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This paper uses the framework of ‘three worlds of mathematics’ (Tall 2004a, 2004b) 

to chart the development of mathematical thinking from the thought processes of 

early childhood to the formal structures of set-theoretic definition and formal proof. 

It sees the development of mathematical thinking building on experiences that the 

individual has met before, as the child coordinates perceptions and actions to 

construct thinkable concepts in two different ways. One focuses on objects, exploring 

their properties, describing them, using carefully worded descriptions as definitions, 

inferring that certain properties imply others and on to coherent frameworks such as 

Euclidean geometry through a developing mental world of conceptual embodiment. 

The other focuses on actions (such as counting), first as procedures and then 

compressed into thinkable concepts (such as number) using symbols such as 3+2, , 

3a+2b, f (x), dy/dx; these operate dually as computable processes and thinkable 

concepts, termed procepts, in a developing mental world of proceptual symbolism. 

These may lead later to a third mental world of axiomatic formalism based on set-

theoretic definition and formal proof. In addition to charting the development of 

proof concepts through these three worlds, we use the theory of Toulmin to analyse 

the processes of reasoning by which proofs are constructed.  

INTRODUCTION 

In recent years, a framework of cognitive development from child to mathematician 

has been developed in the Mathematics Education Research Centre at the University 

of Warwick, based on the work of Eddie Gray, David Tall, and their research 

students (Tall, 2006). A paper indicative of the collaborative nature of this effort is 

presented by Tall, Gray, Bin Ali, Crowley, DeMarois, McGowen, Pitta, Pinto, 

Thomas, and Yusof (2001) under the title Symbols and the bifurcation between 

procedural and conceptual thinking; the authors address the broader question of why 

some students succeed in mathematics, yet others fail, based on research studies 

carried out for doctoral dissertations in mathematics education at the University of 

Warwick. These papers may be found via the website davidtall.com. 

In this presentation we focus specifically on the transition from school mathematics 

to the formal theory of mathematics as published in journals, crucially taking into 

account the concepts that undergraduate students have met before their introduction 

to the mathematics as it is practiced by mathematicians. Technically, a met-before is 

part of the individual’s concept image in the form of a mental construct that an 

individual uses at a given time based on experiences they have met before. Human 

beings bring their previous experiences to bear on new situations that they meet. As 

they grow more sophisticated, this prior knowledge is compressed into thinkable 

concepts that, connected together in knowledge schemas, frame the way in which 
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individuals think. In particular, proof develops initially through practical experiment 

and then through thought experiment drawing implications from given starting 

points, through symbolic manipulation of arithmetic and algebraic formulae, and only 

at a later stage through set-theoretic definition and formal proof. 

THEORETICAL FRAMEWORK 

The child is born with a genetic structure set-before birth in the genes, but the generic 

facilities of perception and action need to be coordinated and refined into coherent 

perceptions of the world and integrated action schemas such as see-grasp-suck. 

Mathematical procedures are extensions of these natural propensities that may be 

learnt in a basic procedural sense but are usually better appreciated within a more 

coherent meaningful framework of connections. 

In the final chapter of Advanced Mathematical Thinking, Tall (1991) reflected on the 

nature of mathematical proof and theorized that there were two different sources of 

meaning prior to the introduction of formal definition and proof. One focused on 

objects and their properties, classified into categories and leading to a van Hiele type 

development of increasing sophistication, building from primitive perception, to 

more refined conceptions, descriptions, then definitions used for making inferences, 

building a coherent deductive framework characteristic of Euclidean Geometry. In 

the initial stages of perception and description, properties occur at the same time, a 

triangle with three equal sides also has three equal angles. Proof begins to arise in this 

development at the level of definition and deduction where an equilateral triangle 

defined as having three equal sides, as a consequence, also has three equal angles. 

The other source of meaning builds through the compression of a repeatable action as 

an overall process that can be performed without effort, which enables students to 

learn procedures to perform routine mathematical algorithms. Some students develop 

a flexible use of symbolism that can operate both as processes to do mathematics and 

concepts to think about it. Gray & Tall (1991) introduced the term procept to refer to 

the dual use of symbolism as process and concept in which a process (such as 

counting) is compressed into a concept (such as number), and symbols such as 3+2, 

, 3a+2b, f(x), dy/dx operate dually as computable processes and thinkable concept. 

Here proof develops through generalised arithmetic and algebraic manipulation. 

In subsequent years, this framework has been developed into what Tall (2006) 

described as three mental worlds of mathematics: 

• the conceptual-embodied (based on perception of and reflection on 

properties of objects); 

• the proceptual-symbolic that grows out of the embodied world through 

actions (such as counting) and symbolization into thinkable concepts such as 

number, developing symbols that function both as processes to do and 

concepts to think about (called procepts); 
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• the axiomatic-formal (based on formal definitions and proof) which 

reverses the sequence of construction of meaning from definitions based on 

known concepts to formal concepts based on set-theoretic definitions. 

The term ‘world of mathematics’ is used here with special meaning. It has often been 

suggested to us that these should be simply considered as different ‘modes of 

thinking’, in particular these ideas may easily be reformulated in what the French 

school refer to as different ‘registers’, such as verbal, spoken, written, graphic, 

symbolic, formal, etc. (Duval, 2006), or as different representations in American 

College Calculus such as verbal, numeric, algebraic, graphic, analytic. 

The choice of the word ‘world’ is used here deliberately to represent not a single 

register or group of registers, but the development of distinct ways of thinking that 

grow more sophisticated as individuals develop new conceptions and compress them 

into more subtle thinkable concepts. The focus on long-term development involves 

making new links and suppressing earlier aspects which are no longer relevant to 

develop an increasingly sophisticated world of mental thought, rather than a cross-

sectional study of the use of different registers or representations to focus on different 

aspects of a particular problem situation. 

The conceptual embodied world includes not only perceptions of physical objects, 

but also (later on) visuo-spatial reasoning using internal conceptions built from 

external perceptions. It grows from the immediate perception and action of the young 

child to the focus of attention on aspects such as the idea that a point has location but 

not size, that a line has no thickness and can be extended as far as desired. In this way 

the focus of attention moves from the specifics of human perception to the subtle 

essence of underlying regularities that grow into Platonic conceptions that some 

experts may see as a separate and ideal world. Others, however, see this greater level 

of sophistication as a natural product of human mental construction focusing on 

essentials and suppressing detail that is no longer central to the growing sophisticated 

thought processes. 

The symbolic world grows in quite a different way, encapsulating counting as 

number, addition as sum, repeated addition as product, sharing as fractions, 

generalised arithmetic processes as algebraic expressions, infinite approximating 

sequences as limit. This development is described with its growth and discontinuities 

in Tall et al. (2001). It relates to the process-object compression that Dubinsky (1991) 

calls ‘encapsulation’ following Piaget, and Sfard (1991) terms ‘reification’ within her 

framework in which operational mathematics is recast in a structural form. 

The axiomatic formal world develops from the properties arising in embodiment and 

symbolism, now formulated in terms of set theoretic definitions of mathematical 

structures with all other properties derived using mathematical proof (Tall, 1991; 

Tall, 2002). 
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There is a concern that each of the terms used here is employed with different 

meanings in the literature. For instance, Lakoff (1987) says that all thought is 

‘embodied’, Peirce (1932) and Saussure (1916) use the term ‘symbolic’ in a wider 

sense than this, Hilbert (1900/2000) and Piaget (Piaget & Inhelder, 1958) use the 

term ‘formal’ in different ways—Hilbert in terms of formal mathematical theory, 

Piaget in terms of the ‘formal’ operational stage when teenagers begin to think in 

logical ways about situations that are not physically present. 

It is for this reason that the two-word names are introduced as ‘conceptual-embodied’ 

referring to the embodiment of abstract concepts as familiar images (as in ‘Mother 

Theresa is the embodiment of Christian charity’), ‘proceptual-symbolic’ referring to 

the particular symbols that are dually processes (such as counting, or evaluation) and 

concepts (such as number and algebraic expression), ‘axiomatic-formal’ to refer to 

Hilbert’s notion of formal axiomatic systems. However (and this is a simple but 

important compression of knowledge), when these terms are used in a context where 

their meaning is clear, they will be shortened to embodied, symbolic and formal. This 

will allow the worlds to operate in tandem, such as the embodied-symbolic 

combination which can operate in both directions, for instance, representing algebraic 

equations as graphs or projective geometry as homogeneous coordinates. Later the 

embodied and symbolic worlds may underpin formal thinking as embodied 

formalism or symbolic formalism or even an integrated combination of all three. 

Although there is a hierarchy in the order in which these worlds begin to develop, 

each new world develops concurrently with older worlds (see Figure 1). As school 

students enter the symbolic world, their ways of thinking in the embodied world 

continue to develop, just as mathematics university students continue to operate in 

the embodied and the symbolic worlds as they begin to develop more formal ways of 

 

Figure 1: The cognitive growth of three mental worlds of mathematics 
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thinking. Similarly, professional mathematicians have a variety of working methods; 

some performing embodied thought experiments to suggest theorems which may then 

be published in purely formal terms, others basing their mathematical proofs 

explicitly on powerful computations and symbol manipulations. 

DIFFERENT TYPES OF REASONING AND PROOF 

Each world carries with it aspects that are more than simply ways of thinking, they 

also involve ways of perception, action and reflection and the emotions and meanings 

that accompany that thinking. Tall (2004a,b) suggests that each world of mathematics 

carries with it different kinds of warrants for truth that grow in sophistication as the 

individual matures. 

For instance: 

• In the embodied world, the individual begins with physical experiments to 

find how things fit together, for example, squares fit together to form a 

pattern that covers a flat table, so that four corners make a complete turn, 

and two corners make a straight line. Later verbal descriptions become 

definitions and are used in Euclidean geometry both to support the visual 

constructions with verbal proofs and to build a global theory from 

definitions and proof. 

• In the (proceptual) symbolic world, arguments begin with specific numerical 

calculations and develop into the proof of algebraic identities such as 

   (a b)(a + b) = a
2

b
2  by symbolic manipulation. 

• In the formal world, the desired form of proof is by formal deduction, such 

as the intermediate value theorem proved by using the completeness axiom. 

In this way we see that the categorization into three worlds each of which develops in 

sophistication is not simply a question of three different modes of thinking, but of 

different strands of long-term development that complement and extend each other. 

DEGREES OF CONFIDENCE IN PROOF 

In addition to these different kinds of 

justification, there is also considerable 

variation in the level of confidence that 

students and mathematicians have in the 

conclusion of a given mathematical 

argument. Proof in mathematics requires 

that each statement must be true or false 

with no middle ground. But this is only the 

tip of the iceberg: as a proof is constructed, 

arguments may be used at various times 

with varying levels of confidence. Toulmin 

(1958) put forward a perspective of 

argumentation that takes into account the 

 

Figure 2: Toulmin’s layout 
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kind of arguments that may be used in proof building, and he introduced a layout for 

modelling a general argument that differentiates six main types of statements. 

Starting from a claim that one wishes to support with given data, some kind of reason 

is produced to link the data and the claim. This linking statement is called the 

warrant of the argument, which may be supported by some kind of backing. Most 

importantly, a qualifier may be used to express the strength with which the claim 

may be taken, and a rebuttal may be used to state the possible limitations in the scope 

of the argument (Figure 2). 

Although Toulmin (1958) did not address the modelling of mathematical 

argumentation and proof, in a later work Toulmin, Rieke and Janik (1979) suggested 

that this layout could indeed be useful to model the procedure of proving in 

mathematics, and illustrated this in the context of Euclidean geometry (p.89). 

Furthermore, Toulmin's layout has been used in mathematics education to analyse the 

collective argumentation of students and teachers in the mathematics classroom 

(Krummheuer, 1995; Forman, Larreameny-Joerns, Stein & Brown, 1998; Yackel, 

2001; Stephan & Rasmussen, 2002; Rasmussen, Stephan & Allen, 2004; Knipping, 

2003), students' written and verbalised arguments in task-based interviews (Hoyles & 

Küchemann, 2002; Evens & Houssart, 2004; Weber & Alcock, 2005; Alcock & 

Weber, 2005; Pedemonte, 2007; Inglis, Mejia-Ramos & Simpson, 2007), and by 

philosophers of mathematics to analyse mathematical proofs (Alcolea Banegas, 1998; 

Aberdein, 2005, 2006a, 2006b). 

The following example from Inglis & Mejia-Ramos (2008), illustrates how a student 

uses a non-absolutely-qualified embodied argument to gain insight into a possible 

proof. Linvoy is a 2
nd

 year maths undergraduate in a top ranked U.K. university. In an 

interview, he was asked to work on the following task (based on a problem by 

Raman, 2002): 

Determine whether the next statement is true or false (explain your answer by proving or 

disproving the statement): The derivative of a differentiable even function is odd. 

After working unsuccessfully for a couple of minutes with the definitions of even/odd 

function and that of the derivative of a function, Linvoy said: 

“Perhaps if I think of it in a bit of a less formal way, if I just think of it as the derivative of a 

function being the gradient at a particular point… and… um… [draws the graph of an even 

sinusoidal function] I think of some graph like this which happens to be [inaudible] because 

it’s an even function, and then… yes, I suppose one way of looking at this is that at any 

point here, like say you take this point [picks a point of the function in the first quadrant], 

you’ve got this gradient going like that, if you compare the exact other part, you’ve got the 

gradient going in the opposite direction because it’s exactly, ummm, it’s like a mirror 

image, so... and that is, that is odd, because that gradient would be exactly the negative of 

that gradient.  

So, yeah, I suppose, just from that basic example I suppose that intuitively does, does seem 

like it would make sense, but what about… maybe it’s just the example of the function I’ve 

chosen, but that can’t be right, because, what I’m thinking is… if you take, I mean, any 

[draws another set of axis]… this can do whatever it likes, but say we’re interested at some 
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point where it’s doing that [draws a small portion of the graph of a generic function in the 

first quadrant], then it’s going to have that gradient and then if we transfer it it’s going to be 

like that, so it’s going to have that gradient, which would be the exact opposite of that… 

yeah, thinking of it like this, it does seem true, just thinking of it in those terms, ummm… 

like before I’d be happier if I could think of some way to prove it…” 

 

 

Figure 3: Linvoy’s response 

Linvoy uses particular and generic examples as warrants to reach conclusions paired 

with non-absolute qualifiers such as “[it] does seem like it would make sense”, and 

“it does seem true” (Figure 3).  This kind of argumentation proves to be common not 

only in the work of undergraduate students, but also successful mathematicians 

(Inglis, Mejia-Ramos & Simpson, 2007). This suggests that in considering proof in 

mathematics we need to take into account not only the final form of proof, but the 

nature of the argumentation that leads to the proof which may carry with it different 

types of warrant and degrees of confidence. During the building of a proof, and even 

at the stage of presenting a proof, warrants need not be absolute, but may be 

accompanied by qualifiers which may be different for different individuals depending 

on their experience. 

NATURAL AND FORMAL THINKING 

All individuals build on their met-befores. Pinto and Tall (1999, 2002) expressed this 

succinctly by distinguishing between formal thinking that builds on set-theoretic 

definitions to construct formal proofs and natural thinking that uses thought 

experiments based on embodiment and symbolism to give meaning to the definition 

and suggests possible theorems to translate into formal proof. 

The met-befores evoked in the building of proof include not only conceptual 

embodiments, as in Linvoy’s case, but also proceptual symbolic calculations, for 

instance, in group theory developing from permutations, in vector space theory 

handling matrices, or in analysis performing calculations in specific cases to provide 

a warrant for the truth of a possibly more general statement. 

A natural approach can be based on embodiment, symbolism or a combination of 

both and may continue to link to embodied mental imagery while translating the 
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imagery into a written proof. A formal approach, on the other hand focuses on the 

statement of the theorem and the necessary logical steps to reach the desired 

conclusion. These distinctions may be seen in the work of famous mathematicians, 

with Polya, Poincaré, Einstein and Atiyah talking about natural thinking in terms of 

examples and visualisations while Weierstrass, Dieudonné and MacLane speak of 

formal thinking based explicitly on well-formulated definitions. 

In the undergraduate classroom, Weber (2004) added to this framework a procedural 

approach that simply involves learning the proof by rote. This fits into our framework 

with a procedural approach corresponding to a more primitive action-schema form of 

learning while natural and formal thinkers attempting to build up knowledge schemas 

based on concept image and/or concept definition. 

FROM FORMAL PROOF BACK TO EMBODIMENT AND SYMBOLISM 

A major goal in building axiomatic theories is to build a structure theorem, which 

essentially reveals aspects of the mathematical structure in embodied and symbolic 

ways. Typical examples of such structure theorems are: 

• An equivalence relation on a set A corresponds to a partition of A; 

• A finite dimensional vector space over a field F is isomorphic to Fn
; 

• Every finite group is isomorphic to a group of permutations; 

• Any complete ordered field is isomorphic to the real numbers. 

In every case, the structure theorem tells us that the formally defined axiomatic 

structure can be conceived an embodied way and in many cases there is a 

corresponding manipulable symbolism. For instance, an equivalence relation on a set 

A—axiomatized as reflexive, symmetric and transitive—corresponds to an 

embodiment that partitions the set. Any (finite dimensional) vector space is 

essentially a space of n-tuples that can (in dimensions 2 and 3) be given an 

embodiment and (in all dimensions) can be handled using manipulable symbolism. 

Any group can be manipulated symbolically as permutations and embodied as a 

group of permutations on a set. A complete ordered field specified as a formal 

axiomatic system corresponds precisely to the symbolic system of infinite decimals 

and to the embodied visualisation of the number line. 

Thus, not only do embodiment and symbolism act as a foundation for ideas that are 

formalized in the formal-axiomatic world, structure theorems can also lead back from 

the formal world to the worlds of embodiment and symbolism (see Figure 4). These 

new embodiments are fundamentally different with their structure built using concept 

definitions and formal deduction. Furthermore, the structure theorems have a life of 

their own which may go beyond and extend human imagination, as for instance with 

vector space theory where two dimensional space can be embodied in a plane and 

three-dimensional space in the human world we live in, yet higher dimensions require 

conceptual embodiments that are only obtained by deep introspection, as in the case 

of Zeeman (1960) visualising how to unknot spheres in five dimensions. 
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New embodiment and symbolism may be a springboard for imagining new 

developments and new theorems; it may not. For instance, the embodied 

interpretation that a complete ordered field is the real line gave generations of 

mathematicians the belief that including the irrationals completed the real line 

geometrically by ‘filling in all the gaps between rationals’. This is not true, for it is 

possible to imagine (as did earlier generations) that the embodied number line has yet 

more elements that are infinitesimally close, but not equal, to real numbers (Tall, 

2005). Thus the embodiment of structure theorems proved formally still need to be 

considered as warrants for truth that may suggest possible new theorems that may in 

fact be flawed. 

Even well-accepted theorems may later prove to have ‘gaps’ in their proof that are 

not justified by their assumptions that may be based not on logic, but on embodied 

conceptions of the mathematics. For instance, after 2000 years of belief in the logic 

of Euclidean proof, Hilbert found a subtle flaw in the proof that the diagonals of a 

rhombus meet inside the figure at right angles. The Euclidean theory had not defined 

the notion of ‘inside’ and so new axioms were added to specify when a point C on a 

line AB was ‘between’ A and B. 

 

Figure 4: From embodiment and symbolism to formalism and back again (Tall, 2002) 
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STUDENTS AND EMBODIMENT IN PROOF 

The role of embodiment proves ( ) to be a two-edged sword in the learning of 

students for it can mislead as well as inspire. For instance, Chin (2002) found that 

students learning about equivalence relations may embody not the whole definition, 

but subtly embody individual axioms. Thus the transitive axiom  

 if a~b and b~c then a~c for all a, b, c 

may be interpreted like the transitive law in a strong order relation, so that a, b, c are 

seen to be different. 

In his famous lecture given at the turn of the twentieth century, Hilbert (1900/2000) 

referred to embodiment of the transitive law in the following terms: 

To new concepts correspond, necessarily, new signs. These we choose in such a way that 

they remind us of the phenomena which were the occasion for the formation of the new 

concepts. So the geometrical figures are signs or mnemonic symbols of space intuition and 

are used as such by all mathematicians. Who does not always use along with the double 

inequality a > b > c the picture of three points following one another on a straight line as the 

geometrical picture of the idea “between”? (p. 410) 

Even Hilbert, the architect of the formalist viewpoint, took inspiration from 

embodiment. 

This may be one explanation of the following statement where a student was unable 

to deduce that if a~b and b~a then a~a: 

  

An alternative explanation put forward by Asghari (2005) noted that the Greek notion 

of equivalence (in terms of lines being parallel or triangles being congruent) was 

always conceived in terms of a relation between two different things. According to 

this explanation, an element cannot be equivalent to itself, just as a line fails to be 

parallel to itself, for it meets itself and two parallel lines do not meet. 

Thus it is always necessary to look at the interpretations that individuals place on 

concepts to find the more subtle sources of their beliefs. As their cognitive structure 

is built genetically on structures set-before birth and experiences met-before 

throughout their lives, previous conceptual embodiment and proceptual symbolism 

will colour their thinking in subtle ways. 

CONCLUSION 

Our analysis of how the mathematical thinking is built up by individuals over their 

life-time from child to mathematician reveals a combination of various kinds of 

conceptual embodiment and proceptual symbolism leading on to axiomatic formal 

proof and how concepts that have been met-before affect new thinking. Proof as 

practiced by mathematicians builds on the experiences that they have integrated into 

their thinking. Even though proof as an ideal may be considered to be absolute, proof 
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as practiced by human beings, even mathematicians, is a human construct with 

human strengths of insight and human weaknesses of construction. In practice, it is 

not ‘all or nothing’, but is based on implicit or explicit ‘warrants for truth’ that carry 

with them a measure of uncertainty that varies between individuals and between the 

ways in which their proofs are framed. 

In this paper we have put forward a framework based on conceptual embodiment 

leading to proceptual symbolism, combining to underpin the axiomatic-formal world 

of mathematical proof. We have given examples of how mathematicians and students 

think about proof and how not only does embodiment and symbolism lead into 

formal proof, but how structure theorems return us to more powerful forms of 

embodiment and symbolism that can support the quest for further development of 

ideas. We have also cautioned how proofs presented by students (and also 

mathematicians) can contain subtle meanings that are at variance with the formalism. 

Mathematical proof may indeed be the summit of mathematical thinking but it is just 

the top of one mountain and requires human ingenuity, with all its strengths and 

flaws, to attempt to reach for the peak of ultimate perfection. 
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