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There is a world-wide desire to improve the teaching of mathematics, yet while
teachers strive to improve performance on tests, there is a growing realization that
practicing procedures to be able to perform them fluently is not sufficient to develop
powerful mathematical thinking. The brain works by focusing on important
information and suppressing inessential detail. Sometimes the detail that worked
before may later prove to be inappropriate and cause difficulties. There are thus two
important issues to address: taking account of ideas that students have met before
that affect their current learning, and helping them to focus on essential ideas that
become the basis of more subtle thinking. I will use the notion of ‘compression of
knowledge’ (Thurston, 1990) to refer to the shift in focus from a process occurring in
time (such as addition) to a concept that can be thought about as a mental entity. This
dual use of a symbol for process and concept is called a procept (Gray & Tall, 1994).

It is my intention to build on a theoretical framework for the long-term development
of mathematical thinking from new-born child to adult which requires powerful ideas
to be compressed into thinkable concepts that apply in new situations. This suggests
that teachers need to act as mentors to rationalize the use of ideas that students have
met before and to encourage them to compress knowledge into powerful ideas that
can be linked together in coherent ways. I will illustrate this by considering specific
mathematical ideas that occur in school mathematics and refer to recent research
findings from studies around the world. A curriculum based only on practicing
procedures becomes increasingly complicated unless the student’s knowledge is
compressed into thinkable concepts that make mathematical thinking not only
powerful, but essentially more simple.

LONG-TERM LEARNING OF MATHEMATICAL CONCEPTS

How do we learn about mathematical concepts? How do we grow over the years to
learn to think mathematically in sophisticated ways? Let us begin with two
mathematical conoepts:

(@ Wha isa@riangle® (b) What is 3O

A GriangleQevokes descriptions like @ three-sided figureQ @ figure made of three
straight linesQ or a picture like this /"N or this <~ or thisD>.. It is a physcal or
mental object that can be GeenOor imagined in a thoughtexperiment. A triangle is a
prototype representing a whole categotry of figures, which can look very different, yet
have the same essential propaties as a three-sided polygon. To GeeQa figure as a
triangle requires a focus of attention on the significant properties (the number of
straight sides) ignoting inessential propeaties (e.g. lengths, angle size and orientation).
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The number &Qon the other hand can be described as Ghe number after fourQor its
propaties might be evoked such as & and 5 make 100br pictured as five objects. It is
related not to the particular objects counted, but to a procedure: the procedure of
couning elements in a set usng the number names @ne two, three, four, fiveO

Piaget distinguished two fundamental modes of abdraction of properties from
physca objects. empirical abstraction through teasing out the propaties of the
object itself, and pseudo-empirical abstraction through focusng on the actionson the
objects, for ingance, couning the number of objects in a collection. Later he speaks
of reflective abstraction focusng on opaationson mental objects where the opeaation
themselves become a focus of attention to form new concepts.

Initially, therefore, we distinguish two ways of building a conaept:

o Thefirst is from the exploration of a particular object whose propeties we
focus on and use first as a description B @ triangle has three sidesOP and
then as a definition B Qi triangle is a figure condsting of three straight line
segments joined end to endO (The latter definition aready assumes
knowledgeof meanings such as @igureCand Gtraight line segment0)

e Thesecondarises from a focus on a sequence of actionsand on organizing
the sequence of actions as a mathematical procedure such as couning,
addition, subtraction, multiplication, evaluaion of an algebraic expression,
computation of a fundion, differentiation, integration, and so on, with the
compression into correspondng thinkable concepts such as number, sum,
difference, produd, expression, fundion, derivative, integral.

Thefirst way gives alongterm cognitive development which, in geometry, has been
formulated by van Hiele, building from perception of shapes, to description of ther
propaties, practical condructions definitions of figures tha can be used for
dedudions building to a coheaent theory of Eudidean geometry (figure 1).
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Figure 1: cognitive development of geometrical concepts
(Tall, et al 2001, after van Hiele, 1986)
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In general, the building of concepts from perception of, and actions on, physcal
objects and the growing sophistication towards definitions, dedudions and formal
theory is called the conaeptud -emboded world of mathematical development.

Thefocus on actions, such as couning, has a quite different form of development, in
which symbols are used to represent desired actions tha are then also used for the
outputs of those actions This use of symbolism to shift from process to concept is
termed aprocept. Procepts occur widdy in symbolic mathematics (Table 1).

symbol process concept
4 couning nunmber
3+2 addition sum
B8 subtract 3 (3 stepsleft) | negdive 3
3/4 sharing/division fraction
3+2x evaluaion expression
v=slt ratio rate
y=A(x) assignment fundion
dyldx differentiation derivative
_[f(X) dx integration integral
=[]
AT tending to limit vaueof limit
S
(x1, x2, E, x,) | Vvector shift point in n-space
ce Sy pemuting{1,2,E, n} element of Sy,

Table 1: Symbols as process and concept
This gives two different forms of mathematical development that interact at all levels:

e the conceptual-embodied (based on perception of and reflection on
propaties of objects);

e the proceptual-symbolic tha grows out of the emboded world through
action (such as couning) and symbolization into thinkable conoepts such as
number, developing symbols tha fundion both as processes to do and
conaepts to think about (called procepts).

These two developments focus increasingly on the propeaties of the concepts
involved and a switch to focus on propeaties expressed in set-theoretic terms leadsto

e the axiomatic-formal (based on forma definitions and proof) which
reverses the sequence of condruction of meaning from definitionsbased on
known conoepts to formal conaepts based on set-theoretic definitions

Thewhole system can berepresented in a single diagram of overlapping categories of
cognitive development (Figure 2).
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Figure 2: The cognitive growth of three mental worlds of mathematics

We use two words to describe each world of mathematics because the component

terms, such as @mbodied® GymbolicOand Gormal Gare used in different ways in the
literature. For ingtance, Lakoff (1987) says tha all thoudht is @mbodied® Peirce

(1932) and Saussure (1916 use the term GymbolicOin a wider sense than this,

Hilbert (1900 and Piaget (Piaget & Inhdder, 1958 use the term Gormal Oin different

waysN Hilbert in terms of formal mathematical theory, Piaget in terms of the ®ormal O
opaationd stage when teenage's begin to think in logical ways about situaions
which are not physcally present.

Here the term @onceptud-embodedOrefers to the embodment of abgtract concepts
as familiar images (as in Mother Theresa is the embodiment of Christian charityQ,
@roceptud-symbolicOrefers to the particular symbols that are dudly processes (such
as couning, or evaluaion) and conaepts (such as nunbe and algebraic expression),
@xiomatic-formal Orefers to Hilbert@ notion of formal axiomatic systems. When
these terms are used in a context where thar meaning is clear, they will be shortened
to embodied, symbolic and formal.

At first the child coordinates perception and action, allowing it to use its perceptions
and actions to build early conaeptud-embodied conceptions of the world, and to
increasing sophistication of geometric development through descriptions
condructions definitions dedudions and on to Eudidean and nonEuclidean
geometries. In paallel, a focus on actions and symbolism leads to the proceptud
symbolism of courting, arithmetic, algebra, symbolic trigonometry, fundions
symbolic calculus. The two distinct worlds of conceptud embodiment and
computations and manipulationswith symbols as procepts have many links.

By compressing the dud names conceptud-embodied, proceptud-symbolic and
axiomatic-formal to embodied, symbolic and formal, (with the shorter terms carrying
the meaning of theoriginds), it is possible to consgder them in combinaion:
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Figure 3: Interrelationships between combinationsof worlds of mathematics

This gives a variety of routes to conaepts as cognitive development grows. For
ingance, having built the natural nunmbers by compressing the procedures of counting
to the conaept of nunber, the concept of fraction may be introduced either by a new
embodiment sharing sets or objects into a number of equd parts, or as new opeaations
with numbe symbols; integers may be seen as pars of numbers as credits (postive)
and debts (negdive) or as opaationsshifting the number lineto theright or left.

Is there a general prindple tha suggests tha a particular route is likely to be more
appropriate (say building symbolism from embodiment or giving embodiment to
symbolism, or a bdanced combination of the two)?

Embod ment evidently gives human meaning, for ingance, the following picture of 2
rows of 3 objects can also be seen as 3 columns of 2 objects, so the total nunber of
objects, 2 x3 isthesame as 3x 2.

L o [
Figure4: 2! 3 isthesameas 3x 2.

In the embodied world, we categorize concepts togeher that satisfy certain propeties.
Figure 4 could jud as easily represent any othe rectangle with a whole number of
rows and columns, say 4 x3 or 28759 x953246 or even m! n whee m and n are
any whole nunbers. Inded, if we look at a picture with a larger number of rows and
columns, human perception can no longe ingantly see how many rows or columns
there are, butis well able to see tha the array has equd sized rows and columns, and
so verify the commutative law perceptudly.

The embodied representation of the product as a rectangle of objects gives ingght
into the order irrelevance of multiplication of whole numbers, but more effort is
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needed to represent the commutative law for fractions and for mixed postive and
negdive nunmbers. On the other hand, if one needed to calculate 28759 x 953246 and
053246 x 28759 to check tha they are equd, then the complication of the arithmetic
might cause young learners concern. This suggests a princple tha embodiment can
give a real human ingght to the simpler forms of mathematical structure but tha
more subtle forms may require a different approach.

In an algebraic approach, the commutative law axb= bxa is assumed as a
fundamental law based on experiences in arithmetic. In the formal world in various
axiomatic systems, it is an axiom.
Algebraic identities such as a° —b* =(a—b)(a+b) can be given an emboded
meaning as in thefollowing picture (figure 5).

a

a-b

a+b

can be

rearranged to a—b
———————

a-b
Figure5: a* — b’ = (a—b)(a+b)

The problem here is tha the embodied representation is more complicated when
b>a or the values a and » may be podtive or negdive. It requires meaning beng
given to negaive lengths (by reversal) and negaive areas (by turning over). Can you
QeeCrhisin figure 672

a negative <

b positive , |b|< a. —>

a —b
la +b

i
-
a—b a

L
<

A

+b

\ 4
Figure6: a’! b* =(a! b)a+b) fora<0,b>0, b<]|al
Matters become more complicated with the formula
a —b = (a—bh)a’+ ab+ b*)
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Can you @eeQit in three dimensgonsas in figure 7? It is easier to do with physical
manipulatives for postive a and b.

a L

-

Figure 7: Thedifference between two cubes a’! b’

Thevisudization is more complicated for pogtive and negaive values of « and b, and
aswe moveto «*! b* infour dimensons we are nolonge in familiar territory. The
case of @"! b" in generd is impossible to visudize for ordinay mortals, certainly
for values of n greater than 3.

Meanwhile, the meaning via symbolic manipulation is routine The case n =4 even
congsts of two applicationsof thecase n= 2:

a4 _ b4 — (a2 _bZ)(aZ + b2)
= (a—b)(a+b)a’> +b?)
We see thaefore tha there is a genuine need to switch from embodment to
symbolism as the mathematics becomes more complex.

COMPRESSION OF KNOWL EDGE FROM PROCEDURE TO THINKABLE
CONCEPT

Mathematics requires more than the ability to carry out procedures to do
mathematics, it requires the condruction of thinkable concepts to manipulate in the
mind and as symbols on pgper.

The symbols a°> —b* and (a—b)(a+b) represent quite different sequences of

evaluaion. The first squaes the values of ¢ and of » and then subtracts the latter
squae from the former. The second subtracts 4 from a, then addsa and » and then

multiplies them together. So the expressions a” —b* and (a! b)(a+ b) represent
different procedures of evaluation but always give the same result.

The fundions f(X)=x*—4 and g(x)=(Xx—2)(x+2) are likewise different

procedures of evaluation, but are congdered as giving the same fundion, because for
given input they always give the same output

Varioustheories of process-object encapsulation (eg Dubinsky, 1991; Sfard, 1991,
Gray & Tal, 1994) suggest tha the conceptions begin as step-by-step actions (or
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procedures) and then are re-conoeptudised as oveal processes focusng on the
relationships between input and output On closer ingoection, there is a whole
spectrum of compression (Figure 8):

pre-procedure (before the full step-by-step procedure is condructed);

a single step-by-step procedure,

more than oneprocedure, giving the possibility of selecting the most

efficient in a given context;

seeing the process as awhole,

conaeiving the process as a thinkable concept (a procept) tha may be
manipulated.

The learning of procedures is pat of mathematics, as is the practice for increasing
speed, and the development of shorter procedures for increasing efficiency. But
withoutcompression to thinkable concepts, the building of connectionsbetween ideas
and the trangtion to the next level of development is likely to prove more difficult.
Procedures occur in time and while it may be easy to practice them untl they become
fluent, it is less easy to think about them as thinkable concepts. For ingance, a child
whose conagption of arithmetic is mainly in terms of counting procedures without a
flexible undestanding of known facts and the ability to derive new number facts

Spectrum of outcomes

Progress

No solution Step-by-step Choice of Flexible
or solution for solutions for solution with
partial a routine increased conceptual
solution problem efficiency alternatives
A A A

Procedure

Pre-
Procedure

Procept
Process(es)
Procedure(s)

Process
Proc Ire(s

Multi-
Procedure

Sophistication
(compression)

Figure 1: Spectrum of outcomes from increasing compression of symbolism
(expanded from Gray, Pitta, Pinto & Tall, 1999,p.121)
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from old is likely to find the trangtion to fractions negatives and later to algebra,
increasingly chdlenging. Students may be able to solve routine problems and pass
examinaionsbut they may then be compromised in ther learning at the next stage as
they lack the simple thinkable concepts to put together to make sense of the new
situaions

It may happen that two students correctly solve the same problem, but onemay have
avery different conaeption of the solution. As an example, consder thefollowing:

Circle theexpressionshatgive the sameresult
Write anotherexpressiorthatis the same:

(x+3(x! 2), x> +5x—6, x* +x—6.

Student QohnOcorrectly circled the first and the third, (x +3)(x —2), x> +x—6. He
then correctly wrote the expression (x—2)(x+ 3). On the surface this is jug the
origind expression with the terms in brackets reversed. But when asked what he did,
John obtained the find expression (x —2)(x 4 3) by factorising x* + x! 6 and he
had notrealised that theresult was the same as thefirst expression.

Does this really matter? On the surface, John gets the routine questions correct. His
problem is, however, tha he lacks flexibility to move on and he had increasing
difficulties coping with the procedures of calculus, which increasingly he tried to
commit to memory in away tha proved to befallible and began to fall apart.

THINKABLE CONCEPTSAND MET-BEFORES

Longterm learning becomes increasingly sophisticated. The complex multi-
processing brain needs to focus on essentials and suppress irrelevant detail to be able
to make decisions (Crick, 1994) Languaye enables usto focus on any phenomenon
of interest, be it an object, an action, a property, an emotion, or whaever, to be able
to name it and talk aboutit to make its meaning more precise. The notion of @roceptO
Is a typical example. Eddie Gray and | (Gray & Tall, 199) realised tha the same
symbol such as 3+2 was being used by some children as a cueto carry out a couning
procedure, while for others it was a thinkable concept, the sum GO By naming this
phenomenon as a @roceptQ it gave thefacility to talk aboutit, to realise tha procepts
occurred throughout the symbolism of arithmetic, algebra, trigonametry, calculus,
fundions trandormations and so on. It allowed usto see tha the same symbol was
interpreted very differently by different individuds and caused greater cognitive
complications for some than for others who had compressed the symbol into a
thinkable concept. It then alowed the idea to be refined and andysed, seeing
@peationd Oprocepts in arithmetic, always produdng a result, Potential Qproceptsin
algebra as expressions such as 3x+2 can only be evauaed when x is known,
@otentially infinite proceptsGin the form of limits, and so on.

The formation of thinkable conoepts is essential in the increasing sophistication of
longterm development. The learner builds new conceptionson experiences tha they
have met before. Technically, | define a met-before (Tal, 2004 to be a current
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conceptud structure in the mind tha is linked to a previous experience. This allows
usto reflect on what children are doing and to talk to each child about some previous
experiences tha are hdpful in a new context and others that may now be causng
them difficulties. For example, arithmetic always produas @nswersQ but this met-
before can cause great difficulties when algebraic expressionsdo not give @GnswersO
On the othe hand, the embodied shifting of objects around is a convenient met-
before tha may enable the learner to move the symbols around in an expression
3x+ 4y+ 2x to Gnove like terms togeher®and combine 3x and 2x into 5x to
tranform the expression into 5x+ 2y. Such a shifting of terms may work with
expressions but it causes difficulty with equdions such as 3x+4=2x+5 where
moving the 2x next to the 3x requires not only @hangesidesCbut also @hangesignD

Of course we would wish to teach algebra with meaning, and there are variousways
tha we might embody an equédion to give meaning, for indance by consdering it as
a Mdance) so that 3x+4 =2x+5 is a bdance with three @@ and 4 on one sided
and two Q@ and 5 on the other. Removing two Q@ from both sides leaves the sides
in bdance and gives x+ 4= 5, then removing 4 from each side leaves the solution
x=1. Aswe saw earlier, however, an embodiment tha works in a simple case may
not work in a more sophisticated context; this embodment becomes more
complicated if there are negaive terms or negative values involved. (Vlassis, 2002)
Thelearner mugs now use the techniquewhen the embodiment may be meaningless.

The dternaive is to make meaning not in the embodiment, but in the symbolism.
Here the expression 3x+ 4 needsto be given meaning as an expression will depend
on x and which can be manipulated as a generalised arithmetic opeation: a difficult
conaeption for many learners, especially those who see an arithmetic expression 3+2
as a procedure to be carried out, rather than a conoept tha can be manipulated in
itself. Such an andysis would imply that students who lack proceptud flexibility with
arithmetic will find algebra difficult to comprehend and be forced into procedura
learning of the opeationsrequired to manipulate the symbols withoutmeaning.

LONG-TERM LEARNING

This discussion leads us to a longterm view of learning, building on the gendtic
capabilities of thelearner and the successive learning experiences over alife-time:

e Thechild isbom with generic capabilities set-before in the gendic structure;
e  Current cognitive development builds on experiences tha were met-before;

e This occurs through longterm potentiation of neurond connections which
strengthens successful links and suppresses others;

Actionsare coordinated as (procedural) action-schemas;

|deas are compressed into thinkable concepts usng language & symbolism;
Thinkable concepts are built into wider (conceptud) knowledge schemas;
Mathematical thinking builds cogntively throughembodiment, symbolism
and, later, formal proof, each developing in sophistication over time;
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e  Successin mathematical thinking dependson the effect of met-befores, the
compression to rich thinkable concepts, and the building of successive levels
of sophistication that is both powerful and simple.

In particular, it suggests that procedures tha are not compressed into thinkable
conaepts may give short-term success in passing tests, butif those procedures are not
given a suitable meaning as thinkable conaepts (in this case, procepts), then they may
make future learning increasingly difficult.

Various studies carried out by dodoral students at Warwick University in counties
around the world reveal a widespread god of @aising standadsOin mathematics
learning, which are tested by tests tha could promote conceptud long-term learning,
but in practice, often produe short-term procedural learning that is may be less
successful in developing longterm flexibility in undestanding and solving non
routine problems.

Procedural conceptions of fraction

A study by Md Ali (2006) of the teaching of fraction in Malaysia focused on the
methods used to raise the standads of al children learning mathematics by a
curriculum tha is intended to develop conaeptud learning. Children are taught
fractionsin a caring and hdpful way that indudes the flexibility of seeing tha a
produd, such as @wo-fifths of twenty-fiveOcan be peformed in two distinct ways:
thefirst works out a fifth of twenty five, which is five, then multiplies by two, to get
ten. The second multiplies two times twenty-five to get fifty and divides by five, also
to ga ten. However, the process is done by geting the children to recite the
procedure, with the teacher saying successive parts of it and inviting the children to
fill in the required words For ingtance, the teacher might say, ®low do we work out
two-fifths of twenty-five?Oand draw three circles on the boad one above the other
for numerator and denominator of the fraction, the other for thewhole number. @Vha
do we put in the top circle? The nuEQ, to which the class gleefully says Ghe
numerator!O QVhat do we put in the bottom circle? The deEQ, the class replies
@enominaor!O @f means mulE @ Gnultiply® and so the lesson continues, building
up theritud of the procedure of multiplication by afraction.

The children@ achievement in fractions tests is improved, but it is achieved by
focusng upon persistent routine exercises. While this focuses on increasing efficiency
of calculation usng two different methods, it does not focus on the flexibility of
fraction as a thinkable concept. The geneal consensus of teachers interviewed was
tha they faced a dilemma: on the one hand the curriculum recommended conceptud
teaching and learning but on the other they had to succumb to the demand to achieve
the school target in the examination. The teachers focused extensgvely on mastery of
techniques throughther lesson structure, their emphasis on the content and the way
in which they presented it at the expense of the children@ undestanding of the
fraction conoept and the ability to perform creatively to solve even mildly different
problems.
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M agicGembodimentsin algebra

Working with a group of committed teachers in Brazil, RosanaNoguera de Lima (de

Lima & Tall, 2006 found tha the teachersOconcern to help students pass ther

algebra examinaions led to focusng on the required techniques. Thear experience of

algebra indudead the manipulation of expressions such as reordering 3a+3b+2a to

give 3a+2a+3b and then to simplify to 5a+3b. This involves @novingGthe 2a GextO
to the 3¢ and then adding them together to get 5a. In our mind® eye, we might sense

this as @icking upGhe @uzGand moving it over the @bGo get Gike termsttogeher.

The students were taught to solve linear equaionsby using the prindple of @oing the
same thing to both sides, but many of them focused not on the general princple, but
on the specific actionsrequired to get the solution. The solution of 3x+2 =8 isthen
achieved by moving the numbers to the same side. Unlike the met-before of moving
like terms togeher in an expression, shifting the 2 to the other side requires the
(nagicCof @hangesignGo get 3x =8 -2 and simplifyingto get 3x = 6. This may be
solved by @noving the 3 over the other sideQthis time @uting it undeneathCio get
x=6

3.

Such an activity seems to give a kind of procedural embodiment, remembering a
sequence of actionsto perform, rather than a conceptual embodiment, which involves
giving cohaent meaning to the undelying conaepts. It works for a few able students
who are able to carry out the procedure accurately, but without meaning, the
procedure is fragile and many students make mistakes, such as changing 3x = 6 with
the additiond magic of @hanging signgto get
x=6
=3

Once such an error occurs and is marked as wrong by the teacher, the student tries to
@orrectOmistakes, which can produce a new rangeof mixtures of errors.

In solving quadratics, the situaion became worse as the teachers, knowing the
difficulties with linear equations focused on teaching the formula, which they know
will solve all quadratic equaions However, in order to be able to use the formula, it
may be necessary to first manipulate the symbols in the equaion and here problems
arose when the students were asked to show tha the equaion (x—2)(x—3)=0 had
roots 2, 3. Many could not begin and, of thoe tha could, none saw tha on
subdituting the values the equdion was satisfied; indead they attempted to multiply
out the brackets and solve the equaion usng theformula. Few succeeded.

Complicationsin the function concept

As we move through into the seconday curriculum we come to conaepts like the
notion of funaion, which the NCTM standards see as being an essential undepinning
of a wide range of mathematics. In some counties, such as Turkey, the fundion
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concept is taught from its set-theoretic definition and seen as a fundamenta
founddiond idea. It is quite ssimple. Y ou have two sets 4 and B and for each element
x in 4, there is precisely one corresponding element y in B which is called f(x) (eff
of eks). Tha@ it!

However, this is used in the curriculum to weave a hugeweb of knowledge linear
fundions quadratic fundions trigonometric fundions exponentials and logaithms,
formulae, graphs sets of ordered pairs, set diagrams, and so on. How does one hep
the student make sense of this complicated mass of ideas?

If the purpose is to score marks on the examination, onestrategy is evidently to give
them all the details of all the techniques they require to pass the examinaion. But
perhgpsthere is another way, more suitable to enable the student to focus on relevant
detail andto build thinkable concepts that naturally link oneto another.

Bayazit (2006) reports a study of the teaching of two teachers with very different
approaches.

Teache Ahmet saw his duty to mentor the students and hep them make sense of the
notion of fundion. So whenever he studied fundions he emphasised the simple
propety tha a fundion f:A— B mapped each element of the domain 4 into the
domain B. For example, in conddering when a graph could be a fundion, he looked
at the definition and related it to the fact that each x correspondel to only oney, and
related this to the Qertical lineOtest. When he consdered the congtant fundion, he
went back to the definition and revealed the condant fundion f(x)=c as the

simplest of functionswhich mapped every value of x in 4 onto thesingle element c in
B. Nothing could be simpler! Likewise, when he studied inverse fundions such as
the sguae root, the inverse trigonometric funaions and the relationship between
logaithm and exponential, he paiently referred everything back to the definition of a
funaion and encouraged his students to focus on the essential simplicity of the ideas.
With piece-wise functions which were new to the students, he again went back to the
definition and confirmed how these too satisfied the simple requirement that for every
x there was aunique

The other teacher, Burak, was well aware of his studentsOpotential difficulties and
misconaception with the fundions and was also aware of the sources of such
obdacles. However, he focused on wha was necessary for the students to pass the
exam. He taught the Qeertical line testOas a specific test for fundions practising
examples to geat it right He consdered that students rejected the congant function
because of ther inability to conceive an @ll-to-onedtransformation as a possible
Interpretation of the fundion definition, explicitly addressing the absence of x in the
formula as a paticular source of misconception. He interpreted the studentsO
difficulties with the inverse fundion as an indicator of ther inability to move back
and forth between the elements of domain and co-domain without losng sight of the
®@neto-one and ontoOcondition. He conddered tha the students had problems with
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visible discontinuities of the graph of piecewise-defined fundions predicting tha the
student would join the points by broken-lines or curves.

However, Burak made no effort to eliminate these obgacles during his classroom
teaching. His range of knowledge of his students is a complicated collection of
different problems. So he gave the students al the detail they needed to answer the
examinaion questions He condrained his teaching of inverse function to working
out the formula, so tha to find the inverse of y=2x+3, onewould express x in

|
terms of y by subtracting 3 from both sides and dividing by 2 to g& x= yT3 then

: : : '3 :
interchange x and y to get the inverse function as y :XT. He explained that a

condant funaion does not involve x and tha its graph is a horizontal line parallel to
the x axis, When teaching the piecewise function, he avoided the difficulties and did
not give any illugration to encourage his students to reflect on wha happened when
the graph of the fundion was made up of digjoint parts or isolated points.

He would often indicate to students tha an examination or test required a particular
way of learning:

If youwantto succeedn thoseexamsyou hawe to learnhowto cope.
Do notforgetsimplification. It is crucial espeially [in] a multiple-choicetest.

It would appear tha his desire for success over-rode his degper conceptions of
thinking so that he provide an action-oriented teaching practice in which his studentsO
difficulties and misconaeptions were periphega to the rules and procedures tha
would lead to success in thetypes of problem asked in examinaions

REFLECTIONS

Looking at the total picture of longterm learning, wha emerges is the absolute
necessity of the teacher hdping the student to condruct thinkable concepts tha not
only enable students to solve current problems, but also to move on to greater
sophistication. In a given situaion, the learning of efficient procedures to do
mathematics is an important part of learning, but in the long-term, it is essentia to
compress knowledge into thinkable concepts tha will work in more sophisticated
ways. This can be doneby building on embodied experiences tha can give indgghtful
meanings suitable for initial learning but may indude met-befores that can hinder
future sophistication. Here it is essential to focus on the development of flexible
thinking with the symbolism tha compresses processes that can be used to solve
mathematical problems into procepts that can be used to tzink aboutmathematics.
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