3G6 COMMUTATIVE ALGEBRA - HOMEWORK 5

DUE THURSDAY 17TH MARCH, 2PM

Hand in the problems in Section B only to the boxes outside the undergraduate office. You are encouraged to work together on the problems, but your written work should be your own.

A : Warm-up problems

(1) Verify that the ideal $I=\left\langle x^{3}, y^{5}, z^{2}\right\rangle \subset \mathbb{C}[x, y, z]$ is irreducible.
(2) Verify that the ideal $I=\left\langle x^{3}, x^{2} y, x y^{3}, y^{5}\right\rangle \subset \mathbb{C}[x, y, z]$ is primary. Show that it is not irreducible by writing it as the intersection of two larger ideals.
(3) Let M be the \mathbb{Z}-module $\mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}$. What is $\operatorname{Ass}(M)$?

B: Exercises

(1) Let G be a finitely generated abelian group, viewed as a \mathbb{Z} module.. What is $\operatorname{Ass}(G)$? (Hint: You secretly learned this in Algebra 1).
For the remaining questions, let $S=K\left[x_{1}, \ldots, x_{n}\right]$ be the ring of polynomials over a field K. Recall from the start of term that monomial ideals have a unique minimal generating set consisting of monomials.
(2) Show that a monomial ideal I is prime if and only if it is generated by some of the variables of S.
(3) Show that if $I=\left\langle x^{\mathbf{u}_{1}}, \ldots, x^{\mathbf{u}_{r}}\right\rangle$ is a monomial ideal in S, then

$$
I=\left\langle x_{1}^{\left(\mathbf{u}_{1}\right)_{1}}, x^{\mathbf{u}_{2}}, \ldots, x^{\mathbf{u}_{r}}\right\rangle \cap\left\langle x^{\mathbf{u}_{1}} / x_{1}^{\left(\mathbf{u}_{1}\right)_{1}}, x^{\mathbf{u}_{2}}, \ldots, x^{\mathbf{u}_{r}}\right\rangle .
$$

Here we have the convention that $x_{1}^{0}=1$.
(4) Show that a monomial ideal $I \subset S$ cannot be written as the intersection of two strictly larger monomial ideals if only if I has a generating set consisting of powers of variables. (In fact, this criterion characterizes when I is irreducible, but you do not need to prove this here).
(5) Show that a monomial ideal $I \subset S$ is primary if and only if whenever x_{i} divides a monomial minimal generator of I, some power x_{i}^{m} of x_{i} is in I.
(6) Describe an algorithm to compute an irreducible decomposition of a monomial ideal in S. You may assume that the criterion of Q4 characterizes irreducibility. Carry this out for the monomial ideal $I=\left\langle y^{3}, x^{3}, y^{2} z^{3}, x y z^{3}, x^{2} z^{3}\right\rangle \subseteq K[x, y, z]$.
(7) Describe an algorithm to compute a minimal primary decomposition of a monomial ideal in S. Carry this out for the monomial ideal $I=\left\langle y^{3}, x^{3}, y^{2} z^{3}, x y z^{3}, x^{2} z^{3}\right\rangle \subseteq K[x, y, z]$.

C: Extensions

For extra exercises see the non-assessed HW6. Other extra exercises can be found the recommended textbooks, in the sections indicated on the schedule.

