
252 COMBINATORIAL OPTIMIZATION

HOMEWORK 3

These exercises are at a mixture of levels. There may be typos or
mistakes; please let me know as soon as you find one. I’m happy to
discuss your solution attempts in my office hours (Monday 12pm).

Hand in Questions 1,2,4,8,9,10 to the box outside the undergraduate
office by Thursday, 13th February, at 2pm. You are strongly encour-
aged to do the other questions at this time as well, though you should
not hand them in. You also are encouraged to work on these problems
in groups, though your final write-up should be your own.

(1) Find an augmenting path for the flow shown in Figure 1.
(2) Find a maximal flow for the network of Figure 2.
(3) In the Ford-Fulkerson algorithm we constructed a cut (S, T )

at the end of the algorithm by setting S to be all vertices v
for which there is an augmenting path from s to v. When the
algorithm terminates let T ′ be the set of all u for which there
is an augmenting path from u to t, and let S ′ = V \ T ′. Show
that (S ′, T ′) is also a minimum cut for the network N . Do we
always have S = S ′ and T = T ′?

(4) Construct networks with integral capacities having:
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Figure 2.

(a) many maximal flows and many minimum cuts,
(b) many maximal flows, and a unique minimum cut,
(c) a unique maximal flow, and many minimum cuts, and
(d) a unique maximal flow, and a unique minimum cut.

(5) One way to find an augmenting path is to create the resid-
ual graph G(f), which is a weighted directed graph whose ver-
tices are the same as N , and for which there is an edge (v, u)
for every edge (u, v) ∈ E(N). For (u, v) ∈ E(N) we give
(u, v) ∈ E(G(f)) the weight c(u, v) − f(u, v), and (v, u) the
weight f(u, v). An augmenting path is then a path from s to
t in G(f) using only edges with positive weight. The existence
of this can be computed using any of our shortest path algo-
rithms (eg Dijkstra). Use this idea to bound the running time
of the augmenting paths algorithm in terms of |V |, |E|, and
maxe∈E c(e). (Warning: if you google for this question, you will
see answers that do not use maxe∈E c(e). This requires a careful
implementation - most people will learn more by thinking about
this question on your own than by reading a more complicated
answer.)

(6) A graph G = (V, E) is k-edge-connected if it connected whenever
any k−1 edges are removed. Thus a 1-edge-connected graph is a
connected graph, and a 2-edge-connected graph is a connected
graph for which there is no edge whose removal disconnects
the graph. Given two vertices x, y ∈ V (G), a collection of
paths P1, . . . , Pk from x to y are edge-disjoint if there is no edge
occuring in Pi and Pj for some i 6= j.
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Figure 3.
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(a) Draw a 2-edge-connected graph, and a 3-edge-connected
graph.

(b) Menger’s theorem states if G is k edge connected then for
all x, y ∈ V (G) there are k edge disjoint paths from x to
y. Prove Menger’s theorem using the max-flow/min-cut
theorem. Hint: Orient the edges so they go out of x, into
y, and both directions if they are not adjacent to x or y (ie
add (u, v) and (v, u) if u, v 6= x, y). Set s = x and t = y.
Make the cost c(e) = 1 for all edges e. Prove that an flow
on this new network will pick out edge disjoint paths from
x to y, and use this to deduce Menger’s theorem.

(7) Let N be the network shown in Figure 3, where r =
√

5−1
2

, and
M is an integer at least 2. In this exercise you will show that
there is a choice of augmenting paths for which the augmenting
paths algorithm does not terminate, and the flow value does
not converge to the maximal flow. The key fact about r that
you will use is that r2 = 1− r.
(a) Show that the minimum capacity of a cut on N is 2M +1.
(b) Give an example of a flow of value 2M + 1.
(c) Consider running the augmenting paths algorithm as fol-

lows. First augment the path s, b, c, t, then the path p1 =
s, d, c, b, a, t, then the path p2 = s, b, c, d, t, then the path
p1 again, then the path p3 = s, a, b, c, t. Now repeat the se-
quence of augmenting paths p1, p2, p1, p3 an arbitrary num-
ber of times. Show that this is possible; ie show that there
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Figure 4.

is always spare capacity on the forward edges and positive
flow on the negative edges.

(d) Compute the value of the flow after k iterations of the
paths p1, p2, p1, p3. Show that this converges to 3 + 2r.

This shows that this choice of running the algorithm does not
terminate, and does not converge to the correct value. Note
that in the proof of the max-flow/min-cut theorem we use the
assumption that capacities are integers. This is in fact not
necessary, but we will only see this in the last week of term.

(8) For each of the bipartite graphs in Figure 4 find a maximal
matching. If it is not complete, illustrate a subset X ⊂ A
violating the conditions of Hall’s theorem.

(9) Let A = {a, b, c, d} and B = {1, 2, 3, 4} have preferences shown
in the following table:

1: a b c d a: 1 2 3 4
2: a b c d b: 3 2 4 1
3: d c b a c: 2 4 1 3
4: d a b c d: 1 2 3 4

Find a stable matching between A and B.
(10) In class we discussed an algorithm to find a stable matching that

involved companies (b ∈ B) offering jobs to applicants (a ∈ A).
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We could also run the algorithm so that the roles of A and B
are reversed (applicants apply for jobs). For a ∈ A let M(a) =
{b ∈ B : there is a stable matching containing (a, b)}. Show
that the B-offers algorithm matches a with min≺a M(a), while
the A-applies algorithm matches a with max≺a M(a). Verify
this on the data of the previous question.


