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In this article I continue my quest for “understanding the calculus” 1,2 by looking at a 
practical approach to the notion of a tangent and linking it to the Leibniz notation 
dy/dx in a meaningful way. The latter is a bête noire for students: it looks like a 
quotient, it acts like a quotient, yet the seeds of a classic psychological conflict are 
sown in their minds when they are told it must not be thought of as a quotient. I shall 
discuss how this conflict may be resolved so that the chain law allows cancellation. 

Practical tangents 

A number of computer programs for drawing graphs claim to draw tangents to curves, 
including the MEI programs for Mathematical Computing 3 and my own program 
SuperZoom in the Supergraph package 4. None of the programs do anything of the 
sort. When requested to draw the tangent to y=f(x) at the point x=a, they actually 
draw the straight line through two close points on the curve, (a,f(a)) and (a+s,f(a+s)) 
where s is small. SuperZoom uses s=0.0001. This ‘practical tangent’ is really nothing 
more than a secant (or extended chord) through two close points on the graph. 

The arithmetic accuracy on computers usually allows the practical tangent to be 
calculated with sufficient precision to satisfy the limited requirements of the visual 
display. It certainly works satisfactorily for most standard functions met in the sixth 
form, as the picture of the tangent to y=ex at x=1 shows. (Figure 1.) 
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Figure 1 : A practical tangent to y=ex at x=1 

However, it may fail dismally when the curve has tiny wrinkles or corners. The 
function f(x)=x+abs(1-x2) has ‘corners’ at x=–1 and x=1. The ‘practical tangent’ 
drawn at x=1 plots the line through (1,f(1)), (1.0001,f(1.0001)), giving a line that 
seems to touch the graph only to the right of the point concerned. (Figure 2.) 

 

Figure 2: A ʻpractical tangentʼ at a corner 

SuperZoom has a very flexible line-plotting routine that allows the line between two 
specified points to be drawn. By taking points on the graph with x=1 and x=0.99999, 
the line drawn gives a "practical tangent" that seems to touch the curve to the left. 
(Figure 3.) 
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Figure 3: Another ʻpractical tangentʼ from x=0.9999 to x=1 

These are not the only possibilities, one may investigate what happens in this case 
when the extended chord is drawn through the points with x-coordinates 1–h and 1+h. 
For instance the line through the points on the graph with x=1-1/10000 and 
x=1+1/10000 looks as if it ‘balances’ on the corner. It even seductively passes 
through the other corner on the graph, supporting its candidacy as a genuine tangent. 
(Figure 4.) 

 

Figure 4: A ʻbalance tangentʼ from x=1–1/10000 to x=1+1/10000 

Lines that ‘touch’ a curve 

Some textbooks do not give a definition of the tangent, preferring to use the intuitive 
idea that a tangent is a line that ‘touches’ the curve. If a graph has a ‘corner’, students 
may believe that it has an infinite number of tangents there. Thus the graph 
y=x+abs(1–x2) may be thought to have an infinite number of tangents at x=–1 and 
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x=1. But here the graph magnifies up to look like two half-lines meeting at an angle 
with different left and right gradients. 

The situation at a point where the graph magnifies to look straight is quite different. 
Using SuperZoom to draw the curve f(x)=x2 magnified through the point x=1/2, y=1 
and superimposing the tangent y=x+1/4 reveals the graph and tangent (almost) 
indistinguishable within the error of drawing (figure 5). 

 

Figure 5 : High magnification of a graph and the tangent at a point 

If a graph has a tangent, under high magnification a small part of the graph and the 
tangent are practically indistinguishable. 

It is my experience that students need guidance over this point. In early trials with 
Graphic Calculus, we found that students easily appreciated the fact that a curve had a 
gradient at those points where it magnified to look straight. But without explicit 
discussion over the links with the tangent, it was still possible for them to believe that 
a graph with a corner had no gradient there, yet it had many tangents. 

It is appropriate to see the three ideas gradient, tangent and derivative operating in 
parallel, so that a graph has a gradient at a point if and only if it has a tangent at that 
point, in which case the derivative equals the gradient. 

The Leibniz Notation 

The notation used by Leibniz in his original paper 6 for the gradient of a curve is 
dy/dx. The symbols δx, δy for increments in x,y respectively came into prominent use 
over a century later in a textbook by the English mathematician Woodhouse 7. We 
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have absorbed these into our modern culture by using dx to represent any increment 
in x and denoting the corresponding increment in y=f(x) as 

  δy=f(x+dx)-f(x). 

(Figure 6.) 

!x
!y

x x+!x

y=f(x)

 

Figure 6: The Woodhouse notation for increments 

The gradient of the chord from (x,y) to (x+δx,y+δy) is then δy/δx. As δx gets small, if 
the gradient δy/δx tends to a fixed limit, we denote the latter by dy/dx and say: 

  as δx tends to 0, so  
δy
δx   tends to  

dy
dx  , 

or 

  dy

dx
= lim

! x"0

!y

!x
. 

But dy/dx is no longer interpreted in its historical sense. For instance, Geoffrey 
Matthews writes 9 (page 9): 

 dy/dx is simply a notation, signifying the gradient of the curve in 
question. It is not to be considered here as a ratio, as δy/δx is, but just 
a handy way of expressing ‘the limit as δx→0 of δy/δx’. 

This is firmly supported by Hilary Shuard and Hugh Neill in their excellent book on 
Teaching the Calculus 10 (page 13): 

 The student ... has to learn that, in spite of all the evidence to the 
contrary, which seems to him to build up from statements such as 

   
dy
dx  x 

dx
dt   = 

dy
dt   

 dy/dx is not a symbol for a fraction, but for the limit of the gradient 
of a chord. 
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It is expressed even more forcefully in one of the earlier versions of SMP Advanced 
Mathematics 11 (page 221): 

 ‘dy/dx’ must, at least for some considerable time, be regarded as an 
inseparable whole, just as ‘δx’ is. It does not in any simple or 
straight-forward way mean anything like ‘dy divided by dx’, and a 
statement such as ‘dy/dx x dx/dt = dy/dt, by cancelling dx’ is just so 
much gibberish. 

The reader may very well agree with the substance of these expressed views. Yet they 
must severely tax the patience of students when dy/dx patently seems to work as a 
quotient and is later used as a quotient to solve differential equations by separation of 
the variables. 

Tony Orton suggests 12: 

 Elaborate symbolism might only serve to confuse the issue. Perhaps 
examination syllabuses have made the mistake of demanding the use 
of dy/dx too soon. 

Removing the dy/dx notation from the beginning of the course is a helpful move, but 
it serves no long-term purpose if the difficulties remain unresolved at a later stage. 
The resolution is found by looking carefully at the dy/dx notation to find out why it 
works in the way it does, and to see if it can be given a meaningful interpretation as a 
quotient. 

The original definition of Leibniz 

Leibniz is often misquoted as introducing the notation dy/dx as a quotient of 
infinitesimals. It is not true. The expression dy/dx is initially considered a quotient of 
finite quantities. In the first publication on the calculus 7 in 1684 he referred to a 
diagram which I have simplified in this article by referring only to the standard 
variables x,y. (Figure 7.) 

y

XB

dx

dy

 

Figure 7 : The Leibniz definition of dx and dy 
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The curve represents a variable y depending on x, and B is the point where the tangent 
to the curve meets the x-axis. 

Condensing what Leibniz said to concentrate on the variables x,y we get the 
statement: 

 Jam recta aliqua pro arbitrio assumta vocetur dx, & recta quae sit ad 
dx ut y est ad XB vocetur dy. 

which translates to 

 Now some straight line selected arbitrarily is called dx, and the line 
which is to dx as y is to XB is called dy. 

Thus the length dx is arbitrary and the length dy is the corresponding increment in y 
such that the quotient dy/dx equals y/XB. Disentangling the definition, we see that dx 
is any increment and dy is the corresponding increment to the tangent. (Figure 8.) 

dx
dy

x x+dx

y=f(x)

 

Figure 8 : The differentials of Leibniz as  increments to the tangent 

There is no mention of infinitesimals: they came later in the paper when Leibniz had 
to develop a method of calculating the direction of the tangent. Today we (usually) 
calculate the tangent direction by a limiting process, but there is no reason why we 
should not use the Leibniz notation in its original meaning. 

Suppose the derivative f'(x) is known and dx is any real number, then we may follow 
the standard practice in many modern texts 13 to define 

  dy=f'(x)dx 

and (for dx≠0) obtain 

  dy/dx=f'(x) 

as a quotient of lengths. 
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Thus δx and δy are increments in x,y to the graph, whilst dx and dy are increments to 
the tangent. Both δy/δx and dy/dx are quotients in exactly the same way. 

What is interesting is what happens when we look at tiny increments under a 
microscope. As the tangent is then practically indistinguishable from the curve, taking 
dx=δx, we then find dy≈δy (figure 9). 

!x=dx

x

y=f(x)

!y"dy

 

Figure 9: Magnifying a tiny locally straight part of a graph 

Because dy=f'(x)dx, this gives 

  δy ≈ f'(x)δx, 

which is the usual formula for approximations interpreted visually. 

The tangent vector 

Using the given values dx,dy, a point (x+r,y+s) on the tangent must satisfy 

  s/r = dy/dx. 

(Figure 10.) 

r
s

x

y

y=f(x)

 

Figure 10: The tangent vector 

If we take r=k.dx, then s=k.dy, so that the point on the tangent is 
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  (x+k.dx, y+k.dy). 

Writing this in the form 

  (x+k.dx, y+k.dy) = (x,y) +k(dx,dy) 

we see that every point on the tangent is at a vector displacement k(dx,dy) from the 
point (x,y) on the curve. The tangent vector is therefore in the direction (dx,dy). 

Vertical tangents 

Certain curves, such as y=x1/3 at the origin, have vertical tangents. (To get the 
computer to calculate the cube root for negative x, it may be necessary to type in the 
cube root of the positive value absx, then multiply the result by the sign, sgnx.) 
(Figure 11.)  

 

Figure 11 : The vertical tangent to y=3√x at the origin 

In such a case it is quite legitimate to take dx=0, dy=1 to get a tangent direction (0,1) 
along the y-axis. A point on the tangent at (0,0) is then of the form 

  (0,0)+k(dx,dy) 

  = (k.0,k.1) 

  = (0,k), 

which is simply a point on the y-axis, as expected. 

If we refer to the tangent as a vector, we may include the anomalous case where the 
tangent is vertical. I am not too bothered whether we say that the gradient dy/dx ‘does 
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not exist’ or that it is ‘infinite’, though the latter has the advantage that every tangent 
then has a corresponding gradient. The case is worth discussing because it aligns 
vertical tangents with others where a tiny portion of the graph looks straight under 
magnification. Whichever convention we adopt, students may meet either in other 
contexts; it is as well for them to know that some things in mathematics are a matter 
of individual opinion. If you don't believe this, draw the graph of y=sqr(absx)) (figure 
12). Do you think this has a tangent at the origin? Some mathematicians think so, but 
it doesn't magnify to look like a straight line ... 

 

Figure 12: The graph of y=√|x| – does it have a tangent at the origin? 

Three dimensions 

The picture in three dimensions is not fundamentally different from two. Given two 
functions x=f(t), y=g(t), then, as x varies, the point (t,f(t),g(t)) describes a curve in 
three dimensional space. The projection onto the first two coordinates (t,f(t)) gives the 
graph of x=f(t), with a similar picture for y=g(t) on the (t,y) plane. If the curve has a 
tangent at a point P=(t,f(t),g(t)) on the curve may be considered as the diagonal of a 
rectangular box (figure 13). 



 

– 11 – 

tangent to 

graph at P

graph in 3-D

dt

dx

dy

 

Figure 13: A tangent to a curve in (t,x,y) space 

Here the sides are denoted by (dt,dx,dy) because the projection down onto a 
coordinate plane gives the picture of the tangent to the curve in two dimensions, using 
the Leibniz notation (figure 14). 

dt

dy

 

Figure 14: The projection onto the t-x plane 

The chain rule 

If x=f(t) is a function of t and y=h(x) is a function of x, then writing g(t)=h(f(t)) 
expresses y=g(t) as a function of t. In three dimensional (t,x,y) space the graph 
(t,f(t),g(t)) is a curve and the components of the tangent vector are dt,dx,dy. Provided 
that dt and dx are not zero, in each coordinate plane the gradient of the tangent is 
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given by a quotient: dx/dt in the x-t plane, dy/dt in the y-t plane, and dy/dx in the x-y 
plane. Thus the equation  

  
dy
dx  x 

dx
dt   = 

dy
dt   

is true as quotients of lengths. The lengths are just the components of the tangent 
vector in three-dimensional space. 

The one place where this argument breaks down is if dt or dx were zero. Now we can 
choose dx to be anything we like, so we can take dx ≠ 0. But then dt is determined by 
the equation 

  dx=f'(t)dt. 

If f'(t)=0 then we must have dx=0. But now 

  dy=g'(t)dt, 

so we must have dy=0 also, whence 

  dy/dx=0 

and the chain rule is true because both sides are zero. 

Implicit curves 

The functions x=f(t), y=g(t) give a curve (f(t),g(t)) in the x-y plane. If the three-
dimensional curve (t,f(t),g(t)) has a tangent vector, then, for an increment dt in t, we 
obtain the other components dx=f'(t)dt and dy=g'(y)dt of the three-dimensional 
tangent vector and the tangent to the projection in the x-y plane is in the direction 
(dx,dy). The curve in the x-y plane need not simplify to give y as a function of x. For 
instance, when 

  x=sint, y=cost 

then the relationship between x and y is the implicit relation: 

  x2+y2=1. 

(Figure 15.) 
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Figure 15 : x = sint, y = cost  drawn in 3D and projected onto the three coordinate planes 

In the computer drawing I have given a 3-dimensional view with the t-x plane 
horizontal and the other planes vertical. As the curve is drawn in three-dimensional 
space, the tangent at the current point projects down to give the tangent to the curves 
in each of the coordinate planes. Both x and y are functions of t, so that dx and dy may 
be calculated by the formulae 

  dx = f'(t)dt = cos(t)dt, dy = g'(t)dt = –sin(t)dt. 

The direction of the tangent to the implicit curve in the x-y plane is 

  (dx,dy) = (cos(t)dt,–sin(t)dt) 

          = (cos(t),–sin(t))dt, 

which is in the direction (cos(t),-sin(t)). As t increases from 0 to 2π, the tangent 
moves smoothly round the unit circle, passing twice through the vertical when t=π/2 
and 3π/2. Sticking relentlessly to the derivative concept dy/dx, there are two 
alternatives. One is to break the circle up in parts so that in each part one of the pair 
x,y is a function of the other, say 

  y=√(1–x2) for y>0 
  y=–√(1–x2) for y<0 
  x=√(1–y2) for x>0 
  x=–√(1–y2) for x<0 
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so that one may speak of the derivative as a function in each region. The other 
approach is to enter into discussions about what happens when the gradient becomes 
‘infinite’. 

The value of seeing the central concept as the tangent vector, instead of the quotient 
dy/dx now becomes clear. In dealing with implicit functions it is so much simpler. It 
also generalises more readily to higher dimensions. The tangent vector is the best 
linear approximation to the curve; the tangent plane may be described as the best 
linear approximation to a surface, and so on. 

This combination of simplicity and power proves to have a unifying influence on the 
calculus. In the next article I shall look at the process of antidifferentiation, which 
seeks the solution curve y=I(x), given the derivative dy/dx=f(x). The theory taught in 
schools for many years is an instrumental reversal of differentiation: look at the list of 
known derivatives to find a function I(x) such that I'(x)=f(x). This presentation has a 
fatal flaw that is exposed by a geometric approach. Pictorial insight also generalises 
to give a unified approach to differential equations that is currently absent from the 
A-level syllabus. 

References 

1. D O Tall: Understanding the Calculus, Mathematics Teaching 110, 49-53 1985. 

2. D O Tall: The Gradient of a graph, Mathematics Teaching 11, 48-52 1985. 

3. P Couzens & D Butler: M.E.I. Programs for Mathematical Computing, Oundle 1983. 

4. D O Tall: Supergraph, Glentop Publishing, Barnet 1985. 

5. D O Tall: Graphic Calculus I: Differentiation, Glentop Publishing, Barnet 1986. 

6. S M P : Additional Mathematics Part 2. 

7. G W Leibniz: Nova methodus pro maximis et minimis, itemque tangentibus, qua nec 

fractas, nec irrationales quantitates moratur, & sinulare pro illis calculi genus, Acta 

Eruditorum  467-473, October 1684. 

8. R Woodhouse: The Principles of Analytical Calculation, Cambridge 1803. 

9. G Matthews: Calculus, John Murray 1964. 

10. H Neill & H Shuard: Teaching Calculus, Blackie, 1982. 

11. S M P : Advanced Mathematics Book 1, C.U.P. 1967. 

12. A Orton: When should we teach the calculus? Mathematics in School, 14,2 11-15 1985. 



 

– 15 – 

13. D A Quadling: Mathematical Analysis, O.U.P. 1955. 


