3G6 COMMUTATIVE ALGEBRA - HOMEWORK 2

DUE TUESDAY 9 FEBRUARY, 2PM

Hand in the problems in Section B only to the boxes outside the undergraduate office. You are encouraged to work together on the problems, but your written work should be your own.

Throughout this sheet, K is a field.

A: Warm-up problems

(1) Show that any monomial ideal $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ has a minimal monomial generating set.
(2) Show that $I J \subseteq I \cap J$. Give an example to show that these can be different.
(3) Let $R=K[[x]]$ be the ring of formal power series in one variable with coefficients in a field K. This consists of elements $\sum_{i \geq 0} a_{i} x^{i}$ with $a_{i} \in K$, where addition and multiplication are as for (convergent) power series with coefficients in \mathbb{R} (as in 1 st/2nd year Analysis). Check that $K[[x]]$ is a ring.
(4) The sum of two ideals is $I+J=\{i+j: i \in I, j \in J\}$. Check that $I+J$ is an ideal.
(5) (Reid, Exercise 1.6) Prove or give a counterexample:
(a) The intersection of two prime ideals is prime;
(b) The ideal $P_{1}+P_{2}$ is prime when P_{1}, P_{2} are prime;
(c) If $\phi: R \rightarrow S$ is a ring homomorphism, and M is a maximal ideal of S, then $\phi^{-1}(M)$ is a maximal ideal of R.

B: Exercises

(1) Fix a term order \prec on the polynomial ring $K\left[x_{1}, \ldots, x_{n}\right]$. A set $\mathcal{G}=\left\{g_{1}, \ldots, g_{s}\right\}$ is a reduced Gröbner basis for an ideal I with respect to a term order \prec if \mathcal{G} is a Gröbner basis, $\left\{\mathrm{in}_{\prec}\left(g_{1}\right), \ldots, \mathrm{in}_{\prec}\left(g_{s}\right)\right\}$ is an irredundant (no repeats) minimal generating set for $\mathrm{in}_{\prec}(I)$, and for each g_{i}, the coefficient of $\mathrm{in}_{\prec}\left(g_{i}\right)$ is 1 , and no term of g_{i} other than its initial term is divisible by $\mathrm{in}_{\prec}\left(g_{j}\right)$ for any $1 \leq j \leq s$. Show that for any ideal I and any term order \prec there is a unique reduced Gröbner basis for I with respect to \prec. Hint: Question B1 from the last HW.
(2) Give an algorithm to describe when two ideals $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$ and $J=\left\langle g_{1}, \ldots, g_{s}\right\rangle$ in $K\left[x_{1}, \ldots, x_{n}\right]$ are the same. Carry out your algorithm for $I=\left\langle x^{3}+3 x^{2} z+y^{3}+z^{3}, x^{3}-y^{3}+z^{3}\right\rangle$ and $J=\left\langle 8 y^{9}+27 y^{3} x^{6}-27 x^{9}, 3 z x^{2}+2 y^{3}, 4 z y^{6}-9 y^{3} x^{4}+9 x^{7}, 2 z^{2} y^{3}+\right.$ $\left.3 y^{3} x^{2}-3 x^{5}, z^{3}+y^{3}+x^{3}+3 x^{2} z\right\rangle$ in $K[x, y, z]$ (attach printouts if you use a computer).
(3) Show that if $I \subseteq K\left[x_{1}, \ldots, x_{n}\right]$ is a radical ideal, then I is prime if and only if there do not exist ideals $J_{1}, J_{2} \neq I$ with $I=J_{1} \cap J_{2}$.
(4) Let $R=K[[x]]$ be the ring of formal power series with coefficients in a field K (as in Question A3).
(a) Let $f=\sum_{i \geq 0} a_{i} x^{i} \in R$. Show that if $a_{0} \neq 0$ then f is a unit (i.e., has a multiplicative inverse).
(b) Describe $\operatorname{Spec}(R)$.
(5) Let $\phi: R \rightarrow S$ be a ring homomorphism. Show that if P is a prime ideal in S, then $\phi^{-1}(P)$ is a prime ideal in R. Is the induced map of sets $\phi^{*}: \operatorname{Spec}(S) \rightarrow \operatorname{Spec}(R)$ injective? Is it surjective?
(6) Let $R=\mathbb{C}[x] /\left\langle x^{2}\right\rangle$. Describe $\operatorname{Spec}(R)$.

C: Extensions

(1) Let $f_{1}, \ldots, f_{r} \in K\left[x_{1}, \ldots, x_{n}\right]$ have the property that there are only a finite number of solutions to $f_{1}(x)=f_{2}(x)=\cdots=$ $f_{r}(x)=0$. Let $I=\left\langle f_{1}, \ldots, f_{r}\right\rangle$, and let \mathcal{G} be the reduced Gröbner basis for I with respect to the lexicographic term order with $x_{1}>\cdots>x_{n}$. Show that \mathcal{G} contains a polynomial in $K\left[x_{n}\right]$. Describe how you can use this to (numerically, at least) find all solutions to these equations.
(2) What are the prime ideals in $\mathbb{Z}[x]$?
(3) Fix $d \in \mathbb{Z}$. Let $\mathbb{Z}[\sqrt{d}]=\{a+b \sqrt{d}: a, b \in \mathbb{Z}\}$. Describe the prime ideals in $\mathbb{Z}[\sqrt{d}]$.
(4) Let $R \subset \mathbb{R}[[x]]$ be the ring of convergent powerseries. Check that R is a ring. What can you say about $\operatorname{Spec}(R)$? What can you say about power series in more variables?
(5) (Open Question) Let $R=K\left[x_{i j}, y_{i j}: 1 \leq i, j \leq n\right]$. Let $X=\left(x_{i j}\right)$ and $Y=\left(y_{i j}\right)$ be $n \times n$ matrices (with entries in R, and consider the matrix $X Y-Y X$. This has $i j$ th entry $\sum_{k=1}^{n}\left(x_{i k} y_{k j}-x_{k j} y_{i k}\right)$. Let I be the ideal in R generated by these n^{2} polynomials. Is I prime? (This is known only for very small values of n; $n=5$ may still be open!).

