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In recentyears the growing availability of personal computers with high resolution
computer graphickas offeredthe possibility of enhancing the visual mode of thinking
about mathematics in geneeald the calculus iparticular. Interactive computesoftware
can beused togive insight tostudents,teachers and professionalathematicians in a
manner that couleshot have been imagined a decaulgp. Neverthelesshe technology
brings with itthe challenge toe-assess what isportant in the curriculum anthis is
proving to be the more difficult task for professionathematiciansvith a richexperience
of pre-computer technology. This paper therefore begins by considering differgmntin
which we process information and focuses on the neednplement sequential/deductive
thinking with a globalgrasp of interrelationships. then concentrates on different aspects
of the calculusfrom numerical, symbolic and graphical viewpoints and plaseent
developments in visualization using the computer within this broad perspective.

Human information processing and the computer

Individuals develop markedly differentays of mathematicallythinking. Whilst some
professional mathematicians waltceptonly those things which thesan deduce logically

step by step from carefully specified axioms, others demand an overall framework in which
they can see a network of interrelationships between the conthptéormer viewpoint is

a necessary pre-requisite ftire formalization of mathematicalconcepts,the latter is
invaluable for their developmentboth in mathematicalresearch and imrmathematical
education. Yet, despitthe needfor both modes of thoughtiraditional mathematics
teaching — especially at the higher levels — is usually more concogithethe sequential,
deductive processes of the former rather than the holistic, predictive ones of the latter.

Published infhe Laboratory Approach to Teaching Calcujus
M.A.A. Notes Vol. 20, 15-25 (1991).
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Mankind’s success as a speciesiidhanced througthe invention anduse of tools to
extend human capabilitieslany of thesdools compensattor limitations in evolutionary
design, be itspectacles to improveision, the telephone to extend hearing and
communication, or theupersoniget to give thepower of flight. InThe Psychology of
Learning Mathematic§1971), Skempmade the perceptive comment thmtmanshave
built-in loudspeakers (voices) but not builtpicture projectors, causinghe fundamental
mode of human communication to be verbal rather than pictorial. He demonktratea
geometricproof could be presented in pictures which contley same information as a
verbal-algebraiproof, in aform that may be morénsightful for many individuals. His
purpose was not to showpaeference of one form of communication ogaother, but to
guestionthe dominance achieved by algebrayenbolism and t@xamine the contribution
made by visual symbols.

Not long agothe computewas apurely sequential, symbolic device, withe operator
punching in a sequence of symbols aadeiving theresponse in aimilar form. But
recently developed graphical interfacesv allow theuser tocommunicatewith pictures,
providing a tool that compensates for the human lack of a built-in picture projdoidern
computer operating systems are replacing symbolic typing of commands by visual pointing
at icons to simplifythe interfacewith the computer. Furthermorthe computer is able to
acceptinput in a variety ofways, and translate it flexibly into other modes of
representation, includingerbal, symbolic, iconic, graphic, numeric, procedural. It
therefore givesmathematical education thepportunity to adjustthe balance between
various modes of communication and thouiiatt havepreviously been biased toward the
symbolic and the sequential.

A style of learning thatusesthe complementanypowers of sequential/linear thought
processes on the one hand gtabal/holisticprocesses othe other issaid to beversatile
(Brumby 1982).The computemwith suitable software is a powerfutool to encourage
versatile learning (Tall & Thomas 1988b).

The implications of the computer in curriculum sequencing

Traditional mathematicgsually introduces learners to sequential techniques and develops
each one in a comprehensiway before introducinghe learner to highesrder concepts.
Research has shown that the absence of a broad enough range of expanideae to the
abstraction of a false principle that lapgovesextremely difficult to eradicatdpr instance
“subtraction makes smaller” (amplicit property of counting numbethat causesconflict
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whennegativenumbersare encountered) or “multiplication makes bigger” (implicitly true

for whole numbers bufalse for fractions). Inthese examples the hierarchy of concepts
implies that one cannot avoid working in timaited contextbefore broadening it (counting
numbers before negatives, integers before fractions). Biliteirtase of more advanced
concepts it may be possible to reorganise the sequencing of concepts, using the computer to
provide a rich environment in whidarmally complex concepts can Imeetinformally at a

much earlier stage.

A good example is the introduction of the derivative indhleulus. Formally this requires

-f(X
the notion of the limit 01—# ash tends to zero, so logically the introduction of the

derivative must be preceded by a discussion of the meaning of a linmtake the notion
of limit simpler,the limiting process is firstarried out withx fixed and onlylater isx
allowed to vary to givahe derivative as dunction, giving the following sequence of
development:

(1) Notion of a limit, graphically, numerically and/or symbolically,

-f(X
(2) For fixedx, consider the limit OM ash tends to zero,

(3) Call this limitf'(x) and allowx to vary to give the derivative as a function.

If this sequence i$ollowed, howeverintuitively” it is done, then there are cognitive
obstacles at everstage, whicharewell-known to everyperceptive classrooeacher and
have deeper connotations which have beetailedelsewherg(e.g. Cornu 1981Tall &
Vinner 1981, Orton 1983a,b).

One mayconjecture that the interposition oflang chain ofsub-tasks irbuilding up a
concept mayimpedeconceptualizationpecause propertiethat arise in the restricted
contexts en route lead to serious cognitive obstacles. There are two ways to attempt to solve
this dilemma:one is to research the cognitive obstacleghst they may beaddressed
appropriately at a latestage,the other is tause a“‘deep-end” approach (Diend960) in

which the whole concept imetearly on in aich, but moreinformal, context designed to

offer a cognitive foundation for a more coherent concept image.

In the case of the derivative the “deep-end” approach calote by first considering the
informal idea of the gradient of@irved graph through magnification. It is based on the
idea that a differentiable function is precisely one which looks “locally straight” when a tiny
portion of thegraph is highly magnifieqTall 1982). The limiting process isthen an
implicitideaused as a toolather than thexplicit focus of study:‘Local straightness” is
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the generative idea dhis graphic approach tihe calculus, which proves to be both a
cognitiveand amathematicafoundation for the theory.

It is instructive to note that ih981-2, wherthe Secondinternational MathematicStudy
considered the way that calculus was taught, in the report emanatin@fanno (McLean

et al1984), not one respondent mentions an idea equivalent to a “locally stiagigindach,
the favoured methods beintpe “intuitive” geometrical idea of &hord approaching a
tangent” or numerical or algebraic limitipyocessesThe “locally straight” idedhas some
precedents, for example in curricula in Holland #srdel, but in each case the absence of
appropriate computer software in the early eighties prevented it from beingefiiged in
practice. It also exists in a more visionary way in non-standard analysis (e.g. Keisler 1976)
in which an “infinite magnification” is used toreveal a differentiable function as a
infinitesimal straight line segment. The compuiengs apractical(thoughinexact) model
of this abstract theory.

Numerical, Symbolic & Graphical Representations of Calculus Concepts

The first computer applications in the calculus were numerigalng numerical algorithms
to solve equationscalculate rates of change (differentiationumulative growth

(integration and summation of series) and the solution of differential equatibot.these
can be performed in straightforward, busometimes inaccurate, mannasing simple

algorithms, andhen improveddramatically byusing higher ordemethods. However,
unlessinterpreted imaginatively, tables of numerical data may dfitee insight and the
concentration on the calculations may tendbscurethe underlyingpure mathematical
theory.

One method to improve matters is to engage the student in appropriate programming
activities so that the act of programming requires the student to think thifmgtocesses
involved. Thismay bedone in any one of a number of compul@nguages, but it is
preferable in a language thexicourages thase of higherdevel of mathematicalthought.
Thus unstructured BASI@ay allow numerical data to be calculatédit a structured
language which allows the development of functional concepts is likely to beuswid.
It is one thing to bable to calculate the numerical argader a graply=f(x) from x=a to
x=b usingthe mid-ordinate ruldor strips of widthh. But if the languagellows the
specification of the area as a functiemea(f, a, b, h) of the functionf, the endpointsa,b
and the strip-widthh, then many further constructioase possible. For instancéhe area
s(n) undem equal width strips undéfx)=x2 from a=0 tob=1 is
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s(n) =area(x*2,0, 1, 1/n)

and its value may be studied asincreases. Othe area-so-far functiorasix) under
f(xX)=1/x from x=1, taking strips width 0.1 is

asi{x) =area(1/x, 1, x, 0.1)
which may be studied as a functiorxof

This may be performed in a structuréorm of BASIC (such as BBC BASIC), which
allows such functions to be defined (in an appropriate syntax, skdlaasgf$,a,b,h) for
the area function under tlggaph represented lilie string expressioi$ from ato b with
steph). However,this languagéhas frustratingechnicallimitations, such ashe need to
specify expressions as strings asfaracters (whicimay include the name of a function
which itself can be given by a multi-line procedure) andablke of mathematical datgpes
other than numbers amtharacterstrings. TRUE BASIC hasmany marvellous facilities,
but lacks even th&VALuation operator of BBC BASIC which allows a string such as
"x"2-2" to beevaluatedfor a given value ofx. On the othehand,the Interactive SET
Language, ISETL (Schwaret al 1986) isparticularly conducive tesuch programming
activities, being explicitlydesigned to allow manipulation stichmathematicatonstructs
as sets, ordered sets, functions, relations, quantifiers, and so on.

Apart from programming, twguite distinctstrands ofdevelopment have taken plaséh
computers.One concentrates on symbolic manipulatiarsing software tomanipulate
algebraicexpressions andarry out symbolic differentiation and integration. Timgially
required the power of main-frames to cope Wiité recursiveoutinesthat were necessary
and led tosuch symbolicnanipulationsystems such ddACSYMA, Maple, Reduce and
SMP (Van Hulzen & Calmet,1983). Implementations have subsequently appeared on
micros, allowing various levels of sophistication, including MapReduce, MuMath
(Stoutemyeret al 1983), Derive (Stoutemyer &Rich, 1989).More specializegporograms
have been designed teace through various calculus techniqué®r example Maths
Workshop’s “Symbolic Calculusfor the BBC computer implements recursive techniques
for differentiation of combinations of standafdnctions, aswell as offeringad hoc
calculation ofintegrals).Other symbolic systemsre also beginning to incorporatich
step-by-stefracing of algorithmssuch asthe differentiation of a compositieinction.
However, whilst this gives the user a greater chance of understanding bawytout the
algorithms of formal differentiation, it does not help give insight into what a derivative
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A second approachises high-resolution graphics onicro-computers to translate the
numerical methods into graphical representations. During the ningtggres,the number
of such software packages g®wn extensively(e.g. Kemeny1986, Tall 1986a,Bach
1988, Tallet at1990). Some early packages simply programmed calculusndeaaically
on thecomputer, buthe lateronestake the level ofsophistication of the learner into
account and attempt to present the ideas in a meaningful way.

Thesetwo strandsaccentuate théwo different ways of mathematicathinking described
earlier. The symbolic manipulatooffers sequential manipulation to lead to a symbolic
result, the graphical programs represent a vast amountnaérical datgictorially, giving
the user the opportunity to gain an overaljrasp ofthe information. Some symbolic
manipulators offethe facility to trace theymbolic methods step Istep, toseehow the
computersoftware progresses throudgjtre solution. The graphicakepresentation, on the
other hand, allows the user to see the numerical solution build up in real time.

In practice these strands a@mplementaryand each has different strengths. For example,
not all differential equations have symbo$iolutions, scmumerical methods amessential.

And even where symbolic methods are available, they often need geometric interpretation.
In Tall (1986¢) | gave the followingxample of a differential equatiavhich wasset on a
national mathematics examination paper in the U.K.:

d
ya—i sec2x = 142,
It is easily “solved” by separating the variables to get
2 dy = cos2x dx *
1-y2
and integrated to give the “general solution”
1 1 .
7 In|]1y2| =% sin 2x +c,

but what does thisnea? By regarding the differential equatigh) as specifying the
direction of the tangent vectaixdy) to the solution curve through any pointy) enables
a “direction field” of short linesegments to be drawn the appropriate directiorterough
an array of points in the plane (figure 1).
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2
dysdx=cosZx{(1l-y »ry

figure 1

It can beseenthat some solutionsre closedoops whilst othersnay be conceived as
functions in the forny=f(x). The symbolic solution in thisase is ofittle value without a
graphical interpretation of its meanimghilst the graphical interpretation alone lacks the
precision of the symbolism.

The needor these complementarstrands is consonant wittmpirical research into the
success of students in coping with a first year university counsalianalysis.Robert &
Boschet (1984) hypothesizedat there is a bettgorospect of successfuthathematical
learningfor the studentvith knowledge (howevemperfect) in many contexts thdor a
student with knowledge in one context. They found that the weakest performances over the
year were by students haviirgtial knowledge in very few contexts (usualtymerical)
whereas the more successful students alsaniited knowledge in graphical and symbolic
contexts.They found their hypothesisverified repeatedly in empiricaéxperiments, and
suggestedhat the crucial difference appearedi¢onot in themere existence of therior
knowledge but in the difference between two very diffeveays ofthinking: the reductive
effect of functioning in a single context as against the liberating effdatireging several
different ways of seeing the same problem from different viewpoints.

Research into the effectiveness of computer approaches

Much of the research and development of regeats has goniato the actuabtesign and
implementation of thesoftware andhere areonly isolated reports othe testing of the
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materials in practice. Simons (1986) describes the use of hand-held computers programmed
in BASIC to enhance the teaching of calculus. He reports that:

... the introduction of a personal computer into a course of this nature, whilst
enhancing teaching and presentation in many areas, raises profound problems.
(Simons 1986, page 552)

There were evidergains inthe “immediateusefulness” ofthe work, but a substantial
number of staff, “with long experience of teaching mathematics”, biittle practical
experience with a computer or numerical analysis” did not like the course. Ssnggests
that “the aversion displayed by some members of staff’ ligkdrifeeling of uncertainty”
in applying a numerical method.

The traditional mathematician ... is clearly aware that for every numerical method a
function exists for which the method produces a wrong answer. ... The statement
that nothing is believed until it is proves is the starting point for teaching
mathematics and introducing the computer forces the teacher away from this
starting point. (ibid. p.552)

However, we shouldhot infer from thisthat programming is ofiittle value. On the

contrary, thoughearly use of programming did not alwayshow enhancement of
conceptual ideas in mathematics, more reaesds of programming environments to
concentrate on specific constructs hatiewnvery deepinsights(Tall & Thomas1988a).

Programming in a languagguch asISETL (which is designed tenhance theiser’s

understanding of concepts through having to specify how procassesrriecout) shows

positive gains in conceptual understanding (Dubinsky, to appear).

The symbolic approachas powerfuladvocacy from severajuarters.Lane et al (1986)
suggests ways in which symbolic systeras beused to discovemathematicaprinciples

and Smallet al (1986) reportshe effects ofusing acomputer algebrgystem incollege
mathematics. In the latter case the activities often consist of encouraging students to apply a
technique,already understood insimple cases, tomore complicatedcases where the
symbolic manipulator can cope with the difficult symbolic computations.

However, Hodgson (1987) observed:

In spite of the fact that symbolic manipulation systems are now widely available,
they seem to have had little effect on the actual teaching of mathematics in the
classroom. (Hodgson 1987 p.59)

He quoted a report (Chat al 1986) of experiences using the symbolic syskéaple in an
undergraduate course where students were given free access to the symbolic manipulator to



David Tall Use of the computer to visualize and symbolize calculus concepts

experiment on theiown or to dovoluntary symbolic problems which they coudtéct to
count for credit. He noted a “somewhat limited acceptance of Maple by the students”:

While many explanations can be put forward for such a reaction (little free time, no
immediate payoff, weaknesses of the symbolic calculator for certain types of
problems, absence of numerical or graphical interface, lack of user-friendliness), it
is clear that the crux of the problem concerns the full integration of the symbolic
system to the course in such a way that it does not remain just an extra activity.
This calls for a revision of the curriculum, identifying which topics should be
emphasized, de-emphasized or even eliminated, and for the development of
appropriate instruction materials. (ibid.)

Since this was written, the interface of Maple bhaen considerably improved (particularly
on the Macintosltomputer), and efforteave been made to enhariseuser-friendliness,
particularly for educationalpurposes. Just athe introduction of programming into
mathematics courses received an initial mixed reaction ordpdw its greater valuevhen
used for explicit conceptual purposes, so symbolic manipulataysovercome theinitial
drawbacks as more imaginatieenceptualises are invented in teaching the calculus.

Heid (1984) reports her own research intoeaperimental calculusourse which used the
symbolic manipulatorMuMath and appropriate graphicgdirograms to introduce the
concepts for twelve weeks, with practice of routine symbolic techniques only being studied
in the final three weeks. She concluded that:

Students showed deep and broad understanding of course concepts and
performed almost as well on a final exam of routine skills as a group who had
studied the skills for the entire fifteen weeks. (Heid 1984 p.2)

Based on thelatafrom her experimergheformulated a number of conjectures, including
the following:

When concepts form the major emphasis in an introductory calculus course
(assignments, class discussions, tests), and the computer is used to execute
routine procedures:
... student understanding of course concepts will be broader and deeper ...

. student thinking will re-focus on the decision-making aspects of problem-
solving ...
... Students will remember concepts better, and be better able to apply them at a
later time ...
... Students will process information related to the concepts in larger “chunks”...

A computer graphics approach to concept development in mathematics classes
will result in better student performance on tests of “far transfer” of course
concepts...

Students will do more internal consistency checks when they work on conceptual
problems if they can use the computer to process routine algorithms...

Exposure to calculus skills through the use of symbol manipulation programs wiill
not automatically improve the ability to perform these skills by hand or the ability to
perform related algebraic manipulations...
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Use of symbol manipulation programs as tools will not eradicate algebra-based
syntax errors... (ibid p.57 et seq.)

These conjectures, based on practical experience, are consonant with other related research.

Tall (1986b) reports the building and testing of a graphical approach talthdus, using
software designed to allothe user toplay with examples of @oncept, toenable the
abstraction of the underlying principle embodied bydbfware. Such aenvironment is
termed a “generic organizer”. Generic organizers were designedagnifyinggraphs (to
see examples and non-examples of tbaeare “locallystraight”), moving a chordlong

a (locally straightigraph to build ughe gradienfunction, solvingthe reverse process of
knowing the gradient and seeking the origifiahction, numerical calculations of areas
under graphs that emphasize the concepdigals,graphicalsolutions of first, second, and
simultaneous first order differential equations (Tall 1986a,&tadl 1990). Inthis research
only the differentiation part was formally tested with pupils aged 16/17.

Using matched pairs selected on the pre-eefterimentaktudents scored atstatistically
significant higherlevel than thecontrols on global/holisticskills, including sketching
derivatives, recognizingraphs of derivativegelating the derivative of a function to its
gradientfunction, and inexplaining thenotions of gradientfangent and differentiation
from first principles from ageometricalviewpoint. At the sametime, moretraditional
logical/sequential tasks, such as explaining symbolic differentiation from first principles or
routine differentiation of polynomials and powers, showed no significant difference. These
results are very much in line with Heid’s work.

Artigue (1983, 1987)and her colleagues developed a teaching prografomeifferential
equations which first introduced qualitative ideas of familiesadfitions through studying
pre-prepared computer drawn pictures. They then used these ideathpictures of the
solution curves tdhe correspondinglifferential equations. For example, studentsre
given different differential equations:

=Y o2 v s Csin(3)
Y'=oq  YEYAL Y=y, yEsin(xy), Y=o, y'Esinx.siny y'=y+1

and the same number of corresponding pictures to match, of which two are shown in figure
2.
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figure 2

They then related differemhethodsavailable for solving specific differential equations

using both qualitative and algebraic approaches and concluded cbysidering the
qualitative theory of differential equations, with proofs of theorems based upon pictures of
solution curves, dealing with barriers, trapping regions, funagisctors and son. The
students used both pre-prepared pictures and interactive computer programs, for instance to
explore the phase portraits of differential equations depending on a parameter. At the end of
the coursethe students showethemselves capable of giving meaning to doalitative
approach, to describe and draw solutions without symbolic differentiation and to coordinate
algebraic and graphical representations.

Blackett (1987) introduced the relationship between the algebraic representatitimeaf a
relation and its straighine graph to younger pupils (aged 14/1%8ing graph-plotting
software. Hetaught three experimentelasses of lowaverage and above average ability,
who werematchedwith corresponding contratlasses. Those usirthe computer were
able to tackle activities that might be too demanding using paper and fienedample, to
instruct the computer to draywx+20 andy=2x+10 on the same axes itelude their point
of intersection (requiring some investigation to determine approgeates).The post-test
showed a significant overall improvement in performancallithe groups,exceptfor one
control class taught by teacherwho usedthe pre-test tdeach thepupils specifictasks
likely to arise in the post-test. Detailed analysis ofrésponsesevealed that these control
students scored higher than the corresponding experimental students in qtiestivese
almost identical to the pre-test, but they scored considerably lowesks witheven tiny
conceptual differences. Blackett reports that:

Pupils who had been taught to answer specific questions rather than the

underlying concepts experienced difficulty whenever new questions varied,

even slightly, from those they had met previously. These results appear to

highlight the effects of encouraging instrumental as opposed to relational
understanding. (Blackett 1987, p.93)
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He also noted substantial discrepancies between the children’s performanceaosi-test
and traditionakchool tests. Iparticular there were a number of childho performed
badly on traditional serialist/analytic questions, yet performed well on global/holistic tasks.

Blackett took these exceptional children from the lowest ability class and thededo the
highest ability class for an introduction to tidea of the gradient of “locally lineagraph,
using the “Graphic Calculussoftware. Blackett found them well able to cope and
concluded that:

Students who had achieved a clear understanding of the straight line and its
equation, particularly the significance of the gradient, can, with the aid of suitable
computer graphics, develop an equally clear understanding of locally linear
graphs and the curves associated with polynomial equations. ... There were
pupils unable to handle number work successfully but were nevertheless able to
demonstrate an understanding of advanced concepts presented in a visual form
requiring either a visual interpretation or a drawing, rather than a calculation, as an
answer. (Blackett 1987, pp. 127, 128)

His experiment indicated that thegapils, aged14/15, wereable toperform thetask of
sketching a global derivative atlevel comparablavith the 16/17 year oldexperimental
students in Tall (1986b).

A themerunning throughall these pieces of research is fi@wer of graphic computer
software to improve the versatility of students thoyglatcessesbut with little significant
change in their ability to cope with symbolic manipulation. On the other hand there is as yet
little evidence thasymbolic manipulators improve studemt&nipulativeability, although

there are hopeful indications that students may use them in suitably designed tasks.

A recurring observation is the difficulties experienced by teachers, both at university and in
school, to come to terms with the new technology. Great experience of student problems in
a pre-computer culture can sometimes be a hindrance in trying to pmbaictdifficulties
studentamay havewhen usingthe new technology. Ware at present in théaroes of a
paradigmatic upheaval and culturedrces operate to preserve what isnown and
comfortable, and to resist new ideas until they are proven better beyond doubt.

In several countries theability to implement a graphicalpproach on current
microcomputers is leading to the production of such programs and the development of new
curricula. For exampleghe SchoolMathematics Project in thg.K. is now designing a
curriculum in whichthe first introduction to gradient isia “locally straight curves” and
limiting processes are postponed to the second year of the course.
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More recent developments in graphic approaches to calculus

Technology moves on apackhe new RISC(reduced instruction set chipyocessors are
becoming generally available in micro-computers &iveer price than primitive eight bit
chips four orfive yearsago. The greaterspeed of thes@rocessorsenable far more
complex activities to be carried out on the computeeahtime, includingthe plotting of
models of nowherdlifferentiable curves. For example, it is easy talculate the
blancmangdunction y=bl(x) (figure 3) to any desired accuracy anditaw it extremely
quickly, provided the software is sensibly programmed. (Some symbol manipsiatbrs
asMaple andDerive are self-defeating — dsst published — being designed to allow any
desired accuracy, and therefore failing to provide optimum, even adequate, speed.)

FlxI)=blC(=x>

iz
1
1 2
figure 3

This is calculated using the saw-tooth functyers(x) wherey is calculatedor givenx as
follows:

let =x-[x] be the fractional part of x

if t<1/2 then let y=t else y=1-t.

The nth approximation to the blancmange is tieand by addingogether a sequence of
sawteeth each a half the previous one.

S(2x) s(2n-1x)
bl(xn)= S+~ 7+t 01
S(2"x) _ o
As n gets largerthe savvtoothz—n gets very tiny and contributéitle to thesum, so

that bl(x,n) stabilizes to looklike the wrinkled blancmangebl(x). This is easily seen
graphically and the limiting process can be translated into a formal argument (Tall 1982).
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More generally, the function whichchll the Vander Waerderiunction, van(x,m), can be
calculated by adding together teeth to get

van(x,m,n) = s(x)+ S(% + .. +M

mn-l

and taking a sufficiently large value of to see the picture stabilize to give (an
approximation to) the non-differentiable functiman(x,m). These functions have the
property that they nowhere magnify to look straight, sothey are not differentiable
anywhere.

In this way it is easy tduild up a number of different functions whieine continuous
everywhere yet differentiabl@owhere. The ready availability ofsuch functions has
interesting consequences for student’s understanding of concepts in mathematical analysis.

Figure 4 shows two graptssiperimposedy=sinx andy=sinx+n(x) wherethe function

n(x) is a tiny Van der Waerdenfunction. (It is calculated from v(x)=van(x,3) as
v(100k)
n(X)="1000 -)

y=sinx
y=sinx+tni{x>»

figure 4

Figure 5 shows the two graphs magnified to reveal the graphsin x as locallystraight,

but sinx+n(x) as beingnastily wrinkled. Thisinformal idearepresentshe generativédea

of the essential difference between a differentiable and a non-differentiable curve which are
indistinguishable to a normal scale.
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y=sinx

y=sinx+n{x>

q

-8.838
?.996 ?.998 1 1.882 x

figure 5

Pictures drawn with today’technology have relatively largaixels, sothe graphs look

rough. This phenomenon can be turned to advantage, to underline that what wréeimg
is amodelof thegraphs ofthe functions rather thathe graphs themselve$Vhat matters

most is the quality of the picture in the student’s mind, not on the screen!

Figure 6 shows the area function unttex blancmange function beilgawn inreal time.

A static picture in an article is completely inadequate to représsmiotent dynamicea.
Here the line of dots represents the graph of the area function from 0 to the currert point
A straightline is drawn througtthe lasttwo points,representing the gradient of tlaeea
function. Asthe area functiorgrows, the gradient of the area function changasd it
visibly changes in a smooth way. The computer is giving an approximadel of an area
function that is everywhere differentiable once, but not twice.
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Flxd=bl(x> Flx)»=x—-LCx1

figure 6

figure 7

Figure 7 shows the area function being calculated under the discontinuous fyrgtijoh
(where K] denotes the integer part ©f. The dots are the “areao-far” underthe curve
from x=0. Clearly the area functiomas ‘corners’ at those points whetlee original

function is discontinuous.

Figure 8 showsthe curvef(x)=[x]+bl(x) wherebl(x) is the blancmange. Ad(x) is
discontinuous at everinteger andcontinuous, but not differentiable, everywhesise,
what will the area function look like? Where will the area function be continuous and where

will it be differentiable?

y=CxJ1+blx

Hg

figure 8
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d
Figure 9 showshe drawing of a solution tdhe differential equationa—i = bl(x) where

bl(x) is the everywhereontinuous, nowherdifferentiable blancmange function of figure
3. Becausdl(x) has valuebetween 0 and 1, a solution curvethe differential equation
moves up and down (smoothly!) with gradient between 0 and 1.

dysdx=bl{x>

figure 9

Hubbard andWest (1985) foundthat students hadlifficulty in understandingthat a
differential equation can havesalution when it is not possible to exprdiss solution in

“closed form” (made up of a combination of standamdctions). Tohelp studentsthey
developed interactive programs for the Macintosh computer that used the mouse interface to
point at areas of interest to home in on singularities and to investigagualiative
behaviour of solutions. The “existence” of a solution rdepended on the ability draw

its graph, whichcould be done numerically witholtnowing aformula for it. Such
experiences with a computer proved to gdeeverful insightanto theorems of existence,
uniqueness and behaviour of solutions of differential equations.

The way ahead

In the nextfew years, software dhis naturecan but get more and mop®werful, with
increasing use of more flexible input devices, such as using a mouse to point at a part of the
picture that looks interesting, to zoom in and take a closer look.

Of greater importance in the software will be the development of flexible environthants
unite numerical, symbolic and graphical faciliti€3ood software isnot designed by
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encrusting the existing materials with more and nopons.What is absolutely essential
is to take into accourall possible methods of information processthgt can make the
ideas simpler to handle. Such software is more likely to be successful if thasepacity
of holistic/global thinking to complement the mathematician’s traditionathods of
deduction.

Back in1971 Skempmade the pertinerdbservationthat the teaching of mathematics by
logical methods is good ithat it showsthat mathematics is structured and not arbitrary
science, but is weak ithat it showsthe product of mathematicathoughtrather than the
process of mathematical thinking Skemp subsequently emphasized this point by
distinguishing betweerbuilding and testing concepts.Testing involves subjecting the
concepts to rigorous enquiry, to make sure that their construction and proof is founded on a
firm logical base,but before they can be tested thewyust be built, and building is a
cognitiveactwhich is not served solely by demonstrating forqmadofs. Using dogical
deductive approach to the calculus is but side of a two-sided coirhe other may be
illuminated by graphical insight from well-designed computer software.
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