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In recent years the growing availability of personal computers with high resolution

computer graphics has offered the possibility of enhancing the visual mode of thinking

about mathematics in general and the calculus in particular. Interactive computer software

can be used to give insight to students, teachers and professional mathematicians in a

manner that could not have been imagined a decade ago. Nevertheless, the technology

brings with it the challenge to re-assess what is important in the curriculum and this is

proving to be the more difficult task for professional mathematicians with a rich experience

of pre-computer technology. This paper therefore begins by considering different ways in

which we process information and focuses on the need to complement sequential/deductive

thinking with a global grasp of interrelationships. It then concentrates on different aspects

of the calculus from numerical, symbolic and graphical viewpoints and places recent

developments in visualization using the computer within this broad perspective.

Human information processing and the computer

Individuals develop markedly different ways of mathematically thinking. Whilst some

professional mathematicians will accept only those things which they can deduce logically

step by step from carefully specified axioms, others demand an overall framework in which

they can see a network of interrelationships between the concepts. The former viewpoint is

a necessary pre-requisite for the formalization of mathematical concepts, the latter is

invaluable for their development, both in mathematical research and in mathematical

education. Yet, despite the need for both modes of thought, traditional mathematics

teaching – especially at the higher levels – is usually more concerned with the sequential,

deductive processes of the former rather than the holistic, predictive ones of the latter.
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Mankind’s success as a species is enhanced through the invention and use of tools to

extend human capabilities. Many of these tools compensate for limitations in evolutionary

design, be it spectacles to improve vision, the telephone to extend hearing and

communication, or the supersonic jet to give the power of flight. In The Psychology of

Learning Mathematics (1971), Skemp made the perceptive comment that humans have

built-in loudspeakers (voices) but not built-in picture projectors, causing the fundamental

mode of human communication to be verbal rather than pictorial. He demonstrated how a

geometric proof could be presented in pictures which convey the same information as a

verbal-algebraic proof, in a form that may be more insightful for many individuals. His

purpose was not to show a preference of one form of communication over another, but to

question the dominance achieved by algebraic symbolism and to examine the contribution

made by visual symbols.

Not long ago the computer was a purely sequential, symbolic device, with the operator

punching in a sequence of symbols and receiving the response in a similar form. But

recently developed graphical interfaces now allow the user to communicate with pictures,

providing a tool that compensates for the human lack of a built-in picture projector. Modern

computer operating systems are replacing symbolic typing of commands by visual pointing

at icons to simplify the interface with the computer. Furthermore the computer is able to

accept input in a variety of ways, and translate it flexibly into other modes of

representation, including verbal, symbolic, iconic, graphic, numeric, procedural. It

therefore gives mathematical education the opportunity to adjust the balance between

various modes of communication and thought that have previously been biased toward the

symbolic and the sequential.

A style of learning that uses the complementary powers of sequential/linear thought

processes on the one hand and global/holistic processes on the other is said to be versatile

(Brumby 1982). The computer with suitable software is a powerful tool to encourage

versatile learning (Tall & Thomas 1988b).

The implications of the computer in curriculum sequencing

Traditional mathematics usually introduces learners to sequential techniques and develops

each one in a comprehensive way before introducing the learner to higher order concepts.

Research has shown that the absence of a broad enough range of experience can lead to the

abstraction of a false principle that later proves extremely difficult to eradicate, for instance

“subtraction makes smaller” (an implicit property of counting numbers that causes conflict
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when negative numbers are encountered) or “multiplication makes bigger” (implicitly true

for whole numbers but false for fractions). In these examples the hierarchy of concepts

implies that one cannot avoid working in the limited context before broadening it (counting

numbers before negatives, integers before fractions). But in the case of more advanced

concepts it may be possible to reorganise the sequencing of concepts, using the computer to

provide a rich environment in which formally complex concepts can be met informally at a

much earlier stage.

A good example is the introduction of the derivative in the calculus. Formally this requires

the notion of the limit of  
f(x+h)-f(x)

h    as h tends to zero, so logically the introduction of the

derivative must be preceded by a discussion of the meaning of a limit. To make the notion

of limit simpler, the limiting process is first carried out with x fixed and only later is x

allowed to vary to give the derivative as a function, giving the following sequence of

development:

(1) Notion of a limit, graphically, numerically and/or symbolically,

(2) For fixed x, consider the limit of  
f(x+h)-f(x)

h    as h tends to zero,

(3) Call this limit f '(x) and allow x to vary to give the derivative as a function.

If this sequence is followed, however “intuitively” it is done, then there are cognitive

obstacles at every stage, which are well-known to every perceptive classroom teacher and

have deeper connotations which have been detailed elsewhere (e.g. Cornu 1981, Tall &

Vinner 1981, Orton 1983a,b).

One may conjecture that the interposition of a long chain of sub-tasks in building up a

concept may impede conceptualization, because properties that arise in the restricted

contexts en route lead to serious cognitive obstacles. There are two ways to attempt to solve

this dilemma: one is to research the cognitive obstacles so that they may be addressed

appropriately at a later stage, the other is to use a “deep-end” approach (Dienes 1960) in

which the whole concept is met early on in a rich, but more informal, context designed to

offer a cognitive foundation for a more coherent concept image.

In the case of the derivative the “deep-end” approach can be done by first considering the

informal idea of the gradient of a curved graph through magnification. It is based on the

idea that a differentiable function is precisely one which looks “locally straight” when a tiny

portion of the graph is highly magnified (Tall 1982). The limiting process is then an

implicit idea used as a tool, rather than the explicit focus of study. “Local straightness” is
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the generative idea of this graphic approach to the calculus, which proves to be both a

cognitive and a mathematical foundation for the theory.

It is instructive to note that in 1981-2, when the Second International Mathematics Study

considered the way that calculus was taught, in the report emanating from Ontario (McLean

et al 1984), not one respondent mentions an idea equivalent to a “locally straight” approach,

the favoured methods being the “intuitive” geometrical idea of a “chord approaching a

tangent” or numerical or algebraic limiting processes. The “locally straight” idea has some

precedents, for example in curricula in Holland and Israel, but in each case the absence of

appropriate computer software in the early eighties prevented it from being fully realized in

practice. It also exists in a more visionary way in non-standard analysis (e.g. Keisler 1976)

in which an “infinite magnification” is used to reveal a differentiable function as a

infinitesimal straight line segment. The computer brings a practical (though inexact) model

of this abstract theory.

Numerical, Symbolic & Graphical Representations of Calculus Concepts

The first computer applications in the calculus were numerical - using numerical algorithms

to solve equations, calculate rates of change (differentiation), cumulative growth

(integration and summation of series) and the solution of differential equations. All of these

can be performed in a straightforward, but sometimes inaccurate, manner using simple

algorithms, and then improved dramatically by using higher order methods. However,

unless interpreted imaginatively, tables of numerical data may give little insight and the

concentration on the calculations may tend to obscure the underlying pure mathematical

theory.

One method to improve matters is to engage the student in appropriate programming

activities so that the act of programming requires the student to think through the processes

involved. This may be done in any one of a number of computer languages, but it is

preferable in a language that encourages the use of higher level of mathematical thought.

Thus unstructured BASIC may allow numerical data to be calculated, but a structured

language which allows the development of functional concepts is likely to be more useful.

It is one thing to be able to calculate the numerical area under a graph y=f(x) from x=a to

x=b using the mid-ordinate rule for strips of width h. But if the language allows the

specification of the area as a function area(f, a, b, h) of the function f, the endpoints a,b

and the strip-width h, then many further constructions are possible. For instance, the area

s(n) under n equal width strips under f(x)=x2 from a=0 to b=1 is
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s(n) = area (x^2, 0, 1, 1/n)

and its value may be studied as n increases. Or the area-so-far function asf(x) under

f(x)=1/x from x=1, taking strips width 0.1 is

asf(x) = area(1/x, 1, x, 0.1)

which may be studied as a function of x.

This may be performed in a structured form of BASIC (such as BBC BASIC), which

allows such functions to be defined (in an appropriate syntax, such as FNarea(f$,a,b,h) for

the area function under the graph represented by the string expression f$ from a to b with

step h). However, this language has frustrating technical limitations, such as the need to

specify expressions as strings of characters (which may include the name of a function

which itself can be given by a multi-line procedure) and the lack of mathematical data types

other than numbers and character strings. TRUE BASIC has many marvellous facilities,

but lacks even the EVALuation operator of BBC BASIC which allows a string such as

"x^2-2" to be evaluated for a given value of x. On the other hand, the Interactive SET

Language, ISETL (Schwarz et al 1986) is particularly conducive to such programming

activities, being explicitly designed to allow manipulation of such mathematical constructs

as sets, ordered sets, functions, relations, quantifiers, and so on.

Apart from programming, two quite distinct strands of development have taken place with

computers. One concentrates on symbolic manipulation, using software to manipulate

algebraic expressions and carry out symbolic differentiation and integration. This initially

required the power of main-frames to cope with the recursive routines that were necessary

and led to such symbolic manipulation systems such as MACSYMA, Maple, Reduce and

SMP (Van Hulzen & Calmet, 1983). Implementations have subsequently appeared on

micros, allowing various levels of sophistication, including Maple, Reduce, MuMath

(Stoutemyer et al 1983), Derive (Stoutemyer & Rich, 1989). More specialized programs

have been designed to trace through various calculus techniques (for example Maths

Workshop’s “Symbolic Calculus” for the BBC computer implements recursive techniques

for differentiation of combinations of standard functions, as well as offering ad hoc

calculation of integrals). Other symbolic systems are also beginning to incorporate such

step-by-step tracing of algorithms such as the differentiation of a composite function.

However, whilst this gives the user a greater chance of understanding how to carry out the

algorithms of formal differentiation, it does not help give insight into what a derivative is.
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A second approach uses high-resolution graphics on micro-computers to translate the

numerical methods into graphical representations. During the nineteen eighties, the number

of such software packages has grown extensively (e.g. Kemeny 1986, Tall 1986a, Bach

1988, Tall et at 1990). Some early packages simply programmed calculus ideas numerically

on the computer, but the later ones take the level of sophistication of the learner into

account and attempt to present the ideas in a meaningful way.

These two strands accentuate the two different ways of mathematical thinking described

earlier. The symbolic manipulator offers sequential manipulation to lead to a symbolic

result, the graphical programs represent a vast amount of numerical data pictorially, giving

the user the opportunity to gain an overall grasp of the information. Some symbolic

manipulators offer the facility to trace the symbolic methods step by step, to see how the

computer software progresses through the solution. The graphical representation, on the

other hand, allows the user to see the numerical solution build up in real time.

In practice these strands are complementary, and each has different strengths. For example,

not all differential equations have symbolic solutions, so numerical methods are essential.

And even where symbolic methods are available, they often need geometric interpretation.

In Tall (1986c) I gave the following example of a differential equation which was set on a

national mathematics examination paper in the U.K.:

y
dy
dx  sec 2x = 1-y2.

It is easily “solved” by separating the variables to get

y
1-y2  dy = cos 2x dx (*)

and integrated to give the “general solution”

-
1
2  ln|1-y2| = 

1
2  sin 2x + c,

but what does this mean? By regarding the differential equation (*) as specifying the

direction of the tangent vector (dx,dy) to the solution curve through any point (x,y) enables

a “direction field” of short line segments to be drawn in the appropriate directions through

an array of points in the plane (figure 1).
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figure 1

It can be seen that some solutions are closed loops whilst others may be conceived as

functions in the form y=f(x). The symbolic solution in this case is of little value without a

graphical interpretation of its meaning whilst the graphical interpretation alone lacks the

precision of the symbolism.

The need for these complementary strands is consonant with empirical research into the

success of students in coping with a first year university course in real analysis. Robert &

Boschet (1984) hypothesized that there is a better prospect of successful mathematical

learning for the student with knowledge (however imperfect) in many contexts than for a

student with knowledge in one context. They found that the weakest performances over the

year were by students having initial knowledge in very few contexts (usually numerical)

whereas the more successful students also had initial knowledge in graphical and symbolic

contexts. They found their hypothesis verified repeatedly in empirical experiments, and

suggested that the crucial difference appeared to lie not in the mere existence of the prior

knowledge but in the difference between two very different ways of thinking: the reductive

effect of functioning in a single context as against the liberating effect of bringing several

different ways of seeing the same problem from different viewpoints.

Research into the effectiveness of computer approaches

Much of the research and development of recent years has gone into the actual design and

implementation of the software and there are only isolated reports of the testing of the
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materials in practice. Simons (1986) describes the use of hand-held computers programmed

in BASIC to enhance the teaching of calculus. He reports that:

... the introduction of a personal computer into a course of this nature, whilst
enhancing teaching and presentation in many areas, raises profound problems.

(Simons 1986, page 552)

There were evident gains in the “immediate usefulness” of the work, but a substantial

number of staff, “with long experience of teaching mathematics”, but “little practical

experience with a computer or numerical analysis” did not like the course. Simons suggests

that “the aversion displayed by some members of staff” lies in the “feeling of uncertainty”

in applying a numerical method.

The traditional mathematician ... is clearly aware that for every numerical method a
function exists for which the method produces a wrong answer. ... The statement
that nothing is believed until it is proves is the starting point for teaching
mathematics and introducing the computer forces the teacher away from this
starting point. (ibid. p.552)

However, we should not infer from this that programming is of little value. On the

contrary, though early use of programming did not always show enhancement of

conceptual ideas in mathematics, more recent uses of programming environments to

concentrate on specific constructs have shown very deep insights (Tall & Thomas 1988a).

Programming in a language such as ISETL (which is designed to enhance the user’s

understanding of concepts through having to specify how processes are carried out) shows

positive gains in conceptual understanding (Dubinsky, to appear).

The symbolic approach has powerful advocacy from several quarters. Lane et al (1986)

suggests ways in which symbolic systems can be used to discover mathematical principles

and Small et al (1986) reports the effects of using a computer algebra system in college

mathematics. In the latter case the activities often consist of encouraging students to apply a

technique, already understood in simple cases, to more complicated cases where the

symbolic manipulator can cope with the difficult symbolic computations.

However, Hodgson (1987) observed:

In spite of the fact that symbolic manipulation systems are now widely available,
they seem to have had little effect on the actual teaching of mathematics in the
classroom. (Hodgson 1987 p.59)

He quoted a report (Char et al 1986) of experiences using the symbolic system Maple in an

undergraduate course where students were given free access to the symbolic manipulator to
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experiment on their own or to do voluntary symbolic problems which they could elect to

count for credit. He noted a “somewhat limited acceptance of Maple by the students”:

While many explanations can be put forward for such a reaction (little free time, no
immediate payoff, weaknesses of the symbolic calculator for certain types of
problems, absence of numerical or graphical interface, lack of user-friendliness), it
is clear that the crux of the problem concerns the full integration of the symbolic
system to the course in such a way that it does not remain just an extra activity.
This calls for a revision of the curriculum, identifying which topics should be
emphasized, de-emphasized or even eliminated, and for the development of
appropriate instruction materials. (ibid.)

Since this was written, the interface of Maple has been considerably improved (particularly

on the Macintosh computer), and efforts have been made to enhance its user-friendliness,

particularly for educational purposes. Just as the introduction of programming into

mathematics courses received an initial mixed reaction only to show its greater value when

used for explicit conceptual purposes, so symbolic manipulators may overcome their initial

drawbacks as more imaginative conceptual uses are invented in teaching the calculus.

Heid (1984) reports her own research into an experimental calculus course which used the

symbolic manipulator MuMath and appropriate graphical programs to introduce the

concepts for twelve weeks, with practice of routine symbolic techniques only being studied

in the final three weeks. She concluded that:

Students showed deep and broad understanding of course concepts and
performed almost as well on a final exam of routine skills as a group who had
studied the skills for the entire fifteen weeks. (Heid 1984 p.2)

Based on the data from her experiment she formulated a number of conjectures, including

the following:

When concepts form the major emphasis in an introductory calculus course
(assignments, class discussions, tests), and the computer is used to execute
routine procedures:
... student understanding of course concepts will be broader and deeper ...
... student thinking will re-focus on the decision-making aspects of problem-
solving ...
... students will remember concepts better, and be better able to apply them at a
later time ...
... students will process information related to the concepts in larger “chunks”...

A computer graphics approach to concept development in mathematics classes
will result in better student performance on tests of “far transfer” of course
concepts...
Students will do more internal consistency checks when they work on conceptual
problems if they can use the computer to process routine algorithms...
Exposure to calculus skills through the use of symbol manipulation programs will
not automatically improve the ability to perform these skills by hand or the ability to
perform related algebraic manipulations...
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Use of symbol manipulation programs as tools will not eradicate algebra-based
syntax errors... (ibid p.57 et seq.)

These conjectures, based on practical experience, are consonant with other related research.

Tall (1986b) reports the building and testing of a graphical approach to the calculus, using

software designed to allow the user to play with examples of a concept, to enable the

abstraction of the underlying principle embodied by the software. Such an environment is

termed a “generic organizer”. Generic organizers were designed for magnifying graphs (to

see examples and non-examples of those that are “locally straight”), moving a chord along

a (locally straight) graph to build up the gradient function, solving the reverse process of

knowing the gradient and seeking the original function, numerical calculations of areas

under graphs that emphasize the conceptual ideas, graphical solutions of first, second, and

simultaneous first order differential equations (Tall 1986a, Tall et al 1990). In this research

only the differentiation part was formally tested with pupils aged 16/17.

 Using matched pairs selected on the pre-test, experimental students scored at a statistically

significant higher level than the controls on global/holistic skills, including sketching

derivatives, recognizing graphs of derivatives, relating the derivative of a function to its

gradient function, and in explaining the notions of gradient, tangent and differentiation

from first principles from a geometrical viewpoint. At the same time, more traditional

logical/sequential tasks, such as explaining symbolic differentiation from first principles or

routine differentiation of polynomials and powers, showed no significant difference. These

results are very much in line with Heid’s work.

Artigue (1983, 1987) and her colleagues developed a teaching programme for differential

equations which first introduced qualitative ideas of families of solutions through studying

pre-prepared computer drawn pictures. They then used these ideas to match pictures of the

solution curves to the corresponding differential equations. For example, students were

given different differential equations:

y' =
y

x2-1
 , y'=y2-1,  y'=2x+y, y'=sin(xy), y'=

sin(3x)
1-x2  , y'=sinx.siny, y'=y+1

and the same number of corresponding pictures to match, of which two are shown in figure

2.
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figure 2

They then related different methods available for solving specific differential equations

using both qualitative and algebraic approaches and concluded by considering the

qualitative theory of differential equations, with proofs of theorems based upon pictures of

solution curves, dealing with barriers, trapping regions, funnels, attractors and so on. The

students used both pre-prepared pictures and interactive computer programs, for instance to

explore the phase portraits of differential equations depending on a parameter. At the end of

the course the students showed themselves capable of giving meaning to the qualitative

approach, to describe and draw solutions without symbolic differentiation and to coordinate

algebraic and graphical representations.

Blackett (1987) introduced the relationship between the algebraic representation of a linear

relation and its straight line graph to younger pupils (aged 14/15) using graph-plotting

software. He taught three experimental classes of low, average and above average ability,

who were matched with corresponding control classes. Those using the computer were

able to tackle activities that might be too demanding using paper and pencil, for example, to

instruct the computer to draw y=x+20 and y=2x+10 on the same axes to include their point

of intersection (requiring some investigation to determine appropriate scales). The post-test

showed a significant overall improvement in performance in all the groups, except for one

control class taught by a teacher who used the pre-test to teach the pupils specific tasks

likely to arise in the post-test. Detailed analysis of the responses revealed that these control

students scored higher than the corresponding experimental students in questions that were

almost identical to the pre-test, but they scored considerably lower on tasks with even tiny

conceptual differences. Blackett reports that:

Pupils who had been taught to answer specific questions rather than the
underlying concepts experienced difficulty whenever new questions varied,
even slightly, from those they had met previously. These results appear to
highlight the effects of encouraging instrumental as opposed to relational
understanding. (Blackett 1987, p.93)
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He also noted substantial discrepancies between the children’s performance on the post-test

and traditional school tests. In particular there were a number of children who performed

badly on traditional serialist/analytic questions, yet performed well on global/holistic tasks.

Blackett took these exceptional children from the lowest ability class and added them to the

highest ability class for an introduction to the idea of the gradient of “locally linear” graph,

using the “Graphic Calculus” software. Blackett found them well able to cope and

concluded that:

Students who had achieved a clear understanding of the straight line and its
equation, particularly the significance of the gradient, can, with the aid of suitable
computer graphics, develop an equally clear understanding of locally linear
graphs and the curves associated with polynomial equations. ...  There were
pupils unable to handle number work successfully but were nevertheless able to
demonstrate an understanding of advanced concepts presented in a visual form
requiring either a visual interpretation or a drawing, rather than a calculation, as an
answer. (Blackett 1987, pp. 127, 128)

His experiment indicated that these pupils, aged 14/15, were able to perform the task of

sketching a global derivative at a level comparable with the 16/17 year old experimental

students in Tall (1986b).

A theme running through all these pieces of research is the power of graphic computer

software to improve the versatility of students thought processes, but with little significant

change in their ability to cope with symbolic manipulation. On the other hand there is as yet

little evidence that symbolic manipulators improve students manipulative ability, although

there are hopeful indications that students may use them in suitably designed tasks.

A recurring observation is the difficulties experienced by teachers, both at university and in

school, to come to terms with the new technology. Great experience of student problems in

a pre-computer culture can sometimes be a hindrance in trying to predict what difficulties

students may have when using the new technology. We are at present in the throes of a

paradigmatic upheaval and cultural forces operate to preserve what is known and

comfortable, and to resist new ideas until they are proven better beyond doubt.

In several countries the ability to implement a graphical approach on current

microcomputers is leading to the production of such programs and the development of new

curricula. For example, the School Mathematics Project in the U.K. is now designing a

curriculum in which the first introduction to gradient is via “locally straight curves” and

limiting processes are postponed to the second year of the course.
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More recent developments in graphic approaches to calculus

Technology moves on apace. The new RISC (reduced instruction set chip) processors are

becoming generally available in micro-computers at a lower price than primitive eight bit

chips four or five years ago. The greater speed of these processors enable far more

complex activities to be carried out on the computer in real time, including the plotting of

models of nowhere differentiable curves. For example, it is easy to calculate the

blancmange function, y=bl(x) (figure 3) to any desired accuracy and to draw it extremely

quickly, provided the software is sensibly programmed. (Some symbol manipulators such

as Maple and Derive are self-defeating – as first published – being designed to allow any

desired accuracy, and therefore failing to provide optimum, even adequate, speed.)

figure 3

This is calculated using the saw-tooth function y=s(x) where y is calculated for given x as

follows:

let t=x-[x] be the fractional part of x

if t<1/2 then let y=t else y=1-t.

The nth approximation to the blancmange is then found by adding together a sequence of

sawteeth each a half the previous one.

bl(x,n)= s(x)+
s(2x)

2   +...+ 
s(2n-1x)

2n-1  .

As n gets larger, the sawtooth 
s(2nx)

2n    gets very tiny and contributes little to the sum, so

that bl(x,n) stabilizes to look like the wrinkled blancmange bl(x). This is easily seen

graphically and the limiting process can be translated into a formal argument (Tall 1982).
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More generally, the function which I call the Van der Waerden function, van(x,m), can be

calculated by adding together teeth to get

van(x,m,n) = s(x)+ 
s(mx)

m   + ... + 
s(mn-1x)

mn-1  

and taking a sufficiently large value of n to see the picture stabilize to give (an

approximation to) the non-differentiable function van(x,m). These functions have the

property that they nowhere magnify to look straight, so they are not differentiable

anywhere.

In this way it is easy to build up a number of different functions which are continuous

everywhere yet differentiable nowhere. The ready availability of such functions has

interesting consequences for student’s understanding of concepts in mathematical analysis.

Figure 4 shows two graphs superimposed: y=sin x and y=sin x+n(x) where the function

n(x) is a tiny Van der Waerden function. (It is calculated from v(x)=van(x,3) as

n(x)=
v(1000x)

1000  .)

figure 4

Figure 5 shows the two graphs magnified to reveal the graph of y=sin x as locally straight,

but sin x+n(x) as being nastily wrinkled. This informal idea represents the generative idea

of the essential difference between a differentiable and a non-differentiable curve which are

indistinguishable to a normal scale.
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figure 5

Pictures drawn with today’s technology have relatively large pixels, so the graphs look

rough. This phenomenon can be turned to advantage, to underline that what is being drawn

is a model of the graphs of the functions rather than the graphs themselves. What matters

most is the quality of the picture in the student’s mind, not on the screen!

Figure 6 shows the area function under the blancmange function being drawn in real time.

A static picture in an article is completely inadequate to represent this potent dynamic idea.

Here the line of dots represents the graph of the area function from 0 to the current point x.

A straight line is drawn through the last two points, representing the gradient of the area

function. As the area function grows, the gradient of the area function changes; and it

visibly changes in a smooth way. The computer is giving an approximate model of an area

function that is everywhere differentiable once, but not twice.
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figure 6

figure 7

Figure 7 shows the area function being calculated under the discontinuous function y=x-[x]

(where [x] denotes the integer part of x). The dots are the “area so-far” under the curve

from x=0. Clearly the area function has ‘corners’ at those points where the original

function is discontinuous.

Figure 8 shows the curve f(x)=[x]+bl(x) where bl(x) is the blancmange. As f(x) is

discontinuous at every integer and continuous, but not differentiable, everywhere else,

what will the area function look like? Where will the area function be continuous and where

will it be differentiable?

figure 8
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Figure 9 shows the drawing of a solution to the differential equation 
dy
dx  = bl(x) where

bl(x) is the everywhere continuous, nowhere differentiable blancmange function of figure

3. Because bl(x) has values between 0 and 1, a solution curve to the differential equation

moves up and down (smoothly!) with gradient between 0 and 1.

figure 9

Hubbard and West (1985) found that students had difficulty in understanding that a

differential equation can have a solution when it is not possible to express the solution in

“closed form” (made up of a combination of standard functions). To help students they

developed interactive programs for the Macintosh computer that used the mouse interface to

point at areas of interest to home in on singularities and to investigate the qualitative

behaviour of solutions. The “existence” of a solution now depended on the ability to draw

its graph, which could be done numerically without knowing a formula for it. Such

experiences with a computer proved to give powerful insights into theorems of existence,

uniqueness and behaviour of solutions of differential equations.

The way ahead

In the next few years, software of this nature can but get more and more powerful, with

increasing use of more flexible input devices, such as using a mouse to point at a part of the

picture that looks interesting, to zoom in and take a closer look.   

Of greater importance in the software will be the development of flexible environments that

unite numerical, symbolic and graphical facilities. Good software is not designed by
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encrusting the existing materials with more and more options. What is absolutely essential

is to take into account all possible methods of information processing that can make the

ideas simpler to handle. Such software is more likely to be successful if it uses the capacity

of holistic/global thinking to complement the mathematician’s traditional methods of

deduction.

Back in 1971 Skemp made the pertinent observation that the teaching of mathematics by

logical methods is good in that it shows that mathematics is a structured and not arbitrary

science, but is weak in that it shows the product of mathematical thought rather than the

process of mathematical thinking. Skemp subsequently emphasized this point by

distinguishing between building and testing concepts. Testing involves subjecting the

concepts to rigorous enquiry, to make sure that their construction and proof is founded on a

firm logical base, but before they can be tested they must be built, and building is a

cognitive act which is not served solely by demonstrating formal proofs. Using a logical

deductive approach to the calculus is but one side of a two-sided coin. The other may be

illuminated by graphical insight from well-designed computer software.
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