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Abstract

This paper comments on a number of inaccuracies in the recently-published article by Balint,
Balint and Darau (Applied Mathematical Modelling 35, pp. 1081–1095, 2011), concerning initial
value acoustic perturbations to a steady mean nonslipping flow in a 2D duct: in particular, the
neglect of antisymmetric solutions, and their comments on stability. Here, their dispersion relation
is briefly rederived and simplified, two numerical results are presented demonstrating the existence
of antisymmetric solutions in a specific case, and the inaccuracy in their comments on instability is
highlighted.

Keywords: Acoustics; ducted sheared flow; impedance lining; stability.

We consider, as in [1], acoustic initial value perturbations to a steady mean nonslipping flow in
a 2D duct. The fluid is a perfect gas, and the duct walls are acoustically lined. This situation has
previously been extensively investigated [e.g. 2–5], and the following derivation follows these papers. In
x, y Cartesian coordinates, taking the unit x-vector ex along the centreline of the duct, the duct walls are
at y = ±h and the mean flow has velocity U0(y)ex with constant density ρ0 and pressure p0. Acoustic
perturbations are added to this mean flow, given by velocity perturbations (û(y)ex + v̂(y)ey) exp{iωt−
iαx} and pressure perturbation p̂(y) exp{iωt− iαx}. The Linearized Euler Equations in this case reduce
to the Pridmore-Brown equation [6],

p̂′′ +
2αU ′

0

ω − αU0

p̂′ +
[

(ω − αU0)
2/c20 − α2

]

p̂ = 0, (1)
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where ′ denotes d/dy and c0 is the speed of sound in the mean flow, with û and v̂ given by

v̂ = ip̂′/
(

ρ0(ω − U0α)
)

, û =
−i

ω − U0α

[

iαp̂/ρ0 − U ′

0v̂
]

. (2)

Equation (1) is given as (2.2) in [1], with neighbouring equations equivalent to (2). The boundary
conditions to be applied to (1) are that the impedance of the duct walls, Z = ±p̂/v̂, is given:

Zp̂′ ± iωρ0p̂ = 0 at y = ±h, (3)

making use of no slip to give U0(±h) = 0. This is (2.5) of [1]. The impedance Z is given using a
mass–spring–damper model [7] as

Z = ρ0c0
(

R+ idωh/c0 − ibc0/(hω)
)

, (4)

where d, b and R are the positive nondimensional mass, spring and damping coefficients. For the
numerical examples given here and in [1], d = 0.986, b = 1 and R = 2.6×10−3 (an extremely small
resistance in practice). The trivial solution to (1) subject to the boundary conditions (3) is p̂ ≡ 0. For
special values of (ω, α) there exist nonzero solutions, which are termed modes; it is these modes that are
the subject of [1].

The only case considered in detail in [1] is for a symmetric mean flow profile where U0(y) = U0(−y).
In this case, it can be shown that a nonzero mode p̂(y) is either even or odd; if p̂(0) 6= 0 then p̂(y) is
even and if p̂(0) = 0 then p̂(y) is odd. In [1] it was proved in proposition 2.2 (with the proof in annex 2)
that only even solutions exist. However, this proof is false, as (5) and (7) below give odd solutions, with
an example odd solution plotted in figure 2b below. The fallacy comes in the assumption in annex 2
that p̂′(0) = 0, which is only true for an even solution; the corresponding assumption for an odd solution
would be v̂′(0) = 0.

If U0(y) = Ū0 for y ∈ (−h + δ, h − δ), where Ū0 is a constant, then (1) reduces to the convected
Helmholtz equation, with solution

p̂(y) = C1cos(µy) + C2sin(µy) where µ2 = (ω − αŪ0)
2/c20 − α2, (5)

as given by Mariano [3, equation (7)] and Tester [4, equation (6a)]. Since [1] considered only even pressure
perturbations they set p̂′(0) = 0, and thus setting C2 = 0 corresponds to their solutions. Within the
sheared flow region [−h,−h+δ], let p̂1 be the solution of the initial value problem solving (1) subject (3)
at y = −h with p̂1(−h) = 1. Matching these two solutions in [−h,−h+ δ] and (−h+ δ, 0] with C2 = 0
gives the even dispersion relation

µ tan
(

µ(−h+ δ)
)

+
p̂′1(−h+ δ)

p̂1(−h+ δ)
= 0, (6)

or equivalently,

µ tan
(

µ(−h+ δ)
)

+ iρ0(ω − Ū0α)/Zeff = 0, where Zeff = iρ0(ω − Ū0α)
p̂1(−h+ δ)

p̂′
1
(−h+ δ)

,

This is the equivalent of both parts i) and ii) of proposition 2.3 of [1], as seen by taking λ1 = iµ and
λ2 = −iµ in (6). It is also the equivalent of [4, equation (7)] and [5, equation (9)]. In order to solve this
dispersion relation, numerical solutions are needed for p̂1; approximate solutions for small δ are given
in [3, 4, 8–12], while an exact solution in a specific case is given by Goldstein and Rice [5]. An example
of a solution to (6) is given in figure 1 and figure 2a.

The anti-symmetric solutions predicted not to exist and therefore missing from the analysis of [1] are
given by taking C1 = 0 in (5), giving the dispersion relation

µ cot
(

µ(−h+ δ)
)

−
p̂′1(−h+ δ)

p̂1(−h+ δ)
= 0, (7)

where we take µ cot
(

µ(−h+ δ)
)

= 1/(−h+ δ) for µ = 0. Again this is the equivalent of [4, equation (7)]
and [5, equation (9)], and again [3, 4, 8–12] are also relevant. An example of a solution of (7) is given
in figure 2b.
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Figure 1: Equivalent of figure 2 of [1]. Mode with ω = −57 − 6.912i s−1, α = 0.5709 + 5.3453im−1.
ρ0 = 1.225 kgm−3, c0 = 340ms−1, h = 1m, δ = 0.1m, Ū0 = 60ms−1, U0(y) = −(y+h)(y+h−2δ)Ū0/δ
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for y ∈ [−h,−h+ δ], Z is given by (4) with d = 0.986, b = 1 and R = 2.6×10−3.

It should be noted here that the criticism in [1] of Tester [4] is misplaced. [1] state that “The
applicability of the technique developed by Tester . . . is also questionable. That is because in the first
step of this technique the pressure is uniform through boundary layer, i.e. its derivative with respect to
y is equal to zero (also on the wall).” This is not true; it is the derivative with respect to Y = y/δ to

leading order that is shown to be zero in [4]; i.e. the derivative with respect to y would occur at the
next order in his asymptotic expansion and could be arbitrary. This is in line with both [1] and the
asymptotic analyses of thin boundary layers in [8, 10–12].

Two numerical examples are presented here. Figure 1 shows the results from figure 2 of [1] compared
with those of [10, 11] (adapted for Cartesian rather than cylindrical geometry). A good agreement is
shown, apart from for û(y) within the sheared flow region [−1,−0.9]. If the formula for û(y) from (2) is
replaced with

û =
−i

ω − U0α

[

iαp̂/ρ0 + U ′

0v̂
]

,

then the results of [1] are reproduced; this shows that a sign error was made in the numerical calculation
of û in [1], although fortunately this is irrelevant to the calculation of eigenvalues (ω, α). The pressure
p̂(y) from figure 1 is shown across the whole duct in figure 2a. This is an even function, since that was
the assumption made in [1], and the eigenvalue α = 0.5709 + 5.3453im−1 is found using the dispersion
relation for even solutions (6). Figure 2b shows an odd solution for p̂(y), with α = 0.6866+ 4.0777im−1

given as a root of the dispersion relation for odd functions (7). This demonstrates that odd solutions do
exist, countering proposition 2.2 of [1].

Finally we consider stability and instability with respect to these initial value modal perturbations.
Here, by stability, we mean whether the zero solution is stable or unstable in time when perturbed by
a bounded initial value modal solution. This implies that we should only consider α ∈ R, as otherwise
the initial perturbation is not bounded. This is mentioned in [1, p. 1088], but the importance of this
statement for stability is not sufficiently highlighted. To determine stability, we must determine the roots
ω of the dispersion relation for every value of α ∈ R. Usually this step is accomplished numerically;
in [1] there are numerical illustrations, but there is no calculation giving all ω roots for any α ∈ R.
If, for a given α ∈ R, it is found that the only ω roots have Im(ω) > 0 then the zero solution of the
linearized Euler equations is stable with respect to this initial value modal perturbation. But if for a
given α ∈ R it is found that there exists an ω root with Im(ω) < 0 then then the zero solution of the
linearized Euler equations is not stable with respect to this initial value modal perturbation. Since in [1]
the only numerical illustrations with Im(ω) < 0 where for Im(α) 6= 0, the statement [1, p. 1094] that
“the existence of modes whose amplitude grows exponentially in time reveals linear instability” must be
corrected; the numerical illustrations in [1] do not reveal linear instability, although they do not preclude
it either. A conclusive study would proceed as indicated in this paragraph.

For details of an alternative stability analysis with respect to point source produced perturbations
in sheared flow over an impedance lining in 2D, the reader is referred to Rienstra and Darau [12].
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Figure 2: Examples of modes with even and odd p̂(y). Parameters are the same as for figure 1, with a)
α = 0.5709 + 5.3453im−1 and b) α = 0.6866 + 4.0777im−1. Also shown are the uniform-flow solutions
from (5).
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