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Introduction 
This paper is written in honour of Ted Eisenberg who has been a friend and a 
colleague for more years than I care to tell. Ted is a mathematician who became a 
mathematics educator, who has always championed the need to get the mathematics 
right, in particular, that students should develop a true understanding of mathematical 
proof. 

He has also championed an appreciation of the aesthetics of mathematical thought 
(e.g. Dreyfus & Eisenberg, 1986), yet was concerned to find that few students derive 
pleasure from the beauty of mathematics and that mathematics educators seemed to 
be failing to cultivate such a feeling in their students. Twenty years later, Koichu, 
Berman & Katz (2007) related the “aesthetical blindness” of students to factors such 
as self-esteem that affect students’ aesthetic judgement. 

In this paper, I present a global theoretical framework that complements cognitive 
and affective aspects of the increasing sophistication of mathematical thinking and 
proof, taking into account the nature of mathematics itself and the way in which 
learners mature by building on their previous experiences. 

The purpose of this framework is to encompass the development of mathematical 
thinking that embraces the full spectrum of individual success from the discalculic 
child to the gifted mathematician from the new-born child to the adult who may be an 
ordinary member of the public using everyday mathematics, or an expert in pure or 
applied mathematics. It is based on our shared human facilities of perception, action 
and reason that mature in very different ways, to explain and predict how we may 
develop mathematical thinking in general and mathematical reasoning and proof in 
particular. 

The framework presented here builds on insights of many individuals who 
contributed ideas that inspired new trains of thought.1 However, it is not a 
compilation of such ideas, nor is it a review of previous theories, or a comprehensive 
attempt to include all possible sources; it is a deep personal reflection on how I have 
come to view the development of mathematical reasoning and proof and the blame 
for any errors or omissions must lie on my own shoulders. 
                                                

1 This article is a product of personal experience, working with colleagues such as Shlomo Vinner who gave me the 
insight into the notion of concept image, Eddie Gray, whose experience with young children led me to grasp the 
essential ways in which children develop ideas of arithmetic and to build a theoretical framework for the different ways 
in which mathematical concepts are conceived, Michael Thomas who helped me understand more about how older 
children learn algebra, the advanced mathematical thinking group of PME who broadened my ideas about the different 
ways that undergraduates come to understand more formal mathematics, many colleagues and doctoral students who I 
celebrate in Tall (2008) and, more recently, the working group of ICMI 19 who focused on the cognitive development 
of mathematical proof (Tall et al., 2012). 
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The sensori-motor language of mathematics 
The cognitive development of mathematical thinking and proof is based on 
fundamental human aspects that we all share: human perception, action and the use of 
language and symbolism that enables us to develop increasingly sophisticated 
thinkable concepts within increasingly sophisticated knowledge structures. It is based 
on what I term the sensori-motor language of mathematics, as formulated in a book, 
How Humans Learn to Think Mathematically (here termed HHLTM, Tall, 2012). 

Mathematical thinking develops in the child as perceptions are recognised and 
described using language and as actions become coherent operations to achieve a 
specific mathematical purpose. According to Bruner (1966), these may be 
communicated first through enactive gestures, then iconic images, then the use of 
symbolism, including not only written and spoken language but also the operational 
symbolism of arithmetic and the axiomatic formal symbolism of logical deduction. 

My theoretical framework follows a similar path enriched by the experience over 
time, building from conceptual embodiment that combines the enactive and iconic 
modes of human perception and action, developing into the mental world of 
perceptual and mental thought experiment. Embodied operations, such as counting, 
adding, sharing, are symbolised as manipulable concepts in arithmetic and algebra in 
a second mental world of operational symbolism. As the child matures, there is a 
further shift into a focus on the properties of mental objects as in Euclidean 
geometry, or the properties of arithmetic operations that are recast as ‘rules’ that 
underlie the generalized operations and expressions in algebra. Each of these leads to 
different forms of mathematical proof: Euclidean proof in geometry and algebraic 
proof, based on the ‘rules of arithmetic’ in algebra. 

The focus on properties in both embodiment and symbolism leads to the 
development of set-theoretic definitions and formal proof in the axiomatic formal 
world of pure mathematics. This builds naturally from the embodied and symbolic 
experiences of school mathematics to a new level of mathematical thinking in which 
formal proof guarantees that any new context in which specific axioms and 
definitions hold will necessarily have all the properties given by theorems proved 
from those axioms and definitions. 

Embodiment and symbolism continue to play their part, not only in imagining 
new possibilities that may be defined and proved formally, but also in an amazing 
turnaround in which certain theorems (called structure theorems) prove that 
axiomatic systems have embodied and symbolic structures based on formal proof. 
This reveals mathematical thinking at the highest level in general, and mathematical 
proof in particular, as an intimate blend of embodiment, symbolism and formalism. 

Aesthetic sense in mathematics may be seen to arise from the surprising manner in 
which patterns in embodiment and symbolism blend together to give insight, and 
formal structures – based on subtly worded axioms and definitions – may be proved 
to have a structural simplicity that allows mathematicians to interpret them in 
embodied and symbolic ways as part of a coherent, logically connected framework. 
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The evolution of theories of mathematical thinking and proof 
Pierre van Hiele (1986) focused on structure and insight, seeing a succession of 
levels that may be described as recognition and description of figures, leading to 
definition and deduction of properties through Euclidean proof. 

Ed Dubinsky and others (Asiala et al, 1996) took an apparently different path, 
following Piaget’s idea of reflective abstraction to focus on operations that are seen 
first as actions, routinized as processes, then encapsulated as mental objects within 
knowledge schemas. 

Anna Sfard (1991) proposed a framework that alternated between operational and 
structural ways of thinking in which operations are condensed as processes, and then 
reified as mental objects which now have a certain structure. She suggested at the 
time that an operational approach inevitably precedes structural mathematics. 
However, the examples given mainly involved operational symbolism becoming 
reified as mental objects, and for me at the time, this question remained open. 

She spent several weeks staying in my home in the autumn 1990. I remember 
explaining to her the idea that Eddie Gray and I had just formulated by giving the 
name procept to an entity that functioned dually as process and concept (Gray & 
Tall, 1994). She joked with me by suggesting that the idea should relate to the duality 
of process and object by calling the idea a pro-ject. I smiled and gently suggested that 
the term project already had a different meaning. 

I offered her a new possibility: that her notion of condensation of an action into a 
process could be extended by renaming the shift from process to object as 
crystallization. This would extend the metaphor of condensation of a gas to a liquid, 
which enabled the liquid to be poured into a container that could be carried around, to 
the crystallization of a liquid into a solid that enabled the object to be grasped and 
manipulated in the mind. 

Neither of us was willing to accept the suggestion proposed by the other. Nor 
could we resolve our differences relating to the shift from school mathematics to the 
advanced mathematical thinking of set-theoretic definition and formal proof. I 
suggested that her term ‘structural’ was used by Bourbaki to relate to the axiomatic 
structure of a formal mathematical object, but she insisted that her notion of 
‘structural’ was quite different. 

This led eventually led to the distinction between the structural development in 
geometry following van Hiele (1986) and structure in formal mathematics analysed 
in Tall, Thomas et al. (2000) and later to the three-part analysis of long-term growth 
through parallel developments of conceptual embodiment (broadly following van 
Hiele) and operational symbolism (using process-object theories of operational 
symbolism) in school, leading much later to the axiomatic formal framework of set-
theoretic definition and proof in university pure mathematics (Tall, 2004a, 2004b). 

Following the recent death of van Hiele in 2011, at the grand old age of one 
hundred, I revisited his ideas of structure and insight, which he asserted applied to 
geometry, but not to the symbolism of arithmetic and algebra (van Hiele, 2002). I 
suddenly realised that the term operation should not be restricted to the symbolic 
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operations in arithmetic and algebra. Operations clearly occur in the constructions of 
Euclidean geometry. For instance, we may operate on an isosceles triangle by joining 
the vertex to the midpoint of the base to cut the triangle into two parts that are 
congruent (having three corresponding sides). This proves that the base angles must 
be equal, and a number of other properties follow, such as the property that the line 
from the vertex to the midpoint of the base is at right angles to the base. Not only 
that, these various properties are all equivalent in the context of Euclidean geometry: 
any one of these properties can be taken as the definition of an isosceles triangle and 
all the others can be deduced from it. 

The operations of construction in geometry and the various operations in 
arithmetic and algebra have a common definition: they consist of ‘a coherent 
sequence of actions and decisions performed to achieve a specific purpose.’ A 
geometric operation is a construction that focuses on the object (the figure) and 
results in enabling us to see relationships concerning the properties of the object. A 
symbolic operation performs a calculation or manipulation focusing more on the 
properties of the operations themselves as the operations lead to a symbolic output. 

Furthermore the compression of operation into mental object in symbolism begins 
for the child as embodied operations on objects such as counting, adding, sharing, 
and is compressed into symbolic operations on whole numbers, fractions, signed 
numbers and so on. I suddenly realised that there are two distinct forms of 
compression from operation to mental object that I termed embodied compression 
and symbolic compression (see HHLTM, chapter 7). 

Embodied compression focuses on the effect of the operations on the objects, such 
as counting a collection to find the number of objects, such as ‘six’. The set of six 
objects can be subdivided, say, into subsets of ‘four’ and ‘two’ and, by rearranging 
the sets, it may be seen that ‘two’ and ‘four’ is also ‘six’. Reorganizing the subsets as 
two rows of ‘three’ allows them to be seen as three columns of ‘two’ so that ‘two 
threes’ is the same as ‘three twos’. Embodied compression enables us to see at a 
glance the flexible properties of arithmetic. ‘Proof’ at this early stage is a form of 
reasoning based on our interpretation of the coherence of our own perceptions and 
actions. This form of proof, in which a specific example is seen to be typical of a 
whole category of examples, is termed generic proof (Harel & Tall, 1991). 

Symbolic compression involves performing a counting operation to obtain a 
number concept, for instance, the operation of ‘count-on’ calculates ‘two and eight’ 
as counting on eight to get ‘three, four, five, six, seven, eight, nine, ten’ while ‘eight 
and two’ is the short count ‘nine, ten’. Here the two operations are very different, one 
is a long count, and the other is short. The general properties of the symbolic 
compression are therefore not as self-evident as they are with embodied compression. 

This leads to two totally different ways of making sense of arithmetic. One 
involves the recognition of the embodied properties of arithmetic, to see general 
patterns that enable arithmetic operations to be performed in simpler ways. To 
calculate  2+8 , just calculate  8+ 2 . The same insight may be used to generate new 
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facts from those already known. For instance, that ‘ 4+ 3’ is ‘one less than  4+ 4 ’ so it 
is seven, using rich conceptual links within a growing knowledge structure. 

A gifted child may simply see these flexible properties of arithmetic as part of a 
coherent knowledge structure and use this overall coherence as an organising 
principle to simplify operations in arithmetic. A child who focuses on procedural 
operations of counting taking place in time will find arithmetic operations to be far 
more difficult to cope with. Eddie Gray and I called this bifurcation ‘the proceptual 
divide’ between those fixed in increasingly complicated counting procedures and 
those who develop flexible ways to derive new facts from known facts (Gray & Tall, 
1994). 

This bifurcation between those who find mathematics ‘easy’ and those who find it 
impossibly difficult begins at a very early age. In How Humans Learn to Think 
Mathematically (HHLTM), I open with an example of two young boys, one of whom 
struggles to operate by counting on his fingers, while a younger boy in the same 
school responds to the problem of finding ‘a sum whose answer is 8’ by responding 
‘a million take away 999,992’. 

This reveals immense differences between children even in the earlier stages of 
learning. This should be taken into account in seeking to explain and predict how 
each individual attempts to make sense of mathematics by building on personal ways 
of knowing and operating. 

Long-term pleasure and pain 
Emotions play a vital role in mathematical thinking. As my dear supervisor, Richard 
Skemp used to say: ‘pleasure is a signpost, not a destination.’ In his goal-oriented 
theory of learning (Skemp 1979), he saw children starting out with the goal of 
seeking to make sense of the world. Successfully linking together ideas in coherent 
ways gives pleasure, success breeds more success, so that a child with a history of 
success builds up a positive feed-back loop where an encounter with a problematic 
situation is often met with the determination to conquer the difficulty. However, lack 
of success leads to an anti-goal, to avoid the feeling of stress. Further encounters with 
stress may lead to a negative feed-back loop in which the desire to avoid failure leads 
to less engagement with the mathematics and less technical proficiency that causes 
even more difficulty and even higher levels of mathematics anxiety (Baroody & 
Costlick, 1998). 

A product of this bifurcation between these two positions often leads to a switch 
from the anti-goal of avoiding the pain of failure to seek the alternate goal of being 
able to ‘do’ mathematics ‘to pass the test.’ Having seen the difficulties of 
mathematics teaching and learning in many contexts around the world, I am 
convinced that the greater majority of mathematics teachers and learners are drawn 
into the strategy of learning procedurally to obtain a public measure of success in 
passing examinations rather than to continue to attempt to make sense of mathematics 
which is becoming, for them, increasingly stressful. 

But why is this? 
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An analysis of the development of mathematical thinking reveals the surprising 
conclusion that mathematics is not a system that builds logically on previous 
experience at each stage, even though every mathematics curriculum in the world is 
intent on presenting topics in a coherent sequence, carefully preparing the necessary 
pre-requisites at each stage for the more sophisticated stages that follow. On the 
contrary, an experience that has been ‘met before’ may be supportive in some new 
situations yet be problematic in others. 

The concept of ‘met-before’ was introduced by Lima & Tall, (2008) and 
McGowen & Tall (2010) to describe ‘a structure we have in our brains now as a 
result of experiences we have met before’. Some ideas that work in one situation such 
as ‘addition makes bigger’ or ‘take away makes smaller’ in whole number arithmetic 
are supportive in the context of fractions yet problematic in the context of signed 
numbers. Of course, we have known this kind of thing for ages, including the concept 
of ‘epistemological obstacle’ developed by Bachelard (1938) and Brousseau (1983) 
and the need for accommodation by Piaget (see, for example, Baron et al, 1995) or 
reconstruction by Skemp (1971). 

However, the notion of met-before refers to the effect of previous experience on 
new learning. A particular met-before is not in itself supportive or problematic, it 
becomes supportive or problematic in a new situation where the learner may find it 
supportive or problematic in attempting to make sense of the new ideas. For instance, 
‘take away leaves less’ is supportive in some contexts (e.g. everyday situations where 
something is removed, in the postulates of Euclidean geometry, or taking one whole 
number from another) but it is problematic in others (such as taking away a negative 
number or in the theory of infinite cardinals). 

As I contemplated the phenomena more closely, I suddenly realized that the 
problem lies not only in the individual learner, it is a widespread feature of the nature 
of mathematics itself. In shifting to a new context, say from whole numbers to 
fractions, or from positive numbers to signed numbers, or from arithmetic to algebra, 
generalization is encouraged by supportive met-befores (ideas that worked in a 
previous context and continue to work in the new one) and impeded by problematic 
met-befores (that made sense before but do not work in the new context). 

This explains and predicts known phenomena such as ‘the didactic cut’ where 
linear equations of the form ‘expression = number’ can be ‘undone’ by arithmetic 
operations which becomes problematic for equations of the form ‘expression = 
expression’ that require algebraic manipulation. A similar analysis applies to the 
embodied idea of an ‘equation as a balance’ which is supportive when the two sides 
involve addition of positive quantities but becomes problematic when it involves 
subtraction or negative quantities. Even the principle of ‘doing the same thing to both 
sides’, which is supportive for some who are able to use it to generate the techniques 
for solving equations can be problematic for many who require to work with specific 
operations and re-interpret ‘add the same thing to both sides’ as an embodied shift of 
the term to the other side with a rote-learnt principle to ‘change signs’ (Tall, Lima & 
Healy, under review). 
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Problematic aspects also arise in the introduction of set-theoretic definitions to 
prove theorems formally in situations where students’ prior experience of 
embodiment and symbolism may be problematic. (For instance, they may sense that a 
theorem is clearly true, and so it does not require a complicated technical proof, or 
they may have beliefs that conflict with the formalism and impede their progress.) 

In each of these cases, the student is taken out of his or her comfort zone, built on 
previous experience, and is faced with problematic met-befores. The result, for a 
confident and successful student, may be the desire to struggle with the new problem, 
to find a way to conquer it and to experience once more the ultimate pleasure of 
success. 

However, students who have succumbed to the earlier need to learn procedures ‘to 
get by’ are more likely to avoid the difficulty by learning to ‘do’ whatever is 
necessary to pass the test. For those who are already suffering from mathematics 
anxiety, the problem may be too great for them to attempt to make much sense at all. 

This is often seen as a difference between students of various abilities. However, 
it does not mean that we cannot seek to encourage each individual student by 
building confidence in what they know and seeking to make sense of problematic 
aspects that arise in new contexts. In particular, we should seek to understand the 
structures that make mathematical thinking flexible and powerful, yet simple. 

Crystalline concepts 
In Tall (2011), I returned to the idea of crystallizing ideas into entities that can be 
grasped as thinkable concepts and manipulated fluently in the mind. But now I was 
no longer restricted to thinking of compressing/encapsulating/reifying a process into 
a concept in the operational symbolic world. Suddenly I felt that I grasped the whole 
game. I formulated a working definition of a crystalline concept as ‘a concept that 
has an internal structure of constrained relationships that cause it to have necessary 
properties as a consequence of its context.’ 

Crystalline concepts occur throughout every area of mathematics, including; 
• platonic objects in geometry, such as points, lines, triangles, circles, congruent 

triangles, parallel lines; 
• operational symbols as flexible procepts in arithmetic, algebra and symbolic 

calculus; 
• set-theoretically defined concepts in axiomatic formal mathematics. 

Not only do crystalline concepts occur at the highest levels of mathematical thinking, 
they emerge in the thinking of a young child who sees the flexible proceptual 
structure of arithmetic through embodied compression rather than the procedural 
step-by-step counting procedures of arithmetic that operate in time. 

They enable flexible thinkers to see mathematical ideas in astonishingly simple 
ways. It is not that the fractions  

4
8 ,  

7
14 ,  

101
202  are all equivalent to each other and to 
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the simplest possible canonical form  
1

2 , it is that these are all manifestations of a 
single crystalline concept: the rational number as a unique point on the number line. 

It is not that the expressions   2(x + 7)  and   2x +14  are equivalent but different, 
where the first can be turned into the second by ‘multiplying out the brackets’ and the 
second can be turned into the first by ‘factorization’, it is that both expressions are 
different ways of writing the same crystalline concept as an algebraic expression. 
Students who think flexibly in terms of crystalline concepts have much more 
powerful means of relating mathematical ideas than those who see equivalent ideas 
that are changed from one form to another by carrying out procedures. 

Likewise, in axiomatic formal mathematics, an axiomatic system such as ‘a 
group’ is a crystalline concept with rich interconnections between its properties. We 
may not know what specific group we are dealing with, but we do know that it has an 
identity that we may denote by e, and that if x is any element, we can define the 
power  xn  for any positive or negative integer and prove that  xm+n = xmxn  for any 
integers m, n. A crystalline concept may be defined formally and then its properties 
may be deduced as theorems to build up a knowledge structure where relationships 
are tightly interconnected by formal proof. 

For example, we can prove that if we begin with the axiomatic definition of an 
ordered field F, then in this context we may formulate any of the equivalent 
definitions for completeness, to prove that a complete ordered field is not only unique 
up to isomorphism, it is also unique as a crystalline concept. 

At the highest level of pure mathematical research, it is the compression of 
structural properties of defined formal concepts into crystalline concepts that gives 
gifted mathematicians a simplicity of thought that is beyond the mere proving of 
theorems of equivalence. An ordered field not only contains a subfield isomorphic to 
the rational numbers, it can be conceived as a crystalline concept that contains the 
crystalline concept of the rational numbers. 

I recall the ideas that I encountered as a graduate student when theoreticians spoke 
of the identification of one structure with another structure as ‘an abuse of notation’. 
On the contrary, it is the very vision that gives the biological brain of the 
mathematician a level of flexibility to conceive mathematical ideas mentally in more 
simple and insightful ways. 

The transition from proof in embodiment and symbolism to formal proof 
Having developed an overall framework for cognitive development from the new-
born child to the frontiers of mathematical research, it is now appropriate to consider 
the cognitive development of proof, as outlined in the ICMI Project on Proof and 
Proving (Tall, Yevdokimov et al, 2012), described in greater detail in HHLTM. 

The van Hiele levels (1986) have been variously reconsidered by a range of 
authors, may be seen in as four successive levels which I term 

• Recognition of basic concepts such as points, lines, and various shapes; 
• Description of observed properties; 
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• Definition of concepts to test new examples to see if they satisfy the definition and 
to use the definitions to formulate geometric constructions; 

• Deduction in the form of Euclidean proof in plane geometry. 

Each of these is a form of structural abstraction in which the structure of the objects 
under consideration and their relationships shift to successive new levels of 
sophistication. This begins first with observations of geometric objects whose 
structures are recognised and described. At this point the foundations of Euclidean 
proof are laid down by formulating definitions for figures that not only allow them to 
be categorised and constructed but also to use ideas such as congruent triangles and 
parallel lines to construct Euclidean proof. 

Van Hiele also described a fifth level of rigour that I see as shifting in two 
directions, the first to different embodied contexts such as projective geometry or 
spherical geometry, the second in terms of the more sophisticated world of axiomatic 
formalism as prescribed by Hilbert. 

While van Hiele (2002) saw these levels apply to geometry and not to the 
symbolic development from arithmetic to algebra, I now see structural abstraction of 
properties as an integral part of operational symbolism. In geometry the objects under 
consideration are shapes that are recognised, described, defined and properties are 
deduced by Euclidean proof. In operational symbolism, the objects are manipulable 
symbols that are formed from the encapsulation of symbolic operations and the 
properties of arithmetic arise from the regularities of these operations that are 
recognised, then defined as ‘rules of arithmetic’ to be used in algebraic proofs to 
deduce theorems. 

Anna Sfard (1991) suggested that operational abstraction invariably occurs before 
structural abstraction. APOS theory (Asiala et al. 1996) also begins with actions, not 
objects. However, operations such as counting, measuring, adding, sharing all operate 
on physical objects at the outset. Furthermore, the longer-term development is far 
more complicated as the learner encounters successive systems of numbers — whole 
numbers, fractions, finite and infinite decimals, signed numbers, rational numbers, 
real numbers, complex numbers. Each change involves supportive aspects that 
generalize problematic aspects that impede progress. At the same time, structural 
abstraction of the properties of number systems are being developed and generalized 
into algebraic manipulation based on the observed rules of arithmetic. 

Experience with the properties of embodiment and symbolism may eventually 
lead to a transition to the axiomatic formal world of definition and deduction. This 
builds on our experience of conceptual embodiment and operational symbolism, 
beginning with the recognition and description of mathematical situations and then 
the definition of axiomatic systems and of defined concepts within those systems, and 
deducing properties of systems and defined concepts using formal proof. 

Experienced mathematicians have flexible knowledge structures that they wish to 
pass on to their students. However, by the time students pass through school to enter 
university, they will have already developed in very different ways based on how 
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they have managed to make sense of previous experiences. The successive 
encounters with new ideas may be grasped by some students who sense the overall 
patterns of mathematics, as happens for example with the flexible patterns that may 
be apparent in the embodied compression of operations into symbolic concepts. 
Others may struggle with the procedural aspects of arithmetic and seek the alternative 
goal of being able to carry out the procedures to pass the tests. Others may be 
suffering increasingly from mathematical anxiety. 

Krutetskii (1976) produced significant evidence that gifted children are much 
more likely to develop a strong verbal-logical basis to mathematical thinking than a 
visual-pictorial foundation. The nine most gifted students selected from a population 
of over a thousand contained five analytic thinkers (verbal-logical), one geometric 
thinker (visual-pictorial), two harmonic thinkers combining the two (one more verbal, 
the other more visual) and one who was not classified. Norma Presmeg (1986) found 
that the most outstanding senior school mathematics students (7 pupils, out of 277) 
were almost always non-visualizers. Of 27 ‘very good’ students (10% of the sample), 
eighteen were non-visualizers and five were visualizers. 

This suggests that a small number of those students who enter university are 
powerful verbal-analytic thinkers who may benefit from making sense of set-
theoretic definitions, an even smaller number who base their thinking on visual-
pictorial representations, and many others with a blend of visual embodied thinking 
and operational symbolism. often succeeding in examinations through rote learning. 

Some students seek a natural approach based on previous experiences of 
embodiment and symbolism from school mathematics. Some seek to use a formal 
approach based on set-theoretic definitions and the deduction of properties using 
formal proof. Some seek to learn proofs procedurally to reproduce in examinations. 
All of these approaches may involve supportive and problematic aspects, some of 
which have been detailed in the literature (e.g. Pinto & Tall, 1999, Weber, 2004).  

As students become more experienced and shift to graduate studies, Weber (2001) 
produced evidence that when research graduates are presented with problems, they 
are more likely to reply flexibly making links between mathematical concepts in a 
sophisticated knowledge structure while undergraduates in their early studies, have 
yet to develop such flexibility. 

This is consistent with the observations about the lack of aesthetic appreciation of 
mathematical ideas noted by Dreyfus and Eisenberg (1986). It is also consistent with 
the relationship noted by Koichu, Berman & Katz (2007) between “aesthetical 
blindness” of students and factors, such as self-esteem, that affect students’ aesthetic 
judgement. However, now, we have a theoretical framework that traces the lack of 
self-esteem in terms of the impediments caused by problematic met-befores that 
occur throughout the curriculum. The problems faced by students are based on deeply 
embedded experiences that they have met before since their early childhood! 

A few students, characterized as being ‘gifted’ develop verbal-analytic skills that 
enable them to build formally from set-theoretic definitions to construct highly 
connected crystalline concepts that may have embodiments and operations linked to 



- 11 - 

underlying formally proved structure theorems. But many others, who focus on 
‘maximising their mark on the exam’ to ‘get a good degree’ to move on in their lives, 
have good reasons for doing so. The mathematics is problematic for them and it 
doesn’t make sense. 

The framework just described covers the full spectrum of student thinking within 
the long-term cognitive and affective development of mathematical thinking from the 
earliest years to university mathematics. It also takes us on towards the frontiers of 
mathematics as researchers build on their experience in conceptual embodiment, 
operational symbolism and axiomatic formalism to recognise new problems, to 
describe possible solutions and propose conjectures, to define appropriate axiomatic 
systems and definitions and seek to deduce new theorems using formal proof. 

We now have a broad framework for the cognitive and affective development of 
mathematical thinking which may be used to seek to explain and predict how 
mathematicians and their students make sense of mathematical reasoning and proof. 

Discussion 
How can the given framework be used to encourage undergraduate students to make 
sense of mathematical proof? The analysis of the cognitive and affective aspects 
experienced by students learning mathematics requires more than an expert 
knowledge of mathematics. The situation may be improved if both professors and 
students are more explicitly aware of their various ways of thinking. Mathematics 
educators, teachers and learners at every level may benefit by becoming more 
explicitly aware of the joy of supportive met-befores that can be used to boost 
confidence and the fear of problematic met-befores that causes increasing anxiety. 

As Cassius observed to Brutus in Shakespeare’s Julius Caesar, ‘the fault lies not in 
our stars but in ourselves.’ We mathematicians and mathematics educators develop 
theoretical frameworks that are based on our own previous experience. The theory of 
supportive and problematic met-befores applies not just to our students but also to 
ourselves as mathematicians and educational theorists. It requires us all to develop 
the confidence to build theories to improve mathematical learning while being strong 
enough to reflect on aspects that do not fit our frameworks and to seek deeper 
understanding. 

This applies to us all. In my own case, as I contemplated the full framework for 
the long-term growth of mathematical thinking, I immodestly believed that I had a 
powerful overarching theory. It is a delusion of course. Any theoretical framework 
will be limited by the experiences of the theoretician who formulates it and I am 
definitely limited as a competent mathematician with little to show in terms of 
original mathematical research and limited experience of teaching younger children. 
As a human being with a biological brain, I am limited in the number of things that I 
can contemplate at a given time and I focus on the development of a wide spectrum 
of individuals as they grow in sophistication in mathematical thinking. Others focus 
on other vital aspects, such as how individuals in society cooperate for the greater 
good, or how various communities of practice view their activities. 
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That being said, the framework, while clearly not a ‘final solution’, does seek to base 
its development on the foundational human attributes of a sensori-motor brain with 
verbal and symbolic modes of representation, communication and reason. 

It links together cognitive growth with its emotional consequences that encourage 
or impede sophisticated developments in new situations and attempts to consider the 
whole spectrum of individual development, from the discalculic child with 
difficulties in processing information to the gifted child who senses the generic 
crystalline structure of mathematics and uses them to build essentially simpler ways 
of powerful mathematical thinking. 

It begins with the new-born child and carries through the development to adult 
thinking, be it in the everyday blending of embodiment and practical arithmetic, the 
growing modes of reasoning in geometry and operational symbolism, the applications 
of mathematics using embodied modelling and symbolic solution processes, or the 
formal axiomatic developments in pure mathematics research. 

Personal reflections 
As I wrote this (in December 2011), I had been intrigued by the reactions that my 
ideas have received in recent years. My own goal is to construct a framework that 
attempts to go beyond the development of ever more sophisticated theories to find 
essential simplicities that can be communicated not only to experts in mathematics, 
mathematics education, and other related disciplines such as psychology, philosophy, 
cognitive science or in applications of mathematics, but also to those involved with 
teaching and learning, be they teachers, teacher trainers, curriculum designers, young 
children, students, parents, or even, dare I say it, politicians. Each community of 
practice has its own beliefs and ways of making sense and efforts should be made in 
bridging these differences by acknowledging the supportive aspects that hold a given 
community together yet become problematic when communicating between different 
theoretical standpoints.  

However, to achieve such a huge goal requires the development of modes of 
communication between differing communities of practice. Each community shares 
its own ways of thinking that may become problematic when attempting to make 
sense of new situations. As I submit papers for review, each time I have some hugely 
positive responses from some reviewers who warm to my ideas. I also have some that 
vehemently declare that my ideas are unacceptable, invariably because they go 
beyond the reviewer’s own particular specialism, be it constructivism, cognitive 
science, philosophy, history of mathematics, formal research mathematics, or various 
theories of mathematical education. 

My own view is that we need to go beyond these parochial specialisms to reflect 
deeply on more fundamental issues that affect so many billions of individuals around 
the world—the children who struggle with equations, the students who cannot cope 
with the limit concept in the calculus, the undergraduates who find difficulty with 
axiomatic theories and all who are forced to endure a life of anxiety in mathematics 
separate from their everyday lives. We need to understand how we can improve the 
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experiences of regular students while also nurturing giftedness, not only in supporting 
those who are manifestly gifted in mathematics, but also those who may be nurtured 
into a greater sense of mathematical understanding that eventually makes 
mathematics more sophisticated in ways that are at the same time, essentially simple. 

Over the years I have seen the opposition of conflicting theories, but now I often 
see these conflicts arising from theories that are coherent in their own context where 
they should be honoured for their insight. I have often struggled to make sense of 
insights of others that at first I did not grasp, but then, in the longer term, I realized 
their valuable contribution to a bigger picture as ideas evolve. 

I honour my school teacher John Butler who always made me aware that the 
journey in mathematical understanding has new ideas around every corner. 

I honour my doctoral supervisor in mathematics, Michael Atiyah, who gave me 
sophisticated insights into the relationship between geometrical and algebraic 
thinking at an aesthetic level that was far higher than I could grasp at the time. I sense 
myself to be the black sheep of his mathematical family as I spread my interests 
widely and moved from thinking about mathematical research to seek a new life in 
understanding how others learn to think about mathematics. 

I honour my doctoral supervisor in mathematics education, Richard Skemp, who 
taught me that ‘there is nothing so practical as a good theory’. His ideas—of 
instrumental and relational understanding, of different modes of building and testing 
mathematics, and theory of how emotional effects of goals and anti-goals affect long-
term development—are the foundation of my whole development. He once said to 
me, ‘David, you will be Elisha to my Elijah’, a comment that I found puzzling at the 
time, but now I realise that he could see across the Jordan and did not live to fully 
realise his vision of the promised land. 

I honour my friend and inspiration, Shlomo Vinner, who taught me about concept 
image and concept definition, yet warned me that I should talk philosophically about 
the mind, and not speak about the physical brain, because future research would 
undoubtedly show the errors in my arguments. 

I honour Efraim Fischbein and his student Dina Tirosh, whose vision, building 
from intuition through algorithmic thinking on to formal thinking, deeply influenced 
me, not only the development of a three-world framework, but also in my long-term 
understanding of infinitesimals and the completion of potentially infinite processes. 

I honour Ed Dubinsky, who taught me so much about the encapsulation of process 
into object, yet I took years to assimilate these ideas in ways that would make sense 
compatible with my own search for the links between visualisation and symbolism. 

I honour Eddie Gray who taught me how little children think about arithmetic that 
led to the subtle notion of ‘procept’ and who inspired me when I needed support. 

I honour Anna Sfard, whose ideas about ‘operational’ and ‘structural’ 
mathematics later developed into her theory of ‘focal analysis of ideas’ and metaphor 
that I found intellectually stimulating, yet I chose a different path focusing on what 
individuals had ‘met-before’ to see mathematical development from the viewpoint of 
the learner. 
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I took great delight in the embodiment of Lakoff (1987) and his later work with 
Rafael Núñez (2000), who moved into neurophysiology to reveal ideas beyond what I 
expected. Yet I found their criticism of ‘the romance of mathematics’ did not grasp 
certain vital aspects of the manner in which research mathematicians construct 
crystalline concepts. Mathematicians construct formal theories that include structure 
theorems that offer new forms of conceptual embodiment and operational symbolism. 
The romance of mathematics has not only formal proof but also opens up new 
possibilities using human embodiment and symbolism to extend the boundaries of 
mathematical thinking. 

I relished my friendship with Jim Kaput who inspired me with his vision of a 
democratic approach to mathematics using technology to make ideas more widely 
available. We differed in our technological approach as he used a mouse to underpin 
‘point and click’ ways of building up piecewise straight approximations and I saw a 
graphic approach dynamically visualizing ‘local straightness’ and linking this directly 
to operational symbolism. However, we both sought to make sense of mathematical 
ideas for a wider community. 

I remember with affections the afternoons I spent with Guershon Harel as I 
learned his way of mulling over an idea for a long time as it slowly crystallized into a 
reasoned theoretical perspective. 

I honour the insights of all my doctoral students (recorded in Tall, 2008), 
particularly the insight of Anna Poynter whose work on teaching vectors in school 
was instrumental (and also relational) in developing the three worlds of conceptual 
embodiment, operational symbolism and axiomatic formalism (Watson, 2002). 

I say ‘thank you’ to my colleagues in the ICMI study group working on the 
cognitive growth of mathematical proof (Tall, Yevdokimov et al., 2012), particularly 
to Walter Whiteley, whose incisive comments on proof in Euclidean geometry 
encouraged the notion of ‘crystalline concept’ and Boris Koichu whose insight into 
the principle of parsimony (Koichu 2008) enhanced the relationship between 
crystalline concepts and aesthetic insight. 

I continue to work with colleagues around the world, on Lesson Study in Japan 
and other APEC countries and its introduction in Europe, with algebra and calculus in 
several different communities in the Americas, with the needs for service 
mathematics and higher level mathematical analysis and proof in the UK. Many of 
my ideas, perhaps all, originate in collaboration and insights working with others; my 
own role lies in the alchemy I use to blend these essential ideas together. 

Finally, and most importantly on this celebratory occasion, I pay tribute to Ted 
Eisenberg, who has played a subtle role in this long-term development with his desire 
to encourage students to grasp the aesthetic values of mathematical proof and his 
criticism of a behaviourist approach to learning. Out of respect for the thinking of 
others, even when they are different, indeed because they are different, we may come 
to a greater insight into how we can make sense of mathematics in general and, in 
particular, how we make sense of mathematical reasoning and proof. 
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