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*  CHAPTER 12  * 

Expert Thinking and Structure Theorems 

In this chapter we return to the journey through the axiomatic formal 
world. In chapter 8 we saw the complication involved in the initial stages 
of formal deduction of a relationship such as   (−a)(−b) = ab  in an 
appropriate axiomatic system. In chapter 10 we saw that first stage of 
dealing with definitions and deductions is highly complicated as learners 
attempt to make sense of the formal ideas when their minds are already 
full of embodied and symbolic ideas that now must be reorganized into 
formal definitions and proof. 

Learners may develop in a variety of ways—as natural learners 
building structurally on embodied mental images of situations, or 
operationally on experiences manipulating symbols, or in a more formal 
way based on making deductions from formal definitions. Some may 
learn proofs procedurally to reproduce them in examinations.  

When a learner is presented with a list of axioms, the first stage is to 
prove some initial theorems that enable the axioms and definitions to be 
used in more flexible ways. This leads from a multistructural list to a 
growing relational structure of formal knowledge. In the longer term this 
leads to the emergence of crystalline concepts. 

For instance, a complete ordered field is formulated with a list of 
axioms including the axiom of completeness in the context of an ordered 
field. In chapter 10 the completeness axiom was given in the form ‘a 
cauchy sequence always tends to a limit’. There are other ways of 
formulating this same axiom for an ordered field, for example, ‘an 
increasing sequence bounded above converges to a limit’, ‘a decreasing 
sequence bounded below converges’, ‘a non-empty set bounded above 
has a least upper bound’, or ‘a non-empty set bounded below has a 
greatest lower bound’. All of these different versions can be proved to be 
equivalent in the context of the axioms for an ordered field. 

The human mind can compress the ideas further, not only into a 
concept in which different versions are ‘equivalent’, but also into a single 
crystalline structure: the one and only complete ordered field R that has 
formal, embodied and symbolic aspects all blended into one. 

In the case of other formally defined mathematical concepts, such as a 
group, the concept may exist in many different forms. Examples include 
the group of rational numbers under addition, the non-zero rationals 
under multiplication, a group of transformations, or in a multitude of 
other examples. In group theory we have the notion of isomorphism to 
describe groups with a bijection (one-one onto map) between the sets that 
respects the group operation.  Isomorphic groups are fundamentally the 
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same and the human brain can conceive such a concept as a single 
crystalline structure. 

Even the general concept of group has its own crystalline structure 
that students begin to grasp. This is illustrated by a conversation that I 
had with a group of thirty mathematics students beginning a course on 
‘the development of mathematical concepts’ after a year of formal 
university mathematics. 

Few of the students claimed to have fully understood the first year 
group theory course. Some claimed that they had learnt virtually nothing. 
I took a positive attitude by inviting the sceptics to respond to a challenge. 
I told them that I had a group G in my mind. I wouldn’t tell them any 
more than that, but I wanted them to tell me about it. 

The first suggestion was that it must have an identity element that we 
agreed to call e. When asked about other elements, after a suggestion that 
perhaps e was the only element, I asked what could be said about any 
other element, say x. The response came that we could multiply x by x 
and get   x2 . I then enquired about multiplying   x2  by   x2  and was given 
the immediate answer   x4 . The explanation was given that this used the 
associative law so that, either way, the result is x times x times x times x. 

The point had now been made. While the students did not know the 
group I had in mind, they had a sense of its properties and could talk to 
me about it, and this information followed from the growing knowledge 
structure each of them had constructed for the group concept. 

In this chapter we will consider the longer-term development in 
which multistructual lists of axioms lead to theorems that relate 
properties and compress knowledge into crystalline formal concepts. 

The journey includes the proof of a special kind of theorem, called a 
structure theorem, which proves consequences that reveal new embodied 
forms with precise formal meanings and symbolic methods of operation 
that are an inevitable consequence of the axioms. This transforms the 
whole nature of formal mathematical thinking. Instead of an initial multi-
structural system of axioms from which theorems must be proved 
carefully step-by-step, the developing expertise leads to crystalline 
concepts that have new forms of embodiment and symbolism now 
underpinned by the power of formal proof.  

COMPARING NOVICE AND EXPERT 

Keith Weber compared the ways in which four undergraduates and four 
doctoral students solved formal mathematical problems in group theory.1 
He found that the undergraduates were able to reproduce simple 
theorems but were unsuccessful when the problems became more 
complex. Meanwhile, ‘the doctoral students appeared to know the 
powerful proof techniques in abstract algebra, which theorems are more 
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important, where particular facts and theorems are likely to be useful, and 
when one should or should not try and prove theorems using symbolic 
manipulation.’ 2 

A typical question was to prove whether or not the group of integers 
Z under addition was isomorphic to the group Q of rational numbers 
addition. In terms of a definition, this would mean finding a bijection 
between Z and Q that preserved addition, or showing that no such 
bijection existed. None of the four undergraduates could provide a formal 
response but all four graduates were able to do so. 

The undergraduates focused on their memory that Z and Q have the 
same cardinal number and so already had a bijective correspondence 
between them. They had part of the idea—a bijection—but not a bijection 
that respected the operation of addition. The powerful met-before of the 
equal cardinality of Z and Q was so strong that they were unable to make 
any further progress. 

The graduates had richer knowledge structures supporting their 
thinking. For instance, one immediately declared that Q and Z could not 
be isomorphic, first by speculating that Q is dense but Z is not, then that 
‘Z is cyclic, but Q is not’ (meaning that the element 1 generates the whole 
of Z under addition but no element in Q does so). This second insight 
shows that the additive groups of Z and Q cannot be isomorphic. 

The undergraduates still saw proof as a process and sought a process 
to establish a bijection or not. The graduates had developed a richly 
connected formal knowledge structure and knew that isomorphic groups 
would have the same properties and used this to solve the problem. 

THE PROCESS OF PROVING AND WARRANTS FOR TRUTH 

In the process of shifting from the initial workings with definitions to the 
building of a succession of theorems to give a rich knowledge structure, 
the prover must have some idea as to what theorems might be worth 
proving and to conjecture what might be true. This involves producing 
some kind of argument to support the proposed theorem, which may not 
initially be a formal proof but, nevertheless, gives the prover increasing 
conviction that the theorem is true. 

In the 1950s, the philosopher Toulmin3 considered how general 
arguments were composed. In general, a proof might consist of some 
given Data that was assumed true and a form of Proof to establish the 
Conclusion. (Figure 12.1.) 

 
Figure 12.1: Proving a conclusion from given data 

ConclusionData Proof
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Toulmin, however, saw that arguments were more general than this. He 
suggested that a general argument began with Data, then had a Warrant 
for truth in the forms of arguments that support the likelihood of truth, 
without necessarily giving a 100% certainty, and as a consequence there 
would be a Qualifier expressing the degree of confidence in the argument 
supporting the Conclusion. The Warrant was supported by Backing, in 
the form of additional evidence, but the argument may have a Rebuttal 
which potentially refutes the conclusion, for instance, by stating 
conditions in which the argument would fail. (Figure 12.2.) 

 
Figure 12.2: Toulmin’s model of general argument4 

This framework gives a wider context for describing how new proofs are 
suggested by individuals using their current knowledge structures. 

Matthew Inglis and his colleagues5 gave high quality mathematics 
research students unfamiliar problems in clinical interviews to study how 
they developed their arguments. These concerned variations of the 
definition of a perfect number, given as follows for a positive integer n: 

A perfect number n has divisors (including 1 and n) that add up to 2n, 
An abundant number n has divisors that add up to more than 2n, 
A deficient number n has divisors that add up to less than 2n. 

For instance, 6 is perfect (because  1+ 2 + 3 + 6 = 12 ), 7 is deficient (because 
 1+ 7 = 8 < 14 ) and 12 is abundant (because  1+ 2 + 3 + 4 + 6 +12 = 28 > 24 ). 

Amongst the conjectures that were presented to the students to test if 
they were true or false were the following: 

(A) The sum  m+ n  of two abundant numbers m, n is abundant, 
(B)  The product mn of two abundant numbers m, n is abundant. 

Graduate student Chris responded immediately to (A) saying 
That doesn’t look true. … Because the factors of  m + n  don’t really have 
anything to do with the factors of m or n. So it should be fairly easy to 
construct a counterexample. 
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He went on to find two abundant numbers whose sum was not abundant. 
Looking at (B), however, he said 

Right, so if m and n are abundant then mn is abundant. That looks more 
plausible, because they are going to share factors. 

This led to a sequence of arguments that ended up with a proof. The 
reader might like to solve both problems to see if they are, in fact, true or 
false. This will involve the kind of thinking that is being discussed in this 
section and is likely to give deeper insight than just passively reading 
about the ideas. 

The important observation to make is that initially the responses give 
warrants that are qualified, in the first case a sense that it should be ‘fairly 
easy’ to prove false, the second looks ‘more plausible’ with the backing 
that the numbers are going to share factors. 

A study of the responses of the six students suggested three different 
types of warrant: 

An inductive warrant-type based on evaluating one or more specific cases. 
A structural-intuitive warrant-type based on observations about or 
experiments with some kind of mental structure, be it visual or otherwise, 
that persuades them of a conclusion. 
A deductive warrant-type using formal mathematical justifications to 
warrant the conclusion, including deductions from axioms, algebraic 
manipulations, or the use of counterexamples. 

These three types correspond to 
the use of examples, typical in the first stage of problem solving (and also 
in the earlier pre-axiomatic stages of proof development), 
the use of an imagined mental structure that may be ‘visual or otherwise’, 
an argument that is essentially formal deductive from axioms or algebraic 
manipulation using quantified statements in generalized arithmetic. 

In the three-world framework, the first and second represent stages of 
development in embodiment and symbolism, with embodied images or 
calculations, while the third sees a switch to formal proof, or an 
operational manipulative proof using quantifiers. The given problem is 
based on arithmetic operations with numbers that could be tackled 
without a formal knowledge framework. Here it is tackled by talented 
graduate students experienced in formal proof using their sophisticated 
knowledge structures to provide initial warrants for truth before moving 
on to seek a formal proof.  

Pablo Meija-Ramos investigated a range of other problems that 
carried different levels of conviction from specific examples, embodied 
pictures, symbolic manipulations and formal proofs.6 

Two conjectures given to students were the following: 
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(C) The derivative of an even function is an odd function, 
(D) The product of two diagonal matrices is diagonal. 

The first can be imagined as an embodied picture, a symbolic relationship 
between functions, or something related to the formal limit definition of 
the derivative. The second focuses more on the symbolism of matrix 
multiplication. In practice, the first produced a range of responses, for 
example, using the symmetry of the even function f satisfying 
  f (x) = f (−x)  to embody the slopes as mirror images, with the slope   ′f (x)  
equaling minus   ′f (−x) . This insight was usually considered to be 
meaningful but did not carry the full conviction of proof. (Figure 12.3.) 

 
Figure 12.3: dynamic visual picture of slope of an even function at  x = −t  and  x = t  

The argument produced by one such student was analyzed using the 
Toulmin diagram as in Figure 12.4. 

 
Figure 12.4: The Toulmin analysis of a visual proof by one of the students 

Here the student uses the picture as a backing to produce the warrant that 
the gradients have to mirror each other, with an implicit use of an 
informal definition and no counterexample as a rebuttal to suggest that 
the conclusion ‘clearly’ follows. When questioned, the student confirmed 
that although the argument was ‘clear’, it was not a formal proof. 
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Overall, the students gave a variety of arguments that were classified 
as ‘inductive arguments’ (for instance looking at special cases such as 
specific polynomials with even powers), ‘informal deductive arguments’ 
(such as that in figure 12.3) or ‘formal deductive arguments’. These 
arguments are respectively operational symbolic, structural embodied 
thought experiment, and formal proof. 

The case of the diagonal matrix is different as it is expressed 
symbolically without an obvious embodied representation. Yet even here, 
there are some solutions that recall the definition of matrix multiplication 
as a functional embodiment, where the rule of multiplication combines a 
row in the first matrix and a column in the second by multiplying the 
successive entries (along the row and down the column), adding them 
together and placing the result in the position where the row and column 
cross each other. This calculation was accompanied by a drawing (figure 
12.5) in which enactive gestures traced the directions along row and 
column to give an iconic representation of the rule for multiplication. It 
enabled the student to build up the formula for the product of two 
matrices to shift from an informal deductive argument to a formal 
deductive argument. 

 
Figure 12.5: matrix multiplication in outline 

Mejia-Ramos summarized his data in the following terms: 
Students may use any type of argument available to them when 
approaching a given task, and that while this may result in certain students 
using the same combination of arguments in two different tasks (empirical 
to estimate the truth of the conjecture, informal deductive to explain it and 
formal deductive to prove it), others may use only a formal deductive 
approach when such an argument is available to them, but resort to other 
types of arguments when faced with tasks for which the basis of a symbolic 
argument is not as ‘fresh in their minds.’ 7 

Both of these studies are designed to use the Toulmin framework to 
reveal the need for a qualifier that expresses a certain level of confidence 
rather than an all-or-nothing proof. As such they focus on the 
development of a formal argument, rather than the specific nature of 
embodiment or symbolism involved. However, the roles of embodiment 
and symbolism are clear in the examples given, which each example 
having its own specific characteristics. (A) and (B) are general properties 
of whole number arithmetic. (C) is a calculus problem that can be 
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embodied as a visual picture, symbolized as a rule in calculus, or 
formalized in mathematical analysis. (D) is a problem in matrix algebra 
that is essentially symbolic. Hence (A) and (B) are problems requiring a 
symbolic proof in whole number arithmetic, (C) offers distinct arguments 
in embodiment, symbolism or the formalism of mathematical analysis, 
and (D) requires a proof in the formal symbolism of matrix algebra, but 
involves aspects of functional embodiment to remember the rule for 
matrix multiplication. Each benefits from different forms of support in 
embodiment, symbolism and formalism to construct a formal proof. 

STRUCTURE THEOREMS AND NEW FORMS OF EMBODIMENT AND SYMBOLISM 

The axioms and definitions proposed for formal concepts are chosen by 
the mathematician to express generative properties that can be used as a 
foundation for formal development. Such axiomatic structures rarely 
reflect all the properties that are in the original examples that inspired the 
theory. For instance, a vector in elementary mathematics arises from 
generalizing the notion of vector in two and three dimensions as a 
quantity with magnitude and direction. But a vector space is not 
axiomatized to suggest this structure at all. Instead the axioms of a vector 
space focus only on the properties of addition of vectors and operations 
on vectors by elements from the associated field. 

In the following discussion, the formal definition of various 
mathematical systems will be analyzed to show that, under specified 
circumstances, a formally defined concept will have structural properties 
that endow it with a specific embodiment and corresponding symbolism. 

The ideas will be outlined in a general fashion. What is important for 
the general reader is to grasp that the formal definitions leads to 
embodied and symbolic properties. The mathematician may choose the 
axioms to suit specific purposes, but those axioms then have inevitable 
properties that result in a specific crystalline structure. 

THE CONCEPT OF VECTOR 

A vector space V over a field F is defined formally as a commutative 
group V with the operation combining    u,v ∈V written as   u + v ∈V and 
multiplication of a vector   v ∈V  by  a∈F  denoted as   av ∈V  that satisfies 
the axioms:    (a+ b)v = av + bv ,    a(u + v) = au + av ,    (ab)v = a(bv)  and   1v = v . 

An example of a vector space is the n-dimensional space  Fn  of 
coordinate vectors   (a1 ,…, an )  where the coordinates   a1 , …,  an  are all 
elements in the field F. This is a generalization of two-dimensional real 
space   2 or three-dimensional real space   3  that can be embodied as 
vectors in the real plane or in three-dimensional real space. Addition of 
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vectors simply adds coordinates and multiplying by an element of F 
multiplies each of the coordinates by that element. 

To link the formal embodiment more closely to this example, further 
definitions are introduced. 

A vector space is said to be finite dimensional if it has a finite set of 
vectors   v1 , …,  vn  (called a ‘spanning set’) so that every vector v can be 
written as a combination    v = a1v1 +…+ anvn  (for   a1 ,…, an ∈F ). A set of 
vectors   v1 , …,   vn  is said to be linearly independent, if the sum 
   v = a1v1 +…+ anvn  can only equal zero when   a1 =…= an = 0 . 

If a spanning set is also linearly independent, then the representation 
   v = a1v1 +…+ anvn  is unique in the sense that if there were two different 
expressions,    v = a1v1 +…+ anvn = b1v1 +…+ bnvn , then 

(a1 − b1)v1 +…+ (an − bn)vn = 0  
so   a1 = b1 , …,  an = bn . 

A set of vectors that spans a vector space and is also linearly 
independent is called a basis. In this case it can be proved that any two 
bases of a given vector space V have the same number of elements and 
this is defined to be the dimension of the vector space. 

In a vector space of dimension n, choose a basis   v1 , …,   vn , then any 
vector v can then be written uniquely as    v = a1v1 +…+ anvn  which 
corresponds to the row vector   (a1 ,…, an )  in the vector space  Fn . 

This leads to the essential structure theorem that any finite-
dimensional vector space over a field F is isomorphic to  Fn , or, to put 
more simply, that an n-dimensional vector space can have its elements 
represented as n-tuples   (a1 ,…, an )  where the coordinates   a1 ,…, an are all 
elements in the field F. In particular, if F is the field    of real numbers, 
then a two or three-dimensional vector space over    is isomorphic to two 
or three-dimensional cartesian space. 

This structure theorem not only asserts that any finite-dimensional 
vector space over a field F is isomorphic to  Fn , it also opens the doors to 
link the formal structure to the worlds of embodiment and symbolism. 
Vectors in finite-dimensional spaces can be written using coordinates 
(usually as column vectors), linear maps can be written as matrices and 
multiplied using the symbolism of matrix multiplication. It reveals the 
underlying crystalline structure for a finite-dimensional vector space that 
is already familiar from matrix algebra. 

If the field F is the field of real numbers   , then a three-dimensional 
vector space V has the structure of vectors in   3 , except that there is as 
yet no definition of angle between vectors (which requires additional 
axioms). Even so, it enables vector subspaces to be seen as lines or planes 
through the origin. The structure theorem now blends the formal 
axiomatic structure with its familiar embodiment in space and its linear 
functions as symbolic matrices. It yields an inevitable structure blending 
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embodied, symbolic and formal aspects into a single crystalline concept. 
In chapter ten, it was suggested that students construct formal 

mathematical knowledge either by a natural process of giving meaning to 
the formal definition using embodiment and symbolism, or by a formal 
process of extracting meaning from the definition by reflecting on how it 
operates in formal proofs. 

A structure theorem, as proved here for finite dimensional vector 
spaces, extends the possibilities of formal proof by giving formal 
structures new kinds of embodiment and symbolism that can be used to 
imagine new possible theorems and their warrants for truth that can 
become part of the proving process (extending the previous figure 10.11 
to figure 12.6). 

In mathematical research, mathematicians have highly sophisticated 
knowledge structures built from experience in producing proofs. 
However, inventing and proving new theorems remains a problem-
solving process, which may build naturally on expert knowledge 
structures that include blends of embodiment, symbolism and formalism 
to suggest conjectures that may later be proved formally. 

 

Figure 12.6: Structure theorems enhance formal proof with embodiment and symbolism 
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In this framework, structure theorems play a significant role by 
underpinning formal theory with supportive embodiment and 
symbolism. They provide a natural structure for contemplating new 
possibilities suggested by the crystalline structure of the formal concepts 
and a working environment for the application of ideas. 

They also provide practical ways in which formal mathematics may 
be used in applications. Applied mathematicians use the embodiment and 
symbolism to formulate problems by imagining the embodiment and 
formulating a symbolic model to solve the problem, without consciously 
being concerned with the formalism that is now firmly established. 

The following sections outline more structure theorems in other areas 
of mathematics. They are seminal in giving a formal underpinning to the 
human blending of embodiment, symbolism and formalism. 

A FINITE GROUP IS ISOMORPHIC TO A GROUP OF PERMUTATIONS 

Practical examples of groups include groups of permutations, where the 
elements permute (or re-order) the elements in a given finite set. The 
group of permutations of n elements is called the symmetric group of order 
n and denoted by  Sn . It consists of all the functions permuting the 
numbers 1, 2, …, n. This can be used for computational purposes. For 
example, the permutation of the elements {1, 2, 3, 4, 5} that takes the order 
12345 into 21453 takes 1 to 2, 2 to 1, 3 to 4, 4 to 5 and 5 to 3. This permutes 
the elements in two cycles, one taking 1 to 2 and 2 to 1, the other cycling 3 
to 4 to 5 and taking 5 back to 3. (Figure 12.7.) 

 
Figure 12.7: A permutation represented as cycles 

These cycles are written sequentially in brackets as (12), (345) where the 
elements in a bracket are permuted, with each one going to the next 
except the last which goes to the first. Permutations are combined by 
performing one followed by the other, reading from left to right. Thus the 
product (123)(123) takes 1 to 2 in the first bracket, then 2 to 3 in the 
second, taking 1 to 3 overall, while 2 goes to 3 goes to 1 overall, and 3 
goes to 1 goes to 2, giving the cycle (132). This permutation turns the cycle 
on the right of the figure two turns clockwise, and has the same effect as 
one turn anticlockwise. The product (123)(123)(123) turns through three 
turns clockwise, turning full circle to give the identity of the permutation 
group. This enables the operations in the symmetric group to be 
embodied and calculated using cyclic permutations. 
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Given any finite group G with n elements, then each element  g ∈G  
gives a function   fg : G →G  by multiplying every element on the left by g, 
to get 

   fg(x) = g  x . By the group axioms it can be shown that f is a 
bijection that permutes the elements of G. Numbering the elements   g1 , …, 
 gn , gives a permutation of the n elements 1, 2, …, n, which is an element 
of the group  Sn  of permutations. This assignment maps elements of G to 
elements of  Sn  and preserves the group operation because 

   fh( fg(x)) = h  g  x = fhg(x) . This shows that any finite group G can be 
represented as a subgroup of a group of permutations. Once this structure 
theorem is established, it allows the formal theory of finite groups to be 
linked to symbolic calculations. 

However, mathematicians shift to a new level where equivalent 
structures are reconceptualized as a single crystalline structure that can be 
expressed in different ways. Using this way of thinking, we see a finite 
group not just as being isomorphic to a subgroup of a permutation group, 
but think of it as a subgroup of a permutation group. 

Now expert mathematicians are in a completely new ball game. Finite 
groups are not just systems given by the axioms of a group, they can now 
be seen structurally as subgroups of a permutation group. If we wish to 
classify all finite groups, then they are subgroups of permutation groups 
and the abstract problem of classification becomes a more concrete 
exploration of finding the subgroups of permutation groups. 

In practice, the permutation group  Sn  becomes very large as n 
increases and can be very complicated, so various new techniques are 
developed. However, they are now based on knowing that a finite group is 
a meaningful concrete structure as a subgroup of a permutation group 
rather than just some kind of abstract idea. 

Subsequent theorems analyze the possible structures that may occur, 
leading to new techniques to classify all finite groups (up to 
isomorphism). The problem is still open, but several giant steps have been 
made. One involves the notion of a ‘simple’ group, which acts as a kind of 
foundational group from which all other finite groups are formed. The 
finite simple groups have now been fully identified, taking us a step 
further in the overall development of group theory.8 

AN EQUIVALENCE RELATION ON A SET 
PARTIONS IT INTO EQUIVALENCE CLASSES 

The notion of equivalence relation on a set S is formulated entirely by 
three axioms specifying that the relation is reflexive, symmetric and 
transitive. It can be given an embodied meaning by looking at the 
elements that are equivalent to each other. Take any element  x ∈S  and 
consider the subset  Sx  of all the elements equivalent to x. This is called 
the equivalence class containing x. 
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Every element of S lies in an equivalence class (for instance,  x ∈S  
belongs to the equivalence class  Sx ). If two equivalence classes have an 
element in common, say  z ∈Sx  and  z ∈Sy  then   z ~ x  and   z ~ y  and, using 
the reflexive and transitive axioms, we find   x ~ y  and deduce that  Sx  and 

 Sy  are the same. This shows that the equivalence classes are either 
identical or non-intersecting, with each equivalence class being written in 
many ways as  Sx  where x is any element of the class. The equivalence 
classes can then be embodied as a partition of the set into distinct subsets 
(Figure 12.8.) 

 
Figure 12.8: Partitioning a set S using an equivalence relation 

Conversely, it is straightforward to show that any partition gives an 
equivalence relation. This gives a structure theorem in which an 
equivalence relation on a set, given in terms of the three axioms, reflexive, 
symmetric and transitive, can be embodied as partitioning the set into 
non-overlapping subsets. 

This theorem reveals the wide generality of the notion of equivalence 
relation. Most of the equivalence relations met in algebra—equivalent 
fractions, equivalent algebraic expressions, equivalent vectors, 
equivalence in group theory, and so on—have the relation specified by a 
simple rule. But it need not be so. Any partition of a set gives an 
equivalence relation. 

One equivalence relation that causes some problems to students is the 
idea of two infinite decimals being equivalent if they represent the same 
real number. Here the equivalence classes have one element in every case 
except where a finite decimal (such as 0.65) is equivalent to an infinite 
decimal ending in repeating nines (such as 0.64999…) where the 
equivalence class contains precisely two elements. 

AN ORDERED FIELD CONTAINS A SUBFIELD 
ISOMORPHIC TO THE RATIONAL NUMBERS 

If a field F is ordered, the order relation places a limitation on the 
arithmetic generated by the unit element   1F . Define the element 
  2F = 1F +1F  and, proceeding by induction, for any   n ∈ , define 

  (n +1)F = nF +1F  to give the sequence   1F ,   2F , …,  nF , … in F. In a general 
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field, the sequence might repeat, as happens in the field   3  of integers 
modulo 3 where the sequence is   1F ,   2F ,   3F , where   3F = 0F  and   4F = 1F , 
and more generally in the field of integers 

   p  for a prime number p. 
However, in an ordered field F, the terms   1F ,   2F , …,  nF , … are successive 
sums of positive elements and so every one is positive. They must also be 
different, for if  mF = nF  where  mF > nF , then  kF  is zero where  kF = mF − nF , 
contradicting the fact that  kF  is positive and not zero. 

Once we have found an infinite sequence of different terms   1F ,   2F , …, 
 nF , … in our ordered field F, we include their additive inverses  −1F ,   −2F , 
…,  −nF , … the zero element, and the fractions   mF /nF  (for   nF ≠ 0F ) to get 
a subfield isomorphic to   . 

Again we can shift a level and regard this subfield as being the rational 
numbers    and then it can be said that every ordered field contains the 
rational numbers   . In particular, this means that we can use the familiar 
number symbols to represent the rational numbers in any ordered field F. 
This gives every ordered field F a specific crystalline substructure in the 
form of the rational numbers. 

UP TO ISOMORPHISM, THERE IS ONLY ONE COMPLETE ORDERED FIELD 

A complete ordered field is an ordered field with the additional axiom of 
completeness which we will formulate here as: 

(C) An increasing sequence   (an }  bounded above by  L ∈F  
tends to a limit  a∈F  where  a ≤ L . 

As we know that an ordered field F contains the rationals    and so it 
already contains all finite decimals which are just integers over a power of 
ten. For any integer   a0  and digits   a1 ,   a2 , …,  an , … all between 0 and 9, 
the sequence of finite decimals   a0 ⋅ a1 ,   a0 ⋅ a1a2 , …,   a0 ⋅ a1…an , … is an 
increasing sequence in F, bounded above by   a0 +1 . By the completeness 
axiom, this has a unique limit   a ≤ a0 +1 . This unique limit a is written as 
the infinite decimal   a0 ⋅ a1…an… . There is some work to do to check that 
the arithmetic operations on these decimals operate as expected to show 
that the field F contains a subfield isomorphic to the real numbers as 
infinite decimals. Then we must show that every element  x ∈F  can be 
written as a decimal expansion. 

To find the decimal expansion for x, we begin by finding an integer m 
such that   m ≤ x < m+1 . It is not possible to have x larger than all integers 
for if this happened, by completeness, the sequence 1, 2, 3, … would be 
bounded above by x and then it would have a limit  k ∈F  where  k ≤ x . 
But because k is the limit of the sequence then, by the definition, for any 
 ε > 0 , say  ε = 1

2 , all the terms after some N lie between  k − ε  and  k + ε  for 
all n > N. But then, the next term   N +1  will lie between them, so 
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  k − 1
2 < N +1 < k + 1

2 , and, in particular,   k − 1
2 < N +1 , so the next term 

  N + 2  is now bigger than k, which is a contradiction. So there must be 
some integer q bigger than x. By a similar argument, there must be some 
integer p smaller than x. We are now working with the familiar integers 
and, as we count up from p to q, we find some integer m such that 
  m ≤ x < m+1 . By an induction argument on n, we can then show 
successively that x lies in the interval: 

  
a0 +

a1

10
+…+

an

10n ≤ x < a0 +
a1

10
+…+

an +1
10n  

and go on to prove that x is the real number   a0 ⋅ a1…an…  representing the 
limit 

  
a0 +

a1

10
+…+

an

10n +… 

For university students in the early part of their course this is a technically 
difficult proof to write out in full, and even mathematicians find it tedious 
to write out the detail. But once established and the result is part of the 
knowledge structure of the research mathematician, it can now be used as 
a formal algebraic structure—a complete ordered field—linked to the 
embodiment of the real number line and the arithmetic of decimals. The 
real numbers  is the unique complete ordered field that includes the 
rationals  as an ordered subfield, the integers  and the natural 
numbers . 

One thing that the real numbers do not contain is an infinitesimal, 
which is ‘arbitrarily small’ but not zero. For instance, we might seek a 
positive infinitesimal   o∈  that is smaller than all positive real numbers, 
but we cannot have one because    o/2 ∈  is positive and smaller. 

Various experiences—such as the construction of  from  using 
Dedekind cuts explained in chapter nine—are often described as 
‘completing the real number line’ by ‘filling in the gaps between the 
rationals’. This introduces a subtle met-before that is widely shared in the 
community: that there is ‘no room’ on the number line to fit in any more 
numbers, and certainly no room for infinitesimals. 

The Cantor-Dedekind Axiom stating that the real numbers are order 
isomorphic to the points on a geometric line, also categorically insists that 
once the rationals have been ‘completed’ then this fills up the whole 
geometric line. 

This illustrates how the choice of particular set of axioms gives a 
framework with particular properties and may be interpreted by the 
community to say that ‘infinitesimals cannot exist’. However, it only 
shows that they cannot exist as real number. It does not mean that they 
cannot occur in another formal system as we will see in the next chapter. 
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CHOICES AND CONSEQUENCES 

Mathematicians have control over the axioms that they choose. But then 
the theorems that are proved are a consequence of that choice. Choose to 
study a complete ordered field, and the consequence is that there can be 
no infinitesimals in it. Choose the epsilon-delta definition of continuity of 
a function, and again certain consequences follow. For instance, this 
might introduce monsters that are continuous almost everywhere but 
peculiarly discontinuous elsewhere. 

A typical crazy function is given by 

  
r(x) =

1/n if x is the rational number m/n in lowest terms
0 otherwise,

⎧
⎨
⎪

⎩⎪
 

The graph is then discontinuous at every rational point and continuous at 
every rational. This is a strange monster. The reason is that, in any 
interval there are both rationals and irrationals, but in any interval 
 a ≤ x ≤ b  there are only a finite number of rationals   x = m/n  whose 
values exceed a given value of  ε > 0 . Around any irrational therefore, it is 
possible to find an interval where all nearby points on the graph are 
within ε, and round any rational   x = m/n , for   ε = 1/(2n)  there are 
irrationals where points on the graph are more than ε away. 

The graph is caricatured in figure 12.9, plotted with ‘large’ points. If 
smaller points were used to approximate the graph better, then it would 
be seen that most points cluster around the x-axis. 

The reader may think that such a bizarre function has no place in the 
dynamically continuous world we live in. It doesn’t. Put simply, this 
function is not formally continuous in any interval  a ≤ x ≤ b  of real 
numbers, so it would not be expected to be dynamically continuous over 
any interval. However, it does satisfy the formal definition of continuity at 
every irrational point and it will ‘pull flat’ in a window centered on an 
irrational value of x, but not in a window centered on a rational. 

 
Figure 12.9: A function continuous at all irrationals and discontinuous at every rational 
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What is happening here is that the graph is not formally continuous at 
every real number on an interval, so do not expect it to operate like a 
dynamically continuous real function. 

The view expressed by Lakoff and Núñez in Where Mathematics Comes 
From is that many concepts in formal mathematics fail to behave the way 
that they believe embodied mathematics should operate. They claim that 
‘romantic’ mathematicians produce a form of mathematics that is 
‘counter-intuitive’. However, in formal mathematics, the mathematician 
chooses his axioms, and the consequences follow. By proving structure 
theorems mathematicians are able to give axiomatic systems new 
embodiments that are appropriate for their own prepared knowledge 
structure. The chosen axioms reveal crystalline formal structures whose 
consequences are secured by formal proof. These structures may then 
lead to structure theorems that give previously unimagined embodiments 
that, for the mathematician, now have a meaningful embodiment. 

Different axiomatic systems give different crystalline structures. What 
is ‘natural’ depends on the experience of the learner. Learners who have 
experienced a locally straight introduction to the calculus would not be 
limited to thinking that ‘most’ curves are smooth with tangents ‘almost 
everywhere’. They are more likely to know that a continuous function may 
be seriously wrinkled. 

The development of axiomatic mathematics is not limited to ‘natural’ 
ways of thinking. A mathematician can formulate any consistent system 
of axioms and deduce theorems to develop a formal knowledge structure, 
which may then involve structure theorems that give entirely new ways 
of embodying mathematical structures to a prepared mathematical mind. 

Every mathematician began life as a newborn child and has passed 
through a cognitive development to reach the heights of his mathematical 
imagination. It is this development that we should analyze, from child to 
mathematician, to find how the embodied brain becomes a mathematical 
mind. Top-down idea analysis from a highly theoretical viewpoint may 
give some insights, but it is the cognitive growth of the human individual 
that reveals the true development of human mathematical thinking. 

NEW ORGANIZATIONAL PRINCIPLES 

Mathematicians use definitions in a different way from everyday 
language. In particular, they often take a positive delight in seeing 
singular examples as part of a general pattern. For instance, the empty set 
is seen as a central example of a set in its role as a subset of every other 
set. This violates embodied conceptions where the empty set of apples is 
evidently different from the empty set of rational numbers. Yet in the 
axiomatic formal world they are precisely the same crystalline concept 
because they both have the same elements (namely, none). 
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The empty set is a particular favorite in mathematical formalism. For 
example, consider the notion of a subspace of a vector space. It is natural 
to say that the subset of a vector space V (over a field F) generated by a 
subset S consists of all sums    a1v1 + ...+ anvn  where   a1 , …,  an  are elements 
of F and    v1 ,...,vn  are any elements of S. If the elements    v1 ,...,vn  are 
linearly independent then the subspace is said to be n-dimensional. For 
  n = 1 , 2, 3 over the real numbers, these can be seen as one-dimensional, 
two-dimensional and three-dimensional space. But can the value of n be 
zero? If the generating subset is the empty set, then how can one have a 
sum of no elements? 

This is where the careful use of definition comes into play. The 
subspace generated by any subset S of a vector space V is defined 
carefully to be ‘the smallest subspace that includes all the elements of S.’ 
This includes all the sums    a1v1 + ...+ anvn  where    v1 ,...,vn ∈S , but it must 
also contain the zero vector, because the rules for a vector space say so. 
This implies that if S is the empty set, the smallest subspace generated by 
S must consist of the zero vector alone. This means that a subset 
generated by n independent vectors has dimension n, and this now 
includes the case   n = 0 . 

This subtle generality is the kind of thing that gives great pleasure to 
mathematicians, even if it seems bizarre in everyday conversation. It is an 
aesthetically beautiful notion that allows all cases to be included in a 
general pattern with no exceptions. I remember well as an undergraduate 
hearing exquisite lectures from the very reflective Oxford don, Ken 
Gravett. He told us that the empty set was the one that he felt most at 
home with, because he was absolutely certain what its elements are. If 
anyone asked, ‘is x in the empty set?’ (whatever x happened to be), he 
could always answer ‘no.’ 

Another case of including a singular example as an instance of the 
general pattern arose when Chris Sangwin asked undergraduates and 
mathematicians to give examples of even and odd functions.9 An even 
function satisfies   f (−x) = f (x)  and includes functions such as   x2  or   cos x  
and an odd function satisfies   f (−x) = − f (x)  such as   x3  or   sin x . The 
students gave variants of ‘typical examples’ such as   x2 +1  for even and 
  sin 2x  for odd. A possible response from professional mathematicians, 
however, was ‘zero’. This singular case is both odd and even. For a 
mathematician it is a minimal example, requiring least effort: for a 
student it is a singular example that fails to be typical for either property. 

The philosopher, Paul Grice10 formulated four maxims for cooperative 
dialogue, namely quality (truth), quantity (information), relation 
(relevance) and manner (clarity). The first involves only saying what you 
believe to be true, for which you have adequate evidence. The second 
involves making your contribution as informative as possible without 
giving excessive detail. The third requires what is said to be relevant, the 
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fourth requires the communication to be brief, avoiding obscurity and 
ambiguity. 

Following Grice’s maxims, in everyday language one says things in an 
informative and suitably clear manner. For instance, one might say ‘five is 
bigger than four’, never ‘five is greater than or equal to four’. But formal 
mathematics seeks an economy of means—a parsimony where only what 
is absolutely necessary is highlighted. This leads to default cases being 
included in a pattern to minimize the complexity. Mathematicians usually 
abhor several choices and prefer binary decisions where the response is 
either yes or no. 

For instance, the order property in its strong form  x > y  requires the 
use of the trichotomy law: either  x > y  or  y > x  or   x = 0 , and no two hold at 
the same time. This follows the Gricean maxim of saying precisely what 
you know. When I formulated the axioms for order, I framed them using 
this axiom because I sensed that it would make more sense to readers 
who are not research mathematicians. It would be less ‘natural’ to use the 
order relation  x ≥ y  because in specific arithmetical examples we will 
always known whether the elements are the same or different. 

In the search to reduce every decision as far as possible to a simple yes 
or no, the notion of order is often given in terms of the corresponding 
weak order relation  x ≥ y . The weak axioms for order on a set S are: 

(WO1) Given x,  y ∈S  then either  x ≥ y  or  y ≥ x   
(WO2) If  x ≥ y  and  y ≥ x  then  x = y . 

These axioms avoid the three-way test of trichotomy and allow every 
decision to be binary. Now the definition says that either  x ≥ y  or  y ≥ x  
and if both hold then  x = y . 

In mathematics, strong relations (where equality is excluded) are 
sometimes used in preference to weak relations (where equality is 
possible). For instance, the notion of parallel lines is a strong equivalence 
relation between two distinct lines and a line cannot be parallel to itself. 

However, in the formal definition of equivalence, an element is 
always assumed to be equivalent to itself. This is simply a choice made to 
simplify decision-making. An equivalence relation ~ on a set A is defined 
to satisfy three axioms: 

(E1)   x  x  for all  x ∈A , 
(E2) If   x  y  then   y  x , 
(E3) If   x  y  and   y  z  then   y  z . 

It is quite possible to define a corresponding ‘strong equivalence relation’ 
σ defined so that  aσb  means   a  b  and  a ≠ b . This gives new axioms for a 
strong equivalence relation in the form: 

(SE1) The relation  aσ a  does not hold, 
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(SE2) If  aσb  then  bσ a , 
(SE3) If  aσb  and  bσc  where  a ≠ c  then  aσc . 

These axioms lack the simplicity and elegance of (E1)-(E3), and so 
mathematicians do not use them. Aesthetic sense is part of the axiomatic 
formal world, choosing axioms and definitions in a form that is elegant 
and parsimonious, even if this involves different ways of operating from 
familiar everyday experience. 

In some circumstances, changing the list of axioms may give the same 
underlying crystalline structure, for instance, replacing the axioms for a 
strong equivalence relation by the more elegant axioms for an equivalence 
relation, or replacing one version of the completeness axiom in an ordered 
field by another. 

However, when a list of axioms is modified, perhaps by adding or 
removing an axiom, or making a change in one or more axioms, it often 
causes a radical change in the crystalline structure. This is not a problem: 
it is a rich source of freedom, to invent an axiomatic structure that the 
mathematician chooses for specific purposes. Having chosen a new list of 
axioms, the consequences of those axioms are not invented, they are 
discovered. 

Often the crystalline structure is so beautiful that even the 
mathematician who invented the axioms and definitions in the first place 
is amazed by the sense of perfection that arises. It is no small wonder that 
a mathematician rich in the experience of discovering beautiful ideas in a 
given axiomatic system will believe that the crystalline structure is a 
platonic entity with an existence beyond the confines of his own mind. 

Structure theorems translate axiomatic systems and definitions within 
them into the possibility of new embodiments and new ways of operating 
symbolically. The power in mathematical thinking lies not just in 
formulating axioms to describe a familiar situation, it arises from 
blending together familiar ideas in new ways to solve new problems and, 
in doing so, to create new crystalline concepts and structure theorems that 
lead to new forms of embodiment and symbolism underpinned by formal 
proof. 
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