outside of the bend

depending on the direction of propagation. The interaction between the presence of wall

lining and curvature is investigated in particular; for instance, in a representative case it is

found that the curvature causes the first few acoustic modes to be more heavily damped by

the duct boundary than would be expected for a straight duct. Analytical progress can be

made in the limit of very high mode order, in which case well-known ‘whispering gallery’

modes, localised close to the wall, can be identified.

I. Introduction

The propagation of acoustic waves along curved pipes has attracted much attention, with a wide range
of applications. One application, which is the motivation for the research described in the current paper, is
to the prediction of unsteady flow along the sort of convoluted intakes often found on the engines of military
aircraft. One issue here might be the behaviour of sound generated by the fan as it propagates upstream, or
alternatively at very large amplitudes the propagation of surge events.

A selection of previous work will be mentioned here. Keefe & Benade1 used ideas of impedance matching
to study the propagation of very long waves along a curved pipe. Pagneux and co-workers have developed
mode-matching techniques to describe propagation in various sorts of curved ducts with zero mean flow,2–5

and have also studied sound attenuation round a lined bend.6 More analytically-based studies have tended to
use specific limits, including slender curved ducts7 and weakly curved ducts in two8 and three dimensions.9 In
a different direction, Rienstra10 derived a uniformly-valid approximation for the unsteady field in a straight
duct with circular cross-section carrying mean flow which varies slowly in the axial direction. Rienstra’s
approach has been validated against finite element computations.11 This work has been extended in a
number of ways; for instance to the case of arbitrary cross-section,12 swirling mean flow,13 and to a uniform
description of modal cut-off.14 However, all of this has been for straight ducts, and the aim in the current
paper is therefore to present an extension of Rienstra’s analysis to the case of a curved duct with mean flow.

The paper is organised as follows. In section II we show how to write down the steady potential flow
through a curved duct. In section III we describe the solution for the unsteady flow; as a mode propagates
along the duct it is distorted, and the description of this process involves first the determination of the local
axial wavenumber and mode shape and second the determination of the slowly-varying amplitude. This local
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eigenproblem must be solved numerically, and our pseudo-spectral method for doing this, together with error
control and validation, is described in section IV. Results are presented in section V, while in section VI the
way in which modes can transition from cuton to cutoff is considered. In section VII some initial results
using ray theory to describe high-order duct modes are presented.

II. Steady flow

We consider a duct whose centreline possesses nonzero curvature but zero torsion (i.e. it lies in a
plane). The duct is hollow or annular, and has a circular cross-section in planes normal to the centreline.
Far upstream the duct is assumed to be straight and of uniform outer radius l∗ (∗ denotes dimensional
variables), and the radii of the outer (and inner) walls and the centreline curvature then vary slowly along
the duct. Specifically, the radii and the curvature are taken to be functions of s∗/L∗, where s∗ is the arc
length along the centreline and L∗ is their lengthscale of variation. We suppose that l∗/L∗ ≡ ǫ ≪ 1. The
duct carries a mean flow, which far upstream has uniform density D∗

∞, speed U∗
∞ and sound speed C∗

∞.
In what follows speeds are non-dimensionalized by C∗

∞, densities by D∗
∞, distances by l∗, times by l∗/C∗

∞,
and pressures by (C∗

∞)2D∗
∞. We introduce the duct-centred coordinate system (s, r, θ), where r, θ are polar

coordinates in planes normal to the duct centreline, and s is the arc-length along the centreline with s = −∞
corresponding to far upstream. The duct inner and outer radii are a1,2(S) and the centreline curvature is
κ(S), where S = ǫs is the slow coordinate over which the duct geometry varies.

The steady velocity in the duct is given by U = Ues + V er +Weθ, and it is assumed that all steady
flow variables vary slowly down the duct. We assume an inviscid irrotational perfect gas, and it can then be
shown that the mean density and velocity take the form

D = D0 +O(ε2), U = U0 +O(ε2), V = εV1 +O(ε3), W = εW1 +O(ε3),

where

U0(S, r, θ) =
U†(S)

hs
, D0 =

[

(γ − 1)

(

H − 1

2
U0

2

)]1/γ−1

.

Here hs = 1 − κr cos θ, γ is the ratio of specific heats and H is the constant enthalpy. The quantity U† may
be found by equating the mass flux at arc length S to that far upstream, to give the implicit equation

∫ 2π

0

∫ a2

a1

U0D0r dr dθ = πU∞(1 − a1(−∞)2) .

It turns out that the value of the O(ǫ) radial velocity V1 is only required on the walls, while the value of the
O(ǫ) tangential velocity W1 will not be required at all in the final answer for the unsteady flow. We suppose
that the walls are hard for the purposes of determining the steady flow, so that

V1(r, θ, S) = ε
1

hs

daj

dS
U at r = aj(S) j = 1, 2 .

One duct geometry we shall consider in particular is the RAE 2129 Inlet Diffuser duct,15 which is a much
studied reference duct geometry. The duct geometry is defined in terms of the lateral offset of the centreline,
y∗, from its position at the intake s∗ = 0, with

y∗(s∗) = −h
∗

2

(

1 − cos

(

πs∗

L∗

))

. (1)

The lateral offset at the nominal fan face (s∗ = L∗) is then h∗. The duct itself is hollow, with outer radius
varying quartically between the inlet (radius l∗) and fan face (radius a∗f ) as

a∗(s∗) − l∗

a∗f − l∗
= 3

(

1 − s∗

L∗

)4

− 4

(

1 − s∗

L∗

)3

+ 1 . (2)

For the RAE 2129 duct, L∗/l∗ = 7.1, h∗/L∗ = 0.3 and (a∗f/l
∗)2 = 1.4. For this choice we see that ǫ = 1/7.1,

for which it is reasonable to suppose that the small-ǫ asymptotics will work well. A cross-section along the
duct centreline is shown in figure 1, along with the mean flow for a uniform inlet Mach number U∞ = 0.5.
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Figure 1. Mean flow in the RAE 2129 Inlet Diffuser. Uniform inlet Mach number from left of 0.5.

III. Unsteady flow

Consider a small time-dependent perturbation (u, ρ, p) to the mean flow (U , D, P ). Introducing a scalar
potential u = ∇φ, and neglecting vortical and entropic perturbations, Goldstein’s equations16 for the un-
steady linearised flow reduce to

p = C2ρ = −DDφ

Dt
,

D

Dt

(

1

C2

Dφ

Dt

)

− 1

D
∇ ·

(

D∇φ
)

= 0, (3)

where D/Dt = ∂/∂t+ U · ∇ is the convective derivative with respect to the mean flow. This equation is to
be solved subject to the usual Myers17 boundary condition for a lined duct, namely

−iω∇φ.n = {iω + U .∇ − n.[(n.∇)U ]} p

Zj
on r = aj(S) for j = 1, 2 , (4)

where Z1,2(S) are the wall impedances and n is the corresponding wall normal pointing into the fluid.
In order to account for the slowly varying duct we follow Rienstra10 and pose the multiple scales WKB

ansatz (see for instance Hinch18)

φ =
[

A0(S, r, θ) + ǫA1(S, r, θ) +O(ǫ2)
]

exp

{

iωt− i

ε

∫ S

−∞

k(S′) dS′

}

,

where ω is the fixed driving frequency. Taking just the O(1) terms in (3) then leads to

1

hsD0

[

1

r

∂

∂r

(

rhsD0
∂A0

∂r

)

+
1

r2
∂

∂θ

(

hsD0
∂A0

∂θ

)]

+

(

Λ2

C0
2 − k2

hs
2

)

A0 = 0 , (5)

where Λ = ω − kU0/hs. The O(1) boundary condition is

±∂A0

∂r
=

i

ω

(

ω − kU

hs

)2
A0D0

Zj
on r = aj(S) for j = 1, 2 , (6)

where Z1,2 are the impedances on the inner and outer walls respectively and ± refer to the inner and the
outer walls respectively. For hard walls (6) becomes simply ∂A0/∂r = 0. One crucial difference here from the
case of a straight circular duct is the highly nontrivial dependence of A0 on θ. When κ = 0 equations (5) &
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(6) can be solved using separation of variables to yield a well-known solution proportional to exp(−imθ) for
integer m. But when κ 6= 0 equation (5) is no longer separable and one must resort to the sort of numerical
solution procedure described in the next section.

Equations (5) & (6) are now solved numerically to determine the axial wavenumber k(S) and the corre-
sponding wave function Â0(S, r, θ). Details are given in the next section. We then have that

A0(S, r, θ) = N(S)Â0(S, r, θ) , (7)

where we take the eigenfunction Â0(S, r, θ) to be normalised as

∫ 2π

0

∫ a2

a1

D0U0ω

C0
2 Â0

2
r dr dθ = 1.

The unknown amplitude N(S) must be determined from the solvability condition obtained using the O(ǫ)
terms from (3) and (4). After a great deal of algebra we arrive at the requirement that the quantity

{

F (S) − i

[∫ 2π

0

UD2r

ωZ2

(

ω − kU

hs

)

Â0
2
dθ

]

r=a2

− i

[∫ 2π

0

UD2r

ωZ1

(

ω − kU

hs

)

Â0
2
dθ

]

r=a1

}

N(S)2 (8)

is independent of S, where

F (S) =

∫ 2π

0

∫ a2

a1

D0Â0
2
[

ωU0

C0
2 +

k

hs

(

1 − U0
2

C0
2

)]

r dr dθ .

In the case of rigid walls (8) reduces to the condition that F (S)N(S)2 is constant along the duct, which for
cut-on modes can be interpreted as conservation of energy. For finite impedance, the second and third terms
in (8) are associated with absorption by the slowly-varying outer and inner duct walls (note these terms are
surface integrals).

Putting all this together, we now have the leading-order solution (7) for the unsteady flow, in which the
local axial wavenumber and modeshape are determined by numerical solution of (5) & (6) and the slowly
varying amplitude is then given by (8).

IV. Numerical solution

A. Eigenvalue problem

Our first task is to solve the leading-order eigenvalue problem so as to determine the local axial wavenumber
k and corresponding eigenfunctions as functions of the slow arc length S. The leading-order equation for A0

and k is recast as the generalised eigenvalue problem







L 0

0 1













A0

B0






= k











2ωU0

hsC0
2

1

hs
2

(

1 − U0
2

C0
2

)

1 0

















A0

B0






, (9)

where

LA0 =
1

hsD0

[

1

r

∂

∂r

(

rhsD0
∂A0

∂r

)

+
1

r2
∂

∂θ

(

hsD0
∂A0

∂θ

)]

+
ω2

C0
2A0,

subject to the boundary conditions

±∂A0

∂r
− iωD0

Z1,2
A0 = −2iU0D0

hsZ1,2
B0 + k

iD0U0
2

hs
2ωZ1,2

B0,

where the positive sign is taken for the inner boundary (if one is present), and the negative sign for the outer
boundary. This problem must be solved numerically, and we use a pseudo-spectral method with Chebyshev
polynomials as the radial basis19 and with trigonometric polynomials in the azimuthal direction.
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Let nr and nθ be the required number of collocation points in the radial and azimuthal directions
respectively (note that nθ must be odd, since all trigonometric polynomials have an odd number of degrees
of freedom). For an annular duct, the interval r ∈ [a1, a2] is mapped linearly onto the interval ξ(r) ∈ [−1, 1],
such that ξ(a1) = 1 (for a hollow duct, a1 is replaced by a small nonzero δ). The Chebyshev polynomials
are defined on [−1, 1] by Tj(cos θ) = cos(jθ), with collocation points

ξj = cos−1

(

jπ

nr − 1

)

j = 0, . . . , nr − 1.

The azimuthal collocation points are at θℓ = 2ℓπ/nθ, ℓ = 0, 1, ..., nθ − 1.
Our system is now discretized for an annular duct by requiring the boundary conditions to be satisfied

at collocation points (0, ℓ) and (nr − 1, ℓ), and equation (9) to be satisfied at collocation points (j, ℓ) for
ℓ = 0, . . . , nθ − 1 and j = 1, . . . , nr − 2. For a hollow duct, equation (9) is also required to be satisfied at
collocation points (0, ℓ), and the inner boundary condition is dropped. After a series of manipulations, which
include representation of the r and θ derivatives using standard spectral differentiation matrices, we arrive
at a generalised eigenvalue problem which is now 2nθ(nr − d) square (d = 1, 2 for hollow and annular ducts
respectively). This was solved using the QZ algorithm, as implemented in the LAPACKa library routine
ZGGEV.

In order to avoid spurious eigenvalues, two filtering processes were used. The first, based loosely on that
described by Boyd20 (chapter 7, p137–139), attempts to remove any eigenvectors who’s eigenvalues vary
significantly with the discretization used. Let the numerical eigenvalues of the given problem be λj , and the
numerical eigenvalues of a reference problem, generated with slightly different values of nr and nθ, be µℓ.
Define the continuity of an eigenvalue λm to be

infℓ |λm − µℓ|
√

(d1
2 + d2

2)/2
,

where di is the distance between λm and the ith nearest λj with j 6= m. The normalisation by the distance
to the next closest eigenvalue is to ensure the continuity is scale free. The reason for the averaging over d1

and d2 is to deal with doubly-degenerate eigenvalues. A small continuity indicates the eigenvalue is stable
under small changes to the discretization, and hence that it is a good candidate for a physical eigenvalue.

The second filtering attempts to remove eigenfunctions for which nr or nθ are not large enough to properly
resolve. In order to do this, the solutions is decomposed into its spectral representation

f̃(r, θ) =

nr−1
∑

j=0

n
θ
−1

2
∑

ℓ=
n

θ
−1

2

ajℓTj

(

ξ(r)
)

eiℓθ,

by performing a Discrete Cosine Transform (DCT) in the r direction, and a Fast Fourier Transform (FFT)
in the θ direction, implemented using the FFTWb library’s dft 2d transform. Figure 2 shows the spectral
coefficients for a well resolved numerical eigenfunction, for which the outlying spectral coefficients are of
the order of the machine precision (2 × 10−16). Motivated by this figure, the boundary within which a well
resolved eigenfunction should have small spectral coefficients is defined as

B =











(j, ℓ) :

nr − br ≤ j < nr

or

(nθ + 1)/2 − bθ ≤ |ℓ| < (nθ + 1)/2











.

The resolvedness of an eigenfunction with spectral coefficients ajℓ is defined to be

sup
(j,ℓ)∈B

|ajℓ|

sup
all j,ℓ

|ajℓ|
.

Using br = 2 and bθ = 4, the eigenfunction of figure 2 has a resolvedness of 2.021× 10−12.
Numerically generated eigenvalues and eigenvectors that did not have a suitably small continuity or

resolvedness were discarded.
ahttp://www.netlib.org/lapack
bhttp://www.fftw.org
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B. Code validation

In the case of a straight duct with hard walls it is well known10 that equation (5) can be solved analytically,
with solutions in terms of Bessel’s functions A(r, θ) = (PJm(αr) +QYm(αr))e−imθ. Requiring a non-trivial
solution satisfying the boundary conditions ∂A/∂r = 0 yields the dispersion relation

Jm
′(αa1)Ym

′(αa2) − Jm
′(αa2)Ym

′(αa1) = 0 , (10)

with solutions α = αmn for n = 1, 2, ... . Since Bessel’s equation is self-adjoint, with weight function w(r) = r,
and since the trigonometric polynomials are orthogonal, each of these solutions are orthogonal to one another
with respect to the inner product

< φ,ψ >=

∫ 2π

0

∫ a2

a1

φ(r, θ)ψ(r, θ)r dr dθ,

where the overbar denotes complex conjugate. As a means of validation, the numerically generated solutions
for a straight duct were compared with the analytic solutions. For eigenvalues, the measure of accuracy was
taken to be the continuity defined in the previous subsection. For eigenfunctions, the numerical solutions
were separated into a component in the direction of the analytic solution and an orthogonal component, with
respect to the above inner product, and the error was taken to be the norm of the orthogonal component.

The numerical solutions were calculated at varying values of (nr, nθ) from (21, 21) to (41, 81). These were
compared to all the analytic modes that passed the resolvedness test at the (21, 21) resolution. Figure 3
shows the accuracy of the eigenvalues and eigenfunctions. Since the analytic modes have e−imθ dependence,
which are also the azimuthal basis functions for the pseudo-spectral method, all analytic modes considered
were well resolved in the azimuthal direction and so little variation was seen beyond nθ = 21. For small
values of nr some modes were not accurately resolved, explaining the initial plateau. For large values of
nr machine precision errors become apparent. In the intermediate region, an exponential decrease in error
was seen, as is expected from a pseudo-spectral method. While the arithmetic mean error for all modes is
plotted, similar results were obtained from taking the geometric mean and the maximum error.

V. Results

The numerics above were first applied to a hypothetical duct, with upstream conditions U∞ = 0.5,
a1 = 0.4, a2 = 1.0, γ = 1.4 and ω = 10. The curvature of the duct was considered to vary slowly from κ = 0
upstream to κ = 0.1, at which point the wave modes were calculated.

The numerical eigenvalues for an annular duct with this geometry are shown in figure 4a,b. Figures 4c
and 4d show examples of cross-sectional modal shapes. Both of these are upstream propagating modes,
and the fundamental mode in figure 4c is seen to be localized in the inside of the bend. The downstream
propagating modes have similar shapes, but are localized on the outside of the bend. Figures 4e and 4f show
typical higher order modes, both of which are cutoff modes. These modal shapes are termed bouncing ball

and whispering gallery type modes respectively, in light of the ray-tracing approximations in §VII.
One interesting feature of the spectrum is the diagonal vanes of eigenvalues occurring periodically across

the usual line of cutoff modes in figure 4a and in close-up in figure 4b. This only seems to appear in
the presence of both non-zero mean flow and non-zero curvature, and can perhaps be associated with the
asymmetric mean flow and asymmetric mode shapes leading to slightly different Doppler shifts experienced
by each mode. Similar results can also be seen for a hollow rather than annular duct cross-sections.

Figure 5a shows some eigenvalues for a curved (κ = 0.1), lined (Z = 2 − i) hollow duct with mean flow
(U∞ = 0.5). The additional series of eigenvalues in the lower-half k-plane correspond to surface modes —
see Rienstra21 and Brambley & Peake.22 Figure 5d shows how such a mode is strongly localised near the
boundary, while figure 5c shows the upstream-propagating acoustic mode of the same order. This latter
mode is termed a whispering gallery mode (see later), and while still being localised close to the outer
boundary is noticeably more pervasive into the duct than the surface mode. At the other extreme is the
bouncing-ball mode shown in figure 5b. These modes are similar to the high-order modes in a hard-wall
duct, except that for the lined duct there is very little oscillation at the duct wall. Figures 5e and 5f show
the fundamental duct modes, and illustrate the asymmetry between upstream- and downstream-propagating
modes. The upstream-propagating mode is removed from the boundary, similar to a mode with a pressure-
release boundary condition, while the curvature biases the mode slightly to the inside of the bend (the right
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hand side). The downstream-propagating mode, in contrast, is strongly localised to the outside of the bend,
and is oscillating significantly on the duct boundary; it is very similar in form to a hard-wall duct mode.

Figures 6 & 7 shows how the axial wavenumbers k vary with the curvature κ. Note that due to the
left-right asymmetry for κ 6= 0, two modes with κ 6= 0 merge into a single mode with κ = 0. As the
curvature increases from zero, the first few downstream modes (figure 7) become more damped. In contrast,
the surface modes (i.e. the lower branch in the right half plane) for k . 5 become less damped, while most
of the well cutoff acoustic modes (i.e. the ones in the line parallel to the vertical in figure 5) maintain the
same rate of decay, although their phase speed shifts slightly towards upstream.

Turning now to the RAE 2129 (hard-walled) duct described in section II, the cut-on eigenvalues (i.e.
those with real axial eigenvalue k) are plotted against the position along the duct centreline in figure 8.
As can be seen, many modes which are cut-on at the fan face (s ≈ 7) will propagate all the way to the
intake (s = 0). In figure 9 the amplitude of one such cut-on mode is plotted, and as can be seen in this
case the amplitude varies rather little along the duct, with this high-order mode being concentrated close to
the duct wall all the way along. As can be seen in figure 8, there are also in this case several duct modes
which transition from cutoff to cuton within the duct, i.e. the sequence of real wavenumbers starting at the
fan reaches a minimum value of s before turning round and moving back towards the fan (e.g. four around
s ≈ 2 etc). The transitions correspond to wave reflection by the changing geometry and flow, and will be
described in detail in the next section. The cut-off transition confines these modes to the fan end of the
duct. The amplitude of just one of the cutoff modes is shown in 10, indicating the standing-wave pattern
formed by the mode and its reflection between the fan and the transition point. This suggests the possibility
of acoustic resonance, in which acoustic modes are trapped upstream of the fan by the cut-off transition and
are prevented from propagating downstream by the swirl in the rotor-stator gap - see Cooper & Peake.23

VI. Turning points and wave reflection

For a hard-walled duct the secularity condition (8) represents conservation of axial energy flux. Since
a cuton mode has a non-zero energy flux and a cutoff mode has zero energy flux, it is to be expected that
the secularity condition breaks down in the neighbourhood of a cuton–cutoff transition. The secularity
condition (8) becomes singular when F (S) → 0, a so-called turning point. Define

G(S) =

∫ 2π

0

∫ a2

a1

D0

hs
Â0

2
(

1 − U0
2

C0
2

)

r dr dθ,

so that k = (F (S)− 1)/G(S). From previous studies on a straight duct,10 we can expect that this transition
occurs over a portion of the S axis of length O(ǫ2/3), and since G(S) will vary little over this interval it follows
that the change in k from real (cut-on) to complex (cut-off) is associated with a change of sign of F (S)2.
Figure 11 shows the variation in F (S)2 for a mode in the RAE 2129 duct that undergoes a cuton–cutoff
transition; in the neighbourhood of the cutoff region, F (S)2 is seen to be a linear function of S, and goes
through zero as the mode transitions from cuton to cutoff.

The singularity in the secularity condition (8) can be removed by inclusion of a second derivative term
from higher order, so that the secularity condition becomes

d

dS

(

FN2
)

+ iεGN
d2N

dS2
= 0. (11)

Let the turning point be at S0, so that F (S0 + ∆S) =
√
a∆S for some a. In what follows an inbound

downstream propagating mode is considered (exactly the same analysis can be applied to an upstream
propagating mode, for example as in the RAE2129 duct), so that a is negative. By introducing the inner
variable

x = ∆Sε−2/3G−2/3a1/3,

(11) becomes

N ′′ + 2i
√
xN ′ +

iN

2
√
x

= 0,

with leading order solution

N =
(

AAi(−x) +BBi(−x)
)

exp

{

−2i

3
x3/2

}

.
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Figure 6. Graph showing the motion of eigenvalues due to varying the curvature from κ = 0.0 to κ = 0.4.
Z = 2 − i, U∞ = 0.5, and ω = 10.0.
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Figure 7. Close up of nearly cut-on modes in figure 6.
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to the intake (on the left). The axial wavenumber k for this mode is shown in figure 8 as the lower of the two
solid lines.
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Figure 10. The second radial order, 24th azimuthal order mode propagating from the fan face (on the right)
towards the intake (on the left), before being reflected by the duct geometry and propagating back towards
the fan face. Consequently, a standing wave is shown at the fan-end of the duct, and an exponentially decaying
wave is shown towards the intake end. The axial wavenumbers k for these modes are shown as the upper
solid lines in figure 8. (a) shows the real part of the wavefunction φ = A0 exp{

R

ik(S′)/ε dS′}, while (b) shows the
modulus of the wavefunction |φ|.
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Using asymptotic expansions of the Airy function for large |x|, see,24 N has the large-x behaviour

N ∼ eiπ/4

2
√
πx1/4

[

(A− iB) exp

{

−4i

3
x3/2

}

− i(A+ iB)

]

as x→ ∞,

N ∼ 1

2
√
π|x|1/4

[

A+ 2B exp

{

4

3
|x|3/2

}]

as x→ −∞. (12)

In order to match with a bounded acoustic field downstream of the turning point it follows immediately that
B = 0. The second relation in (12) now implies that there is a transmitted cut-off wave in S > S0 and that the
transmission coefficient is 1, while the first relation in (12) implies that as well as the incident downstream-
going wave there is also an upstream-going reflected wave with reflection coefficient i. This conclusion is
exactly the same as is reached for a turning point in a straight duct.10 This is perhaps surprising, since while
the duct curvature over the transition region is constant it is certainly nonzero, so one might have expected
curvature-dependent reflection coefficient.

VII. Ray Theory for a hard-walled duct

We will now present some initial work on attempting to find analytically-based approximations for the
eigenvalues in our curved duct at high frequency, in the first instance for hard walls. We start off by
introducing the ray ansatz for A0(r, θ, S) by writing

A0(r, θ, S) =
A0(r, θ, S)√

hsD0

exp(−iωψ(r, θ, S)) . (13)

We will suppose that ω, the dimensionless frequency, is large so that (13) corresponds to rapidly oscillatory
modes, i.e. modes of high order. The corresponding unknown axial eigenvalue, will also be large and so we
write k = µω with µ = O(1). If we now substitute (13) into (5) and take just the leading terms in ω, i.e.
O(ω2), we find that

(∇ψ)2 = α2 , (14)

where

α2 =

[

1

C0
2 − 2µU0

hsC0
2 − µ2

hs
2

(

1 − U0
2

C0
2

)]

. (15)
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This result is quite important because it shows that, at least as far as determining the allowed values of k
is concerned, our problem for the curved duct with variable mean flow can be replaced by considering the
modes allowed inside a circular boundary carrying zero mean flow but with spatially-varying sound speed
1/α(r, θ, S). Note that the duct curvature and the duct radii affect α2 through the mean flow terms (U0,
C0, and D0), as well as the curvature appearing in the metric factor hs. In fact, α2 only depends on two
coordinates, r cos θ the transverse position towards the inside or outside of the curve of the duct, and the slow
axial coordinate S. The duct modes may therefore be thought of bouncing around inside the cross-section
of the duct, being reflected normally by the boundary, subject to a variable wave speed 1/α that varies
horizontally from the inside to the outside of the bend, but not vertically.

Keller & Rubinow25 used ray theory to construct a method for determining the eigenvalues of Helmholtz
equation in certain closed domains containing a uniform acoustic medium. Their procedure was adapted by
Babic & Buldyrev26 to domains with a varying sound speed. One key step in the Keller & Rubinow procedure
is the determination of the shape of a caustic surface inside the domain, which provides an envelope for all
possible ray directions. In the case of a circular domain with uniform medium these caustics are simply
concentric circles, whose radii are related to be allowed eigenvalues of the problem. However, for a variable
sound speed it does not appear possible to determine the shape of this caustic in general, and analytical
progress can be made for two particular subsets of all the eigenmodes, termed bouncing-ball and whispering-

gallery modes. Bouncing-ball modes are concentrated about an extremal ray, which is a ray that intersects
the boundaries at each of its ends at right angles. Not all extremal rays support bouncing-ball modes; to do
so, the geometry of the boundary locally about the points of reflection must satisfy a stability condition.26

Figure 5b shows a bouncing ball mode. Whispering-gallery modes consist of rays running round the perimeter
of the boundary, bouncing a large number of times at very short intervals. This is shown schematically in
figure 12, and a typical modal shape is shown in figure 5c.

Babic & Buldyrev26 determined an asymptotic expression for the eigenvalues of whispering-gallery modes
of a circle with variable sound speed. These modes are parameterized by two integers: m≫ 1, the azimuthal
order, and j = 1, 2, . . ., the radial order. For the case of a curved duct, with the effective sound speed given
via (15), their analysis gives

kjm =
πµ

I1(a2)

{

2m+ I2(a2)

[

9m

4I1(a2)

(

j − 3/4
)2

]1/3
}

,

where

I1(r) =

∫ 2π

0

λ rdθ,

I2(r) =

∫ 2π

0

λ1/3

(

1

r
+

1

2λ2

∂λ2

∂r

)2/3

rdθ,

λ2 =
1

C0
2 − 2µU0

hsC0
2 − µ2

hs
2

(

1 − U0
2

C0
2

)

,

∂λ2

∂r
= κ cos θ

[

(γ − 1)U0
2

C0
4hs

− 2U0H(γ − 1)µ(2hs − µU0)

C0
4hs

3 − 2µ2

hs
3

(

1 − U0
2

C0
2

)]

.

This expression is valid for both annular and cylindrical ducts; because the rays are bouncing around the
outer boundary, the inner boundary plays no part. Note that (VII) gives kjm(µ) implicitly as a function of
µ ≡ kjm/ω, and an iterative method was therefore used to find the axial wavenumber kjm for a specified
value of ω through varying the value of µ. Figure 13 shows the results of the ray tracing asymptotics against
numerically calculated eigenvalues. A frequency of ω = 40 was used for the comparison, so as to allow high
azimuthal order modes to be cuton. The results are plotted against the azimuthal order m so the individual
modes can be distinguished. The agreement is seen to be reasonable, especially for nearly-cutoff large-m
modes, as is to be expected from using large m asymptotics.
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Figure 12. Schematic diagram of the rays for a whispering-gallery mode; the rays are reflected with incidence
angle equal to reflection angle, and are then refracted by the spatially nonuniform effective sound speed.
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Figure 13. Comparison of ray tracing asymptotics against numerical results. The azimuthal order for the
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VIII. Concluding Remarks

In this paper we have considered the propagation of acoustic waves along a curved duct carrying mean
potential flow. The curvature of the duct centreline and the wall radii have been assumed to vary slowly along
the axis, allowing application of an asymptotic multiple scales analysis. We have seen that the spectrum
of local eigenmodes is more complicated than in the straight-duct case, due to the fundamental asymmetry
between upstream and downstream propagating modes, with some mode shapes tending to be concentrated
on either the inside or outside of the bend depending on the direction of propagation. Our closed-form
expression for the variation of the slowly-varying amplitude is very similar in form to the straight-duct case,
however, and describes the balance between energy flux along the duct and dissipation by the (lined) walls.

The work presented in this paper is being extended in a number of ways. First, the restriction that the
duct centreline is planar can be relaxed. This means that as well as a nonzero slowly-varying curvature the
duct centreline will possess a slowly-varying torsion τ(S). Germano27 shows how the coordinate system can
be modified to account for this effect, simply by replacing the cross-sectional polar angle θ by

θ +
1

ǫ

∫ S

0

τ(S′)dS′ , (16)

which yields an orthogonal coordinate system which effectively twists with the duct centreline. The one
difficultly with τ 6= 0, however, is that the mean flow becomes much more complicated with the cross-
sectional components V,W becoming O(1) rather than O(ǫ) when τ = 0. (Of course, in the absence of mean
flow the transformation (16) can be straightforwardly applied to the methodology of the present paper to
yield a solution for nonzero torsion.)

Second, the pseudo-spectral eigenvalue solver is sufficiently general to allow straightforward extension of
our solution to more complicated geometries. Two cases in particular include the case of lining only half
the duct circumference, and the curved-duct version of Rienstra’s solution12 for an arbitrary cross-section.
Third, we are interested in the case in which larger amplitude disturbances propagate along the duct, and
we are therefore at present completing a weakly nonlinear version of the analysis presented here.
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