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Abstract

The presence of sheared grazing flow changes the acoustic absorption of a lined surface. Since acoustic waves
are refracted through the boundary layer between the lined surface and the mean flow, the reflection and
absorption coefficients are modified by the presence of the boundary layer, and therefore so too is the optimal
impedance of the surface. A common simplification is to assume a uniform flow and take into account the
refraction in the impedance boundary condition. However, there is still debate in the academic community
about what is the appropriate boundary condition. We investigate the optimal impedance of a lined plane
surface with an inviscid sheared flow. Optimal impedances are found both using numerical solutions to the
Pridmore-Brown equation, which is the exact solution for a sheared parallel flow, and using the convected
Helmholtz equation, that assumes a uniform flow, together with different boundary conditions that attempt
to model the boundary layer. Results suggest that, for frequencies and Mach number typically found in
turbofan aero-engines, boundary layer effects are of great importance at particular angles of incidence.
We find the first order asymptotic boundary condition of Brambley (2011)[1] reproduces the same optimal
impedance as the Pridmore-Brown equation in most cases. The impact of the velocity profile shape is also
investigated, and results suggest the same optimal impedance is expected irrespective of the velocity profile
provided the boundary layer displacement thickness is the same.
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1. Introduction

The optimal impedance in flow ducts has drawn attention from researchers because high absorption
rates are often desired in this kind of application to maximize sound attenuation. This becomes particularly
important in aircraft engines due to weight restrictions and aerodynamic reasons; therefore, the available
lined length is kept to a minimum. Of course, liner impedance optimization is a complex task due to the
multi-modal nature of the acoustic field in turbo fan engines, such that different definitions of optimal
impedance are possible. For instance, we could consider the optimal liner that maximizes the in-duct sound
power transmission loss.

An additional challenge in the modeling of acoustic liners is the presence of a small boundary layer
between the lined surface and the free-stream steady flow. A common procedure is to solve the convected
Helmholtz equation, which implicitly assumes a slip condition at the lined wall, and include any boundary
layer effects into an effective impedance. In this case, continuity of pressure and normal acoustic displacement
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through the boundary layer is the correct assumption, as proven by Eversman and Beckemeyer [2]. The
special case of an infinitely thin boundary layer is known as the Ingard–Myers boundary condition [3, 4],
which is the standard choice of boundary condition in flow acoustics due to its simplified mathematical
formulation. However, recent reports have indicated that predictions using the Ingard–Myers boundary
condition may be inaccurate at conditions typically found in turbofan aero-engines [5]. A better description
of the boundary layer physics can be obtained by retaining the first [1] and second [6] order boundary layer
correction terms in the matching of pressure and acoustic displacement.

Although there are studies of the impact of the boundary layer and its simplification as boundary con-
ditions on sound absorption [e.g. 5, 7], there are no reports on their effect on the optimal impedance of
a flat surface. This is in contrast with the in-duct optimal impedance, which has been a research subject
for several decades [8–12]. For the optimal impedance problem in ducts, the setup is constrained by the
duct geometry, Mach number and velocity profile, which dictates the wavenumber that will require a cer-
tain optimal impedance. On the other hand, for a flat plane surface, whilst again defined by the Mach
number and velocity profile, the problem allows a continuum of acoustic angles of incidences and angles of
propagation with respect to the mean flow. Whilst at present the main application of liners is still within
a duct, particularly in the aeronautical industry, noise regulations are becoming more stringent, and novel
technologies will be necessary to achieve the target levels of noise emissions. As an example, current studies
include the use of acoustic absorbing surfaces at the wing trailing edge to reduce jet noise [13–16]. Little is
known about the effect of boundary layers on the optimal impedance of locally-reacting acoustic liners or, in
other words, which impedances lead to maximum absorption of acoustic waves. In this work, we investigate
the boundary layer effects on the optimal impedance of locally reacting flat lined surfaces. We follow the
test cases of the benchmark study proposed by Gabard [5], who studied the effect of boundary conditions
on acoustic absorption. A definition of optimal impedance for a plane surface is also proposed. A reference
solution based on the Pridmore-Brown equation [17] is compared to the predicted optimal impedances using
the Ingard–Myers [3, 4] and Brambley [1] boundary conditions. Different velocity profiles are considered,
to investigate the impact of the profile shape on the optimal impedance. Finally, the error associated with
incorrect predictions is evaluated in terms of the absorption coefficient.

This work is structured as follows. Section 2 presents the problem formulation, including the governing
equations and the boundary conditions. Section 3 presents the definition of optimal impedance considered
in this work. Section 4 presents the test cases and the main results with discussions. Finally, the conclusions
are summarized in Section 5.

2. Governing Equations

In this work, normalized variables are used for convenience. Dimensional parameters are denoted by
the superscript ∗. Distances are normalized by a reference length L∗, velocities by the speed of sound c∗0,
density by the air specific density ρ∗0, time by L∗/c∗0, pressure by ρ∗0c

∗
0
2 and acoustic impedance by ρ∗0c

∗
0. The

Mach number M ≡ U∗
∞
/c∗0 is defined as the ratio between the free-stream fluid velocity U∗

∞
and the speed

of sound. The unitary vectors for the Cartesian coordinate system are represented by (ex, ey, ez).
We consider the situation shown schematically in Figure 1. A small perturbation to an otherwise steady

flow is given by

p̂ = p0 +Re
(

p(y) exp{iωt− ikxx− ikzz}
)

, (1a)

û = U(y)ex +Re
(

u(y) exp{iωt− ikxx− ikzz}
)

, (1b)

where p̂ is the total pressure, û is the total velocity, ω is the angular frequency, and kx and kz are the
wavenumbers in the x- and z-directions. A locally reacting wall with impedance Z = p/(u · n) is located
at y = 0, where n = −ey is the unit normal pointing into the wall. Above this wall, a steady subsonic flow
of velocity profile U(y) is present in the positive x-direction with a thin boundary layer of thickness δ, such
that U(δ) = M and U(0) = 0.
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Figure 1: Sketch of the locally-reacting lined plane surface. (a) Three-dimensional case; and (b) two-dimensional case. Adapted
from Gabard [5].

By neglecting viscosity and heat transfer, and assuming constant background density, the acoustic prop-
agation in the boundary layer can be described by the Pridmore-Brown Equation (PBE) [17],

d2p

dy2
+

2kx
ω − Ukx

dU

dy

dp

dy
+
(

(ω − Ukx)
2 − k2x − k2z

)

p = 0,

with u · ey = uy =
i

ω − Ukx

∂p

∂y
.

(2)

Outside the boundary layer, the PBE reduces to the Convected Helmholtz Equation (CHE) [18, [p. 701],

∇2p−
D2

0p

Dt2
=

d2p

dy2
+
(

(ω − Ukx)
2 − k2x − k2z

)

p = 0, uy =
i

ω −Mkx

∂p

∂y
. (3)

As depicted in Figure 1, we consider a plane wave of unitary amplitude, frequency ω and angle of
incidence (ϑ, ϕ) in 3D and θ in 2D, which is reflected with amplitude R. Downstream propagation is denoted
in the three-dimensional case by ϕ < 90◦ and in the two-dimensional case by θ < 90◦, and conversely for
upstream propagation. In the 3D case, kx ≡ K sinϑ cosϕ and kz ≡ K sinϑ sinϕ, where K ≡ ω/D and
D ≡ 1+M sinϑ cosϕ is the Doppler factor. In the case of two-dimensional propagation, we have ϕ = 0, and
so kz = 0. By convention [5, e.g.], the angle θ is measured relative to the surface instead of the normal as in
the case of ϑ. The reader must pay attention to this angle definition, which is slightly different from typical
textbook notation and was chosen to follow the literature of the field. Since θ and ϑ are complementary, the
trigonometric relations sinϑ and cosϑ are replaced by cos θ and sin θ, respectively. Therefore, the Doppler
effect factor becomes D = 1 + cos θ.

The solution of the CHE in the uniform flow region is given by the sum of incident and reflected plane
waves,

p(y) = exp(ikyy) +R exp(−ikyy), (4)

where ky = K cosϑ. The reflected wave amplitude R depends on the boundary condition. We introduce the
formulation due to Gabard [5],

R =
Z(D cosϑ+ iT1)− 1 + iT0

Z(D cosϑ− iT1) + 1 + iT0

, (5)

where T0 and T1 are parameters which depend on the assumed boundary condition, as discussed in Section 2.1
below. Finally, the absorption coefficient α is defined as the ratio between absorbed and incident acoustic
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intensity, where the acoustic flux is given by Iy =
1

2
(puy + puy), where an overline denotes the complex

conjugate. In terms of the reflection coefficient, α = 1− |R|2.

2.1. Boundary Conditions for the CHE

The standard choice in flow acoustics is the boundary condition derived by Ingard [3] and later generalized
by Myers [4], hence referred as the Ingard–Myers boundary condition. It assumes continuity of pressure
and normal acoustic displacement across a vanishing boundary layer. For plane surfaces, the Ingard–Myers
boundary condition can be written as

iωZ(u · n) = i(ω −Mkx)p. (6)

It can be shown that this boundary condition leads to taking T0 = T1 = 0 in Eq. (5). In the absence of flow,
this reduces to the standard definition of the reflection coefficient commonly found in acoustic textbooks [e.g.
18, p. 262].

In order to include some effects of the boundary layer, Brambley [1] performed a matched asymptotic
expansion in the boundary layer region, similarly to Eversman and Beckemeyer [2]. The mean flow U(y)
was assumed to vary only within a small region of width O(δ) close to the wall, and the PBE (2) was solved
asymptotically within this region. This inner solution was matched to the CHE solution in the uniform flow
outside the boundary layer by means of matched asymptotic expansions. In effect, the inner asymptotic
region could be formulated as a boundary condition to be applied to the outer CHE. Retaining only leading
order terms in the inner region was shown to reproduce the Ingard–Myers boundary condition above, whilst
retaining leading and first order terms resulted in an O(δ) modification to the boundary condition that
incorporated the effects of the finite-thickness boundary layer (for full details, please see [1]). For a plane
surface, this can be written as

(u · n)
(

iωZ + (ω −Mkx)
2δI0

)

=

(

i(ω −Mkx)− Z
ωk2xδI1
ω −Mkx

)

p, (7)

with δI0 and δI1 being the O(δ) modifications to the Ingard–Myers boundary condition, defined as

δI0 =

∫ δ

0

χ0(y)dy, δI1 =

∫ δ

0

χ1(y)dy, (8a)

where

χ0(y) = 1−
(ω − U(y)kx)

2

(ω −Mkx)2
, χ1(y) = 1−

(ω −Mkx)
2

(ω − U(y)kx)2
. (8b)

Taking the limit δ → 0 reduces this to the Ingard–Myers boundary condition (Eq. (6)). The reflection
coefficient is again given by Eq. (5), with now

T0 = −KδI0 cosϑ and T1 = −KδI1D sin2 ϑ. (9)

Khamis and Brambley [6] went further and again used matched asymptotic expansions to derive a
boundary condition accurate to second order (O(δ2)) in the boundary layer thickness. This new solution
showed increased accuracy when compared with both the Ingard–Myers boundary condition and Brambley
first order correction provided the boundary layer was thin compared with a wavelength. Khamis and
Brambley [19] presented the second order boundary condition for the flat Cartesian geometry used here,
finding that the T0 and T1 parameters in the reflection coefficient (Eq. (5)) are given by

T0 = − cosϑKδI0 + i(K2
⊥
(δI0δI1 + δ2I11 − δ2I01)− (K2 −K2

⊥
)δ2I2), (10a)

T1 = −
DK2

⊥
δI1

K
+ iD cosϑ((K2 −K2

⊥)δ
2I00 −K2

⊥(δI0δI1 + δ2I3 − δ2I10)), (10b)
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where K2
⊥
= k2x + k2z and the higher order terms are defined as

δ2I2 =

∫ δ

0

yχ0(y)dy, δ2I3 =

∫ δ

0

yχ1(y)dy, (11a)

δ2I01 =

∫ δ

0

χ0

∫ y

0

χ1(ŷ)dŷdy, δ2I10 =

∫ δ

0

χ1

∫ y

0

χ0(ŷ)dŷdy, (11b)

δ2I00 =

∫ δ

0

(
∫ y

0

χ0(ŷ)dŷ − δI0

)

dy, δ2I11 =

∫ δ

0

(
∫ y

0

χ1(ŷ)dŷ − δI1

)

dy. (11c)

2.2. Reflection Coefficient for the PBE

In the case of the PBE, a numerical solution of Eq. (2) is necessary, which is then matched in the far
field to an incoming and outgoing plane wave in order to determine the reflection coefficient. The matching
is simplified because, in the uniform flow region y > δ, the PBE and the CHE are identical, and so the
solution to the PBE will be of the form of Eq. (4). Hence, for any y > δ, we have

R =
1

2iky

(

ikyp(yN )−
∂p

∂y
(yN )

)

exp(ikyyN ), (12)

with yN the boundary of the domain governed by the PBE. In order to obtain the pressure and its derivative
at y = yN , the PBE is solved numerically at N + 1 collocation points yi using a pseudo-spectral method,
subject to boundary conditions of a unit amplitude incident wave,

∂p

∂y
+ ikyp = 2iky exp(ikyyN ) at y = yN , (13)

and the impedance boundary condition

∂p

∂y
−

iω

Z
p = 0 at y = 0. (14)

The collocation points are here chosen to follow a Gauss–Lobatto distribution, and Chebyshev polynomials
are used as basis functions to estimate spatial derivatives [20, p. 570]. Therefore, the computational grid is
given by

yi = cos

(

πi

N

)

, i = 0, . . . , N, (15)

with N the number of points. In this work, N = 500 ensures convergence for all considered cases. One may
obtain the differentiation matrix from

Dij =











































2N2 + 1

6
, when i = j = 0,

−
2N2 + 1

6
, when i = j = N,

−
yj

2(1− y2j )
, when i = j, 1 < j < N − 1,

ci(−1)i+j

cj(xi − xj)
, when i 6= j,

(16)

where c0 = cN = 2 and ci = 1 otherwise. The computational domain ξ ∈ [−1, 1] is mapped into the physical
domain y ∈ [0, yN ] by

y =
yN
2
(ξ + 1) and

d

dy
=

2

yN

d

dξ
. (17)

In this way, a linear system of equations of the form Ax = b is obtained, with each row imposing the
discretized PBE be satisfied at one of the collocation points. This linear system is solved using the LAPACK
library routine ZGESV [21, p.237]. The result is then used to find the reflection coefficient R using Eq. (12).
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3. Optimal Impedance

For a given angle of incidence, perfect acoustic absorption is achieved if |R| = 0. For the CHE, where
reflection coefficient R is simply given by Eq. (5), the optimal impedance Zopt must therefore satisfy

Zopt(ϑ) =
1− iT0

D cosϑ+ iT1

. (18)

For the PBE, where the reflection coefficient is given numerically as described in Section 2.2 above, the
optimal impedance is found by iteration using a Newton–Raphson method until a sufficiently small reflection
coefficient is achieved (for instance, |R| < 10−8). As a starting point for the Newton–Raphson iteration,
the optimal impedance predicted using the Brambley boundary condition is used as an initial guess; this is
found to speed up numerical convergence for each angle of incidence.

4. Results and Discussion

We consider the test cases of the benchmark study proposed by Gabard [5], as listed in Table 1. These
parameters are typical of a turbofan aero-engine intake, but are also relevant to other applications: case A
is a reference condition; case B represents a thinner boundary layer thickness, such as in the region close
to the nacelle intake lip; case C represents the second harmonic of the blade passing frequency; and case D
investigates a lower Mach number.

Table 1: Test cases. Taken from Gabard [5].

Case Helmholtz number, ω Mach number, M Boundary layer thickness, δ
A 28 0.55 1.4%
B 28 0.55 0.7%
C 56 0.55 1.4%
D 28 0.30 1.4%

To access the impact of the boundary layer profile, we consider different analytical formulations. The
simpler representation of a sheared flow can be achieved by assuming a linear profile, given by

U(y) =

{

M
y

δ
, 0 ≤ y ≤ δ

M, y > δ.
(19)

This nonphysical representation gives similar acoustical results when compared to other profiles of the same
boundary layer displacement thickness [22], while given its simplicity it is still possible to obtain an explicit
solution for all the coefficients of the first and second-order boundary conditions, which can be found in the
Appendix A. Two other simple analytic models commonly used to represent the sheared velocity are the
parabolic profile

U(y) =







M
(

1−
y

δ

)2

, 0 ≤ y ≤ δ

M, y > δ,
(20)

and the sinusoidal profile

U(y) =

{

M sin
πy

2δ
, 0 ≤ y ≤ δ

M, y > δ,
(21)

both of which were used by Gabard [5] to access the significance of the boundary layer profile by different
boundary conditions. Finally, we also consider the hyperbolic tangent velocity profile,

U(y) =







M tanh
y

δt
0 ≤ y ≤ δ

M, y > δ,
(22)
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Figure 2: Optimal impedance Zopt in 2D with a linear velocity profile as a function of the angle of incidence θ. Solid lines
denote optimal resistances and dashed lines denote optimal reactance. (a) Case A; (b) Case B; (c) Case C; and (d) Case D.
(For the coloured version of this figure, the reader is referred to the online version of this article.)

where δt is a non-dimensional boundary layer thickness scale which is not the same as the δ above, and
which therefore needs to be adjusted for each case [23]2.

4.1. Two-Dimensional Analysis

First, we consider the 2D case shown in Figure 1b and the linear velocity profile. The angle of incidence
θ varies from 0◦ for grazing downstream incidence, to 180◦ for grazing upstream incidence. For each angle,
Figure 2 shows the predicted optimal impedances using the CHE with Ingard–Myers, first order (Brambley),
and second order (Khamis–Brambley) boundary conditions, compared to the exact solution obtained using
the PBE. The results suggests that the Brambley boundary condition is able to closely follow the exact
solution in all cases, except for upstream propagation at high angles of incidence in cases A and C. These
conditions are typically found at the turbofan aero-engine intake, which highlights the importance of correctly
accounting for boundary layer effects in fan noise propagation. For upstream propagation (θ > 90◦), the
second order inviscid boundary condition (Khamis–Brambley) leads to higher errors when compared to the
first order solution, especially for cases A and C. This finding agrees with Khamis and Brambley [6], who
suggest that for thicker boundary layers and higher frequencies the second order terms deviate from the

2Using the approximation δt = δ/3 leads to U(δ) ≈ 0.995M .
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Figure 3: Absorption coefficient α when solving the PBE with optimal impedances predicted by inviscid boundary conditions
for the CHE with a linear velocity profile. (a) Case A; (b) Case B; (c) Case C, and; (d) Case D. (For the coloured version of
this figure, the reader is referred to the online version of this article.)

exact solution. The optimal impedances of waves propagating at angles near 90◦ are not affected by the
boundary layer, and so all methods give the classic no-flow optimal impedance Zopt = 1.

The optimal resistance predicted by Ingard–Myers boundary condition incorrectly tends to infinity as
propagation becomes tangential to the surface, requiring a near-rigid highly-damped wall, a feature also
observed in the absence of flow. In contrast, the PBE and the asymptotic boundary conditions predict
much lower optimal resistances, which are in line with the results of Spillere and Cordioli [12]. The optimal
reactance tends to be positive for downstream propagation and negative for upstream propagation, while
the Ingard–Myers boundary condition predicts a zero optimal reactance independent of angle of incidence.
For nearly-downstream incidence (with θ close to 0◦), the PBE optimum reactance becomes relatively large,
although tends to a finite value as θ → 0, and a similar although less extreme reactance is also seen for
nearly-upstream incidence (with θ close to 180◦); both of these effects are well captured by the CHE with
the Brambley boundary condition.

It is interesting to calculate the absorption coefficient obtained by solving the PBE with the various
optimal impedances predicted by either the Ingard–Myers or the asymptotic boundary conditions. The
results of this analysis are presented in Figure 3. One may rather look for the reflection coefficient in dB
instead of the absorption coefficient. However, for perfect absorption, the absorption coefficient goes to zero
and, therefore, the absolute value of the reflection coefficient tends to minus infinity. The reflection coefficient
obtained by solving the PBE with the various optimal impedances predicted by either the Ingard–Myers
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Figure 4: Reflection coefficient |R| on a logarithmic scale when solving the PBE with optimal impedances predicted by inviscid
boundary conditions for the CHE with a linear velocity profile. (a) Case A; (b) Case B; (c) Case C, and; (d) Case D. (For the
coloured version of this figure, the reader is referred to the online version of this article.)

or the asymptotic boundary conditions are shown in logarithmic scale in Figure 4. Near-perfect absorption
is observed for angles between 30◦ and 130◦ in all cases, irrespective of the boundary condition used to
determine the optimal impedance. However, for acoustic propagation almost parallel to the surface, the
Ingard–Myers and the second order asymptotic boundary conditions predict optimal impedances which
result in very poor absorption coefficients. This is not surprising, since the predicted impedances by the
Ingard–Myers boundary condition tend to infinity as θ approaches 0◦ or 180◦. In other words, the optimal
impedance predicted by the Ingard–Myers is, in practice, a hard wall. On the other hand, the optimal
impedance predicted by the first order Brambley boundary condition leads to very high absorption, especially
in cases B and D, where perfect absorption is achieved at almost all angles of incidence. The same statement
is valid for downstream propagation in cases A and C. For upstream propagation, it also represents a
considerable improvement over the Ingard–Myers boundary condition.

Next, we consider the effect of the velocity profile shape on the optimal impedance. Initially, all velocity
profiles are assumed to have the same boundary layer thickness. For the sake of brevity, we discuss only
case A, with the results for the other cases presented in Appendix B. Figures 5a, 5b and 5c show the com-
parison of the optimal impedance obtained for the parabolic, hyperbolic tangent and sine velocity profiles,
respectively, considering the Ingard–Myers, first order and second order asymptotic boundary conditions,
compared to the exact solution obtained with the PBE. In Figure 5d, the exact solution obtained for the
different velocity profiles are condensed for a clearer comparison. One may notice that the Ingard–Myers
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Figure 5: Optimal impedance Zopt for case A in 2D as a function of the angle of incidence θ. Solid lines denote optimal
resistances and dashed lines denote optimal reactance. All velocity profiles have the same δ. (a) Parabolic; (b) Hyperbolic
tangent; (c) Sinusoidal; and (d) Profiles comparison for the exact solution with PBE. (For the coloured version of this figure,
the reader is referred to the online version of this article.)

boundary condition is insensitive to the velocity profile, while the first and second order asymptotic bound-
ary conditions are able to adapt to each of the profiles. As was observed for the linear profile analysis,
the optimal impedance predicted by the first order asymptotic boundary condition shows good agreement
with the exact solution for the whole range of angles of incidence, for all the considered velocity profiles,
especially for the hyperbolic tangent profile. Once again, the second-order boundary condition leads to
higher errors when compared to the first order solution, although a better agreement is observed for the
hyperbolic tangent profile.

Nayfeh et al. [22] compared the attenuation in bi-dimensional ducts predicted with the Ingard–Myers
boundary condition with the exact solution for different velocity profiles. Theirs results suggest that by
scaling the velocity profiles for the same boundary layer displacement thickness

δ∗ =

∫ δ

0

1−
U(y)

M
dy, (23)

leads to similar in-duct attenuation. Later, Gabard [5] found that scaling the velocity profiles to have the
same boundary layer displacement thicknesses δ∗ lead to similar absorption by a flat surface, while matching
the boundary layer thicknesses δ lead to mismatches. We now consider the same analysis for the problem
of the optimum impedance of a flat surface. The velocity profiles are adjusted such that the parabolic,
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Figure 6: Optimal impedance Zopt for case A in 2D as a function of the angle of incidence θ. Solid lines denote optimal
resistances and dashed lines denote optimal reactance. All velocity profiles have the same δ∗ for the reference linear profile.
(a) Parabolic; (b) Hyperbolic tangent; (c) Sinusoidal; and (d) Profiles comparison for the exact solution with PBE. (For the
coloured version of this figure, the reader is referred to the online version of this article.)

hyperbolic tangent and sinusoidal profiles have the same δ∗ of the linear profile. Once again we only show
the results found for case A, which can be see in Figure 6. An almost perfect agreement is found between
the optimal impedance for the different velocity profiles, as can be see in the comparison for the exact
solution (Figure 6d). This agrees with the results of the literature [5, 22], since if the same attenuation is
expected provided that the boundary layer displacement thickness is kept the same, the optimal impedance
therefore should also be kept the same. One may notice that the optimal impedances for the different flow
profiles predicted by the first and second order asymptotic boundary conditions are the same, with the only
clear exception being the prediction by the second order boundary condition for the hyperbolic tangent
velocity profile, for higher angles of upstream incidence. This highlights the hypothesis that the second
order asymptotic boundary conditions performs poorly for larger boundary layers, as to achieve a similar δ∗

with the hyperbolic tangent flow profile, δt needs to be significantly increased.

4.2. Three-Dimensional Analysis

The results from the previous section are now extended to a three-dimensional case, as shown in Figure 1a,
where the acoustics waves have angles of incidence ϑ and ϕ. Figure 7 shows how the predicted optimal
resistance and reactance varies for the PBE and the CHE with Ingard–Myers and first order asymptotic
boundary conditions. For the sake of conciseness, only results for the test case A are shown, and the
second order inviscid boundary conditions is omitted since better agreement was found with the first order
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Figure 7: Optimal impedance Zopt for case A as a function of incidence angles ϑ and ϕ. Optimal resistances (a,c,e) and optimal
reactances (b,d,f), considering Ingard–Myers (a,b) and Brambley (c,d) boundary conditions and numerical solution of PBE
(e,f). (For the coloured version of this figure, the reader is referred to the online version of this article.)
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Figure 8: Absorption coefficient α when solving the PBE with optimal impedances predicted by (a) Ingard–Myers and (b)
Brambley boundary conditions as a function of incidence angles ϑ and ϕ. (For the coloured version of this figure, the reader is
referred to the online version of this article.)

Brambley boundary condition. Also, only the linear profile is considered here, since similar results observed
for the different flow profiles when the same δ∗ was considered. Figure 7e shows a complex pattern of
optimal impedances for three-dimensional angles of incidence when solving the PBE. As in the 2D case,
the Brambley boundary condition is able to capture this pattern (Figure 7c) even at very sharp angles of
incidence with ϑ close to 90◦, whereas the Ingard–Myers boundary condition fails at these conditions. It
should be noted, however, as in the two-dimensional case, at angles close to the normal incidence with ϑ close
to 90◦, no appreciable difference is observed between the boundary conditions and the reference solution.
At ϕ = 90◦, the acoustic propagation is perpendicular to the flow, and, although no convection is expected,
there is still refractive effects, which explains why the optimum impedance is not the classic no-flow optimal
impedance. One may also notice the change in the phase of the impedance by the reactances when changing
from downstream (ϕ < 90◦) to upstream (ϕ > 90◦) propagation. Finally, an important mention is that for
normal incidence (ϑ = 0◦), all cases predicted the optimal impedance of Zopt = 1, even though it is not
clearly noticeable in the surface plots.

As in the two-dimensional case, the error in the absorption coefficient due to the choice of boundary
condition is now considered. Figure 8a shows poor absorption for upstream propagation and sharp angles of
incidence when using the optimal impedance predicted by Ingard–Myers boundary condition. In the case of
downstream propagation, the situation is less dramatic, and reasonable absorption is generally achieved. On
the other hand, the Brambley boundary condition (Figure 8b) leads to near perfect absorption at any angle
of incidence in the case of downstream propagation. Only at very sharp angles and upstream propagation
it is possible to observe some errors, although the absorption coefficients remain relatively high.

5. Conclusions

In this work, the optimal impedance of a lined plane surface in the presence of an inviscid sheared
flow was investigated. Different boundary conditions for the convected Helmholtz equation (CHE) were
compared to numerical solutions of the Pridmore-Brown equation (PBE). The findings of this work suggests
that, for close to normal angles of incidence (θ = 90◦, ϑ = 0◦), flow effects make minimal difference to the
optimal impedance. In this case, the no-flow optimal impedance Zopt = 1 should provide reasonable levels
of absorption. When acoustic propagation occurs at more acute angles of incidence, the inclusion of a thin
boundary layer becomes crucial to correctly predict the optimal impedance. This effect is more pronounced
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for upstream propagation, which represents for instance the case of turbofan aero-engine intake. In general, in
both 2D and 3D, excellent agreement is found between the CHE using the Brambley boundary condition and
the numerical solution to the PBE in terms of optimal impedance. The Ingard–Myers boundary condition
can only be used with satisfactory results at angles close to normal incidence, for which the flow effects are
small and the optimal impedance Zopt = 1 is already known.

It is interesting to note that the optimal reactance at acute angles of incidence is significantly nonzero
for all but the Ingard–Myers boundary condition. For aeroengine honeycomb liners consisting of an array of
Helmholtz resonators, a zero reactance occurs at resonances of the Helmholtz resonators, and this is often
thought to be the design point of the liner. Our results here therefore demonstrate that to optimally damp
nearly-grazing incidence waves, the liner needs to operate well away from liner resonances, owing to the
presence of the flow boundary layer. This effect is missed when using the Ingard–Myers boundary condition.

Different velocity profiles where considered in order to investigate the impact of the profile in the optimal
impedance. It was found that the optimal impedance is the same for different velocity profiles if the same
boundary layer displacement thickness δ∗ is adopted. This is in agreement with previous works that reported
similar attenuation for different velocity profiles with the same value of δ∗ [5, 22].

An important assumption in this work is the absence of viscothermal effects, which represent the full
picture of acoustic propagation in a boundary layer over a lined surface. At conditions similar to turbofan
aero-engine intakes, it is known that viscous effects can significantly modify the absorption predictions [24],
which could impact the optimal impedance as well. Moreover, in this work the incident acoustic field was
assumed to be formed by plane waves. Another possible setup would be assuming a point source over
the lined surface. In this configuration, different incidence angles would be observed over the flat surface.
Therefore, it is expected that the perfect attenuation may require an impedance distribution, since the
optimal impedance depends on the acoustic wave incidence angle.
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Appendix A. Explicit solution of the coefficients in the first and second order boundary

conditions for the linear profile

δI0 = −
δ(D − 1)(D + 2)

3
, (A.1a)

δI1 =
δ(D − 1)

D
, (A.1b)

δ2I2 = −δ2
(

(D − 1)(D + 3)

12

)

, (A.1c)

δ2I3 = δ2
(

(D − 1)(D − 3) + 2 logD

2(D − 1)2

)

, (A.1d)

δ2I01 = δ2
(

(1 −D)(1 +D2)((D − 1)(D + 2)− 6)− 12D logD

12D(D − 1)2

)

, (A.1e)

δ2I10 = −δ2
(

(D − 1)(12 + (D − 1)((D − 1)(3D + 1)− 6))− 12 logD

12(D− 1)2

)

, (A.1f)
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Figure B.9: Optimal impedance Zopt for case B in 2D as a function of the angle of incidence θ. Solid lines denote optimal
resistances and dashed lines denote optimal reactance. (a) Parabolic; (b) Hyperbolic tangent; (c) Sinusoidal; and (d) Profiles
comparison. (For the coloured version of this figure, the reader is referred to the online version of this article.)

δ2I00 = δ2
(

(D − 1)(2δ(D + 2)− 3(D − 1)− 8)

12

)

, (A.1g)

and

δ2I11 =
δ

2D

(

δ + δ(1 − δ)(D − 1) + 2δD − 1−D logD

(D − 1)2

)

. (A.1h)

Appendix B. Optimal impedances in 2D for different velocity profiles

Figures B.9, B.10 and B.11 plot the same comparison as figure 5 but for Cases B, C and D respectively.
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