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In this paper weconsider theduality between processand concept in
mathematics, irparticular using the samesymbolism to representboth a
process (such as the additiontafo numbers3+2) and theproduct ofthat process
(the sum 3+2). Theambiguity of notation allows the successfuthinker the
flexibility in thought to move betweethe process t@arry out amathematical
task and the concept to be mentally manipulategdasisof awider mentalschema.
We hypothesizéhat the successfuimathematicalthinker uses amental structure
which is anamalgam ofprocessand conceptwhich wecall a procept. We give
empirical evidence toshow that this leads to a qualitativelydifferent kind of
mathematical thought between the more able and the less able, causing a divergence
in performance between success and failure.

The duality of process and concept

The passage from process tmncepthas longbeen afocus of research irmathematical
education. Piaget speaks of #recapsulatiorof a process as a mental object when

... a physical or mental action is reconstructed and reorganized on a higher plane of
thought and so comes to be understood by the knower.(Beth & Piaget 1966, p. 247).

Dienes uses a grammatical metaphor to describe how a predicate (or action) becomes the subject
of a further predicate, which may in turn becomes the subject of another. He claims that

People who are good at taming predicates and reducing them to a state of subjection
are good mathematicians. (Dienes, 1960, p.21)

In an analogous way, Greeno (1983) definésoaceptual entity” as a cognitive objeghich
can be manipulated as the input tanantal procedure.The cognitiveprocess of forming a
(static) conceptual entitfom a (dynamic)process has variouslyeen called “encapsulation”
(after Piaget), “entification” (Kaput, 1982),and “reification” (Sfard, 1989). It isseen as
operating on successively higher levels so that:

... the whole of mathematics may therefore be thought of in terms of the construction

of structures,... mathematical entities move from one level to another; an operation on

such ‘entities’ becomes in its turn an object of the theory, and this process is repeated

until we reach structures that are alternately structuring or being structured by
‘stronger’ structures. (Piaget 1972, p. 70).

The ambiguity of symbolism for process and concept

The encapsulation gfrocess a®bject isseen as a difficulimental activityfor “How can
anything be a process and alnject at the sam@me?” Sfard (1989).0Our observation ighat
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this is achieved by the simple devicausing the same notation to represboth a process and
the product of that procesExamples pervade the whole of mathematics.

. The process ofcountingand the concept afumber(wherethe number 7
evokes both a counting process and the number produced by that counting)

. The process ofounting allor counting onand the concept addition (5+4
evokes both the counting on process and its result, 9),

. The process of multiplication as repeated addition and its prodicis(4éoth
5 groups of 4 and the product520),

. The process divisionof whole numbers and the concepfrattion (e.g.3),

. The process of adding (or shifting) numbers on a number line and the concept

of signed number (2" is both process and concept),
. The process ofsubtract tw@ and the concept of2’,

_ . o opposite
. The trigonometric ratio SM=Rypotenuse:

. The expressionX32 representing both the process of adding 2xtargl the
resulting sum,

. The process dending to a limitand the concept of thalue of the limitooth
represented by the same notation sucxhﬁ%s fi{r).

It is through using the notation to represeitiierprocess or productyhichever is convenient
at thetime, that the mathematiciamanages to encompass bothneatly sidestepping the
problem. Webelieve thathis ambiguity is atheroot of successfuimathematicathinking. It
enables the processes of mathematics to be tamed into a state of subjection.

The flexible notion of procept

We define groceptto be the amalgam of process and concepthich process and product is
represented by the same symbolism. Thus the symbol for a poaceptoke eithgprocess or
concept. For instancaumberis a procept, in which a number such‘thsee” represents both

the process of counting “one, two, three” and the concept which is the outcome of that process.

As an example of the use of the notion of procept to prodummvaheoreticalsynthesis of the
development of mathematicabncepts, we considdéhe development of concept afidition,
(see, for example, Carpenter et al, 1981, 1982, Fuson, 1982).

The sum of two numbers, say 3+2, is a procept, first conceived as the process of “alinting
or “counting on”. COUNTING ALL therefore may be viewed as PROCESS & PROCESS:
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three plustwois one two three four five

[PROCESS | plus |PROCESS]

“Counting on” is a more subtle procedure in which the first number (thredleady seen as a
whole, and the counting omprocess counts on twmore numberg“four”, “five”). Thus
COUNTING ON consists of PROCEPT & PROCESS:

| Counting on |
(e o @) (N
three plustwo is (three)  four five

[PROCEPT| plus |PROCESS|

Finally we come to PROCEPT & PROCEPT as embodied in a KNOWN FACT:
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three plustwo is 3 + 2 = 5
[ PROCEPT | plus| PROCEPT]

A proceptuaknown fact should be distinguished fromrate learned fact by virtue afs rich

inner structure whichmay be decomposed and recomposed to prodeceed facts For
instance, faced with 4+5, a child might see 5 as “one more than 4hightdknow the double
4+4=8 to derive the fact that 4+5 is “one more”, namely 9. For the proceptual thinker this gives
a powerful feedback loop which uses proceptual known facts to derive new known facts.

Such proceptual facts may develop great flexibilipere 2+3=5may beseen equivalently as
3+2=5, 5-3=2, 5-2=3allowing subtraction to be seen as directhated to addition at the
proceptual level, giving a fluent and easy way to develop subtraction facts.

The weakness of unencapsulated process

Meanwhile, thdessable childwho seesaddition only as @rocess, isaced with a farmore
difficult task. We have observed that those children who perceive addition asattasrdgount
on, often do so in time, so that although thegy produce the righanswer (8+4 is 9, 10, 11,
12), by the time they readhe end of thgorocesshey may have forgotten theeginning, and
so thesum 8+4=12 imot available as aew fact. Insteadhey seek security in getting the
correctanswer bydeveloping strategig®r counting,often using real or imagined objects or
assigned parts of their body to represent larger numbers (Gray, in press).

For achild whoseconcept of addition is mainly “counn”, or “count all”, the strategies of
subtraction caronly be in terms of a reversal of thepeocesses:Take away” involves
counting thetotal set, removing the number to be subtracted and countingréh@inder.
“Count up” relies on counting the subset to be taken away, then counting up to the total. “Count
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back” relies on counting back the number to be taken awaytfretotal. All of these involve
sophisticated double-counting procedures which invariably oeadrete or imagine@rops,
such as a numbdine or ruler, or assigned parts tife body to supporthe countingorocess.
The corresponding abstract processes prove difficult to carry out if such props are absent.

The less able childthus not only has a weak grasp lofown facts as a foundation for
knowledge,but alsousesmore complexprocedures with more possibility efror. When the
concept of place value istroducedlater and the child meetsvo andthree digit addition and
subtraction problems, the difficulties are compound&dat might be a simple combination of
proceptual ideafor the more able becomes the coordination of several corppbeesses for
the less able, leading to intolerable difficulties and a high probability of failure.

Empirical Evidence

Seventy twaochildren wereselected by their teacherstimo “typical” schools to represent the
chronological ages 7+ to 12+, with each school providing three pairs of childzanhryear to
represent thebelow average, average, and ab@awerage attainers. These children were
interviewed individually for half an hour on at least two separate occasions a week apart, and in
eachsession were asked to soletween eighteen and tweragthmeticproblems at various

levels of difficulty. Figure 1 (taken from Gray, to appear) illustrates the different strategies used
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figure 1 : Strategies for solving addition and subtraction involving numbers up to ten
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Figure 2 : Strategies for subtraction by below and above average childrer

by children of differing abilities in solving single-digit addition and subtraction problems.

Note the almost complete absence of derived facts inabgable (particularly inaddition),

whereaghe average and above average stéht a high proportion of knowilacts and use
derived facts to generate othHacts. Asthe ages ofthe childrenincrease the proportion of

known facts increase, but to a lesser extent in the less able.

Figure 2 concentrates dhe performances of tHeelow and above averagbility groups on
three different levels of subtraction problem:

A single digit subtraction (e.g. 8-2),

B subtraction of a single digit number from one between 10 &e26. 16-3,
15-9),

C il;k))traction of one number between 10 and 20 from an@hgr 16-10, 19-
Note the absence of derived fafiis any ofthese levels in the 8below average children and
the high incidence of derived facts in the same age above awiddren. Seénow the above
average have 100% known facts in category A by the age of 10+ whilst the below &awerage
tail off in performance al2+ asthe effects of attempting to copeith more complicated
arithmetic begins to affect their competence in performance at this level.



The proceptual divide

We have seetthat the more able have a procepts@alictureavailable to thenwith built-in
feedbackloop. Gray,(in press) has observeatlat more able children initialpuild up an
increasing array of known facts to support their arithmetic, but then realise thatetheibility
to derive facts removes theurden of needing teemember themnall. For the more able,
arithmetic eventually becomes increasingly simigdleanwhile, thdessable become trapped in
long sequentiaprocesses whichncrease theburden upon aralready stressedcognitive
structure so thafor the less able, the arithmetic becomes increasingly more difficult.

This lack of a proceptual structure provokes a major tragedyddessable which wecall the
proceptualdivide. We believe it to be a majarontributory factor to widespreafilure in
mathematics. It is as thougihe lessable are deceived bycanjuring trickthat the moreable

have learned tase. They areall initially given processes toarry outmathematicatasks but

success eventually only comes not through being good at those processes, but by encapsulating
them as part of a procept which solves the tasks in a more flexible way.

Figure 3 shows the total range of strategies used by more able and less able childreagas
8+ to 12+ for specific problems whose answer is not a known fact.
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Figure 3 : Strategies for solving problems whose answer is not immediately known

The lefthand sideshowsthe above average childresingalmostall derived facts and a few
examples of counting, whilst the right hand side shows few derived facts and pdargetage
of counting, take away and errors. The proceptual divide is clearly shown.

The cumulative effect of the proceptual divide

Proceptual encapsulation occurs at various stages througiatiematics: repeated counting
becomingaddition, repeated addition becoming multiplicatiamd soon, giving what are
usually considered by mathematics educators as a complex hierarchy of relationships:
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Thelessable childwho is fixed in Socesst
processcanonly solve problems at fg;ﬁf)e:
the next level up by coordinating

sequentialprocessesThis is, for
them, an extremely difficult
process. Ifthey are facedwith a

problem two levels up, then the

. . process of
structure will almost certainly be counting
too burdensome forthem to
support.

concept of
product

process of
counting on

concept o
number

Higher order encapsulations

The more able, proceptual thinker is faced with a diffepeoblem.The symbols for sum and
product again represenumbers Thus countingaddition andmultiplication are operating on
the same procepvhich can be decomposed infwocess forcalculationpurposes whenever
desired. Aproceptual view whiclamalgamateprocess anaonceptthroughthe use of the
same notation therefooellapses the hierarchinto a single level in whiclrithmeticoperations
(processes) act on numbers (procepts).

We hypothesise that this is the
development by whictthe more able
thinker develops a flexibleelational
understanding in mathematics, which

\
seen as a meaningful relationshjp
between notions athe samelevel,
whilst the less able are facedwith a
hierarchical ladder which is more
difficult to climb. It also provides an Collapse of hierarchy into operations on numbers
insight into why the practicing expert
sees mathematics as such a simple subject andimaday difficult to appreciate the difficulties
faced by the novice.

procept of number

Examples from other areas of mathematics

The examples given in simplarithmetic by nomeans exhaust the possibilities in the
mathematicscurriculum. We haveevidence that the lack of formation of the prockpt an
algebraicexpression causeifficulties for pupils whosee thesymbolism representing only a
process: indeed a process such ax2#8ch they are not able to carry out because they do not
know the value ok (Tall andThomas, to appear). Weave evidence that the conception of a
trigonometric ratio only as @rocess ofcalculation (opposite over hypotenuse) and not a
flexible proceptcauses difficulties in trigonometBlackett1990). Inboth of these cases we

have evidence that the use of the computer to carry out the process, and so enable the learner to
concentrate on the product, significantly improves the learning experience.

7=



The case of the functioooncept, where %) in traditional mathematicsepresents both the
process of calculating the value for a specific valuearid the concept of functidor general

X, is another examplherethe modern method of conceiving a function as an encapsulated
object causes great difficulty ( Sfard, 1989).

We therefore are confident that thetion of procept allows a more insightful analysis of the
process ofearning mathematics, in whighe precision of definition of modemmathematics
(“a function is a set of ordered pairs such that ...”) caused seermegpyicable difficulties to
the student.The ambiguity ofprocess and product representedthy notion of a procept
provides a more natural cognitive development which gives enorpower tothe moreable.

It exhibits the proceptual chasm faced by the less able in attemptingsio what is — fothem

— the spiralling complexity of the subject.
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