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Abstract: In this paper, the development of mathematical 
concepts over time is considered. Particular reference is 
given to the shifting of attention from step-by-step 
procedures that are performed in time, to symbolism that 
can be manipulated as mental entities on paper and in the 
mind. The development is analysed using different 
theoretical perspectives, including the SOLO model of 
John Biggs and Kevin Collis and various theories of 
concept construction to reveal a fundamental cycle 
underlying the building of concepts that features widely 
in different ways of thinking that occurs throughout 
mathematical learning. 
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Introduction 
 
This paper is a revision and extension of an earlier paper 
(Pegg & Tall, 2005), written to analyze major theories of 
cognitive growth with particular reference to local and 
global issues: the local development of processes and 
concepts and the global development of mathematical 
knowledge over the years of individual growth. In these 
frameworks, the work of Kevin Collis is central. Collis 
(1975) was the first to place Piaget’s early formal stage 
into the earlier group of stages covered by concrete 
operations. He claimed that most children between 13 
and 15 years are “concrete generalizers” and not “formal 
thinkers”. This implies that students in this age range are, 
in general, tied to their own concrete experience where a 
few specific instances satisfy them of the reliability of a 
rule. Building on this idea he and John Biggs took earlier 
global theories of Piaget, Dienes, Bruner and others to 
formulate the SOLO Taxonomy (now generally referred 
to as the SOLO model) addressing the global growth of 
knowledge through successive modes of operation. These 
modes were formulated as sensori-motor, ikonic, concrete 
symbolic, formal and post-formal. He also considered 
local cycles of growth formulated as unistructural, 
multistructural, relational and extended abstract. By 
complementing the local and global, he clarified major 
issues faced in building a comprehensive theory of 
cognitive development of value both in theory and in 
practice. 
The focus in this paper is to consider various theories that 
address local and global issues in cognitive growth, to 

raise the debate beyond simple comparison to move 
towards identifying deeper underlying themes that enable 
us to offer insights into issues concerning the learning of 
mathematics. In particular, a focus of analysis on 
fundamental learning cycles provides an empirical basis 
from which important questions concerning the learning 
of mathematics can and should be addressed. 
To assist us with this focus we distinguish two kinds of 
theory of cognitive growth:  
• global frameworks of long-term growth of the 

individual, such as the stage-theory of Piaget (e.g., see 
the anthology of Piaget’s works edited by Gruber & 
Voneche, 1977), van Hiele’s (1986) theory of 
geometric development, or the long-term development 
of the enactive-iconic-symbolic modes of Bruner 
(1966). 

• local frameworks of conceptual growth such as the 
action-process-object-schema theory of Dubinsky 
(Czarnocha, Dubinsky, Prabhu, & Vidakovic, 1999) or 
the unistructural-multistructural-relational-unistructural 
sequence of levels in the SOLO Model (Structure of the 
Observed Learning Outcome, Biggs & Collis, 1991; 
Pegg, 2003). 

Some theories (such as those of Piaget, van Hiele, and the 
full SOLO model) incorporate both global and local 
frameworks. Bruner’s enactive-iconic-symbolic theory 
formulates a sequential development that leads to three 
different ways of approaching given topics at later stages. 
Others, such as the embodied theory of Lakoff and Nunez 
(2000) or the situated learning of Lave and Wenger 
(1990) paint in broader brush-strokes, featuring the 
underlying biological or social structures involved. 
Global theories address the growth of the individual over 
the long-term, often starting with the initial physical 
interaction of the young child with the world through the 
development of new ways of operation and thinking as 
the individual matures. Table 1 tabulates four global 
theoretical frameworks.  
 
Table 1. Global stages of cognitive development 

Piaget  
Stages 

van Hiele 
Levels 

(Hoffer,1981) 

SOLO  
Modes 

Bruner 
Modes 

Sensori Motor 
 
Pre-operational 
 
Concrete 
Operational 
 
Formal 
Operational 

I Recognition 
 
II Analysis 
 
III Ordering 
 
 
IV Deduction 
 
 V Rigour 

Sensori Motor 
 
Ikonic 
 
Concrete 
Symbolic 
 
Formal  
 
Post-formal 

Enactive 
 
Iconic 
 
Symbolic 

 
 
An example of the type of development that such global 
perspectives entail can be seen by the meaning associated 
with the five modes in the SOLO model proposed by 
Biggs and Collis (1982) and summarised in Table 2 
(Pegg, p. 242, 2003).  
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Table 2. Description of Modes in the SOLO Model 
Sensori-motor: 
(soon after birth) 

A person reacts to the physical 
environment. For the very young child 
it is the mode in which motor skills are 
acquired. These play an important part 
in later life as skills associated with 
various sports evolve.  

Ikonic: 
(from 2 years) 

A person internalises actions in the 
form of images. It is in this mode that 
the young child develops words and 
images that can stand for objects and 
events. For the adult this mode of 
functioning assists in the appreciation 
of art and music and leads to a form of 
knowledge referred to as intuitive. 

Concrete 
symbolic: 
(from 6 or 7 
years) 

A person thinks through use of a 
symbol system such as written language 
and number systems. This is the most 
common mode addressed in learning in 
the upper primary and secondary 
school. 

Formal: 
(from 15 or 16 
years) 

A person considers more abstract 
concepts. This can be described as 
working in terms of ‘principles’ and 
‘theories’. Students are no longer 
restricted to a concrete referent. In its 
more advanced form it involves the 
development of disciplines. 

Post Formal: 
(possibly at 
around 22 years) 

A person is able to question or 
challenge the fundamental structure of 
theories or disciplines. 

 
Underlying these ‘global’ perspectives is the gradual 
biological development of the individual.  The newborn 
child is born with a developing complex sensory system 
and interacts with the world to construct and coordinate 
increasingly sophisticated links between perception and 
action. The development of language introduces words 
and symbols that can be used to focus on different aspects 
and to classify underlying similarities, to build 
increasingly sophisticated concepts.  
Whereas some commentators are interested in how 
successive modes introduce new ways of operation that 
replace earlier modes, the SOLO model explicitly nests 
each mode within the next, so that an increasing 
repertoire of more sophisticated modes of operation 
become available to the learner. At the same time, all 
modes attained remain available to be used as 
appropriate. This is also reflected in the enactive-iconic-
symbolic modes of Bruner, which are seen to develop 
successively in the child, but then remain simultaneously 
available.   
In a discussion of local theories of conceptual learning, it 
is therefore necessary to take account of the development 
of qualitatively different ways (or modes) of thinking 
available to the individual.  In particular, in later acquired 
modes in SOLO, such as the formal or concrete symbolic 
mode, the student also has available sensori-motor/ikonic 
modes of thinking to offer an alternative perspective. 

Local Cycles 
 
Local cycles of conceptual development relate to a 
specific conceptual area in which the learner attempts to 

make sense of the information available and to make 
connections using the overall cognitive structures 
available to him/her at the time. Individual theories have 
their own interpretations of cycles in the learning of 
specific concepts that clearly relate to the concept in 
question.  
Following Piaget’s distinctions between empirical 
abstraction (of properties of perceived objects) and 
pseudo-empirical abstraction (of properties of actions on 
perceived objects), Gray & Tall (2001) suggested that 
there were (at least) three different ways of constructing 
mathematical concepts: from a focus on perception of 
objects and their properties, as occurs in geometry, from 
actions on objects which are symbolised and the symbols 
and their properties are built into an operational schema 
of activities, as in arithmetic and algebra, and a later 
focus on the properties themselves which leads to formal 
axiomatic theories. However, these three different ways 
of concept construction are all built from a point where 
the learner observes a moderately complicated situation, 
makes connections, and builds up relationships to 
produce more sophisticated conceptions. This notion of 
development leads to an underlying cycle of knowledge 
construction.  
This same cycle is formulated in the SOLO model to 
include the observed learning outcomes of individuals 
responding to questions concerning problems in a wide 
range of contexts. The SOLO framework can be 
considered under the broad descriptor of neo-Piagetian 
models. It evolved as a reaction to observed inadequacies 
in Piaget’s framework where the child is observed to 
operate at different levels on different tasks supposedly at 
the same level, which Piaget termed ‘décalage’ (Biggs & 
Collis, 1982). The model shares much in common with 
the ideas of such theorists as Case (1992), Fischer (see 
Fischer & Knight, 1990) and Halford (1993).  
To accommodate the décalage issue, SOLO focuses 
attention upon students’ responses rather than their level 
of thinking or stage of development. This represents a 
critical distinction between SOLO and the work of Piaget 
and others in that the focus with SOLO is on describing 
the structure of a response, not on some cognitive 
developmental stage construct of an individual. A 
strength of SOLO is that it provides a framework to 
enable a consistent interpretation of the structure and 
quality of responses from large numbers of students 
across a variety of learning environments in a number of 
subject and topic areas.  
The ‘local’ framework suggested by SOLO comprises a 
recurring cycle of three levels. In this interpretation, the 
first level of the cycle is referred to as the unistructural 
level (U) of response and focuses on the problem or 
domain, but uses only one piece of relevant data. The 
multistructural level (M) of response is the second level 
and focuses on two or more pieces of data where these 
data are used without any relationships perceived 
between them; there is no integration among the different 
pieces of information. The third level, the relational level 
(R) of response, focuses on all the data available, with 
each piece woven into an overall mosaic of relationships 
to give the whole a coherent structure.  
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These three levels, unistructural, multistructural, and 
relational, when taken together, are referred to as a UMR 
learning cycle. They are framed within a wider context 
with a preceding prestructural level of response to a 
particular problem that does not reach even a 
unistructural level and an overall extended abstract level 
where the qualities of the relational level fit within a 
bigger picture that may become the basis of the next 
cycle of construction. 
In the original description of the SOLO Taxonomy, Biggs 
and Collis (1982) noted that the UMR cycle may be seen 
to operate on different levels. For instance, they 
compared the cycle with the long-term global framework 
of Piagetian stage theory to suggest that “the levels of 
prestructural, unistructural, multistructural, relational, 
extended abstract are isomorphic to, but logically distinct 
from, the stages of sensori-motor, pre-operational, early 
concrete, middle concrete, concrete generalization, and 
formal operational, respectively” (ibid, p. 31). However, 
they theorized that it was of more practical value to 
consider the UMR sequence occurring in each of the 
successive SOLO modes, so that a UMR cycle in one 
mode could lead to an extended abstract foundation for 
the next mode (ibid, table 10.1, p.216). This provides a 
framework to assign responses to a combination of a 
given level in a given mode. 
Subsequently, Pegg (1992) and Pegg and Davey (1998) 
revealed examples of at least two UMR cycles in the 
concrete symbolic mode, where the relational level 
response in one cycle evolves to a new unistructural level 
response in the next cycle within the same mode. This 
observation re-focuses the theory to smaller cycles of 
concept formation within different modes. 
Using this finding, more sophisticated responses building 
on relational responses can become a new unistructural 
level representing a first level of a more sophisticated 
UMR cycle. This new cycle may occur as an additional 
cycle of growth within the same mode.  Alternatively, it 
may represent a new cycle in a later acquired mode. 
These two options are illustrated in Figure 1. 
 
Figure 1. Diagrammatic representation of levels 
associated with the concrete symbolic mode 
 

 
 
To unpack this idea further we first need to consider what 
is meant by thinking within the ikonic mode and the 
concrete symbolic mode. The ikonic mode is concerned 
with ‘symbolising’ the world through oral language. It is 
associated with imaging of objects and the thinking in 

this mode can be described as intuitive or relying on 
perceptually-based judgements.  
For the concrete symbolic mode the ‘concrete’ aspect 
relates to the need for performance in this mode to be 
rooted in real-world occurrences. The ‘symbolic’ aspect 
relates to where a person thinks through use and 
manipulation of symbol systems such as written 
language, number systems and written music notation. 
This mode can become available to students around about 
5-to-6 years of age. The images and words that 
dominated thinking in the ikonic mode now evolve into 
concepts related to the real world. The symbols 
(representing objects or concepts) can be manipulated 
according to coherent rules without direct recourse to 
what they represent. Hence, immersion in this mode 
results in the ability to provide symbolic descriptions of 
the experienced world that are communicable and 
understandable by others. 
As an example of figure 1 in action, let us focus on the 
development of number concepts. In the ikonic mode the 
child is developing verbally, giving names to things and 
talking about what (s)he sees. Numbers in this mode 
develop from the action-schema of counting, to the 
concept of number, independent of how the counting is 
carried out, to become adjectives, such as identifying a 
set of three elephants, and being able to combine this 
with another set comprising two elephants to get five 
elephants.  
In the concrete symbolic mode, in the case of the concept 
of number, the status of numbers shifts from adjectives to 
nouns, i.e., a symbol in its own right that is available to 
be communicated to others, context free and 
generalisable. A unistructural level response in the first 
cycle concerns the ability to use one operation to answer 
simple written problems such as 2 + 3 without reference 
to context, by carrying out a suitable arithmetic 
procedure. A multistructural response would involve a 
couple of operations involving known numbers that can 
be carried out in sequence. The final level in the first 
cycle culminates in students being able to generate 
numerous responses to the question ‘if 5 is the answer to 
an addition question what are possible questions?’ 
The second cycle in the concrete symbolic mode for 
number sees the numbers operated upon move beyond 
those with which the student has direct experience. At the 
unistructural level, single operations can be performed on 
larger numbers; many of the operations become 
automated, reducing demand on working memory. The 
multistructural level response concerns students being 
able to undertake a series of computations. Critical here is 
the need for the task to have a sequential basis.  
Finally, the relational level in this second cycle concerns 
an overview of the number system. This is evident in 
students undertaking non-sequential arithmetic tasks 
successfully and being able to offer generalisations based 
on experienced arithmetic patterns. The issue here is that 
the response is tied to the real world and does not include 
considerations of alternative possibilities, conditions or 
limitations. In the SOLO model, these considerations 
only become apparent when the level of response enters 
the next mode of functioning referred to as the formal 
mode. 
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The value of acknowledging earlier UMR cycles enables 
a wider range of ‘credit’ to be given to responses of more 
complex questions. For instance, Biggs and Collis (1982) 
posed a question that required students to find the value 
of x in the equation: 

  (72 ÷ 36)9 = (72 × 9) ÷ (x × 9) . 
Responses to this question which show some appreciation 
of arithmetic, without grasping the essential qualities of 
the problem itself can be classified into a first UMR 
cycle, and recorded as U1, M1 and R1 respectively, 
which simply involve: 
U1: responding to a single feature, e.g., “has it got 

something to do with the 9s?”; 
M1: responding to more than one feature, e.g., “It’s got 

9s and 72s on both sides”; 
R1: giving an ‘educated guess’, e.g., “36 – because it 

needs 36 on both sides”. 
The second UMR cycle (recorded as U2, M2 and R2) 
involves engaging with one or more operations towards 
finding a solution: 
U2:  One calculation, e.g. ‘72 ÷ 36= 2’; 
M2: observing more than one operation, possibly 

performing them with errors; 
R2:  seeing patterns and simplifying, e.g., cancelling 9s 

on the right. 
Further, responses that have evolved beyond the concrete 
symbolic mode and can be categorised as formal mode 
responses occur when the student has a clear overview of 
the problem based on the underlying arithmetic patterns, 
using simplifications, only resorting to arithmetic when it 
becomes necessary. 
In a curriculum that focuses on making sense at one level 
and building on that sense-making to shift to a higher 
level, the acknowledgement of two or more cycles of 
response suggests more than a successive stratification of 
each mode into several cycles. It suggests the UMR cycle 
also operates in the construction of new concepts as the 
individual observes what is initially a new context with 
disparate aspects that are noted individually, then linked 
together, then seen as a new mental concept that can be 
used in more sophisticated thinking.  
This view of cycles of cognitive development is 
consistent with the epistemological tradition of Piaget 
and with links with working memory capacity in 
cognitive science. It is also consistent with neuro-
physiological evidence in which the biological brain 
builds connections between neurons. Such connections 
enables neuronal groups to operate in consort, forming a 
complex mental structure conceived as a single 
sophisticated entity that may in turn be an object of 
reflection to be operated on at a higher level (Crick, 1994; 
Edelman & Tononi, 2000). 

Process-Object Encapsulation  
 
A major instance of concept construction, which occurs 
throughout the development of arithmetic and the 
manipulation of symbols in algebra, trigonometry, and 
calculus, is the symbolizing of actions as ‘do-able’ 
procedures and to use the symbols to focus on them 
mentally as ‘think-able’ concepts. This involves a shift in 

focus from actions on already known objects to thinking 
of those actions as manipulable mental objects.  
This cycle of mental construction has been variously 
described as: action, process, object (Dubinsky, 1991); 
interiorization, condensation, reification (Sfard, 1991); or 
procedure, process, procept—where a procept involves a 
symbol such as 3+2 which can operate dually as process 
or concept (Gray & Tall, 1991, 1994). Each of these 
theories of ‘process-object encapsulation’ is founded 
essentially on Piaget’s notion of ‘reflective abstraction’, 
in which actions on existing or known objects become 
interiorized as processes and are then encapsulated as 
mental objects of thought.  
Over the years, successive researchers, such as Dienes 
(1960), Davis (1984), and Greeno (1983) theorized about 
the mechanism by which actions are transformed into 
mental objects. Dienes used a linguistic analogy, seeing 
the predicate in one sentence becoming the subject in 
another. Davis saw mathematical procedures growing 
from sequences of actions, termed ‘visually moderated 
sequences’ (VMS) in which each step prompted the next, 
until familiarity allowed it to be conceived as a total 
process, and thought of as a mental entity. Greeno used 
an information-processing approach focusing on the 
manner in which a procedure may become the input to 
another procedure, and hence be conceived as a 
‘conceptual entity’. 
Dubinsky described the transformation of action to 
mental objects as part of his APOS theory (Action-
Process-Object-Schema) in which actions are interiorised 
as processes, then thought of as objects within a wider 
schema (Dubinsky, 1991). He later asserted that objects 
could also be formed by encapsulation of schemas as well 
as encapsulation of processes (Czarnocha et al., 1999). 
Sfard (1991) proposed an ‘operational’ growth through a 
cycle she termed interiorization-condensation-reification, 
which produced reified objects whose structure gave a 
complementary ‘structural growth’ focusing on the 
properties of the objects.  
There are differences in detail between the two theories 
of Dubinsky and Sfard. For instance, Sfard’s first stage is 
referred to as an ‘interiorized process’, which is the same 
name given in Dubinsky’s second stage. Nevertheless, the 
broad sweep of both theories is similar. They begin with 
actions on known objects (which may be physical or 
mental) which are practised to become routinized step-
by-step procedures, seen as a whole as processes, then 
conceived as entities in themselves that can be operated 
on at a higher level to give a further cycle of construction. 
This analysis can be applied, for example, to the 
increasing sophistication of an algebraic expression. An 
expression 

� 

x 2 − 3x  may be viewed as a command to 
carry out a sequences of actions: start with some number 
x (say x = 4), square it to get x2 (in the particular case, 
16), now multiply 3 times x (12) and subtract it from x2 to 
get the value of 

� 

x 2 − 3x  (in this case, 16–12, which is 4). 
We can also think of the sequence of actions as a 
sequential procedure to take a particular value of x and 
compute

� 

x 2 − 3x . An alternative procedure that produces 
the same result is to calculate   x − 3  and multiply this x 
times to give the result represented by the expression 

� 

x(x − 3) . Now we have two different step-by-step 
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procedures that give the same output for given input. Are 
they ‘the same’ or are they ‘different’? As procedures, 
carried out in time, they are certainly different but in 
terms of the overall process, for a given input, they 
always give the same output. In this sense they are ‘the 
same’. It is this sameness that Gray & Tall (1994) call a 
‘process’. We can write the process as a function 

� 

f (x) = x 2 − 3x  or as   f (x) = x(x − 3)  and these are just 
different ways of specifying the same function. 
In this case, we can say that the expressions 

� 

x 2 − 3x  and 

� 

x(x − 3)  may be conceived at different levels: as 
procedures representing different sequences of 
evaluation, as processes giving rise to the same input-
output, as expressions that may themselves be 
manipulated and seen to be ‘equivalent’, and as functions 
where they are fundamentally the same entity. 
Gray and Tall (1994) focused on the increasing 
sophistication of the role of symbols, such as 3+4. For 
some younger children it is an instruction to carry out the 
operation of addition, more mature thinkers may see it as 
the concept of sum, giving 7. Others may see the symbol 
as an alternative to 4+3, 5+2, 1+6, all of which are 
different ways of seeing the same concept 7. Gray and 
Tall used this increasing compression of knowledge, from 
a procedure carried out in time, to a process giving a 
result, and on to different processes giving the same 
result to define the notion of procept. (Technically, an 
elementary procept has a single symbol, say 3+4, which 
can be seen dually as a procedure to be carried out or a 
concept that is produced by it, and a procept consists of a 
collection of elementary procepts, such as 4+3, 5+2, 1+6, 
which give rise to the same output.) 
Such cycles of construction occur again and again in the 
development of mathematical thinking, from the 
compression of the action-schema of counting into the 
concept of number, and on through arithmetic of addition 
of whole numbers, multiplication, powers, fractions, 
integers, decimals, through symbol manipulation in 
arithmetic, algebra, trigonometry, calculus and on to 
more advanced mathematical thinking. In each case there 
is a local cycle of concept formation to build the 
particular mathematical concepts. At one level actions are 
performed on one or more known objects, which Gray & 
Tall (2001) called the base object(s) of this cycle, with 
the operations themselves becoming the focus of attention 
as procedures, condensed into overall processes, and 
conceived as mental objects in themselves to become 
base objects in a further cycle. 
Table 3 shows three theoretical frameworks for local 
cycles of construction (Davis, 1984; Dubinsky 
(Czarnocha et al, 1999); Gray & Tall, 1994, 2001) laid 
alongside the SOLO UMR sequence for assessing 
responses at successive levels. 
 
 
 
 
 
 
 
 

Table 3: Local cycles of cognitive development 
SOLO Model Davis APOS of 

Dubinsky 
Gray & Tall 

   [Base Objects] 
Unistructural 

Multistructural 
Procedure 

(VMS) 
Action 

 
Procedure 

 

Relational Integrated 
Process 

Process Process 

Object Unistructural 
(in a new cycle) 

Entity 

Schema 

Procept 

 
In each framework, it is possible to apply a SOLO 
analysis to the cycle as a whole. The initial action or 
procedure is at a unistructural level of operation, in which 
a single procedure is used for a specific problem. The 
multistructural level would suggest the possibility of 
alternative procedures without them being seen as 
interconnected, and hence remains at an action level in 
APOS theory; the relational level would suggest that 
different procedures with the same effect are now seen as 
essentially the same process. This leads to the 
encapsulation of process as object (a new unistructural 
level) and its use as an entity in a wider schema of 
knowledge. 
If one so desired, a finer grain SOLO analysis could be 
applied to responses to given problems, for instance the 
initial action level may involve a number of steps and 
learners may be able to cope initially only with isolated 
steps, then with more than one step, then with the 
procedure as a whole. Once more this gives a preliminary 
cycle within the larger cycle and both have their 
importance. The first enables the learner to interpret 
symbols as procedures to be carried out in time, but the 
larger cycle enables the symbols themselves to become 
objects of thought that can be manipulated at increasingly 
sophisticated levels of thinking. 

Similar Cycles in Different Modes 
 
Now we move on to the idea that different modes are 
available to individuals as they grow more sophisticated, 
so that not only can students in, say, the concrete 
symbolic mode operate within this mode, they also have 
available knowledge structures in earlier modes, such as 
sensori-motor or ikonic. The question arises, therefore, 
how does knowledge in these earlier modes relate to the 
more sophisticated modes of operation. For example, in 
what way might the development of conceptions in the 
symbolic mode be supported by physical action and 
perception in more sophisticated aspects of the sensori-
motor and ikonic modes of operation? 
In the case of the concept of vector, Poynter (2004) began 
by considering the physical transformation of an object 
on a flat surface while encouraging students to switch 
their focus of attention from the specific actions they 
performed to the effect of those actions. The action could 
be quite complicated: push the object from position A to 
position B in one direction and then to position C in 
another direction. The action is quite different from the 
direct translation from position A to position C, however, 
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the effect of both actions are the same: they all start at A, 
end at C, without being concerned about what happens in 
between. The perception of actions as being different may 
be considered a multistructural response, while the focus 
on the same effect shifts to a relational perspective. 
The effect of the translation can be represented by an 
arrow from any start point on the object to the same point 
on the translated object; all such arrows have the same 
magnitude and direction. This can be represented as a 
single arrow that may be shifted around, as long as it 
maintains the same magnitude and direction. This 
moveable arrow gives a new embodiment of the effect of 
the translation as a free vector. It is now an entity that can 
be operated on at a higher level. The sum of two free 
vectors is simply the single free vector that has the same 
effect as the two combined, one after the other. The 
movable free vector is an enactive-ikonic entity that 
encapsulates the process of translation as a mental object 
that can itself be operated upon. 
In this example, the shifting of the arrow is both a 
physical action (sensori-motor) and also an ikonic 
representation (as an arrow described as a free vector). 
Taking the hint from the view of the SOLO model, that 
each mode remains part of a later mode, Tall (2004) put 
together sensori-motor and ikonic aspects—or, in 
Brunerian terms, a combination of enactive and ikonic—
into one single corporate mode of operation which he 
named ‘conceptual-embodied’ (to distinguish it from 
Lakoff’s broader use of the term ‘embodied’) but 
shortened to ‘embodied’ mode where there was no 
possibility of confusion. Embodiment is a combination of 
action and perception and, over the years, it becomes 
more sophisticated through the use of language.  
The embodied mode of operation is complemented by the 
use of symbols in arithmetic, algebra, trigonometry, 
calculus, and so on, which have a proceptual structure. 
Tall (2004) calls this mode of operation ‘proceptual--
symbolic’ or ‘symbolic’ for short. Studying these 
complementary modes of operation, he found that they 
offer two quite different worlds of mathematics, one 
based on physical action and perception becoming more 
conceptual through reflection, the other becoming more 
sophisticated and powerful through the encapsulation of 
processes as mental objects that can be manipulated as 
symbols. 
He saw a third ‘formal-axiomatic’ world of mental 
operations where the properties were described using set-
theory and became part of a formal system of definitions 
and formal proof. Here whole schemas, such as the 
arithmetic of decimal numbers, or the manipulation of 
vectors in space, were generalised and encapsulated as 
single entities defined axiomatically as ‘a complete 
ordered field’ or ‘a vector space over a field of scalars’. 
This framework has a similar origin to that of the SOLO 
model, but is different in detail, for whereas SOLO looks 
at the processing of information in successive modes of 
development and analyses the observed structure of 
responses, the three worlds of mathematics offer a 
framework for cognitive development from the action and 
perception of the child through many mental 
constructions in embodiment and symbolism to the 
higher levels of formal axiomatic mathematics. Over the 

years, Tall and Gray and their doctoral students have 
mapped out some of the ways in which compression of 
knowledge from process to mental object occur in 
arithmetic, algebra, trigonometry, calculus, and on to 
formal mathematics, not only observing the overall 
process of compression in each context, but the way in 
which the different contexts bring different conceptual 
challenges that face the learner (Gray, Pitta, Pinto, & 
Tall, 1999; Tall, Gray, Ali, Crowley, DeMarois, 
McGowen, Pitta, Pinto, Thomas, & Yusof, 2000). 
In the school context, just as the target SOLO mode is the 
concrete symbolic mode, with sensori-motor and ikonic 
support, this framework categorises modes of operation 
into just two complementary worlds of mathematics: the 
embodied and the symbolic. 
The question arises: can this formulation offer ways of 
conceptualising parallel local cycles of construction in 
mathematics? The example of vector shows one case in 
which the embodied world enables a shift in focus of 
attention from action to effect to be embodied as a free 
vector. In parallel, the symbolic world allows translations 
represented by column matrices to be reconceptualized as 
vectors. Later, focus on the properties involved can lead 
to the selected properties for operations on vectors being 
used as a formal basis for the definition of a vector space. 
This enables us to consider the action-effect-embodiment 
cycle in the embodied world to be mirrored by an action-
process-procept cycle in the symbolic world. This link 
between compression from ‘do-able’ action to thinkable 
concept in the embodied and symbolic worlds arises 
naturally in other formations of symbolic concepts in 
mathematics. 
In the case of fractions, for example, the action of 
dividing an object or a set of objects into an equal 
number of parts and selecting a certain number of them 
(for instance, take a quantity and divide into 6 equal parts 
and select three, or divide it into 4 equal parts and select 
two) can lead to different actions having the same effect. 
In this case three sixths and two fourths have the same 
effect in terms of quantity (though not, of course, in terms 
of the number of pieces produced). The subtle shift from 
the action of sharing to the effect of that sharing leads to 
the fractions 3

6  and 2 4  representing the same effect. 
This parallels the equivalence of fractions in the symbolic 
world and is an example of the concept of equivalence 
relation defined, initially in the form of manipulation of 
symbols in the symbolic world and later in terms of the 
set-theoretic definition of equivalence relation in the 
formal-axiomatic world of mathematical thinking. 
In this way we see corresponding cycles giving 
increasingly sophisticated conceptions in successive 
modes of cognitive growth. Although there are individual 
differences in various theories of concept construction 
through reflective abstraction on actions, this 
fundamental cycle of concept construction from ‘do-able’ 
action to ‘think-able’ concept underlies them all. 
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Table 4: The fundamental cycle of conceptual 
construction from action to object 
 
Constructing a Concept via Reflective Abstraction on Actions 

SOLO 
[Structure of 

Observed 
Learning 
Outcome] 

Davis APOS Gray & Tall Fundamental Cycle 
of 

Concept 
Construction 

 

 Base 
Object(s) 

Known 
objects 

Unistructural 

Procedure  
[as Action 
on Base 

Object(s)] 

Procedure 
as Action 
on Known 

Objects 

Multistructural 

Visually 
Moderated 
Sequence 

as 
Procedure 

Action 

[Alternative 
Procedures] 

[Alternative 
Procedures] 

Relational Process Process Process 
Process 

[as Effect 
of actions] 

Unistructural 
[new cycle] Entity Object Procept Entity 

as Procept 
  Schema   

 

SOLO and local cycles of development 
 
Building on SOLO Taxonomy, Pegg and his colleagues 
have been involved in two large-scale longitudinal 
projects funded by the Australian Research Council with 
support from two education jurisdictions, the NSW 
Catholic Education Office and the NSW Department of 
Education. The projects while different, share the 
common aim of exploring the impact on, and 
implications for, immersing practising teachers in an 
environment where they were supported in learning about 
and applying the SOLO framework. The two research 
studies involved groups of teachers over two and three 
years, respectively. A significant theme within the 
research was helping teachers to unpack the assessment 
for learning agenda as a complement to the more 
traditional assessment of learning. In particular, there was 
a specific focus on local cycles of development in terms 
of unistructural, multistructural and relational responses 
(UMR). 
In the first of these studies (Pegg & Panizzon, 2003; Pegg 
& Panizzon, 2007; Panizzon & Pegg, 2008) primary and 
secondary teachers were asked to explore the changing 
emphasis of assessment and how they reconceptualized 
these changes in practice by working with SOLO as the 
underpinning theoretical framework. Using a grounded 
theory approach, questioning in the classroom was 
identified as the core component with six contributing 
categories. These linked SOLO to identified changes in 
teachers’ practice in: 
• types and varieties of questions used; 
• references to cognition in explaining the development 

of higher-order skills; 
• framing teacher thoughts about their pedagogical 

practices; 
• influencing techniques used in the classroom; 
• identifying current student understanding so as to more 

explicitly drive the focus of lessons; 
• developing positive changes in classroom interactions 

among students; and 
• creating positive changes in classroom interactions 

between teachers and students.  
The main finding of the study was that teachers reported 
a fundamental shift in their perception of learning and 
this was reflected in their teaching and assessment 
practices; their colleagues and students noticed and 
reported changes in their classroom practices and 
procedures. Understanding and applying the SOLO 
model was seen as both a catalyst for action and a 
framework to guide teacher’s thinking.  
The second study (Pegg, J., Baxter, D., Callingham, R., 
Panizzon, D., Bruniges, M. & Brock, P., 2004) provided 
evidence to school systems, subject departments and 
teachers as to how different forms of assessment and 
assessment information can improve the learning 
environment for students. Outcomes include details on 
how to utilise qualitative and quantitative assessment 
practices, and detailed longitudinal analyses of teacher 
growth and perceptions as a result of using the SOLO 
model within the social context of classrooms (Panizzon 
et al, 2007). 
Emerging from this work and to be reported in (Pegg et 
al, under preparation) is the observation that while the 
lower levels of UMR can be taught in the traditional 
sense, the shift to a relational level response requires a 
quality in the thinking of the learner, and this cannot be 
guaranteed by teaching alone. There appear to be certain 
teaching approaches that might be better applied when 
students are identified as responding at one level than 
when at another. Knowledge of this pattern can better 
help teachers develop a rationale for their actions and 
help inform the nature of their instruction at that time. 
Let us first consider the case of students who, during an 
activity, respond at the unistructural level. The 
implication here is that students provide a single relevant 
feature/aspect as an answer. In terms of cognitive 
capacity, the students’ role is first to separate the cue 
(question) and the response. In doing this students need to 
hold the question in their mind while answering the 
question and then be able to relate the question and 
answer with one relevant aspect. The teaching 
implications for these students include numerous 
experiences (to practise) in coming to understand this 
single idea. As this approach proceeds, the single idea 
takes up less cognitive capacity and this allows the 
student to respond at the multistructural level.  
With responses at the multistructural level, students must 
again separate the question (cue) and the response, but 
the cognitive capacity of the student now allows for 
additional aspects/concepts/features to be reported in a 
serial fashion. The key feature here is that the individual 
aspects are seen as independent of one another. Here 
further practise of the individual elements need to be 
pursued as well as activities that draw on the use of many 
elements. Formal language of the discipline has an 
important focus here as while the appropriate words were 
developed by practicing single focus questions, students 
are now better placed to begin to talk more openly about 
a variety of elements. 
In both of the preceding cases, explicit teaching had an 
important place in the process in helping the student to 
identify the critical aspects of the work being undertaken 
and to reduce cognitive demand. Such teaching is able to 
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encourage students to see the benefits of a multistructural 
response over a unistructural one in the improvement in 
consistency and in undertaking more advanced tasks. 
However, the key importance on the multistructural level 
is the accumulation of numbers of relevant elements by 
the student.  
In facilitating a relational response the students are 
expected to interrelate the elements identified as isolated 
aspects at the multistructural level. The characteristics of 
a relational response include students seeing connections 
among the elements, and an overriding rule or pattern 
among the data that are identified. Of course students 
responding at this level are limited by inductive processes 
associated with moving from unistructural to 
multistructural and are not in a position to move beyond 
this context. This movement may occur as they access a 
new unistructural level in the next cycle. 
For teachers who wish to move their students from the 
multistructural level to relational, the emphasis must 
move beyond a focus on explicit teaching to one of 
creating an environment in which students can find their 
own way, and develop their own connections. The result 
in teachers explicitly teaching connections at the 
relational level has two problems. First the number of 
connections (implicit and explicit) among the 
multistructural elements can be very large and hence it 
can become impossible to cover them all. Second, an 
emphasis on teaching the relationships among the 
elements can easily become a new multistructural 
element and hence not serve the integrative function a 
particular relationship among elements can achieve. 

Developments in global and local theory 
 
Tall (2008) has continued to reflect on both global and 
local issues of the development of mathematical thinking, 
seeing the whole long-term development from pre-school 
through primary and secondary school and on to tertiary 
education and beyond to mathematical research. This has 
involved attending more closely to the global framework 
of development which was formulated earlier in terms of 
three worlds of mathematics: the (conceptual) embodied, 
the (procedural-proceptual) symbolic and the (axiomatic) 
formal, henceforth shortened to embodied, symbolic and 
formal. 
He saw this framework based on perception, action and 
reflection, where perception and action give two differing 
ways of making sense of the world and reflection enables 
increasing sophistication of thought powered by language 
and symbolism. 
He realised, to his astonishment, that just three 
underlying abilities set before our birth in our genes are 
the basis for the human activity of mathematical thinking. 
He called these ‘set-befores’. They are recognition (the 
cluster of abilities to recognise similarities, differences, 
and patterns), repetition (the ability to learn to perform a 
sequence of actions automatically) and language (which 
distinguishes homo sapiens from all other species in 
being able to name phenomena and talk about them to 
refine meaning). 

Perception (supported by action) and language enable us 
to categorise concepts. Actions allow us to perform 
procedures and, using symbolism, language enables us to 
encapsulate procedures as procepts that operate dually as 
processes to perform and concepts to think about. 
Language also allows us to define concepts, related both 
to concepts perceived and actions performed, leading to a 
more cerebral sphere of set-theoretic definition and 
formal proof that gives a new world of axiomatic formal 
mathematical thinking. 
This reveals the global theory of three worlds of 
mathematics each having local ways of forming 
mathematical concepts: categorization, encapsulation and 
definition-deduction. Each world of mathematics uses all 
of these but has a preference for one of them: 
categorisation in the embodied world, encapsulation (and 
categorisation) in the symbolic world and set-theoretic 
definition in the axiomatic formal world. 
Local cycles enable the thinker to compress information 
into thinkable concepts specified by words and symbols, 
and linked together into knowledge structures. Not only 
that, a thinkable concept is in detail a knowledge 
structure (called the concept image) and if a knowledge 
structure is coherent enough to be conceived as a whole, 
it can be named and become a thinkable concept. This 
compression takes us one step beyond the UMR cycle to 
the next level where the relational structure is named and 
compressed into a thinkable concept operating at a higher 
level. 
The UMR cycle in categorization involves the individual 
responding at the initial stage in terms of single pieces of 
information, then handling multiple pieces, then 
combining them in a relational manner. It is only when 
these relational properties are seen to refer to a single 
overall concept that it can become the unistructural 
concept at the next level. 
With encapsulation of procedures to processes to objects, 
we have a second type of UMR cycle: a single procedure, 
several different procedures to achieve the same result, 
seen as equivalent procedures at the relational level 
before compression into a procept which acts as the 
unistructural concept at the next level. 
However, as has been suggested earlier, the UMR cycles 
in embodiment and symbolism may happen in subtly 
different ways. It may be possible to perform actions to 
see the effect of those actions in a way that embodies the 
desired object at the next level, which may then shift the 
use of symbolism to perform operations that give 
accurate calculations and precise symbolic 
representations. For instance, the calculus benefits from 
an embodied approach in terms of the ‘local straightness’ 
of graphs that look essentially straight under high 
magnification, to see their changing slope. The graph of 
this ‘slope function’ may then be translated to a symbolic 
approach using arithmetic approximations that give a 
‘good enough’ numerical approximation at any given 
point and algebra to give a precise symbolic formula for 
the whole global derivative. At the formal level, the set-
theoretic definition of limit can be introduced to give a 
formal axiomatic approach to mathematical analysis. 
The global framework also formulates the way in which 
individuals build knowledge structures on basic set-
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befores that we all share and personal met-befores that 
consist of structures we have in our brains now as a result 
of experiences we have met before. 
There is more to learning than simply putting elements 
together in a relational way. The learner must make sense 
of the world through forming knowledge structures that 
are built on met-befores. Many met-befores are 
supportive. For instance two and two makes four in 
whole number terms and it continues to make four 
whether we are speaking of whole numbers, fractions, 
real numbers, complex numbers or cardinal numbers. 
Other met-befores that are quite satisfactory in the given 
context become problematic in a later development. For 
instance, addition of whole numbers makes bigger, take-
away makes smaller, but neither are true in the arithmetic 
of signed numbers or the arithmetic of cardinal numbers. 
Learners who face situations that are too complicated for 
them to make sense with their current knowledge 
structures, or where confusion is caused by problematic 
met-befores, are likely to feel anxious and may resort to 
the solace of rote-learning to have a facility for repeating 
procedures but without the compression of knowledge 
that gives long-term development of flexible 
mathematical thinking. 
Indeed flexible mathematical thinking blends together 
different knowledge structures, for instance, the 
embodied number line drawn on paper by a stroke of a 
pen, the symbolic number system of (infinite) decimals 
for powerful calculation, and the formal structure of a 
complete ordered field for logical coherence. 
Blends give mathematics its power. The number system 
we use is a blend of discrete counting which has 
properties where every counting number has a next with 
none in between and continuous measurement in which 
any interval can be subdivided as often as desired. While 
the blend works well in elementary mathematics, a 
schism appears in infinite mathematics where counting 
leads to infinite cardinals that can be added and 
multiplied but not subtracted or divided and measuring 
leads to non-standard analysis where infinite elements 
have inverses that are infinitesimal. (Tall, 2002). 
The theoretical framework of ‘three worlds of 
mathematics’ provides a global framework for 
mathematical thinking with only two categories in early 
mathematics broadening to three later on. It has local 
frameworks of compression of knowledge through 
categorization, encapsulation and definition that take into 
account the met-befores that are problematic in learning 
in addition to successive UMR style compressions. 
Successive levels of sophistication are addressed with the 
construction and blending of knowledge structures and 
their compression into thinkable concepts at higher levels 
continuing right through to the subtle knowledge 
structures used in research mathematics. This framework 
places local UMR cycles of construction within a global 
framework that allows embodied meaning (such as the 
changing slope of a graph) to be translated into a 
symbolic meaning (the function that specifies the 
changing slope function). Here it is possible for 
embodiment of the slope function to enable the learner to 
‘see’ a higher-level concept before being able to pass 

through the cycles of symbolic development required to 
calculate them. 

Discussion 
 
This paper has considered several different theoretical 
frameworks at both a global and local level, with 
particular reference to the underlying local cycle of 
conceptual development from actions in time to concepts 
that can be manipulated as mental entities. This cycle 
occurs not only in different mathematical concepts, but in 
different modes of operation in long-term cognitive 
growth. In the development of symbolic arithmetic and 
algebra, the heart of the process is the switching focus of 
attention from the specific sequence of steps of an action 
to the corresponding symbolism that not only evokes the 
process to be carried out but also represents the concept 
that is constructed. 
The compression of knowledge to thinkable concepts 
occurs in different ways, including constructions from 
perceptions of objects, actions on objects and properties 
of objects. The first construction leads to a van Hiele type 
development in which objects are recognized, and various 
properties discerned and described.  This knowing is then 
used to formulate definitions that are in turn used in 
Euclidean proof. The second construction uses symbols 
to represent the actions that become mental objects that 
can be manipulated at successively sophisticated levels. 
The third construction leads to the creation of axiomatic 
structures through formal definition and proof, in which a 
whole schema, such as the arithmetic of decimals can be 
reconstructed as a mental object, in this case, a complete 
ordered field. 
In this paper we have focused more specifically on the 
second case in which concepts are constructed by 
compressing action-schemas into manipulable concepts 
by using symbols. This is the major cycle of concept 
construction in arithmetic, algebra, symbolic calculus, 
and other contexts where procedures are symbolised and 
the symbols themselves become objects of thought. It 
includes the action-schema of counting and the concept 
of number, the operation of sharing and the concept of 
fraction, general arithmetic operations as templates for 
manipulable algebraic expressions, ratios in trigonometry 
that become trigonometric functions, rates of change that 
become derivatives, and so on.  
In all of these topics there is an underlying local cycle of 
concept construction from action-schema to mental 
object. All these operations can be carried out as 
embodied activities, either as physical operations or 
thought experiments, and may then be symbolised to give 
greater flexibility of calculation and manipulation. The 
local cycle of construction in the embodied world occurs 
through a shift of attention from the doing of the action to 
an embodiment of the effect of the action. This supports 
the parallel symbolic activity in which an action is 
symbolized as a procedure to be carried out, and then the 
symbols take on a new meaning as mental objects that 
can be manipulated in higher-level calculations and 
symbolic manipulations. 
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In addition, all of these topics share an underlying local 
cycles of construction that begin with a situation that 
presents complications to the learner, who may focus at 
first on single aspects, but then sees other aspects and 
makes links between them to build not just a more 
complex conception, but also a richer compressed 
conception that can be operated as a single entity at a 
higher level. Such a development is described in the 
SOLO model to analyse the observed learning outcomes, 
but also features as a local cycle of learning in a wide 
range of other local theoretical frameworks. 
In the case of compression of knowledge from doing 
mathematics by performing actions, to symbolising those 
actions as thinkable concepts, all these theoretical 
frameworks share the same underlying local cycle of 
learning. Significantly, they all be categorised so that the 
learning outcomes can be analysed in terms of the SOLO 
UMR cycle. More than this, the global theory of three 
worlds of mathematics fits with development of the 
SOLO modes of operation. The SOLO sensori-motor and 
ikonic modes together are the basis for conceptual 
embodiment, the concrete symbolic mode relates to the 
procedural-proceptual symbolic world, the higher levels 
of formal and post-formal can also be seen to relate to the 
later development of formal axiomatic mathematics and 
later to mathematical research. A fitting point to end our 
discussion in tribute to the life and work of Kevin Collis. 
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