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SUMMARY

Methods are described for transient growth analysis of flows with arbitrary geometric complexity, where in
particular the flow is not required to vary slowly in the streamwise direction. Emphasis is on capturing the
global effects arrising from local convective stability in streamwise-varying flows. The methods employ the
‘timestepper’s approach’ in which a nonlinear Navier–Stokes code is modified to provide evolution operators
for both the forward and adjoint linearized equations. First the underlying mathematical treatment in primitive
flow variables is presented. Then details are given for the inner level code modifications and outer level eigenvalue
and SVD algorithms in the timestepper’s approach. Finally some examples are shown and guidance provided on
practical aspects of this type of large-scale stability analysis.
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1. Introduction

∂tu = −(u·∇)u−∇p + ν∇2u (1a)

∇·u = 0 (1b)

where u(x, t) = (u, v, w)(x, y, z, t) is the velocity field and p(x, t) is the (modified, or kinematic)
pressure field. Additionally it is necessary to specify appropriate boundary conditions. Our starting
point is a base flow U which is a steady or time-varying solution to (1) with associated pressure P .
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We are specifically interested in situations in which geometry dictates a base flow that is inaccessible

analytically, and particularly we emphasize open systems whose base flows vary substantially in the

streamwise direction.

u = U + �u� p = P + �p�

typically

0 = −(U·∇)U−∇P + ν∇2U (2a)

∇·U = 0 (2b)

∂tu� = −(U·∇)u� − (u�·∇)U−∇p� + ν∇2u�
(3a)

∇·u� = 0 (3b)

∂tu = Lu + N(u) (4)

∂tu� = Lu� + DN u�
(5)

∂tu� = Lu�
(6)

∂tu� = Lu� + DN u� = Lu�
(7)
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Lũ = λũ = (σ + iω)ũ (8)

These equations are solved subject to appropriate initial and boundary conditions as discussed below.
There are two important questions concerning solutions to (3). The first is: do there exist any

solutions which grow without bound? If so, then the base flow U is linearly unstable. The second
question is: given a base flow which is linearly stable, do there exist bounded solutions of (3) which
exhibit large transient growth before they inevitably decay? In such cases the flow is linearly stable but
might have local regions of convective instability, or it might be susceptible to nonlinear instability, or
both. In answering either question, we wish to find the perturbation that generates optimal growth, in
the long term for the first case, or for a finite term in the second case.

1.1. Linear stability

Equations (3) define a linear evolution operator A which evolves perturbations forward in time:

u�(t) = A(t)u�(0) (9)

It is through this forward evolution operator that we gain access to linear stability of the base flow.
If the base flow U is steady, then perturbation equations (3) are autonomous and eigenmode solutions

will be of the form

u�(x, t) = exp(λt)ũ(x)

λj ũj

are complex. If the base flow is periodic with period T , then (3) becomes a Floquet problem and
Floquet solutions will be of the form

u�(x, t) = exp(λjt)ũj(x, t) + c.c.
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λj ũj
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σ > 0 ⇒ Instability

σ > 0 ⇒

|µj | < 1

|µj | = 1

i.e. the µi of largest modulus. If there are any eigenvalues µj with |µj | > 1, then there exist
exponentially growing solutions of (3) and hence the base flow is linearly unstable. Conversely, if
every eigenvalue satisfies |µj | < 1, then every solution of (3) eventually decays to zero and the flow is
linearly stable. Generally |µj | = 1 would signal a bifurcation point.

1.2. Transient growth and the SVD problem

We now consider the transient evolution of perturbations. More specifically, we are interested in
situations in which the base flow is linearly stable, but perturbations exhibit substantial transient
response due to regions of local convective instability. This situation is common in many open flows,
particularly those for which geometrical complexity dictates a rapid variation in the underlying base
flow. Owing to the non-orthogonality of the eigenmodes of A, which stems from the asymmetry of
the convective terms in the Navier–Stokes equations, the dynamics of interest may not be of the form
exp(λt)ũ(x), i.e. an exponential function of time multiplying a fixed modal shape, and so eigenvalue
problem (10) is simply not directly relevant [22, 24]. Instead, the way to quantify such dynamics is
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Lũ = λũ = (σ + iω)ũ (8)

These equations are solved subject to appropriate initial and boundary conditions as discussed below.
There are two important questions concerning solutions to (3). The first is: do there exist any

solutions which grow without bound? If so, then the base flow U is linearly unstable. The second
question is: given a base flow which is linearly stable, do there exist bounded solutions of (3) which
exhibit large transient growth before they inevitably decay? In such cases the flow is linearly stable but
might have local regions of convective instability, or it might be susceptible to nonlinear instability, or
both. In answering either question, we wish to find the perturbation that generates optimal growth, in
the long term for the first case, or for a finite term in the second case.

1.1. Linear stability

Equations (3) define a linear evolution operator A which evolves perturbations forward in time:

u�(t) = A(t)u�(0) (9)

It is through this forward evolution operator that we gain access to linear stability of the base flow.
If the base flow U is steady, then perturbation equations (3) are autonomous and eigenmode solutions

will be of the form

u�(x, t) = exp(λt)ũ(x)

λj ũj

are complex. If the base flow is periodic with period T , then (3) becomes a Floquet problem and
Floquet solutions will be of the form

u�(x, t) = exp(λjt)ũj(x, t) + c.c.
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where

ũj(x, t + T ) = ũj(x, t)

In either case, by setting the time t in (9) to a value T we obtain an eigenvalue problem in terms of

the operator A(T ):

A(T )ũ = µũ µ = exp(λT ) (10)

µ ≡ exp(λT )

If the base flow is T -periodic then µj is called a Floquet multiplier and the eigenmodes of A are

Floquet modes evaluated at a specific temporal phase. If the base flow is steady, then T is an arbitrary

positive value (chosen on practical grounds, i.e. to allow the perturbation to evolve for a reasonable

time) and one would normally be interested in the values λj rather than µj . In the latter case, the

eigenmodes of A are the same as those of the linearized Navier–Stokes equations.

Classical linear stability of the base flow is then determined from the dominant eigenvalues of

A(T )

|µj | > 1 ⇒
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Constraint (26), for the particular case when u∗(!)=A(!)u′(0), is used in establishing the relation-
ship between maximum kinetic energy growth and the eigensystem of A∗(!)A(!) in Equations
(5)–(7).

We note that the action of operator A∗(!)A(!) can be constructed by the sequential application
of A(!) and A∗(!), i.e. starting from initial condition u′(0), integrate/time step forwards over
time interval ! with the forward system to give u′(!), then use this as an initial condition to
integrate backwards in time over the same interval using the adjoint system. Application of the
joint operator requires only a straightforward extension of the original methodology [1], which
was based on the first half of this iteration.

3. IMPLEMENTATION DETAILS

Starting from a computer code that solves the unsteady incompressible Navier–Stokes equations,
two main modifications are required to produce a code that can perform direct linear stability or
transient growth analyses. The first is inner-level modification of the code so that it can integrate
the linearized or adjoint linearized equations rather than the nonlinear Navier–Stokes equations.
The second aspect is an outer-level algorithm to perform eigenvalue and related computations by
repeated calls to the modified Navier–Stokes code. This section of the paper describes practical
details of both these modifications.

3.1. Inner-level code modifications

3.1.1. Advection terms. We assume that the investigator has an existing Navier–Stokes algorithm
where the nonlinear terms can be modified. Codes in which the nonlinear terms are directly
evaluated are the most straightforward to adapt. We have used an algorithm with an explicit time
integration of the nonlinear terms and where the Stokes operator is inverted using a velocity
correction technique [17, 18]. In our implementation, we adapt the ‘convective’ form (u·∇)u of
the nonlinearity. Other variants of the nonlinear terms, such as ‘rotational’ or ‘skew-symmetric,’
could potentially be used as a starting point; however, we note that adapting these formulations
of the nonlinear terms can potentially introduce numerical instabilities, as has been reported by
Wilhelm and Kleiser [19].

At the inner-most level, one only needs to replace the code that evaluates the nonlinear term
given u (most likely this is an isolated subroutine), with a code that evaluates DN or DN∗ given u.
Employing index notation and the summation convention, the linearized terms in (12) and (15)
expressed in the Cartesian coordinates are

(DNu)| j =Ui!i u j +(!iU j )ui (27a)

(DN∗u)| j =−Ui!i u j +(! jUi )ui (27b)

The components Ui are those of a steady or periodic base flow. In Equation (27), we have dropped
the primes and stars to emphasize that within this level of the code, separate variables are not used
for the perturbation and adjoint fields. If the code evaluates (27a) within each time step, then it
advances the forward system, whereas if it evaluates (27b), it advances the adjoint system.

3.1.2. Time integration considerations. It is worth highlighting the implications of the negative
sign in front of the time derivative in (18) and the related fact that the initial conditions on the

Copyright 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1435–1458
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Expanding Pipe

•Flow is linearly stable to large Re
•Flow undergoes oscillations beyond a poorly defined Re
•Nonlinearity is stabilizing and plays no significant role

(not subcritical instability)     

Phenomena are essentially linear 

Nonlinearity is stabilizing and plays no significant role, 
not subcritical instability 

Numerical Computations of
Linear Stability of Expanding Pipe

.
Hall et al

Experiments
 (Latornell and Pollard, Phys Fluids 1986) 
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Fluid Dynamics
Convectively unstable shear layer

How to really compute
• spatially developing flow
• non-trivial structures 

resulting from an inflectional velocity profile.33–35 In the con-
text of a direct numerical simulation !DNS" study, where one
does not resort to local parallel approximations but instead
fully resolves all aspects of the flow, one understands and
analyzes the transient dynamics as a transient growth prob-
lem or equivalently as a singular value problem. For ex-
ample, recent studies have highlighted the importance of
transient dynamics due to localized regions of convective
instability for the backward-facing step,23 curved channel
flow,36 and steady and pulsatile stenotic flow.9,10 This is the
approach taken in the present work.

II. METHODOLOGY

A. Governing equations and flow geometry

The flow is governed by the incompressible Navier–
Stokes equations

!tu + !u · ""u = − "p + Re−1 "2u , !1a"

" · u = 0, !1b"

where u is the fluid velocity and p is the modified or kine-
matic static pressure. The equations are written in dimen-
sionless form with the velocity normalized by Ū, the bulk
velocity of the incoming flow, and lengths normalized by the
diameter of the inlet pipe D. Thus the Reynolds number is
the bulk Reynolds number of the inlet pipe flow given by
Re= ŪD /!, where ! is the fluid’s kinematic viscosity.

To avoid possible confusion when reading the following
material, it is useful to emphasize here the approach taken to
nondimensionalization. Except where indicated otherwise,
all quantities reported employ the normalization used above
in defining the Reynolds number. In particular, this means
that lengths are presented in terms of the inlet pipe diameter,
D. The exception we make to this rule is in recording down-
stream reattachment points, where step height h=D /2 is also
used as a measure of length. This exception is made to fa-
cilitate comparison with previous works. Throughout the pa-
per, times are in units of D / Ū.

The pipe geometry naturally lends itself to using cylin-
drical coordinates, which are denoted !x ,r ,"". Here x is used
for the axial coordinate since this corresponds to the stream-
wise direction, with x=0 at the expansion location. The fluid
velocity in these cylindrical coordinates is thus written
u= !ux ,ur ,u"".

Ideally the flow geometry would be infinite in the
streamwise direction. In practice, the computational flow do-

main # consists of a finite inflow region of length Li up-
stream of the expansion and a finite outflow region of length
Lo downstream of the expansion as in Fig. 2. For sufficiently
large Li and Lo, as used in this study, results are independent
of these lengths and the flow approximates the infinite case.

We impose a fully developed Hagen–Poiseuille incom-
ing profile, which in nondimensional form is given by
u=2!1−4r2"ex. We use no-slip boundary conditions on all
walls of the pipe and impose a stress-free outflow boundary
condition at the downstream end of the pipe. Thus, the
boundary conditions for the flow problem are

u!!#i,t" = 2!1 − 4r2"ex, !2a"

u!!#w,t" = 0 , !2b"

ex · "u!!#o,t" = 0, p!!#o,t" = 0, !2c"

where !#i is the inlet boundary at x=−Li, !#w is the
boundary corresponding to the rigid walls of the inlet pipe,
outlet pipe and expansion, and !#o is the outlet boundary at
x=Lo. Variations on these boundary conditions will appear in
the stability and transient growth problems as well as for
studies of noisy inflow and will be discussed at the appropri-
ate place.

B. Linear stability and transient growth problems

We briefly summarize the main aspects of the linear sta-
bility and transient growth problems. Some further details for
the particular problem are given in Sec. II C. General ac-
counts of the time-stepper approach used here may be found
elsewhere.37,38

The first step in the analysis is to obtain base flows U. In
this study, these are steady, two-dimensional, axisymmetric
solutions to Eq. !1" of the form U= #Ux!x ,r" ,Ur!x ,r" ,0$. For
the range of Re considered in this paper, these solutions are
unique functions of Re.

The next step is to consider the evolution of infinitesimal
disturbances u! to the base flow. These are governed by the
linearized Navier–Stokes equations

!tu! + DN · u! = − "p! + Re−1 "2u!, !3a"

" · u! = 0, !3b"

where

FIG. 1. Sketch illustrating the evolution of a perturbation through an ex-
panding pipe. Small inlet perturbations are amplified in the region of the
separated axisymmetric shear layer, but eventually decay downstream.
Hence, even though the flow is linearly stable, it supports very strong tran-
sient growth of perturbations.

θ r

x

LoLi

FIG. 2. Geometry of the expanding pipe. The computational flow domain #
is illustrated with the cylindrical coordinate system and the inlet and outlet
lengths indicated !not to scale".
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Figure 5. An optimal disturbance to steady flow, Re = 400. (a) Contours of vorticity in
the axisymmetric base flow with separation streamlines. (b) Contours of ± axial velocity
in the optimal perturbation initial condition for azimuthal wavenumber k = 1, τ = 4; (c) of
the perturbation at t = 4 (with sectional streamlines); axial wavelength 1.83. (d ) Perspective
view of the optimal disturbance represented by ± isosurfaces of axial velocity component at
τ = 4, with circumferential lines drawn at z = −1, 0, 1, 5 and 10. (e) Space–time evolution of
radial perturbation velocity extracted along r = 0.25, with the dashed line indicating the mean
advection speed of the base flow. The temporal evolution of the optimal disturbance for this
case is shown in movie 1.

(axisymmetric) to k = 3. The first non-axisymmetric wavenumber, k = 1, provides the
largest growth, but as shown by the inset, higher non-axisymmetric modes provide
slightly larger growths at small values of τ , similar to transient-growth behaviour for
long-wavelength disturbances to steady Hagen–Poiseuille flow (Schmid & Henningson
1994). For Re = 400, the global optimum occurs for τ =4.40 where Gmax = 8.94 × 104.
Figure 4(b) shows envelopes G(τ ) for the most-amplified wavenumber k = 1 for
Re = 100–700. Global maxima asymptotically grow approximately exponentially with
Reynolds number over the examined range while the time interval τ for maximum
growth increases approximately linearly with Re. Peak growth for Re = 700 is
Gmax = 4.40 × 108 at τ =7.49.

Figure 5 illustrates the characteristics of steady base flows and their optimal
disturbances at Re =400. Vorticity contours and separation streamlines of the base
flow are shown in figure 5(a). Flow separates almost immediately on encountering
the adverse pressure gradient past the throat of the stenosis and remains detached
to z =9.1. The axisymmetric shear layer is extended in the axial direction and has
minimal curvature in the meridional plane. The optimal growth initial condition for
τ = 4, k = 1 is illustrated via contours of axial velocity perturbation in figure 5(b).



Localized Convective Instability
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Figure 1. Schematic of absolute and convective instabilities. An infinitesimal perturbation,
localized in space, can grow at a fixed location leading to an absolute instability (a) or decay
at a fixed points leading to a convective instability (b). In inhomogeneous, complex geometry
flow we can also observe local regions of convective instability surrounded by regions of stable
flow (c).

a geometry is not properly understood. While well-resolved numerical computations
by Barkley, Gomes & Henderson (2002) have determined to high accuracy both the
critical Reynolds number and the associated three-dimensional bifurcating mode for
the primary global instability for the case with expansion ratio of two, these results
have little direct relevance to experiment. Only through careful observation has it been
possible to see evidence of the intrinsic unstable three-dimensional mode (Beaudoin
et al. 2004). This is because the numerical stability computations determined one
type of stability threshold (of an asymptotic, or large time, global instabiliy) whereas
the flow is actually unstable at much lower Reynolds numbers to a different type of
instability (transient local convective instability). Moreover, the dynamics associated
with the two types of instability are very different for this flow. In the present work we
investigate directly the linear convective instability in this fundamental non-parallel
flow by means of transient-growth computations.

To understand the issues in a broader context as well as with respect to the work
presented in this paper, it is appropriate to review and contrast different concepts and
approaches in (linear) hydrodynamic stability analysis. In all types of linear stability
analysis one starts with a flow field U , the base flow, and considers the evolution
of infinitesimal perturbations u′ to the base flow. The evolution of perturbations is
governed by linear equations (linearized about U). Generally speaking, if infinitesimal
perturbations grow in time, the base flow is said to be linearly unstable. However, one
must distinguish between absolute and convective instability (Huerre & Monkewitz
1985). If an infinitesimal perturbation to parallel shear flow, initially localized in
space, grows at that fixed spatial location (figure 1a), then the flow is absolutely
unstable. If on the other hand, the perturbation grows in magnitude but propagates
as it grows such that the perturbation ultimately decays at any fixed point in space
(figure 1b), then the instability is convective.

In practice, one is often interested in inhomogeneous flow geometries in which
there is a local region of convective instability surrounded upstream and downstream
by regions of stability (figure 1c). For illustration, we indicate a backward-facing-step
geometry, but many other inhomogeneous open flows, such as bluff-body wakes,
behave similarly. A localized perturbation initially grows, owing to local flow features
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In practice, one is often interested in inhomogeneous flow geometries in which
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a geometry is not properly understood. While well-resolved numerical computations
by Barkley, Gomes & Henderson (2002) have determined to high accuracy both the
critical Reynolds number and the associated three-dimensional bifurcating mode for
the primary global instability for the case with expansion ratio of two, these results
have little direct relevance to experiment. Only through careful observation has it been
possible to see evidence of the intrinsic unstable three-dimensional mode (Beaudoin
et al. 2004). This is because the numerical stability computations determined one
type of stability threshold (of an asymptotic, or large time, global instabiliy) whereas
the flow is actually unstable at much lower Reynolds numbers to a different type of
instability (transient local convective instability). Moreover, the dynamics associated
with the two types of instability are very different for this flow. In the present work we
investigate directly the linear convective instability in this fundamental non-parallel
flow by means of transient-growth computations.

To understand the issues in a broader context as well as with respect to the work
presented in this paper, it is appropriate to review and contrast different concepts and
approaches in (linear) hydrodynamic stability analysis. In all types of linear stability
analysis one starts with a flow field U , the base flow, and considers the evolution
of infinitesimal perturbations u′ to the base flow. The evolution of perturbations is
governed by linear equations (linearized about U). Generally speaking, if infinitesimal
perturbations grow in time, the base flow is said to be linearly unstable. However, one
must distinguish between absolute and convective instability (Huerre & Monkewitz
1985). If an infinitesimal perturbation to parallel shear flow, initially localized in
space, grows at that fixed spatial location (figure 1a), then the flow is absolutely
unstable. If on the other hand, the perturbation grows in magnitude but propagates
as it grows such that the perturbation ultimately decays at any fixed point in space
(figure 1b), then the instability is convective.

In practice, one is often interested in inhomogeneous flow geometries in which
there is a local region of convective instability surrounded upstream and downstream
by regions of stability (figure 1c). For illustration, we indicate a backward-facing-step
geometry, but many other inhomogeneous open flows, such as bluff-body wakes,
behave similarly. A localized perturbation initially grows, owing to local flow features

Absolute
Instability

Convective
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The flows are linearly unstable and instability 
can be found by computing eigenvalues

homogeneous flow inhomogeneous flow

||u�(x, t)|| ∼ eλt+ikx

Localized region of convective instability.
The flow is linearly stable.

Dynamics can not be found by eigenvalues
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a geometry is not properly understood. While well-resolved numerical computations
by Barkley, Gomes & Henderson (2002) have determined to high accuracy both the
critical Reynolds number and the associated three-dimensional bifurcating mode for
the primary global instability for the case with expansion ratio of two, these results
have little direct relevance to experiment. Only through careful observation has it been
possible to see evidence of the intrinsic unstable three-dimensional mode (Beaudoin
et al. 2004). This is because the numerical stability computations determined one
type of stability threshold (of an asymptotic, or large time, global instabiliy) whereas
the flow is actually unstable at much lower Reynolds numbers to a different type of
instability (transient local convective instability). Moreover, the dynamics associated
with the two types of instability are very different for this flow. In the present work we
investigate directly the linear convective instability in this fundamental non-parallel
flow by means of transient-growth computations.

To understand the issues in a broader context as well as with respect to the work
presented in this paper, it is appropriate to review and contrast different concepts and
approaches in (linear) hydrodynamic stability analysis. In all types of linear stability
analysis one starts with a flow field U , the base flow, and considers the evolution
of infinitesimal perturbations u′ to the base flow. The evolution of perturbations is
governed by linear equations (linearized about U). Generally speaking, if infinitesimal
perturbations grow in time, the base flow is said to be linearly unstable. However, one
must distinguish between absolute and convective instability (Huerre & Monkewitz
1985). If an infinitesimal perturbation to parallel shear flow, initially localized in
space, grows at that fixed spatial location (figure 1a), then the flow is absolutely
unstable. If on the other hand, the perturbation grows in magnitude but propagates
as it grows such that the perturbation ultimately decays at any fixed point in space
(figure 1b), then the instability is convective.

In practice, one is often interested in inhomogeneous flow geometries in which
there is a local region of convective instability surrounded upstream and downstream
by regions of stability (figure 1c). For illustration, we indicate a backward-facing-step
geometry, but many other inhomogeneous open flows, such as bluff-body wakes,
behave similarly. A localized perturbation initially grows, owing to local flow features
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by Barkley, Gomes & Henderson (2002) have determined to high accuracy both the
critical Reynolds number and the associated three-dimensional bifurcating mode for
the primary global instability for the case with expansion ratio of two, these results
have little direct relevance to experiment. Only through careful observation has it been
possible to see evidence of the intrinsic unstable three-dimensional mode (Beaudoin
et al. 2004). This is because the numerical stability computations determined one
type of stability threshold (of an asymptotic, or large time, global instabiliy) whereas
the flow is actually unstable at much lower Reynolds numbers to a different type of
instability (transient local convective instability). Moreover, the dynamics associated
with the two types of instability are very different for this flow. In the present work we
investigate directly the linear convective instability in this fundamental non-parallel
flow by means of transient-growth computations.

To understand the issues in a broader context as well as with respect to the work
presented in this paper, it is appropriate to review and contrast different concepts and
approaches in (linear) hydrodynamic stability analysis. In all types of linear stability
analysis one starts with a flow field U , the base flow, and considers the evolution
of infinitesimal perturbations u′ to the base flow. The evolution of perturbations is
governed by linear equations (linearized about U). Generally speaking, if infinitesimal
perturbations grow in time, the base flow is said to be linearly unstable. However, one
must distinguish between absolute and convective instability (Huerre & Monkewitz
1985). If an infinitesimal perturbation to parallel shear flow, initially localized in
space, grows at that fixed spatial location (figure 1a), then the flow is absolutely
unstable. If on the other hand, the perturbation grows in magnitude but propagates
as it grows such that the perturbation ultimately decays at any fixed point in space
(figure 1b), then the instability is convective.

In practice, one is often interested in inhomogeneous flow geometries in which
there is a local region of convective instability surrounded upstream and downstream
by regions of stability (figure 1c). For illustration, we indicate a backward-facing-step
geometry, but many other inhomogeneous open flows, such as bluff-body wakes,
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of being the norm which is associated with the standard L2 inner product:

(u,v)≡
∫

!
u·vdv

(Note we will only take the inner product of real-valued fields; therefore, complex conjugation
does not appear.) Transient growth is measured as the perturbation energy at time ! normalized to
its initial energy. Since the perturbation equations are linear, we can, without loss of generality,
simplify the algebra and consider normalized initial perturbations, e.g.

E(!)
E(0)

=‖u′(!)‖2=(u′(!),u′(!)), ‖u′(0)‖=1

Using the evolution operator A(!) this can be expressed as

E(!)
E(0)

=(A(!)u′(0),A(!)u′(0))=(u′(0),A∗(!)A(!)u′(0)) (5)

where in the last equality A∗(!) is the adjoint evolution operator to A(!) in the L2 inner product.
This adjoint operator is discussed in detail in Section 2.

As with the linear stability problem, here too we are interested in the ‘worst case scenario.’ That
is, for the stability problem, we are almost exclusively interested in the dominant and near dominant
eigenvalues " j of the largest magnitude since these dictate linear stability. For the transient growth
problem, the pertinent question is: what are the perturbations that lead to maximal or near maximal
growth? From (5), the eigenfunction corresponding to the dominant eigenvalues of A∗(!)A(!)
will dictate the largest possible growth. Letting # j and v j denote eigenvalues and normalized
eigenfunctions, we have

A∗(!)A(!)v j =# jv j , ‖v j‖=1 (6)

Typically, G(!) denotes the maximum growth obtainable at time !, in which case

G(!)≡ max
‖u′(0)‖=1

E(!)
E(0)

=max
j

# j (7)

Although the maximum eigenvalue ofA∗(!)A(!) is the most significant, the first few sub-dominant
eigenvalues may also be of interest.

Finding the dominant eigenvalues of A∗(!)A(!) is equivalent to finding the largest singular
values of A(!), and this has a direct physical interpretation. The eigenfunction v j in (6) provides
an initial perturbation u′(0), which generates a growth # j over time !. However, this is only half the
story as one is also interested in u′(!), the perturbation at time !. Defining u j to be the normalized
perturbation at time ! evolved from initial condition u′(0)=v j , we have

A(!)v j =$ ju j , ‖u j‖=1 (8)

where $ j =‖u′(!)‖. This is nothing other than the singular value decomposition of A(!). A few
readily verifiable facts are as follows: the right singular vectors v j are real and orthonormal in L2
(since A∗(!)A(!) is self-adjoint), likewise the left singular vectors u j are real and orthonormal,
# j and $ j are real and non-negative, and $ j =#1/2j are the singular values of A(!).

Copyright 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1435–1458
DOI: 10.1002/fld
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                   (       ,       )E(τ)

E(0)
= ||u�(τ)||2 = u�(τ) u�(τ)

= (        ,                       )u�(0) A∗(τ)A(τ)u�(0)

A∗(τ)A(τ)vj = λjvj

G(τ) = max
j

λj

||vj || = 1

||u�(0)|| = 1

u�(0) = vj
E(τ)

E(0)
= λj
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initial condition and look 
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τ
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(aka optimal) energy growth



Equivalently in terms of SVD

A∗(τ)A(τ)vj = λjvj
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Figure 1. Schematic of absolute and convective instabilities. An infinitesimal perturbation,
localized in space, can grow at a fixed location leading to an absolute instability (a) or decay
at a fixed points leading to a convective instability (b). In inhomogeneous, complex geometry
flow we can also observe local regions of convective instability surrounded by regions of stable
flow (c).

a geometry is not properly understood. While well-resolved numerical computations
by Barkley, Gomes & Henderson (2002) have determined to high accuracy both the
critical Reynolds number and the associated three-dimensional bifurcating mode for
the primary global instability for the case with expansion ratio of two, these results
have little direct relevance to experiment. Only through careful observation has it been
possible to see evidence of the intrinsic unstable three-dimensional mode (Beaudoin
et al. 2004). This is because the numerical stability computations determined one
type of stability threshold (of an asymptotic, or large time, global instabiliy) whereas
the flow is actually unstable at much lower Reynolds numbers to a different type of
instability (transient local convective instability). Moreover, the dynamics associated
with the two types of instability are very different for this flow. In the present work we
investigate directly the linear convective instability in this fundamental non-parallel
flow by means of transient-growth computations.

To understand the issues in a broader context as well as with respect to the work
presented in this paper, it is appropriate to review and contrast different concepts and
approaches in (linear) hydrodynamic stability analysis. In all types of linear stability
analysis one starts with a flow field U , the base flow, and considers the evolution
of infinitesimal perturbations u′ to the base flow. The evolution of perturbations is
governed by linear equations (linearized about U). Generally speaking, if infinitesimal
perturbations grow in time, the base flow is said to be linearly unstable. However, one
must distinguish between absolute and convective instability (Huerre & Monkewitz
1985). If an infinitesimal perturbation to parallel shear flow, initially localized in
space, grows at that fixed spatial location (figure 1a), then the flow is absolutely
unstable. If on the other hand, the perturbation grows in magnitude but propagates
as it grows such that the perturbation ultimately decays at any fixed point in space
(figure 1b), then the instability is convective.

In practice, one is often interested in inhomogeneous flow geometries in which
there is a local region of convective instability surrounded upstream and downstream
by regions of stability (figure 1c). For illustration, we indicate a backward-facing-step
geometry, but many other inhomogeneous open flows, such as bluff-body wakes,
behave similarly. A localized perturbation initially grows, owing to local flow features
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analysis one starts with a flow field U , the base flow, and considers the evolution
of infinitesimal perturbations u′ to the base flow. The evolution of perturbations is
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1.3. Discussion

In the ‘bifurcation for timesteppers’ approach previously outlined in [1], one first modifies a
code so as to approximate the action of the evolution operator A(!) defined in (3). Then, one
uses an eigenvalue solver for the eigenvalue problem (4) to obtain the dominant eigenvalues
and eigenmodes. Our primary focus in the present paper is on the finite-time optimal growth
problem (6). In fact, this problem is very similar to the classical linear stability computation apart
from the fact that we are interested in the maximum eigenvalue of A∗(!)A(!) rather than of
A(!). By simple extensions to the original timestepper approach, one can also solve the optimal
growth problem, and the main purpose here is to describe the theoretical and practical aspects of
these extensions.

2. MATHEMATICAL FUNDAMENTALS

The goal of this section is to set out clearly the relationship between the linearized Navier–Stokes
equations (2) and its associated evolution operator A(!), and the adjoint linearized Navier–Stokes
equations and its evolution operator A∗(!). In so doing, we consider issues associated with
boundary conditions of the two systems. Our intention in the following is to be as complete as
possible without going into too many formal mathematical details. This material is not original, but
is provided here to have available a comprehensive treatment in a primitive-variables formulation.
We will refer to the linearized Navier–Stokes equations together with appropriate initial and
boundary conditions as the forward system and the adjoint linearized Navier–Stokes equations,
to be introduced, together with appropriate adjoint initial and boundary conditions as the adjoint
system.

2.1. Variables and inner products

For considering the equations expressed in primitive variables, it is convenient to define the
quantities

q

(
u′

p′

)

, q∗ =
(
u∗

p∗

)

where u′ and p′ are the perturbation velocity field and pressure, and u∗ and p∗ denote the adjoint
velocity and pressure fields. All fields are real valued and the star is only notational; it does not
denote complex conjugate.

We let !="×(0,!) be the space–time domain on which the equations are posed, where " is
the spatial domain and ! is some final time, arbitrary other than that !>0. Associated with domain
! is the inner product:

〈q,q∗〉=
∫ !

0

∫

"
q·q∗ dv dt (9)

By contrast, the linear evolution operatorA(!) and adjoint evolution operatorA∗(!) act on velocity
fields u′ and u∗, respectively. For these, the relevant domain is just the spatial domain " and the
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inner product is that already given in Section 1.2:

(u′,u∗)=
∫

!
u′ ·u∗ dv (10)

2.2. Operators and PDEs

By defining certain operators, we will be able to write concisely and manipulate simply the
linearized Navier–Stokes and adjoint equations. Let H be defined as

H=




−!t −DN+Re−1∇2 −∇

∇· 0



 (11)

with the linearized advection operator DN defined as

DNu′ =(U·∇)u′+(u′·∇)U=(U·∇)u′+(∇U) ·u′ (12)

Then the linearized Navier–Stokes equations (2) can be expressed compactly as

Hq=0 (13)

The adjoint of H in inner product (9) is

H∗ =




!t −DN∗+Re−1∇2 −∇

∇· 0



 (14)

where DN∗, the adjoint linearized advection operator, is

DN∗u∗ =−(U·∇)u∗+(∇U)T ·u∗ (15)

The justification follows from the requirement that forH∗ to be the adjoint ofH, then by definition

〈Hq̂, q̂∗〉−〈q̂,H∗q̂∗〉=0 (16)

for any fields q̂, q̂∗ with compact support (so that all values and derivatives are zero on all the
boundaries) within the domain ". Integration by parts gives

〈Hq̂, q̂∗〉−〈q̂,H∗q̂∗〉 =
∫ !

0

∫

!
−!t (u·u∗)dv dt+

∫ !

0

∫

!
∇·{−U(u·u∗)

+up∗−u∗ p+Re−1((∇u)T ·u∗−(∇u∗)T ·u)}dv dt
Employing the divergence theorem, this can be expressed using only boundary terms:

〈Hq̂, q̂∗〉−〈q̂,H∗q̂∗〉 = −
∫

!
[u·u∗]!0 dv+

∫ !

0

∮

!!
n̂·{−U(u·u∗)

+up∗−u∗ p+Re−1((∇u)T ·u∗−(∇u∗)T ·u)}dS dt
where n̂ is a unit outward normal on the spatial boundary of the domain, !!. For q̂, q̂∗ with
compact support within ", all boundary terms will vanish and hence (16) is satisfied.
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1.3. Discussion

In the ‘bifurcation for timesteppers’ approach previously outlined in [1], one first modifies a
code so as to approximate the action of the evolution operator A(!) defined in (3). Then, one
uses an eigenvalue solver for the eigenvalue problem (4) to obtain the dominant eigenvalues
and eigenmodes. Our primary focus in the present paper is on the finite-time optimal growth
problem (6). In fact, this problem is very similar to the classical linear stability computation apart
from the fact that we are interested in the maximum eigenvalue of A∗(!)A(!) rather than of
A(!). By simple extensions to the original timestepper approach, one can also solve the optimal
growth problem, and the main purpose here is to describe the theoretical and practical aspects of
these extensions.

2. MATHEMATICAL FUNDAMENTALS

The goal of this section is to set out clearly the relationship between the linearized Navier–Stokes
equations (2) and its associated evolution operator A(!), and the adjoint linearized Navier–Stokes
equations and its evolution operator A∗(!). In so doing, we consider issues associated with
boundary conditions of the two systems. Our intention in the following is to be as complete as
possible without going into too many formal mathematical details. This material is not original, but
is provided here to have available a comprehensive treatment in a primitive-variables formulation.
We will refer to the linearized Navier–Stokes equations together with appropriate initial and
boundary conditions as the forward system and the adjoint linearized Navier–Stokes equations,
to be introduced, together with appropriate adjoint initial and boundary conditions as the adjoint
system.

2.1. Variables and inner products

For considering the equations expressed in primitive variables, it is convenient to define the
quantities

q

(
u′

p′

)

, q∗ =
(
u∗

p∗

)

where u′ and p′ are the perturbation velocity field and pressure, and u∗ and p∗ denote the adjoint
velocity and pressure fields. All fields are real valued and the star is only notational; it does not
denote complex conjugate.

We let !="×(0,!) be the space–time domain on which the equations are posed, where " is
the spatial domain and ! is some final time, arbitrary other than that !>0. Associated with domain
! is the inner product:

〈q,q∗〉=
∫ !

0

∫

"
q·q∗ dv dt (9)

By contrast, the linear evolution operatorA(!) and adjoint evolution operatorA∗(!) act on velocity
fields u′ and u∗, respectively. For these, the relevant domain is just the spatial domain " and the
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condition.) The initial conditions for the adjoint problem are, however, imposed at time ! and not
time zero. This is consistent with the change of sign in front of the time derivative in (18a) relative
to (2a).

As already noted, the definition of the adjoint boundary data dictates only the form of the
boundary data. In practice, one would never consider strictly homogeneous boundary data on the
forward and adjoint systems as in (21) and (23) because these would only result in the trivial
solution. One is, in fact, interested in the case of homogeneous spatial boundary conditions, but
inhomogeneous initial conditions i.e. u(t=0)=u0 !=0 and u∗(t=!)=u∗

! !=0. For this case, the
forward and adjoint systems, including boundary and initial conditions, which necessarily sets the
second integral in Equation (22) to zero, are

Forward system Adjoint system

Hq=0 (x, t)∈! H∗q∗ =0 (x, t)∈!

u(t=0)=u0 u∗(t=!)=u∗
!

u(!")=0 u∗(!")=0

(24)

2.4. Evolution operators A(!) and A∗(!)

Solutions to the forward and adjoint systems define two evolution operators:

u(t+s)=A(s)u(t), u∗(t−s)=A∗(s)u∗(t)

Because homogeneous boundary conditions are imposed on the forward and adjoint systems,
operator A∗ is in fact the adjoint of A under the purely spatial inner product (10). To show this,
note that for q and q∗ solving the forward and adjoint systems (24) we have

〈Hq,q∗〉−〈q,H∗q∗〉=0 (25)

Despite the similarity to (16) and (19), this equation holds for a fundamentally different reason,
and this is a key point. In (25) each term vanishes identically because we consider solutions q and
q∗ to differential equations constructed such that Hq≡0 and H∗q∗ ≡0. In (16) and (19) it was
not assumed that q̂ and q̂∗ satisfy the differential equations; the space–time boundary terms alone
were chosen to force those relations to hold.

Once again we use integration by parts and the divergence theorem to evaluate (25). Because
we consider homogeneous spatial boundary conditions, but inhomogeneous initial conditions on
both systems, the only terms to survive are those involving time derivatives. Hence,

∫

"
[u′ ·u∗]!0 dv=0

Expressing this in terms of inner product (10), we see that (25) implies the following constraint
between solutions to the forward and adjoint systems:

(u′(!),u∗(!))=(u′(0),u∗(0)) (26)

It follows from this that A∗(!) is the adjoint of A(!) under inner product (10), since

(A(!)u′(0),u∗(!))=(u′(!),u∗(!))=(u′(0),u∗(0))=(u′(0),A∗(!)u∗(!))
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forward and adjoint systems as in (21) and (23) because these would only result in the trivial
solution. One is, in fact, interested in the case of homogeneous spatial boundary conditions, but
inhomogeneous initial conditions i.e. u(t=0)=u0 !=0 and u∗(t=!)=u∗

! !=0. For this case, the
forward and adjoint systems, including boundary and initial conditions, which necessarily sets the
second integral in Equation (22) to zero, are

Forward system Adjoint system

Hq=0 (x, t)∈! H∗q∗ =0 (x, t)∈!

u(t=0)=u0 u∗(t=!)=u∗
!

u(!")=0 u∗(!")=0

(24)

2.4. Evolution operators A(!) and A∗(!)

Solutions to the forward and adjoint systems define two evolution operators:

u(t+s)=A(s)u(t), u∗(t−s)=A∗(s)u∗(t)

Because homogeneous boundary conditions are imposed on the forward and adjoint systems,
operator A∗ is in fact the adjoint of A under the purely spatial inner product (10). To show this,
note that for q and q∗ solving the forward and adjoint systems (24) we have

〈Hq,q∗〉−〈q,H∗q∗〉=0 (25)

Despite the similarity to (16) and (19), this equation holds for a fundamentally different reason,
and this is a key point. In (25) each term vanishes identically because we consider solutions q and
q∗ to differential equations constructed such that Hq≡0 and H∗q∗ ≡0. In (16) and (19) it was
not assumed that q̂ and q̂∗ satisfy the differential equations; the space–time boundary terms alone
were chosen to force those relations to hold.

Once again we use integration by parts and the divergence theorem to evaluate (25). Because
we consider homogeneous spatial boundary conditions, but inhomogeneous initial conditions on
both systems, the only terms to survive are those involving time derivatives. Hence,

∫

"
[u′ ·u∗]!0 dv=0

Expressing this in terms of inner product (10), we see that (25) implies the following constraint
between solutions to the forward and adjoint systems:

(u′(!),u∗(!))=(u′(0),u∗(0)) (26)

It follows from this that A∗(!) is the adjoint of A(!) under inner product (10), since

(A(!)u′(0),u∗(!))=(u′(!),u∗(!))=(u′(0),u∗(0))=(u′(0),A∗(!)u∗(!))

Copyright 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1435–1458
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Constraint (26), for the particular case when u∗(!)=A(!)u′(0), is used in establishing the relation-
ship between maximum kinetic energy growth and the eigensystem of A∗(!)A(!) in Equations
(5)–(7).

We note that the action of operator A∗(!)A(!) can be constructed by the sequential application
of A(!) and A∗(!), i.e. starting from initial condition u′(0), integrate/time step forwards over
time interval ! with the forward system to give u′(!), then use this as an initial condition to
integrate backwards in time over the same interval using the adjoint system. Application of the
joint operator requires only a straightforward extension of the original methodology [1], which
was based on the first half of this iteration.

3. IMPLEMENTATION DETAILS

Starting from a computer code that solves the unsteady incompressible Navier–Stokes equations,
two main modifications are required to produce a code that can perform direct linear stability or
transient growth analyses. The first is inner-level modification of the code so that it can integrate
the linearized or adjoint linearized equations rather than the nonlinear Navier–Stokes equations.
The second aspect is an outer-level algorithm to perform eigenvalue and related computations by
repeated calls to the modified Navier–Stokes code. This section of the paper describes practical
details of both these modifications.

3.1. Inner-level code modifications

3.1.1. Advection terms. We assume that the investigator has an existing Navier–Stokes algorithm
where the nonlinear terms can be modified. Codes in which the nonlinear terms are directly
evaluated are the most straightforward to adapt. We have used an algorithm with an explicit time
integration of the nonlinear terms and where the Stokes operator is inverted using a velocity
correction technique [17, 18]. In our implementation, we adapt the ‘convective’ form (u·∇)u of
the nonlinearity. Other variants of the nonlinear terms, such as ‘rotational’ or ‘skew-symmetric,’
could potentially be used as a starting point; however, we note that adapting these formulations
of the nonlinear terms can potentially introduce numerical instabilities, as has been reported by
Wilhelm and Kleiser [19].

At the inner-most level, one only needs to replace the code that evaluates the nonlinear term
given u (most likely this is an isolated subroutine), with a code that evaluates DN or DN∗ given u.
Employing index notation and the summation convention, the linearized terms in (12) and (15)
expressed in the Cartesian coordinates are

(DNu)| j =Ui!i u j +(!iU j )ui (27a)

(DN∗u)| j =−Ui!i u j +(! jUi )ui (27b)

The components Ui are those of a steady or periodic base flow. In Equation (27), we have dropped
the primes and stars to emphasize that within this level of the code, separate variables are not used
for the perturbation and adjoint fields. If the code evaluates (27a) within each time step, then it
advances the forward system, whereas if it evaluates (27b), it advances the adjoint system.

3.1.2. Time integration considerations. It is worth highlighting the implications of the negative
sign in front of the time derivative in (18) and the related fact that the initial conditions on the

Copyright 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1435–1458
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Figure 3. Spectral-element meshes for the backward-facing step. The ‘production mesh’ M1
used to compute the main body of results presented here consists of K = 563 elements;
the enlargement shows elements in the vicinity of the step edge and the collocation grid
corresponding to polynomial order N = 6 on a single element. Two smaller meshes M2
(K = 543) and M3 (K = 491) have been employed to check the effect of variation in inflow
and outflow lengths. Meshes M4 and M5 (Li = 2, Lo = 35) were used to examine the effect of
local refinement at the step edge.

enlargement at the top of figure 3. In §§3.3, and 3.4 we present a convergence study
justifying the computational domain parameters.

3.2. Base and growth computations

The base flows are steady-state solutions to the Navier–Stokes equations (2.3).
We compute these flows simply by integrating the time-dependent Navier–Stokes
equations (2.1) to steady state. For the Reynolds-number range of this study, time-
dependent solutions converge to the steady base flows with reasonable rapidity.

The innermost operation required in computing optimal disturbances is to obtain
the actions of the operators A(τ ) and A∗(τ ). These operators correspond to
integrating (2.7) and (2.10) over time τ . Since we are using a scheme which handles
the advection terms explicitly in time, up to the level of the advection terms the
equations are identical to the incompressible Navier–Stokes equations (2.1) except
that the linear advection terms DN u′ and DN∗ u∗ appear rather than the nonlinear
advection term N(u) = (u · ∇)u. The explicit treatment of these terms therefore means
that the numerical implementation is easily modified to integrate the forward, adjoint
or nonlinear systems. Employing index notation and the summation convention, the

Transient growth in flow over a backward-facing step 289

100

90

80

70

60

50

40

30

20

–10 0 10 20
x

30 40 50

t = 10

Figure 9. Sequence of linear perturbation vorticity contours developed from the two-dimen-
sional global optimum disturbance initial condition for Re = 500 (maximum energy growth
occurs for t = τ = 58.0). Separation streamlines of the base flow are also shown. The
characteristic space–time dynamics of a local convective instability is clearly evident.

figure 8(c, d ) that the energy maxima still have this property. The operators A∗(τ )A(τ )
and A(τ )A∗(τ ) are both self-adjoint and hence the eigenfunctions for each operator,
corresponding to distinct eigenvalues, are orthogonal. The pair of disturbance initial
conditions in figures 8(a) and 8(b) are eigenfunctions of A∗(τ )A(τ ) and hence are
orthogonal to one another. Likewise the output disturbances in figures 8(c) and 8(d )
are eigenfunctions of A(τ )A∗(τ ) and hence are also orthogonal to one another.

Figure 9 shows a sequence of perturbation vorticity contours that evolve from the
two-dimensional global optimum disturbance initial condition for Re = 500, τ = 58.0
(i.e. figure 8 a). The characteristic dynamics of a locally convectively unstable flow, as
illustrated in figure 1(c), is clearly evident in this plot. The evolved roller structures
are seen clearly for times between 50 and 70, and for x in the range 25 to 30. At
early times, t ! 40, the disturbance traverses past the two separation bubbles and it
appears that there is some interaction (e.g. at t = 30, 40 where perturbation vorticity
can be seen around the upper separation streamline). As the roller structures decay at
large times they are distorted by the mean strain field into approximately parabolic
shapes in a process that continues the tilting of the initial disturbances.

Figure 10 (based on the same simulation data as figure 9) shows the centroidal
locations of energy in a perturbation that grows from the two-dimensional global
optimum disturbance at Re = 500. At t = 58.0, the centroidal location is xc = 26.4
(cf. figure 8 c); subsequently, the location of the centroid moves downstream at
approximately U∞/3, which is the average speed of Poiseuille flow in the expanded
channel.

Implemented in 3 independent
spectral-element codes: 

Prism, Semtex, Nektar Several prototype geometries: 
backward-facing step, stenosis, 
expanding pipe, cylinder wake

flow9 the rate is not explicitly reported but is obtainable from
the available data. The rate is !=1.23 /100. However, for the
stenotic flow Re is based on the flow upstream of the steno-
sis. For comparison to the present work, the stenotic flow Re
should be corrected upwards by a factor of two to account
for the local Re at the stenosis. This gives a rate of increase
in Gmax, again for the m=1 azimuthal mode, of !
=0.61 /100, quite close to that of the sudden axisymmetric
expansion. In the study of the planar backward-facing step23

the rate is stated explicitly giving !=1.18 /100. This is the
growth rate for strictly two-dimensional modes, but for the
planar case three-dimensional effects are not very important.
The Re for the backward-facing step is based on the center-
line velocity and the channel height upstream of the step.
Correcting this downwards by a factor of 2/3 to convert to
bulk velocity, Gmax for the backward-facing step increases at
a rate of !=1.77 /100. This is faster than for the axisymmet-
ric flows, but it is not altogether different. See Fig. 21 for a
visual comparison of the dependence of maximum growth on
Reynolds number for these three separated flows and also
with the dependence for Hagen–Poiseuille flow,44,47 where
maximum growths occur for axially invariant disturbances
with azimuthal wavenumber m=1 and scale asymptotically
with Re2.

Another point of comparison between the different sepa-
rated flows is the downstream location of the optimal pertur-
bation when it reaches its maximum growth. In the present
study, we find this location to be consistently five inlet diam-
eters upstream of the reattachment point. This is consistent
with the picture of a shear layer driven instability. For steady
stenotic flow, only one case has been reported in the
literature.9 In that case it was noted that the optimal pertur-
bation, at its maximum, is located in the vicinity of the
downstream of the reattachment point. Also, in the curved
channel the perturbation is located in the vicinity of the re-
attachment point at its growth maximum.36 Interestingly,
however, this is quite different from the case of the planar
backward-facing step in which the optimal perturbation is
well downstream of all separation and reattachment points
when it reaches its maximum growth.23

One can also consider the form of the optimal perturba-

tions in different cases. Again, not surprisingly, the optimal
modes found in the sudden expansion studied here are very
similar to the optimal modes in the steady stenotic flow. In
both cases, the optimal perturbations have m=1 azimuthal
structure and visually are nearly the same. !Compare Fig. 10
with Fig. 5 of Blackburn et al.9" On a more quantitative level
one can compare the wavelengths in the two cases. From
Table V, at Re=800, the wavelength of the optimal distur-
bance at its maximal location is "=4.2. For the stenotic flow
!in terms of equivalent Reynolds numbers and length scales"
the wavelength is "=3.7. Taking into account the variation in
wavelengths with Re and the fact that the conversion from
the stenotic Reynolds number to the present one is not exact,
these values are quite close. In any case, these wavelengths
are significantly longer than those observed in the planar
backward-facing step23 and curved channel flow,36 in which
the optimal modes have a roll structure whose wavelength is
typically twice the outflow channel height.

One can likewise consider the Strouhal frequencies ob-
served in various cases. Instead of attempting a detailed com-
parison, we take a slightly different approach following
closely the discussion by Marquet et al.36 Noting that the
perturbations are essentially packets of traveling waves, one
can invoke the kinematic relationship c="St, equivalently
St=c /", between the speed of a packet c, the wavelength,
and the frequency. In the present study, the bulk velocity in
the downstream pipe is 1/4 due to the 1–4 increase in cross-
sectional area. Perturbations traveling at the bulk speed with
typical wavelength, "=3.6 say at Re=1000, would be ex-
pected to have frequency St=c /"=0.25 /3.6=0.07. With an
upper bound set by the bulk velocity in the upstream pipe,
we have 0.07#St#0.3, which encompasses the observed
frequencies. Marquet et al.36 argue a similar result holds for
the planar backward-facing step and the curved channel. In
all cases the Strouhal frequencies are of comparable magni-
tude St#10−1; differences between the velocity scales in the
different configurations hinders a more precise comparison.

Given that the dominant mechanism driving the growth
of perturbations is surely inflectional instability of the shear
layer, one could attempt to determine the frequency of grow-
ing perturbations from a local analysis of the numerically
computed shear layer. This has been attempted for the
backward-facing step and is further discussed by Marquet
et al.36 Basically the difficulty is that, even ignoring that the
flow is not parallel, the frequency determined from a local
analysis depends on the station at which the analysis is done
and only the order of magnitude of the frequency is reliably
determined. In reality the flow is far from parallel in the
vicinity of the separation point and likewise the dynamics of
perturbations is initially quite complex. See for example
Fig. 9 at time t=4.

We conclude with a brief discussion of related experi-
ments. We begin with the base flow results. Our measure-
ments of recirculation length give a linear dependence on Re
according to xr /h=0.0876 Re. This can be considered to be
a perfect match to the proportionality 0.088 reported in ex-
periments by Hammad et al.3 Earlier works, summarized by
Latornell and Pollard,4 also give a linear dependence on Re
but with a proportionality of about 0.096 for a fully devel-

FIG. 21. Dependence of maximum transient energy growth on bulk Rey-
nolds numbers for three separated flows: two-dimensional disturbances in a
backward-facing step flow !Ref. 23"; steady stenotic flow !Ref. 9"; and the
present 1–2 axisymmetric expansion, compared with Hagen–Poiseuille flow
!Refs. 44 and 47".
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Highlights of General Interest
The statistical results, in combination with the visual

comparison in Fig. 17, provide compelling evidence for the
similarity to the linear analysis of the structures generated in
the noise-perturbed flow.

IV. SUMMARY AND DISCUSSION

We have presented a numerical study of dynamics in an
axisymmetric expanding pipe. We have investigated the lin-
ear stability of the steady axisymmetric flow and shown that
the flow remains linearly stable up to at least Re=1400. We
find that nevertheless at linear order perturbations are very
strongly amplified in the region of the separated shear layer
that extends downstream of the expansion. For example, at
Re=1200 the energy of perturbations can be amplified by a
factor of over 106. The initial disturbances giving maximal
transient growth are localized in the vicinity of the pipe ex-
pansion and have azimuthal mode number m=1. Under lin-
ear evolution, these disturbances quickly evolve into packets
of waves characterized by a chevron structure corresponding

to a sinuous oscillation of the shear layer. These disturbances
gain energy through an inflectional instability mechanism as
they pass along the shear layer, reaching energetic maxima
just upstream of the reattachment point of the flow. Thereaf-
ter, disturbances advect downstream where they ultimately
decay in the stable downstream pipe. Through direct numeri-
cal simulations we have established that the linear results do
capture, quantitatively, most features seen in a fully three-
dimensional nonlinear flow subjected to small Gaussian inlet
noise. Thus we have not only quantified in detail the tran-
sient response of this flow but we have also demonstrated the
importance of this type of linear analysis to flows that would
commonly be described as convectively unstable, and thus
noise amplifiers.

The expanding-pipe flow shares many properties with
other documented geometries, although there are also some
important differences. The most similar example to the
present one is found in a recent study of transient growth of
disturbances to steady and pulsatile flows in a pipe with a
smooth axisymmetric constriction.9 Such flows have been
the subject of extensive research7,11–15 owing to the impor-
tance of the associated flows through arterial stenoses. The
two other closely related flows are the planar backward-
facing step20,23 and the curved channel flow.36

Probably the most significant similarity among the three
separated flows we have studied to date !backward-facing
step, stenosis, 1–2 expansion" is the dependence of maximal
transient energy growth on Reynolds number. In all cases,
beyond some value of Re, the maximal growth Gmax depends
exponentially on Re. This exponential dependence is in stark
contrast to parallel shear flows, such as straight pipes and
channels, in which the maximum growth typically scales
only as the square of Reynolds number.43–46 This highlights
the very important difference between the transient growth
studied here and that discussed extensively in parallel shear
flows.47 Here the transient growth is closely linked to the
variation in the flow in the streamwise direction, as illus-
trated in Fig. 1. Physically, perturbations grow rapidly in the
region of the shear layer driven by the inflectional velocity
profile, but this growth is only transient because perturba-
tions advect past the reattachment point and thereafter decay.
Chomaz refers to convective non-normality35 to distinguish
these cases from the lift-up non-normality driving transient
growth in parallel shear flows. See also Marquet et al.48

The exponents for different separated flows can be com-
pared. In Fig. 12, Gmax for the m=1 azimuthal mode in-
creases at a rate of 0.45 orders of magnitude for each in-
crease in 100 in Re. For convenience in this discussion we
denote this rate as !=0.45 /100. In the study of stenotic

TABLE VI. Statistics for DNS with stochastic inflow forcing at
Re=600,900,1200. Here we define the centroid !xc ,rc" based on the distri-
bution of turbulent kinetic energy in the outflow section of the pipe.

Re xc rc " St

600 17.97 0.466 3.76 0.210

900 31.93 0.400 3.38 0.175

1200 49.66 0.402 3.65 0.160
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FIG. 19. Energy of noise-driven flow through the line r=0.8 for the #=0
!solid lines" and #=$ /2 !dotted lines". #!a"–!c"$ Re=900, !d" Re=1200, and
!e" Re=1200 at 1/4 the noise level of !d". Vertical lines indicate xc, the
centroid of the optimal linear perturbation at the corresponding value of Re.
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FIG. 20. Radial profiles of velocity component standard deviations compar-
ing the noise-driven simulation !left" with the linear analysis !right". The
three velocity components each normalized to their peak value are shown:
streamwise !solid line", radial velocity !dashed line", and azimuthal velocity
!dotted line".
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Figure 6. Optimal transient energy growth envelopes as a function of relative time for pulsatile
inflow with Ured = 10. (a) Re =400, t0 = 0, with azimuthal wavenumber k as a parameter.
(b) k = 1, t0 = 0, with Re as parameter. (c) Re = 400, k =1, with initiation phase t0 as parameter.
(d ) Logarithmic contours of energy growth envelope for Re = 400, k =1, as a function of
time interval τ and initiation phase t0, labelled at decade intervals – the global optimum
Gmax =1.10×1010 at (τ/T =0.83, t0/T = 0.25) is indicated by +, while the secondary maximum,
(τ/T = 1.36, t0/T = 0.69), Gmax =9.77 × 107, is indicated by ◦.

(t0/T = 0.25) and has growth increment τ = 0.875T , i.e. lies close to the global
optimum in parameter space. Figure 7(a) shows vorticity contours of the base flow at
peak systole, when the pulse front reaches to approximately z = 8; the leading vortex
ring lies in the vicinity z = 7–8, and it is connected back to the flow separation in the
throat by a strong shear layer. In figure 7(c), we can see positive/negative contours of
axial velocity in the optimal initial perturbation for the phase point corresponding to
figure 7(a). This optimal perturbation is generally similar to that of the steady flow
in figure 5 (b). Figure 7(b) shows vorticity contours of the base flow at the later time
t = τ = 0.875T . By this phase, the original pulse front has progressed to approximately
z = 28, and a nascent front can be seen at approximately z = 4.5. Figure 7(d ) shows
positive/negative contours of axial velocity in the optimal disturbance outcome at
t = τ = 0.875T , i.e. corresponding to the base-flow phase point of figure 7(b), and it is
evident that the perturbation resides in the shear layer upstream of the leading pulse
front (or vortex ring). As for steady flow, the optimal perturbation is a wave packet
which produces a sinuous disturbance to an originally axisymmetric shear layer, that
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Spiral waves in active media react to small perturbations as particlelike objects. Here we apply

asymptotic theory to the interaction of spiral waves with a localized inhomogeneity, which leads to a novel

prediction: drift of the spiral rotation center along circular orbits around the inhomogeneity. The stationary

orbits have fixed radii and alternating stability, determined by the properties of the bulk medium and the

type of inhomogeneity, while the drift speed along an orbit depends on the strength of the inhomogeneity.

Direct numerical simulations confirm the validity and robustness of the theoretical predictions and show

that these unexpected effects should be observable in experiment.

DOI: 10.1103/PhysRevLett.104.058302 PACS numbers: 82.40.Ck, 05.45.!a, 87.18.Hf, 87.19.Hh

The interest in the dynamics of spiral waves as regimes
of self-organization has considerably broadened in the last
decades, as they have been found in ever more physical
systems of diverse types (magnetic films [1], liquid crystals
[2], nonlinear optics [3], new chemical systems [4], and in
population [5], tissue [6], and subcellular [7] biology). In a
perfectly uniform medium the core of a spiral wave may be
anywhere, depending on initial conditions. However, real
systems are always heterogeneous, and therefore spiral
drift due to inhomogeneity is of great practical interest to
applications. Understandably, such drift has been mostly
studied in excitable chemical reactions and the heart,
where drift due to a gradient of medium properties [8,9]
and pinning [10] (anchoring, trapping) to a localized in-
homogeneity [11–13] have been observed in experiments
and simulations. Interaction with localized inhomogeneity
can be considered to be a particular case of the general
phenomenon of vortex pinning to material defects [14].

Here we identify a new type of spiral wave dynamics:
precession around a localized inhomogeneity along a sta-
ble circular orbit. We predict this novel phenomenon theo-
retically, describe its key features, and confirm it by
numerical simulations. We argue that this orbital motion
of spiral waves is robust and prevalent, has nontrivial and
surprising consequences for applications, and should be
directly observable in experiments.

We consider reaction-diffusion equations, which is the
most popular class of models describing spiral waves:

@tu ¼ fðu;pÞ þDr2u; (1)

where u, f 2 R‘, D 2 R‘&‘, p 2 Rm, uð~r; tÞ is the dy-
namic vector field, ~r 2 R2, pð ~rÞ ¼ p0 þ p1ð~rÞ, jp1j ' 1,
is the vector of parameters, D is diffusion matrix. For p ¼

p0 ¼ const, system (1) is assumed to have spiral wave
solutions rotating with angular velocity ! (taken here to
be clockwise for !> 0),

u ¼ Uð!; # þ!t!!Þ; (2)

where (!, #) are polar coordinates defined with respect to
the center of rotation ~R ¼ ðX; YÞT , and ! is the initial
rotation phase.
In the presence of a small perturbation p1ð~rÞ ! 0, the

spiral’s center of rotation R ¼ Xþ iY is not constant but
slowly evolves with the equation of motion

dR

dt
¼ !ei!

2"

&
Z tþ"=!

t!"=!
e!i!#

Z
R2

Z
½Wð!; $Þ)þhð~r; #Þd2 ~rd#;

(3)

where ! ¼ !ð~r! ~RÞ and $ ¼ #ð ~r! ~RÞ þ!#!! are
polar coordinates in the corotating frame of reference,
and h is the perturbation to the right-hand side of Eq. (1).
Function W is called the response function (RF) and
defines the sensitivity of the spiral wave position with
respect to perturbations in different places. Technically,
W is a projector onto the eigenmode corresponding to
the neutral stability with respect to spatial translations
and is calculated as the eigenfunction LþW ¼ !i!W of
the adjoint linearized operator Lþ ¼ DTr2 þ!@$ þ
ð@ufðU;p0ÞÞT , see for details [15–17].
For an inhomogeneity h ¼ @pfðUð!;$Þ;p0Þp1ð~rÞ uni-

form inside a disk of radius Ri, p1ð ~rÞ ¼ %
"R2

i
HðRi ! j~rjÞê,

% ' 1, where HðÞ is the Heaviside step function and ê 2
Rm, jjêjj ¼ 1, Eq. (3) gives
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Rotating spiral waves are a form of self-organization observed in spatially extended systems of physical,
chemical, and biological natures. A small perturbation causes gradual change in spatial location of spiral’s
rotation center and frequency, i.e., drift. The response functions !RFs" of a spiral wave are the eigenfunctions
of the adjoint linearized operator corresponding to the critical eigenvalues !=0, " i#. The RFs describe the
spiral’s sensitivity to small perturbations in the way that a spiral is insensitive to small perturbations where its
RFs are close to zero. The velocity of a spiral’s drift is proportional to the convolution of RFs with the
perturbation. Here we develop a regular and generic method of computing the RFs of stationary rotating spirals
in reaction-diffusion equations. We demonstrate the method on the FitzHugh-Nagumo system and also show
convergence of the method with respect to the computational parameters, i.e., discretization steps and size of
the medium. The obtained RFs are localized at the spiral’s core.
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I. INTRODUCTION

Autowave vortices, or spiral waves in two dimensions, are
types of self-organization observed in dissipative media of
physical #1–4$, chemical #5–7$, and biological natures
#8–13$, where wave propagation is supported by a source of
energy stored in the medium. The common feature of all
these phenomena is that they can be mathematically de-
scribed, with various degrees of accuracy, by reaction-
diffusion partial differential equations,

!tu = f!u" + D"2u, u,f ! R!, D ! R!%!, ! & 2,

!1"

where u!r" , t"= !u1 , . . . ,u!"T is a column vector of the reagent
concentrations, f!u"= !f1 , . . . , f!"T is a column vector of the
reaction rates, D is the matrix of diffusion coefficients, and
r"!R2 is the vector of coordinates on the plane.

The existence of vortices is not due to singularities in the
medium but is determined only by development from initial
conditions. A rigidly rotating spiral wave solution to system
!1" has the form

U = U„'!r" − R" ",(!r" − R" " + #t − )… , !2"

where '!r"−R" " ,(!r"−R" " are polar coordinates centered at R" ,
vector R" = !X ,Y"T defines the center of rotation, and ) is the
initial rotation phase. For a steady, i.e., rigidly rotating, spiral
R" and ) are constants. The system of reference corotating
with the spiral’s initial phase and angular velocity # around
the spiral’s center of rotation is called the system of reference
of the spiral. In this system of reference, R" =0, )=0, and the
polar angle is given by *=(+#t. In this frame the spiral
wave solution U!' ,*" does not depend on time and satisfies
the equation

f!U" − #U* + D"2U = 0. !3"

In this equation, the unknowns are the field U!' ,*" and the
scalar #.

A slightly perturbed steady spiral wave solution

Ũ!',*,t" = U!',*" + +g!',*,t", g ! R!, 0 , + - 1,

substituted in Eq. !1", at leading order in +, yields the evo-
lution equation for the perturbation g,

!tg = !uf!U"g − #!*g + D"2g .

Thus, the linear stability spectrum of a steady spiral

LV = !V !4"

is defined by the linearized operator

L = D"2 − #!* + !uf!U" . !5"

The operator L has critical #Re!!"=0$ eigenvalues,

*Present address: The University of Potsdam, Campus Golm, De-
partment of Physics and Astronomy !Haus 28", Karl-Liebknecht-
Strasse 24/25, 14476 Potsdam, Germany
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Stability Spectrum:

0 = f(U)− ω∂θU+D∇2U

L = Df − ω∂θ +D∇2

Consider linearly stable spirals on the plane

where

Three neutral eigenvalues 
due to symmetry  

LV = λV

±iω

0 rotational symmetry

translational symmetry
(in rotating frame)

ω

x

x

x

LV(n) = inωV(n),

n = −1, 0, 1
x

x

x

x

x



Neutral Eigenfunctions

Oa = !
j=0,!1

!
k=0,!1

"#Ŵ$j%,V̆$k%& − " j,k"2, $18%

and orthogonality of the RFs to the numerical GMs quanti-
fied by

On = !
j=0,!1

!
k=0,!1

"#Ŵ$j%,V̂$k%& − " j,k"2.

Note that by construction the diagonal elements of both the
numerical and analytical biorthogonality matrices here are all
equal to 1 up to round-off errors.

The measures Oa and On require some discussion. The
biorthogonality should be exact for exact RFs and GMs.
However, what we calculate are approximations of these
functions, subject to discretization in # and $ and restriction
to a finite domain #%#max. The biorthogonality of numerical
solutions is therefore not exact and its deviation from the
ideal is an indication of the accuracy of calculation, and its
convergence in &#, &$, and #max is an indication, albeit in-
direct, of the accuracy of the solutions.

In more detail, if the matrices representing discretization
of L and L+ were transposes of one another, then their eigen-
vectors corresponding to different eigenvalues would be ex-
actly orthogonal in l2, and so a measure of their orthogonal-
ity would not depend on the spatial discretization but only on
the accuracy of the calculation of the eigenvectors by AR-
PACK. However, L and L+ are conjugate with respect to the
scalar product which is approximated by a discrete inner
product with a weight; hence the matrices of L and L+ are
not transposed. Moreover, because of the approximation used
for these operators $e.g., high-order approximation in &$ vs
second-order approximation in &#%, the corresponding matri-
ces are not adjoint of each other with respect to the weighted
l2 either. So, On provides a measure of the consistency of
these matrix representations together with the accuracy with
which the eigenvectors are computed with ARPACK.

Moreover, apart from the question of accuracy of finding
the eigenvectors of the discretized operators and accuracy of
finding the eigenfunctions of the original continuous opera-

tors, there remains a question of whether the found eigenvec-
tors and eigenfunctions are the ones that we need, which
correspond to 0 and !i', rather than eigenfunctions corre-
sponding to eigenvalues which happened to be close to 0 and
!i' '45(. For the GMs, the answer to this question is en-
sured by checking the distance D j; however, this answer is
not absolute as the comparison is made only over part of the
disk, for reasons discussed above. We note, however, that the
L+ eigenfunctions corresponding to the eigenvalues close to
but different from 0, ! i' are orthogonal to the GMs and for
them Oa would be not small '46(. Since Oa is defined in
terms of scalar products with the mode determined directly
from the underlying spiral wave, its smallness provides the
additional assurance that the adjoint eigenfunctions are in-
deed the RFs that we are after, not just some adjoint eigen-
functions.

III. RESULTS

A. General

We have tested our method for computing the response
functions in the case of the FitzHugh-Nagumo model, !=2,

f1 = (−1$u1 − u1
3/3 − u2% ,

f2 = ($u1 − au2 + b% ,

D= ' 1 0
0 0 (, with parameters a=0.5, b=0.68, and (=0.3. For

pinning, we have used !!=2, u!=0.1, and j!=N# /2. Newton
iterations have been performed until the Euclidean $l2% norm
of the residual in the discretized nonlinear equation falls be-
low 10−8. For comparison, we have also run cases, discussed
later in Fig. 5, in which iterations continue until the norm of
the residual no longer decreases $typically such norms were
below 10−9 down to 10−13%. The tolerance in ARPACK’s rou-
tines znaupd and zneupd has been set to the default “ma-
chine epsilon.” For the Krylov subspace dimensionality we
have tried 3 and 10, with no perceptible difference in the
numerical results.

2.00299 11.5677 1.69147 1.37704

0.903849 1.34923 0.373691 0.213635

U V(0) Re
(
V(1)

)
Im

(
V(1)

)

FIG. 1. Solutions of the non-
linear problem $3% and the linear-
ized problem 'Eqs. $4% and $5%(,
i.e., the Goldstone modes, at the
best parameters, #max=25, N#

=1280, and N$=64 as density
plots. Numbers under the density
plots are their amplitudes A: white
of the plot corresponds to the
value A and black corresponds to
the value −A of the designated
field. Upper row: first compo-
nents; lower row: second
components.
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Spiral Wave Neutral Eigenfunctions

3

has critical (Re (λ) = 0) eigenvalues

LV(n) = λnV(n), λn = inω, n = 0,±1, (7)

which correspond to eigenfunctions related to equivariance of
(1) with respect to translations and rotations, i.e. “Goldstone
modes” (GMs)

V(0) = −∂θU(ρ, θ),

V(±1) = −
1

2
e∓iθ

(

∂ρ ∓ iρ−1∂θ

)

U(ρ, θ). (8)

In this paper we do not consider perturbations h(u,&r, t) that
depend on t other than 2π/ω-periodically (for a more general
version of the theory free from this assumption see [36, 45]).
Then h̃(U, ρ, θ, φ) is a 2π-periodic function in φ, and we look
for solutions g(ρ, θ, φ) to equation (5) with the same period-
icity. The Fredholm alternative leads to the following system
of equations for the drift velocities

Φ̇ = ε

∫ 2π

0

〈

W(0) , h̃(U, ρ, θ, φ)
〉 dφ

2π
,

Ṙ = ε

∫ 2π

0
e−iφ

〈

W(1) , h̃(U, ρ, θ, φ)
〉 dφ

2π
,

where R = X + i Y is the complex coordinate of the in-
stant spiral centre, the inner product 〈· , ·〉 stands for the scalar
product in functional space

〈w , v〉 =

∫

R2

w+(&r)v(&r) d2&r,

and the kernels W(n)(ρ, θ), n = 0,±1, are the response func-
tions (RFs), that is the critical eigenfunctions

L+W(n) = µnW(n), µn = −inω, n = 0,±1, (9)

of the adjoint operator L+,

L+ = D∇2 + ω∂θ + (∂uf(U))T , (10)

chosen to be biorthogonal

〈

W(j) , V(k)
〉

= δj,k, (11)

to the Goldstone modes (8).
The drift velocities can be written as

Φ̇ = εF0(&R, Φ), &̇R = ε &F1(&R, Φ) (12)

where the “forces” F0 and &F1 = (Re (F1) , Im (F1))
T

are de-
fined by

Fn(&R, Φ) =
〈

W(n) (ρ, θ) , αn(ρ, θ; &R, Φ)
〉

,

n = 0, 1, (13)

and

αn(ρ, θ; &R, Φ) =

∫ 2π

0
e−inφ h̃(U, ρ, θ, φ)

dφ

2π
. (14)

In the above formulae, the dependence on (&R, Φ) is explicitly
included to emphasize that the response functions depend on
coordinates (ρ, θ) in the corotating frame of reference whereas
the perturbations are typically defined in the laboratory frame
of reference, and the two systems of references are related via
&R and Φ.

Below we show how the forces (13), determining the ve-
locity of the drifting spiral wave subject to a variety of pertur-
bations, can be calculated using the computed response func-
tions W(n). We also compare the quantitative analytical pre-
diction of drift velocities with the results of direct simulations.

B. Resonant Drift

Let us consider a spiral wave drifting due to the perturbation

h(u,&r, t) = A cos(ωt), (15)

where A ∈ R% is a constant vector. In the co-rotating frame
the perturbation (15) will be

h̃ = A cos (φ + Φ) (16)

Substitution of (16) into (14) gives

α0 = 0, α1 =
A

2
eiΦ,

and, by (13),

F0 = 0, F1 =
1

2
eiΦ

〈

W(1)(ρ, θ) , A
〉

. (17)

Hence the speed of the resonant drift of the spiral is

∣

∣

∣
Ṙ

∣

∣

∣
=

1

2

∣

∣

∣
ε
〈

W(1) , A
〉
∣

∣

∣
, (18)

whereas its direction is constant and arbitrary,

arg
(

Ṙ
)

= arg
(〈

W(1) , A
〉)

+ Φ, Φ̇ = 0, (19)

as it is determined by the inial phase of the spiral Φ, or, rather,
by the phase difference between the spiral and the perturba-
tion, (19) is only valid in the asymptotic sense, and a more
accurate formulation is

Φ̇ = O(ε2). (20)

Hence, at finite ε the resonance is expected to be imprecise,
and a typical trajectory of a resonantly drifting spiral is a circle
of radius Rrd = |Ṙ|/|Φ̇| = O(ε−1).

C. Electrophoretic Drift

Here we consider an anisotropic perturbation which breaks
rotational symmetry

h(&r) = B
∂U

∂x
(21)

V(0) Re(V(1)) Im(V(1))

Numerics: 
accurate, high-order polar grid 
efficient via Cayley transform
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L† = DfT + ω∂θ +D∇2

Adjoint linearization

Keener JP, Physica D, 31(2), pp 269-276, 1988 
Biktashev VN and Holden AV, Chaos Solitons & Fractals, vol. 5, Issue: 3-4, pp 575-622, 1995
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Response Functions
in Excitable Media

Spiral Wave

Before discussing the performance of our numerical tech-
niques, we briefly present typical solutions. Figures 1 and 2
illustrate the spiral wave solution and the GMs and RFs for
!max=25, N!=1280, and N"=64. This solution is taken as the
best achievable given memory restrictions !4 Gbyte of real
memory". The angular velocity for it was found to be #̂
#0.581 934 174 877 601 7. For the GMs and RFs, we show
the n=0 and n=1 modes only, since the calculated n=−1
modes are almost exactly the complex conjugates of the n
=1 modes, which of course they should be. One can see that
the GMs V̂ are indeed proportional to the corresponding de-
rivatives of the spiral wave solution Û and that the RFs Ŵ
are localized in a small region of the spiral tip and are indis-
tinguishable from zero outside that region.

The character of the decay of the RFs with distance is
illustrated in more detail in Fig. 3. We plot the angle-
averaged values of the solutions, defined as

$X%i
!n"!!" = & 1

2$
' (X̂i

!n"!!,""(2d")1/2

,

for X=U, V, and W. Note the difference in the behavior of
$U%i

!n" and $V%i
!n" on one hand and $W%i

!n" on the other hand. In
the semilogarithmic !linear for horizontal axis, logarithmic
for vertical axis" coordinates of Fig. 3!c" the graphs of
$W%i

!n"!!" are straight for a large range of !, not too close to

0 or !max=25, and for several decades of magnitude of
$W%i

!n". This clearly shows the expected exponential localiza-
tion of the RFs. For comparison, we also show the conver-
gence of #̂= #̂!!max" in a disk as a function of the disk radius
!max. Theory *36,47–49+ predicts that the $W%i

!n"!!" and
%#!!max"= #̂!!max"− #̂!&" dependencies should both be de-
caying exponentials with the same characteristic exponent;
this agrees well with the numerical results shown in Fig.
3!c".

Sandstede and Scheel *19,20+ computed exponential
decay/increase rates of eigenfunctions of periodic wave
trains in one spatial dimension. A similar technique should,
in principle, also work for the adjoint eigenfunctions. Know-
ing the asymptotic wavelength of the spiral wave, this can be
used to predict the exponential decay rates of the RFs of
spiral waves. As can be seen from the results of Wheeler and
Barkley *21+, although such correspondence between 1D and
2D calculations can be established, the accuracy of decay
rate estimates for two-dimensional eigenfunctions achieved
in this way is insufficient for a meaningful estimate of the
accuracy of those eigenfunctions.

B. Convergence

We now turn to the main results of our study. Conver-
gence of the method has been tested by changing one of the

2.00299 0.0439188 0.72395 0.452911

0.903849 0.162824 2.70424 2.80215

U W(0) Re
(
W(1)

)
Im

(
W(1)

)

FIG. 2. Same visualization as
in Fig. 1, for the adjoint linearized
problem *Eqs. !13" and !15"+, i.e.,
the response functions.
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FIG. 3. !Color online" Radial dependence of the angle-averaged solutions for the !a" spiral wave, !b" Goldstone modes, and !c" response
functions. In !c", the dependence of %#!!max"= #̂!!max"− #̂!25" is shown for comparison, where #̂!!max" is the numerically found spiral
angular velocity in the disk of given radius !max.
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has critical (Re (λ) = 0) eigenvalues

LV(n) = λnV(n), λn = inω, n = 0,±1, (7)

which correspond to eigenfunctions related to equivariance of
(1) with respect to translations and rotations, i.e. “Goldstone
modes” (GMs)

V(0) = −∂θU(ρ, θ),

V(±1) = −
1

2
e∓iθ

(

∂ρ ∓ iρ−1∂θ

)

U(ρ, θ). (8)

In this paper we do not consider perturbations h(u,&r, t) that
depend on t other than 2π/ω-periodically (for a more general
version of the theory free from this assumption see [36, 45]).
Then h̃(U, ρ, θ, φ) is a 2π-periodic function in φ, and we look
for solutions g(ρ, θ, φ) to equation (5) with the same period-
icity. The Fredholm alternative leads to the following system
of equations for the drift velocities

Φ̇ = ε

∫ 2π

0

〈

W(0) , h̃(U, ρ, θ, φ)
〉 dφ

2π
,

Ṙ = ε

∫ 2π

0
e−iφ

〈

W(1) , h̃(U, ρ, θ, φ)
〉 dφ

2π
,

where R = X + i Y is the complex coordinate of the in-
stant spiral centre, the inner product 〈· , ·〉 stands for the scalar
product in functional space

〈w , v〉 =

∫

R2

w+(&r)v(&r) d2&r,

and the kernels W(n)(ρ, θ), n = 0,±1, are the response func-
tions (RFs), that is the critical eigenfunctions

L+W(n) = µnW(n), µn = −inω, n = 0,±1, (9)

of the adjoint operator L+,

L+ = D∇2 + ω∂θ + (∂uf(U))T , (10)

chosen to be biorthogonal

〈

W(j) , V(k)
〉

= δj,k, (11)

to the Goldstone modes (8).
The drift velocities can be written as

Φ̇ = εF0(&R, Φ), &̇R = ε &F1(&R, Φ) (12)

where the “forces” F0 and &F1 = (Re (F1) , Im (F1))
T

are de-
fined by

Fn(&R, Φ) =
〈

W(n) (ρ, θ) , αn(ρ, θ; &R, Φ)
〉

,

n = 0, 1, (13)

and

αn(ρ, θ; &R, Φ) =

∫ 2π

0
e−inφ h̃(U, ρ, θ, φ)

dφ

2π
. (14)

In the above formulae, the dependence on (&R, Φ) is explicitly
included to emphasize that the response functions depend on
coordinates (ρ, θ) in the corotating frame of reference whereas
the perturbations are typically defined in the laboratory frame
of reference, and the two systems of references are related via
&R and Φ.

Below we show how the forces (13), determining the ve-
locity of the drifting spiral wave subject to a variety of pertur-
bations, can be calculated using the computed response func-
tions W(n). We also compare the quantitative analytical pre-
diction of drift velocities with the results of direct simulations.

B. Resonant Drift

Let us consider a spiral wave drifting due to the perturbation

h(u,&r, t) = A cos(ωt), (15)

where A ∈ R% is a constant vector. In the co-rotating frame
the perturbation (15) will be

h̃ = A cos (φ + Φ) (16)

Substitution of (16) into (14) gives

α0 = 0, α1 =
A

2
eiΦ,

and, by (13),

F0 = 0, F1 =
1

2
eiΦ

〈

W(1)(ρ, θ) , A
〉

. (17)

Hence the speed of the resonant drift of the spiral is

∣

∣

∣
Ṙ

∣

∣

∣
=

1

2

∣

∣

∣
ε
〈

W(1) , A
〉
∣

∣

∣
, (18)

whereas its direction is constant and arbitrary,

arg
(

Ṙ
)

= arg
(〈

W(1) , A
〉)

+ Φ, Φ̇ = 0, (19)

as it is determined by the inial phase of the spiral Φ, or, rather,
by the phase difference between the spiral and the perturba-
tion, (19) is only valid in the asymptotic sense, and a more
accurate formulation is

Φ̇ = O(ε2). (20)

Hence, at finite ε the resonance is expected to be imprecise,
and a typical trajectory of a resonantly drifting spiral is a circle
of radius Rrd = |Ṙ|/|Φ̇| = O(ε−1).

C. Electrophoretic Drift

Here we consider an anisotropic perturbation which breaks
rotational symmetry

h(&r) = B
∂U

∂x
(21)

Im(W(1))Re(W(1))W(0)

Localization in CGLE - I.V. Biktasheva, Yu.E. Elkin, and V.N. Biktashev, 
Phys. Rev. E, 57(3):2656-2659, 1998

Wave-particle dualism
 I.V. Biktasheva, V.N. Biktashev, Phys. Rev. E, 67: 026221, 2003

Wave-particle dualism 
H. Henry, V. Hakim, Phys. Rev. E, 65 (4): 046235, 2002



Equations of Motion

2

underpins the entire analysis. Originally [37] this property
was only a conjecture based on the phenomenology of spi-
ral waves in experiments and numerical simulations [31, 38–
40]. The analytical calculation of the response functions ap-
pears to be infeasible. Numerical calculations in the Barkley
model [41] and the Complex Ginzburg-Landau equation [42]
have confirmed that indeed they are essentially localized in
the vicinity of the core of the spiral. The asymptotic theory
based on the response functions has been successfully used
to quantitatively predict drift of spirals, for resonant drift and
drift due to parametric inhomogeneity in the CGLE [43–45]
and for drift in response to a uniform electric field in Barkley
model [46]. Despite this success, so far the asymptotic the-
ory has not become a generally used tool for the prediction of
spiral wave drift. This is partly due to difficulties in the numer-
ical calculation of the response functions. In our recent pub-
lication [47] we have presented an efficient numerical method
of calculating response functions in an arbitrary model with
differentiable right-hand sides. The complexity of calculat-
ing response functions with this method is similar to the com-
plexity of calculating spiral wave solutions themselves. In the
present paper, we describe the application of the asymptotic
theory using the response functions for the prediction of sev-
eral types of drift and show how it works for two of the most
popular generic excitable models, the FitzHugh-Nagumo sys-
tem [48–50], and the Barkley system [51]. We demonstrate
that predictions of the asymptotic theory are in good quantita-
tive agreement with direct numerical simulations. In addition,
we demonstrate that the response functions are capable of pre-
dicting nontrivial qualitative phenomena, such as attachment
of spiral waves to stepwise inhomogeneity and orbital move-
ment around a localized inhomogeneity.
The structure of the paper is as follows. In Section II, we

briefly recapitulate the asymptotic theory of the drift of spiral
waves in response to small perturbation and present explicit
expressions for drift parameters in terms of the spiral wave’s
response functions for several sorts of drift. In Section III,
we describe the numerical methods used for calculating the
response functions, for direct numerical simulations, and for
processing of the results. The results are described in Sec-
tion IV. We conclude the paper by discussion of the results
and their implications in Section V.

II. THEORY

A. General

We consider reaction-diffusion partial differential equa-
tions,

∂tu = f(u) +D∇2u, u, f ∈ R
!, D ∈ R

!×!, " ≥ 2, (1)

where u(#r, t) = (u1, . . . u!)T is a column-vector of the
reagent concentrations, f(u) = (f1, . . . f!)T is a column-
vector of the reaction rates,D is the matrix of diffusion coef-
ficients, and #r ∈ R2 is the vector of coordinates on the plane.

A rigidly clockwise rotating spiral wave solution to the sys-
tem (1) has the form

U = U(ρ(#r − #R),ϑ(#r − #R) + ωt− Φ), (2)

where #R = (X,Y )T is the center of rotation, Φ is the initial
rotation phase, and ρ(#r − #R),ϑ(#r − #R) are polar coordinates
centered at #R. For a steady, rigidly rotating spiral, #R and Φ
are constants. The system of reference co-rotating with the
spiral’s initial phase and angular velocity ω around the spi-
ral’s center of rotation is called the system of reference of the
spiral. In this system of reference, the polar angle is given by
θ = ϑ + ωt − Φ, with #R = 0 and Φ = 0. In this frame,
the spiral wave solutionU(ρ, θ) does not depend on time and
satisfies the equation

f(U) − ωUθ +D∇2U = 0, (3)

where the unknowns are the fieldU(ρ, θ) and the scalar ω.
In a slightly perturbed problem

∂tu = f(u) +D∇2u+ εh, h ∈ R
!, |ε| % 1, (4)

where εh(u,#r, t) is some small perturbation, spiral waves
may drift, i.e. change rotational phase and/or center loca-
tion. Then, the center of rotation and the initial phase are
no longer constants but become functions of time, #R = #R(t)
and Φ = Φ(t). In the co-rotating system of reference, time
dependence will take form of a phase depending on time
φ(t) = ωt− Φ(t).
Thus, we consider three systems of reference:

1. laboratory, (#r, t) ;

2. co-moving, (ρ,ϑ, t), where (ρ,ϑ) =
(

ρ(#r − #R), ϑ(#r − #R)
)

is the polar coordinate

system centered at #R;

3. co-rotating, (ρ, θ, φ), where θ = ϑ(#r − #R) + φ(t) is the
polar angle, and φ = ωt− Φ(t) is the rotational phase,
replacing time.

We shall look for a solution to (4) in the form of a slightly
perturbed steady spiral wave solution

Ũ(ρ, θ,φ) = U(ρ, θ) + εg(ρ, θ,φ),

where g ∈ R!, 0 < ε % 1.
Then, assuming that

#̇R, Φ̇ = O(ε),

at leading order in ε, the solution perturbation g will satisfy
the linearized system

(ω∂φ − L)g = H(U, ρ, θ,φ), (5)

where

H(U, ρ, θ,φ) = h̃(U, ρ, θ,φ) −
1

ε

[

∂U

∂ #R
#̇R− ∂θUΦ̇

]

,

Perturb Equation

perturbation
Use solvability condition 
to obtain equations for (slow) motion for spiral core

3

where h̃(U, ρ, θ,φ) is the perturbation h(u,$r, t), considered
in the co-rotating frame of reference.
The linearized operator

L = D∇2 − ω∂θ + ∂uf(U), (6)

has critical (Re (λ) = 0) eigenvalues

LV(n) = λnV
(n), λn = inω, n = 0,±1, (7)

which correspond to eigenfunctions related to equivariance of
(1) with respect to translations and rotations, i.e. “Goldstone
modes” (GMs)

V(0) = −∂θU(ρ, θ),

V(±1) = −
1

2
e∓iθ

(

∂ρ ∓ iρ−1∂θ
)

U(ρ, θ). (8)

In this paper we do not consider perturbations h(u,$r, t) that
depend on t other than 2π/ω-periodically (for a more general
version of the theory free from this assumption see [36, 45]).
Then h̃(U, ρ, θ,φ) is a 2π-periodic function in φ, and we look
for solutions g(ρ, θ,φ) to equation (5) with the same period-
icity. A solvability condition leads to the following system of
equations for the drift velocities,

Φ̇ = ε

∫ 2π

0

〈

W(0) , h̃(U, ρ, θ,φ)
〉 dφ

2π
+O(ε2),

Ṙ = ε

∫ 2π

0
e−iφ

〈

W(1) , h̃(U, ρ, θ,φ)
〉 dφ

2π
+O(ε2),

where R = X + iY is the complex coordinate of the in-
stant spiral centre, the inner product 〈· , ·〉 stands for the scalar
product in functional space

〈w , v〉 =

∫

R2

w+($r)v($r) d2$r,

and the kernelsW(n)(ρ, θ), n = 0,±1, are the response func-
tions, that is the critical eigenfunctions

L+W(n) = µnW
(n), µn = −inω, n = 0,±1, (9)

of the adjoint operator L+,

L+ = D∇2 + ω∂θ + (∂uf(U))T , (10)

chosen to be biorthogonal
〈

W(j) , V(k)
〉

= δj,k, (11)

to the Goldstone modes (8).
The drift velocities can be written as (henceforth we shall

drop the O(ε2) terms)

Φ̇ = εF0($R,Φ), $̇R = ε $F1($R,Φ), (12)

where the “forces” F0 and $F1 = (Re (F1) , Im (F1))
T are de-

fined by

Fn($R,Φ) =
〈

W(n) (ρ, θ) , αn(ρ, θ; $R,Φ)
〉

,

n = 0, 1, (13)

and

αn(ρ, θ; $R,Φ) =

∫ 2π

0
e−inφ h̃(U, ρ, θ,φ)

dφ

2π
. (14)

In the above formulae, the dependence on ($R,Φ) is explicitly
included to emphasize that the response functions depend on
coordinates (ρ, θ) in the corotating frame of referencewhereas
the perturbations are typically defined in the laboratory frame
of reference, and the two systems of references are related via
$R and Φ.
Below we show how the forces (13), determining the ve-

locity of the drifting spiral wave subject to a variety of pertur-
bations, can be calculated using the computed response func-
tionsW(n). We also compare the quantitative analytical pre-
diction of drift velocities with the results of direct simulations.

B. Resonant Drift

Let us consider a spiral wave drifting due to the perturbation

h(u,$r, t) = A cos(ωt), (15)

where A ∈ R% is a constant vector. In the co-rotating frame
the perturbation (15) will be

h̃ = A cos (φ+ Φ) (16)

Substitution of (16) into (14) gives

α0 = 0, α1 =
A

2
eiΦ,

and, by (13),

F0 = 0, F1 =
1

2
eiΦ

〈

W(1)(ρ, θ) , A
〉

. (17)

Hence the speed of the resonant drift of the spiral is
∣

∣

∣
Ṙ
∣

∣

∣
=

1

2

∣

∣

∣
ε
〈

W(1) , A
〉
∣

∣

∣
, (18)

whereas its direction is constant and arbitrary,

arg
(

Ṙ
)

= arg
(〈

W(1) , A
〉)

+ Φ, Φ̇ = 0, (19)

as it is determined by the inial phase of the spiral Φ, or, rather,
by the phase difference between the spiral and the perturba-
tion, (19) is only valid in the asymptotic sense, and a more
accurate formulation is

Φ̇ = O(ε2). (20)

Hence, at finite ε the resonance is expected to be imprecise,
and a typical trajectory of a resonantly drifting spiral is a circle
of radiusRrd = |Ṙ|/|Φ̇| = O(ε−1).

perturbation
adjoint translation
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Motion

Frequency
Shift



Example: Step Heterogeneity
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FIG. 4: (color online) Drift in stepwise inhomogeneity (45,47). First row: theoretical predictions for the drift forces components as functions
of the distance to the steps, d = X − xs, in parameters (a) α, (b) β and (c) γ, in the FitzHugh-Nagumo model. Second row: same for
Barkley model, steps in parameters (d) a, (e) b and (f) c. Third row: comparison of theoretical predictions with DNS. (g) A phase portrait
of the drift in the FitzHugh-Nagumo model, in theory, (37), and DNS, (4,45,47), with a step inhomogeneity of parameter α (corresponds to
panel (a)), at ε = 10−2. Shown are the theoretical vector field (black arrows; the lengths are nonlinearly scaled for visualization), a selection
of theoretical trajectories (red filled circles) and a selection of numerical trajectories (blue open circles) of the centres of the spiral waves.
Trajectories are arbitrarily shifted in the vertical direction for visual convenience. Dashed-dotted vertical lines correspond to the root of the
theoretical horizontal component of the speed, and the location of the step X − xs = 0. (h) Speed of the established vertical movement along
the stepwise inhomogeneity as in panel (g), as a function of inhomogeneity strength. (i) A phase portrait of the drift in the Barkley model with
a step inhomogeneity of parameter c (corresponds to panel (f)), at ε = 3 · 10−4. Notation is the same as in panel (g).
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3. Step inhomogeneity

Here we consider a step perturbation located at x = xs,

p1(x) = H(x − xs),

where H() denotes the Heaviside unit step function. In the
co-moving frame of reference we have

p̃1(ρ,ϑ) = H (X + ρ cos(ϑ)− xs) . (34)

Substitution of (34) into (28) gives

Kn =

∫ 2π

0
cos(nϑ) H

(

cos(ϑ)−
xs −X

ρ

)

dϑ

2π
.

We consider three intervals for xs−X
ρ
.

(1) ρ < |xs −X | , xs > X . Then H
(

cos(ϑ)− xs−X
ρ

)

= 0,
thereforeK0 = K1 = 0.

(2) ρ < |xs −X | , xs < X . Then H
(

cos(ϑ)− xs−X
ρ

)

= 1,
thereforeK0 = 1,K1 = 0.

(3) ρ ≥ |xs −X |. Then, for ϑ0 = arccos
(

xs−X
ρ

)

,

H

(

cos(ϑ)−
xs −X

ρ

)

=

{

1 , ϑ ∈ [−ϑ0,ϑ0]
0 , otherwise.

Thus,

K0 =
1

π
arccos

(

xs −X

ρ

)

, (35)

K1 =
1

π

√

1−

(

xs −X

ρ

)2

. (36)

Substituting the aboveKn for the three intervals into (13) and
(12), we get the velocities of the drift due to a step-wise inho-
mogeneity of a model parameter in the form

Ṙ =
ε

π

2π
∫

0

∞
∫

|xs−X|

w(1)(ρ, θ)e−iθ

√

1−

(

xs −X

ρ

)2

ρ dρ dθ, (37)

Φ̇ =
ε

π

2π
∫

0

∞
∫

|xs−X|

w(0)(ρ, θ) arccos

(

xs −X

ρ

)

ρ dρ dθ + εH(X − xs)

2π
∫

0

|xs−X|
∫

0

w(0)(ρ, θ)ρ dρ dθ. (38)

Note that both Ṙ and Φ̇ are functions of the current x-
coordinate of the spiral with respect to the step, d = X − xs,
and Ṙ is an even function of this coordinate.

4. Disk-shaped inhomogeneity

We now consider an inhomogeneity which is unity within
a disc of radius Rin centered at (xd, yd), and which is zero
outside the disc. Thus we have

p̃1(&r) = H
(

R2
in − (x − xd)

2 − (y − yd)
2
)

.

Then calculations, similar to those for a stepwise inhomo-
geneity, lead to

K0 =
1

π
arccos

(

ρ2 + l2 −R2
in

2lρ

)

, (39)

K1 =
eiϑ0

π

√

1−

(

ρ2 + l2 −R2
in

2lρ

)2

, (40)

where l and ϑ0 designate the distance and the direction from
the current centre of the spiral to the centre of the inhomo-
geneity, i.e. xd = X + l cosϑ0, yd = Y + l sinϑ0.
This leads to the equations for the drift velocities in the

form
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C. Electrophoretic Drift

Here we consider an anisotropic perturbation which breaks
rotational symmetry

h(!r) = B
∂U

∂x
(21)

where B ∈ R!×! is a constant matrix. This perturbation cor-
responds to action of an external electric field on a chemical
reaction where some of the species are electrically charged.
In this case matrix B is diagonal and its nonzero elements
represent motilities of the ions of the reaction species. The
same sort of perturbation appears in the asymptotic dynamics
of scroll waves [34, 35], whereB = D.
In the co-rotating system of reference, the perturbation (21)

can be written using the Goldstone modes (8), as

h̃(U, ρ, θ,φ) = −B
(

V(−1)e−iφ +V(1)eiφ
)

, (22)

which, by substituting into (14), gives

αn(ρ, θ) = −B

∫ 2π

0
e−inφ

(

V(−1)e−iφ +V(1)eiφ
)dφ

2π
(23)

Thus, α0 = 0, α1(ρ, θ) = −BV(1), which following (12)
and (13) gives the velocity of the electrophoretic drift

!̇R = −ε
〈

W(1)(ρ, θ) , BV(1)(ρ, θ)
〉

(24)

which remains constant in time.

D. Inhomogeneity induced Drift

1. General

We now consider the case when the reaction kinetics f in
(1) depend on a parameter p, and the value of this parameter
varies slightly in space,

f = f(u, p), p = p(!r) = p0 + εp1(!r). (25)

Substitution of (25) into (1) gives, to the first order in ε,

∂tu = D∇2u+ f(u, p0) + εp1(!r)∂pf(u, p0),

with the perturbation in the laboratory frame of reference

h(u,!r, t) = ∂pf(u, p0) p1(!r). (26)

Substitution of (26) into (14) gives

αn(ρ, θ) = ∂pf(U(ρ, θ), p0) e
−inθKn(ρ), (27)

where

Kn(ρ) =

∫ 2π

0
einϑ p̃1(ρ,ϑ)

dϑ

2π
, (28)

and p̃1(ρ,ϑ) is the parameter perturbation considered in the
co-moving frame of reference. The final equations for the drift
velocities can then be written in the form

Φ̇ = ε

2π
∫

0

∞
∫

0

w(0)(ρ, θ)K0(ρ) ρ dρ dθ, (29)

Ṙ = ε

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθK1(ρ) ρ dρ dθ, (30)

where for brevity we introduce

w(n)(ρ, θ) =
[

W(n)(ρ, θ)
]+

∂pf(ρ, θ; p0). (31)

2. Linear Gradient

Let p1 vary linearly in a sufficiently large region containing
the spiral tip and its subsequent drift trajectory. Specifically
we consider p1 = x − x0, where the x-coordinate of the tra-
jectory remains near x0. In the co-moving reference frame,
the linear gradient perturbation will be

p̃1 = X − x0 + ρ cos(ϑ). (32)

Substituting (32) into (28) gives

Kn(ρ) = (X − x0)δn,0 +
1

2
ρ (δn,1 + δn,−1) .

Then, by (27), (12) and (13), the velocity of the drift due to
gradient of a model parameter will be

Φ̇ = ε(X − x0)

2π
∫

0

∞
∫

0

w(0)(ρ, θ) ρ dρ dθ,

Ṙ =
ε

2

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθ ρ2 dρ dθ. (33)

An important feature of equations (33) is that the first of
them depends on X while the second does not. The depen-
dence on X means that the drift velocity changes during the
drift, unless the drift proceeds precisely along the y-axis. As
it happens, at first order in ε, only the temporal drift, that is the
correction to the frequency, shows this dependence. Namely,
the first of equations (33) shows that the instant rotation fre-
quency corresponds to the parameter value at the current cen-
tre of rotation, p = p0 + εp1 = p0 + ε(X − x0). The spatial
drift, described by the second of equations (33), does not de-
pend onX . That means that while the drift proceeds, its speed
and direction remain the same, at least at the asymptotic order
considered. This is an important observation, firstly, because
it allows us to treat linear gradient induced drift in the same
way as the electrophoretic drift, i.e. expecting drift along a
straight line, and secondly, that unlike electrophoretic drift,
the assumption is inherently limited to suchX that ε(X−x0)
remains sufficiently small.
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f = f(u, p), p = p(!r) = p0 + εp1(!r). (25)

Substitution of (25) into (1) gives, to the first order in ε,

∂tu = D∇2u+ f(u, p0) + εp1(!r)∂pf(u, p0),

with the perturbation in the laboratory frame of reference

h(u,!r, t) = ∂pf(u, p0) p1(!r). (26)

Substitution of (26) into (14) gives

αn(ρ, θ) = ∂pf(U(ρ, θ), p0) e
−inθKn(ρ), (27)

where

Kn(ρ) =

∫ 2π

0
einϑ p̃1(ρ,ϑ)

dϑ

2π
, (28)

and p̃1(ρ,ϑ) is the parameter perturbation considered in the
co-moving frame of reference. The final equations for the drift
velocities can then be written in the form

Φ̇ = ε

2π
∫

0

∞
∫

0

w(0)(ρ, θ)K0(ρ) ρ dρ dθ, (29)

Ṙ = ε

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθK1(ρ) ρ dρ dθ, (30)

where for brevity we introduce

w(n)(ρ, θ) =
[

W(n)(ρ, θ)
]+

∂pf(ρ, θ; p0). (31)

2. Linear Gradient

Let p1 vary linearly in a sufficiently large region containing
the spiral tip and its subsequent drift trajectory. Specifically
we consider p1 = x − x0, where the x-coordinate of the tra-
jectory remains near x0. In the co-moving reference frame,
the linear gradient perturbation will be

p̃1 = X − x0 + ρ cos(ϑ). (32)

Substituting (32) into (28) gives

Kn(ρ) = (X − x0)δn,0 +
1

2
ρ (δn,1 + δn,−1) .

Then, by (27), (12) and (13), the velocity of the drift due to
gradient of a model parameter will be

Φ̇ = ε(X − x0)

2π
∫

0

∞
∫

0

w(0)(ρ, θ) ρ dρ dθ,

Ṙ =
ε

2

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθ ρ2 dρ dθ. (33)

An important feature of equations (33) is that the first of
them depends on X while the second does not. The depen-
dence on X means that the drift velocity changes during the
drift, unless the drift proceeds precisely along the y-axis. As
it happens, at first order in ε, only the temporal drift, that is the
correction to the frequency, shows this dependence. Namely,
the first of equations (33) shows that the instant rotation fre-
quency corresponds to the parameter value at the current cen-
tre of rotation, p = p0 + εp1 = p0 + ε(X − x0). The spatial
drift, described by the second of equations (33), does not de-
pend onX . That means that while the drift proceeds, its speed
and direction remain the same, at least at the asymptotic order
considered. This is an important observation, firstly, because
it allows us to treat linear gradient induced drift in the same
way as the electrophoretic drift, i.e. expecting drift along a
straight line, and secondly, that unlike electrophoretic drift,
the assumption is inherently limited to suchX that ε(X−x0)
remains sufficiently small.

Heaviside function
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FIG. 4: (color online) Drift in stepwise inhomogeneity (45,47). First row: theoretical predictions for the drift forces components as functions
of the distance to the steps, d = X − xs, in parameters (a) α, (b) β and (c) γ, in the FitzHugh-Nagumo model. Second row: same for
Barkley model, steps in parameters (d) a, (e) b and (f) c. Third row: comparison of theoretical predictions with DNS. (g) A phase portrait
of the drift in the FitzHugh-Nagumo model, in theory, (37), and DNS, (4,45,47), with a step inhomogeneity of parameter α (corresponds to
panel (a)), at ε = 10−2. Shown are the theoretical vector field (black arrows; the lengths are nonlinearly scaled for visualization), a selection
of theoretical trajectories (red filled circles) and a selection of numerical trajectories (blue open circles) of the centres of the spiral waves.
Trajectories are arbitrarily shifted in the vertical direction for visual convenience. Dashed-dotted vertical lines correspond to the root of the
theoretical horizontal component of the speed, and the location of the step X − xs = 0. (h) Speed of the established vertical movement along
the stepwise inhomogeneity as in panel (g), as a function of inhomogeneity strength. (i) A phase portrait of the drift in the Barkley model with
a step inhomogeneity of parameter c (corresponds to panel (f)), at ε = 3 · 10−4. Notation is the same as in panel (g).
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3. Step inhomogeneity

Here we consider a step perturbation located at x = xs,

p1(x) = H(x − xs),

where H() denotes the Heaviside unit step function. In the
co-moving frame of reference we have

p̃1(ρ,ϑ) = H (X + ρ cos(ϑ)− xs) . (34)

Substitution of (34) into (28) gives

Kn =

∫ 2π

0
cos(nϑ) H

(

cos(ϑ)−
xs −X

ρ

)

dϑ

2π
.

We consider three intervals for xs−X
ρ
.

(1) ρ < |xs −X | , xs > X . Then H
(

cos(ϑ)− xs−X
ρ

)

= 0,
thereforeK0 = K1 = 0.

(2) ρ < |xs −X | , xs < X . Then H
(

cos(ϑ)− xs−X
ρ

)

= 1,
thereforeK0 = 1,K1 = 0.

(3) ρ ≥ |xs −X |. Then, for ϑ0 = arccos
(

xs−X
ρ

)

,

H

(

cos(ϑ)−
xs −X

ρ

)

=

{

1 , ϑ ∈ [−ϑ0,ϑ0]
0 , otherwise.

Thus,

K0 =
1

π
arccos

(

xs −X

ρ

)

, (35)

K1 =
1

π

√

1−

(

xs −X

ρ

)2

. (36)

Substituting the aboveKn for the three intervals into (13) and
(12), we get the velocities of the drift due to a step-wise inho-
mogeneity of a model parameter in the form

Ṙ =
ε

π

2π
∫

0

∞
∫

|xs−X|

w(1)(ρ, θ)e−iθ

√

1−

(

xs −X

ρ

)2

ρ dρ dθ, (37)

Φ̇ =
ε

π

2π
∫

0

∞
∫

|xs−X|

w(0)(ρ, θ) arccos

(

xs −X

ρ

)

ρ dρ dθ + εH(X − xs)

2π
∫

0

|xs−X|
∫

0

w(0)(ρ, θ)ρ dρ dθ. (38)

Note that both Ṙ and Φ̇ are functions of the current x-
coordinate of the spiral with respect to the step, d = X − xs,
and Ṙ is an even function of this coordinate.

4. Disk-shaped inhomogeneity

We now consider an inhomogeneity which is unity within
a disc of radius Rin centered at (xd, yd), and which is zero
outside the disc. Thus we have

p̃1(&r) = H
(

R2
in − (x − xd)

2 − (y − yd)
2
)

.

Then calculations, similar to those for a stepwise inhomo-
geneity, lead to

K0 =
1

π
arccos

(

ρ2 + l2 −R2
in

2lρ

)

, (39)

K1 =
eiϑ0

π

√

1−

(

ρ2 + l2 −R2
in

2lρ

)2

, (40)

where l and ϑ0 designate the distance and the direction from
the current centre of the spiral to the centre of the inhomo-
geneity, i.e. xd = X + l cosϑ0, yd = Y + l sinϑ0.
This leads to the equations for the drift velocities in the

form

4

C. Electrophoretic Drift

Here we consider an anisotropic perturbation which breaks
rotational symmetry

h(!r) = B
∂U

∂x
(21)

where B ∈ R!×! is a constant matrix. This perturbation cor-
responds to action of an external electric field on a chemical
reaction where some of the species are electrically charged.
In this case matrix B is diagonal and its nonzero elements
represent motilities of the ions of the reaction species. The
same sort of perturbation appears in the asymptotic dynamics
of scroll waves [34, 35], whereB = D.
In the co-rotating system of reference, the perturbation (21)

can be written using the Goldstone modes (8), as

h̃(U, ρ, θ,φ) = −B
(

V(−1)e−iφ +V(1)eiφ
)

, (22)

which, by substituting into (14), gives

αn(ρ, θ) = −B

∫ 2π

0
e−inφ

(

V(−1)e−iφ +V(1)eiφ
)dφ

2π
(23)

Thus, α0 = 0, α1(ρ, θ) = −BV(1), which following (12)
and (13) gives the velocity of the electrophoretic drift

!̇R = −ε
〈

W(1)(ρ, θ) , BV(1)(ρ, θ)
〉

(24)

which remains constant in time.

D. Inhomogeneity induced Drift

1. General

We now consider the case when the reaction kinetics f in
(1) depend on a parameter p, and the value of this parameter
varies slightly in space,

f = f(u, p), p = p(!r) = p0 + εp1(!r). (25)

Substitution of (25) into (1) gives, to the first order in ε,

∂tu = D∇2u+ f(u, p0) + εp1(!r)∂pf(u, p0),

with the perturbation in the laboratory frame of reference

h(u,!r, t) = ∂pf(u, p0) p1(!r). (26)

Substitution of (26) into (14) gives

αn(ρ, θ) = ∂pf(U(ρ, θ), p0) e
−inθKn(ρ), (27)

where

Kn(ρ) =

∫ 2π

0
einϑ p̃1(ρ,ϑ)

dϑ

2π
, (28)

and p̃1(ρ,ϑ) is the parameter perturbation considered in the
co-moving frame of reference. The final equations for the drift
velocities can then be written in the form

Φ̇ = ε

2π
∫

0

∞
∫

0

w(0)(ρ, θ)K0(ρ) ρ dρ dθ, (29)

Ṙ = ε

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθK1(ρ) ρ dρ dθ, (30)

where for brevity we introduce

w(n)(ρ, θ) =
[

W(n)(ρ, θ)
]+

∂pf(ρ, θ; p0). (31)

2. Linear Gradient

Let p1 vary linearly in a sufficiently large region containing
the spiral tip and its subsequent drift trajectory. Specifically
we consider p1 = x − x0, where the x-coordinate of the tra-
jectory remains near x0. In the co-moving reference frame,
the linear gradient perturbation will be

p̃1 = X − x0 + ρ cos(ϑ). (32)

Substituting (32) into (28) gives

Kn(ρ) = (X − x0)δn,0 +
1

2
ρ (δn,1 + δn,−1) .

Then, by (27), (12) and (13), the velocity of the drift due to
gradient of a model parameter will be

Φ̇ = ε(X − x0)

2π
∫

0

∞
∫

0

w(0)(ρ, θ) ρ dρ dθ,

Ṙ =
ε

2

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθ ρ2 dρ dθ. (33)

An important feature of equations (33) is that the first of
them depends on X while the second does not. The depen-
dence on X means that the drift velocity changes during the
drift, unless the drift proceeds precisely along the y-axis. As
it happens, at first order in ε, only the temporal drift, that is the
correction to the frequency, shows this dependence. Namely,
the first of equations (33) shows that the instant rotation fre-
quency corresponds to the parameter value at the current cen-
tre of rotation, p = p0 + εp1 = p0 + ε(X − x0). The spatial
drift, described by the second of equations (33), does not de-
pend onX . That means that while the drift proceeds, its speed
and direction remain the same, at least at the asymptotic order
considered. This is an important observation, firstly, because
it allows us to treat linear gradient induced drift in the same
way as the electrophoretic drift, i.e. expecting drift along a
straight line, and secondly, that unlike electrophoretic drift,
the assumption is inherently limited to suchX that ε(X−x0)
remains sufficiently small.
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D. Inhomogeneity induced Drift

1. General

We now consider the case when the reaction kinetics f in
(1) depend on a parameter p, and the value of this parameter
varies slightly in space,

f = f(u, p), p = p(!r) = p0 + εp1(!r). (25)

Substitution of (25) into (1) gives, to the first order in ε,
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Ṙ = ε

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθK1(ρ) ρ dρ dθ, (30)

where for brevity we introduce
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∫

0

w(0)(ρ, θ) ρ dρ dθ,
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ε

2

2π
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∫

0
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correction to the frequency, shows this dependence. Namely,
the first of equations (33) shows that the instant rotation fre-
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drift, described by the second of equations (33), does not de-
pend onX . That means that while the drift proceeds, its speed
and direction remain the same, at least at the asymptotic order
considered. This is an important observation, firstly, because
it allows us to treat linear gradient induced drift in the same
way as the electrophoretic drift, i.e. expecting drift along a
straight line, and secondly, that unlike electrophoretic drift,
the assumption is inherently limited to suchX that ε(X−x0)
remains sufficiently small.

4

C. Electrophoretic Drift

Here we consider an anisotropic perturbation which breaks
rotational symmetry

h(!r) = B
∂U

∂x
(21)

where B ∈ R!×! is a constant matrix. This perturbation cor-
responds to action of an external electric field on a chemical
reaction where some of the species are electrically charged.
In this case matrix B is diagonal and its nonzero elements
represent motilities of the ions of the reaction species. The
same sort of perturbation appears in the asymptotic dynamics
of scroll waves [34, 35], whereB = D.
In the co-rotating system of reference, the perturbation (21)

can be written using the Goldstone modes (8), as

h̃(U, ρ, θ,φ) = −B
(

V(−1)e−iφ +V(1)eiφ
)

, (22)

which, by substituting into (14), gives

αn(ρ, θ) = −B

∫ 2π

0
e−inφ

(

V(−1)e−iφ +V(1)eiφ
)dφ

2π
(23)

Thus, α0 = 0, α1(ρ, θ) = −BV(1), which following (12)
and (13) gives the velocity of the electrophoretic drift

!̇R = −ε
〈

W(1)(ρ, θ) , BV(1)(ρ, θ)
〉

(24)

which remains constant in time.

D. Inhomogeneity induced Drift

1. General

We now consider the case when the reaction kinetics f in
(1) depend on a parameter p, and the value of this parameter
varies slightly in space,

f = f(u, p), p = p(!r) = p0 + εp1(!r). (25)
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Ṙ = ε
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0
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0

w(1)(ρ, θ)e−iθK1(ρ) ρ dρ dθ, (30)

where for brevity we introduce

w(n)(ρ, θ) =
[

W(n)(ρ, θ)
]+

∂pf(ρ, θ; p0). (31)

2. Linear Gradient

Let p1 vary linearly in a sufficiently large region containing
the spiral tip and its subsequent drift trajectory. Specifically
we consider p1 = x − x0, where the x-coordinate of the tra-
jectory remains near x0. In the co-moving reference frame,
the linear gradient perturbation will be
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Substituting (32) into (28) gives
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ρ (δn,1 + δn,−1) .
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gradient of a model parameter will be

Φ̇ = ε(X − x0)

2π
∫

0

∞
∫

0

w(0)(ρ, θ) ρ dρ dθ,
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ε

2

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθ ρ2 dρ dθ. (33)

An important feature of equations (33) is that the first of
them depends on X while the second does not. The depen-
dence on X means that the drift velocity changes during the
drift, unless the drift proceeds precisely along the y-axis. As
it happens, at first order in ε, only the temporal drift, that is the
correction to the frequency, shows this dependence. Namely,
the first of equations (33) shows that the instant rotation fre-
quency corresponds to the parameter value at the current cen-
tre of rotation, p = p0 + εp1 = p0 + ε(X − x0). The spatial
drift, described by the second of equations (33), does not de-
pend onX . That means that while the drift proceeds, its speed
and direction remain the same, at least at the asymptotic order
considered. This is an important observation, firstly, because
it allows us to treat linear gradient induced drift in the same
way as the electrophoretic drift, i.e. expecting drift along a
straight line, and secondly, that unlike electrophoretic drift,
the assumption is inherently limited to suchX that ε(X−x0)
remains sufficiently small.

5

3. Step inhomogeneity

Here we consider a step perturbation located at x = xs,

p1(x) = H(x − xs),

where H() denotes the Heaviside unit step function. In the
co-moving frame of reference we have

p̃1(ρ,ϑ) = H (X + ρ cos(ϑ)− xs) . (34)

Substitution of (34) into (28) gives

Kn =

∫ 2π

0
cos(nϑ) H

(

cos(ϑ)−
xs −X

ρ

)

dϑ

2π
.

We consider three intervals for xs−X
ρ
.

(1) ρ < |xs −X | , xs > X . Then H
(

cos(ϑ)− xs−X
ρ

)

= 0,
thereforeK0 = K1 = 0.

(2) ρ < |xs −X | , xs < X . Then H
(

cos(ϑ)− xs−X
ρ

)

= 1,
thereforeK0 = 1,K1 = 0.

(3) ρ ≥ |xs −X |. Then, for ϑ0 = arccos
(

xs−X
ρ

)

,

H

(

cos(ϑ)−
xs −X

ρ

)

=

{

1 , ϑ ∈ [−ϑ0,ϑ0]
0 , otherwise.

Thus,

K0 =
1

π
arccos

(

xs −X

ρ

)

, (35)

K1 =
1

π

√

1−

(

xs −X

ρ

)2

. (36)

Substituting the aboveKn for the three intervals into (13) and
(12), we get the velocities of the drift due to a step-wise inho-
mogeneity of a model parameter in the form

Ṙ =
ε

π

2π
∫

0

∞
∫

|xs−X|

w(1)(ρ, θ)e−iθ

√

1−

(

xs −X

ρ

)2

ρ dρ dθ, (37)

Φ̇ =
ε

π

2π
∫

0

∞
∫

|xs−X|

w(0)(ρ, θ) arccos

(

xs −X

ρ

)

ρ dρ dθ + εH(X − xs)

2π
∫

0

|xs−X|
∫

0

w(0)(ρ, θ)ρ dρ dθ. (38)

Note that both Ṙ and Φ̇ are functions of the current x-
coordinate of the spiral with respect to the step, d = X − xs,
and Ṙ is an even function of this coordinate.

4. Disk-shaped inhomogeneity

We now consider an inhomogeneity which is unity within
a disc of radius Rin centered at (xd, yd), and which is zero
outside the disc. Thus we have

p̃1(&r) = H
(

R2
in − (x − xd)

2 − (y − yd)
2
)

.

Then calculations, similar to those for a stepwise inhomo-
geneity, lead to

K0 =
1

π
arccos

(

ρ2 + l2 −R2
in

2lρ

)

, (39)

K1 =
eiϑ0

π

√

1−

(

ρ2 + l2 −R2
in

2lρ

)2

, (40)

where l and ϑ0 designate the distance and the direction from
the current centre of the spiral to the centre of the inhomo-
geneity, i.e. xd = X + l cosϑ0, yd = Y + l sinϑ0.
This leads to the equations for the drift velocities in the

form

where,

4

C. Electrophoretic Drift

Here we consider an anisotropic perturbation which breaks
rotational symmetry

h(!r) = B
∂U

∂x
(21)

where B ∈ R!×! is a constant matrix. This perturbation cor-
responds to action of an external electric field on a chemical
reaction where some of the species are electrically charged.
In this case matrix B is diagonal and its nonzero elements
represent motilities of the ions of the reaction species. The
same sort of perturbation appears in the asymptotic dynamics
of scroll waves [34, 35], whereB = D.
In the co-rotating system of reference, the perturbation (21)

can be written using the Goldstone modes (8), as

h̃(U, ρ, θ,φ) = −B
(

V(−1)e−iφ +V(1)eiφ
)

, (22)

which, by substituting into (14), gives

αn(ρ, θ) = −B

∫ 2π

0
e−inφ

(

V(−1)e−iφ +V(1)eiφ
)dφ

2π
(23)

Thus, α0 = 0, α1(ρ, θ) = −BV(1), which following (12)
and (13) gives the velocity of the electrophoretic drift

!̇R = −ε
〈

W(1)(ρ, θ) , BV(1)(ρ, θ)
〉

(24)

which remains constant in time.

D. Inhomogeneity induced Drift

1. General

We now consider the case when the reaction kinetics f in
(1) depend on a parameter p, and the value of this parameter
varies slightly in space,

f = f(u, p), p = p(!r) = p0 + εp1(!r). (25)

Substitution of (25) into (1) gives, to the first order in ε,

∂tu = D∇2u+ f(u, p0) + εp1(!r)∂pf(u, p0),

with the perturbation in the laboratory frame of reference

h(u,!r, t) = ∂pf(u, p0) p1(!r). (26)

Substitution of (26) into (14) gives

αn(ρ, θ) = ∂pf(U(ρ, θ), p0) e
−inθKn(ρ), (27)

where

Kn(ρ) =

∫ 2π

0
einϑ p̃1(ρ,ϑ)

dϑ

2π
, (28)

and p̃1(ρ,ϑ) is the parameter perturbation considered in the
co-moving frame of reference. The final equations for the drift
velocities can then be written in the form

Φ̇ = ε

2π
∫

0

∞
∫

0

w(0)(ρ, θ)K0(ρ) ρ dρ dθ, (29)

Ṙ = ε

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθK1(ρ) ρ dρ dθ, (30)

where for brevity we introduce

w(n)(ρ, θ) =
[

W(n)(ρ, θ)
]+

∂pf(ρ, θ; p0). (31)

2. Linear Gradient

Let p1 vary linearly in a sufficiently large region containing
the spiral tip and its subsequent drift trajectory. Specifically
we consider p1 = x − x0, where the x-coordinate of the tra-
jectory remains near x0. In the co-moving reference frame,
the linear gradient perturbation will be

p̃1 = X − x0 + ρ cos(ϑ). (32)

Substituting (32) into (28) gives

Kn(ρ) = (X − x0)δn,0 +
1

2
ρ (δn,1 + δn,−1) .

Then, by (27), (12) and (13), the velocity of the drift due to
gradient of a model parameter will be

Φ̇ = ε(X − x0)

2π
∫

0

∞
∫

0

w(0)(ρ, θ) ρ dρ dθ,

Ṙ =
ε

2

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθ ρ2 dρ dθ. (33)

An important feature of equations (33) is that the first of
them depends on X while the second does not. The depen-
dence on X means that the drift velocity changes during the
drift, unless the drift proceeds precisely along the y-axis. As
it happens, at first order in ε, only the temporal drift, that is the
correction to the frequency, shows this dependence. Namely,
the first of equations (33) shows that the instant rotation fre-
quency corresponds to the parameter value at the current cen-
tre of rotation, p = p0 + εp1 = p0 + ε(X − x0). The spatial
drift, described by the second of equations (33), does not de-
pend onX . That means that while the drift proceeds, its speed
and direction remain the same, at least at the asymptotic order
considered. This is an important observation, firstly, because
it allows us to treat linear gradient induced drift in the same
way as the electrophoretic drift, i.e. expecting drift along a
straight line, and secondly, that unlike electrophoretic drift,
the assumption is inherently limited to suchX that ε(X−x0)
remains sufficiently small.

Heaviside function
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FIG. 4: (color online) Drift in stepwise inhomogeneity (45,47). First row: theoretical predictions for the drift forces components as functions
of the distance to the steps, d = X − xs, in parameters (a) α, (b) β and (c) γ, in the FitzHugh-Nagumo model. Second row: same for
Barkley model, steps in parameters (d) a, (e) b and (f) c. Third row: comparison of theoretical predictions with DNS. (g) A phase portrait
of the drift in the FitzHugh-Nagumo model, in theory, (37), and DNS, (4,45,47), with a step inhomogeneity of parameter α (corresponds to
panel (a)), at ε = 10−2. Shown are the theoretical vector field (black arrows; the lengths are nonlinearly scaled for visualization), a selection
of theoretical trajectories (red filled circles) and a selection of numerical trajectories (blue open circles) of the centres of the spiral waves.
Trajectories are arbitrarily shifted in the vertical direction for visual convenience. Dashed-dotted vertical lines correspond to the root of the
theoretical horizontal component of the speed, and the location of the step X − xs = 0. (h) Speed of the established vertical movement along
the stepwise inhomogeneity as in panel (g), as a function of inhomogeneity strength. (i) A phase portrait of the drift in the Barkley model with
a step inhomogeneity of parameter c (corresponds to panel (f)), at ε = 3 · 10−4. Notation is the same as in panel (g).
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3. Step inhomogeneity

Here we consider a step perturbation located at x = xs,

p1(x) = H(x − xs),

where H() denotes the Heaviside unit step function. In the
co-moving frame of reference we have

p̃1(ρ,ϑ) = H (X + ρ cos(ϑ)− xs) . (34)

Substitution of (34) into (28) gives

Kn =

∫ 2π

0
cos(nϑ) H

(

cos(ϑ)−
xs −X

ρ

)

dϑ

2π
.

We consider three intervals for xs−X
ρ
.

(1) ρ < |xs −X | , xs > X . Then H
(

cos(ϑ)− xs−X
ρ

)

= 0,
thereforeK0 = K1 = 0.

(2) ρ < |xs −X | , xs < X . Then H
(

cos(ϑ)− xs−X
ρ

)

= 1,
thereforeK0 = 1,K1 = 0.

(3) ρ ≥ |xs −X |. Then, for ϑ0 = arccos
(

xs−X
ρ

)

,

H

(

cos(ϑ)−
xs −X

ρ

)

=

{

1 , ϑ ∈ [−ϑ0,ϑ0]
0 , otherwise.

Thus,

K0 =
1

π
arccos

(

xs −X

ρ

)

, (35)

K1 =
1

π

√

1−

(

xs −X

ρ

)2

. (36)

Substituting the aboveKn for the three intervals into (13) and
(12), we get the velocities of the drift due to a step-wise inho-
mogeneity of a model parameter in the form

Ṙ =
ε

π

2π
∫

0

∞
∫

|xs−X|

w(1)(ρ, θ)e−iθ

√

1−

(

xs −X

ρ

)2

ρ dρ dθ, (37)

Φ̇ =
ε

π

2π
∫

0

∞
∫

|xs−X|

w(0)(ρ, θ) arccos

(

xs −X

ρ

)

ρ dρ dθ + εH(X − xs)

2π
∫

0

|xs−X|
∫

0

w(0)(ρ, θ)ρ dρ dθ. (38)

Note that both Ṙ and Φ̇ are functions of the current x-
coordinate of the spiral with respect to the step, d = X − xs,
and Ṙ is an even function of this coordinate.

4. Disk-shaped inhomogeneity

We now consider an inhomogeneity which is unity within
a disc of radius Rin centered at (xd, yd), and which is zero
outside the disc. Thus we have

p̃1(&r) = H
(

R2
in − (x − xd)

2 − (y − yd)
2
)

.

Then calculations, similar to those for a stepwise inhomo-
geneity, lead to

K0 =
1

π
arccos

(

ρ2 + l2 −R2
in

2lρ

)

, (39)

K1 =
eiϑ0

π

√

1−

(

ρ2 + l2 −R2
in

2lρ

)2

, (40)

where l and ϑ0 designate the distance and the direction from
the current centre of the spiral to the centre of the inhomo-
geneity, i.e. xd = X + l cosϑ0, yd = Y + l sinϑ0.
This leads to the equations for the drift velocities in the

form

4

C. Electrophoretic Drift

Here we consider an anisotropic perturbation which breaks
rotational symmetry

h(!r) = B
∂U

∂x
(21)

where B ∈ R!×! is a constant matrix. This perturbation cor-
responds to action of an external electric field on a chemical
reaction where some of the species are electrically charged.
In this case matrix B is diagonal and its nonzero elements
represent motilities of the ions of the reaction species. The
same sort of perturbation appears in the asymptotic dynamics
of scroll waves [34, 35], whereB = D.
In the co-rotating system of reference, the perturbation (21)

can be written using the Goldstone modes (8), as

h̃(U, ρ, θ,φ) = −B
(

V(−1)e−iφ +V(1)eiφ
)

, (22)

which, by substituting into (14), gives

αn(ρ, θ) = −B

∫ 2π

0
e−inφ

(

V(−1)e−iφ +V(1)eiφ
)dφ

2π
(23)

Thus, α0 = 0, α1(ρ, θ) = −BV(1), which following (12)
and (13) gives the velocity of the electrophoretic drift

!̇R = −ε
〈

W(1)(ρ, θ) , BV(1)(ρ, θ)
〉

(24)

which remains constant in time.

D. Inhomogeneity induced Drift

1. General

We now consider the case when the reaction kinetics f in
(1) depend on a parameter p, and the value of this parameter
varies slightly in space,

f = f(u, p), p = p(!r) = p0 + εp1(!r). (25)

Substitution of (25) into (1) gives, to the first order in ε,

∂tu = D∇2u+ f(u, p0) + εp1(!r)∂pf(u, p0),

with the perturbation in the laboratory frame of reference

h(u,!r, t) = ∂pf(u, p0) p1(!r). (26)

Substitution of (26) into (14) gives

αn(ρ, θ) = ∂pf(U(ρ, θ), p0) e
−inθKn(ρ), (27)

where

Kn(ρ) =

∫ 2π

0
einϑ p̃1(ρ,ϑ)

dϑ

2π
, (28)

and p̃1(ρ,ϑ) is the parameter perturbation considered in the
co-moving frame of reference. The final equations for the drift
velocities can then be written in the form

Φ̇ = ε

2π
∫

0

∞
∫

0

w(0)(ρ, θ)K0(ρ) ρ dρ dθ, (29)

Ṙ = ε

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθK1(ρ) ρ dρ dθ, (30)

where for brevity we introduce

w(n)(ρ, θ) =
[

W(n)(ρ, θ)
]+

∂pf(ρ, θ; p0). (31)

2. Linear Gradient

Let p1 vary linearly in a sufficiently large region containing
the spiral tip and its subsequent drift trajectory. Specifically
we consider p1 = x − x0, where the x-coordinate of the tra-
jectory remains near x0. In the co-moving reference frame,
the linear gradient perturbation will be

p̃1 = X − x0 + ρ cos(ϑ). (32)

Substituting (32) into (28) gives

Kn(ρ) = (X − x0)δn,0 +
1

2
ρ (δn,1 + δn,−1) .

Then, by (27), (12) and (13), the velocity of the drift due to
gradient of a model parameter will be

Φ̇ = ε(X − x0)

2π
∫

0

∞
∫

0

w(0)(ρ, θ) ρ dρ dθ,

Ṙ =
ε

2

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθ ρ2 dρ dθ. (33)

An important feature of equations (33) is that the first of
them depends on X while the second does not. The depen-
dence on X means that the drift velocity changes during the
drift, unless the drift proceeds precisely along the y-axis. As
it happens, at first order in ε, only the temporal drift, that is the
correction to the frequency, shows this dependence. Namely,
the first of equations (33) shows that the instant rotation fre-
quency corresponds to the parameter value at the current cen-
tre of rotation, p = p0 + εp1 = p0 + ε(X − x0). The spatial
drift, described by the second of equations (33), does not de-
pend onX . That means that while the drift proceeds, its speed
and direction remain the same, at least at the asymptotic order
considered. This is an important observation, firstly, because
it allows us to treat linear gradient induced drift in the same
way as the electrophoretic drift, i.e. expecting drift along a
straight line, and secondly, that unlike electrophoretic drift,
the assumption is inherently limited to suchX that ε(X−x0)
remains sufficiently small.
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and (13) gives the velocity of the electrophoretic drift

!̇R = −ε
〈

W(1)(ρ, θ) , BV(1)(ρ, θ)
〉

(24)

which remains constant in time.

D. Inhomogeneity induced Drift

1. General

We now consider the case when the reaction kinetics f in
(1) depend on a parameter p, and the value of this parameter
varies slightly in space,

f = f(u, p), p = p(!r) = p0 + εp1(!r). (25)

Substitution of (25) into (1) gives, to the first order in ε,

∂tu = D∇2u+ f(u, p0) + εp1(!r)∂pf(u, p0),

with the perturbation in the laboratory frame of reference
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where for brevity we introduce

w(n)(ρ, θ) =
[

W(n)(ρ, θ)
]+
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2. Linear Gradient

Let p1 vary linearly in a sufficiently large region containing
the spiral tip and its subsequent drift trajectory. Specifically
we consider p1 = x − x0, where the x-coordinate of the tra-
jectory remains near x0. In the co-moving reference frame,
the linear gradient perturbation will be

p̃1 = X − x0 + ρ cos(ϑ). (32)
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2π
∫

0

∞
∫

0

w(0)(ρ, θ) ρ dρ dθ,
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ε
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An important feature of equations (33) is that the first of
them depends on X while the second does not. The depen-
dence on X means that the drift velocity changes during the
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it happens, at first order in ε, only the temporal drift, that is the
correction to the frequency, shows this dependence. Namely,
the first of equations (33) shows that the instant rotation fre-
quency corresponds to the parameter value at the current cen-
tre of rotation, p = p0 + εp1 = p0 + ε(X − x0). The spatial
drift, described by the second of equations (33), does not de-
pend onX . That means that while the drift proceeds, its speed
and direction remain the same, at least at the asymptotic order
considered. This is an important observation, firstly, because
it allows us to treat linear gradient induced drift in the same
way as the electrophoretic drift, i.e. expecting drift along a
straight line, and secondly, that unlike electrophoretic drift,
the assumption is inherently limited to suchX that ε(X−x0)
remains sufficiently small.
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1. General

We now consider the case when the reaction kinetics f in
(1) depend on a parameter p, and the value of this parameter
varies slightly in space,

f = f(u, p), p = p(!r) = p0 + εp1(!r). (25)

Substitution of (25) into (1) gives, to the first order in ε,

∂tu = D∇2u+ f(u, p0) + εp1(!r)∂pf(u, p0),

with the perturbation in the laboratory frame of reference
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co-moving frame of reference. The final equations for the drift
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0
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Ṙ = ε

2π
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0
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0

w(1)(ρ, θ)e−iθK1(ρ) ρ dρ dθ, (30)

where for brevity we introduce

w(n)(ρ, θ) =
[

W(n)(ρ, θ)
]+

∂pf(ρ, θ; p0). (31)

2. Linear Gradient

Let p1 vary linearly in a sufficiently large region containing
the spiral tip and its subsequent drift trajectory. Specifically
we consider p1 = x − x0, where the x-coordinate of the tra-
jectory remains near x0. In the co-moving reference frame,
the linear gradient perturbation will be

p̃1 = X − x0 + ρ cos(ϑ). (32)

Substituting (32) into (28) gives
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Then, by (27), (12) and (13), the velocity of the drift due to
gradient of a model parameter will be

Φ̇ = ε(X − x0)

2π
∫

0

∞
∫

0

w(0)(ρ, θ) ρ dρ dθ,

Ṙ =
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2

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθ ρ2 dρ dθ. (33)

An important feature of equations (33) is that the first of
them depends on X while the second does not. The depen-
dence on X means that the drift velocity changes during the
drift, unless the drift proceeds precisely along the y-axis. As
it happens, at first order in ε, only the temporal drift, that is the
correction to the frequency, shows this dependence. Namely,
the first of equations (33) shows that the instant rotation fre-
quency corresponds to the parameter value at the current cen-
tre of rotation, p = p0 + εp1 = p0 + ε(X − x0). The spatial
drift, described by the second of equations (33), does not de-
pend onX . That means that while the drift proceeds, its speed
and direction remain the same, at least at the asymptotic order
considered. This is an important observation, firstly, because
it allows us to treat linear gradient induced drift in the same
way as the electrophoretic drift, i.e. expecting drift along a
straight line, and secondly, that unlike electrophoretic drift,
the assumption is inherently limited to suchX that ε(X−x0)
remains sufficiently small.
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3. Step inhomogeneity

Here we consider a step perturbation located at x = xs,

p1(x) = H(x − xs),

where H() denotes the Heaviside unit step function. In the
co-moving frame of reference we have

p̃1(ρ,ϑ) = H (X + ρ cos(ϑ)− xs) . (34)

Substitution of (34) into (28) gives

Kn =

∫ 2π

0
cos(nϑ) H

(

cos(ϑ)−
xs −X

ρ

)

dϑ

2π
.

We consider three intervals for xs−X
ρ
.

(1) ρ < |xs −X | , xs > X . Then H
(

cos(ϑ)− xs−X
ρ

)

= 0,
thereforeK0 = K1 = 0.

(2) ρ < |xs −X | , xs < X . Then H
(

cos(ϑ)− xs−X
ρ

)

= 1,
thereforeK0 = 1,K1 = 0.

(3) ρ ≥ |xs −X |. Then, for ϑ0 = arccos
(

xs−X
ρ

)

,

H

(

cos(ϑ)−
xs −X

ρ

)

=

{

1 , ϑ ∈ [−ϑ0,ϑ0]
0 , otherwise.

Thus,

K0 =
1

π
arccos

(

xs −X

ρ

)

, (35)

K1 =
1

π

√

1−

(

xs −X

ρ

)2

. (36)

Substituting the aboveKn for the three intervals into (13) and
(12), we get the velocities of the drift due to a step-wise inho-
mogeneity of a model parameter in the form

Ṙ =
ε

π

2π
∫

0

∞
∫

|xs−X|

w(1)(ρ, θ)e−iθ

√

1−

(

xs −X

ρ

)2

ρ dρ dθ, (37)

Φ̇ =
ε

π

2π
∫

0

∞
∫

|xs−X|

w(0)(ρ, θ) arccos

(

xs −X

ρ

)

ρ dρ dθ + εH(X − xs)

2π
∫

0

|xs−X|
∫

0

w(0)(ρ, θ)ρ dρ dθ. (38)

Note that both Ṙ and Φ̇ are functions of the current x-
coordinate of the spiral with respect to the step, d = X − xs,
and Ṙ is an even function of this coordinate.

4. Disk-shaped inhomogeneity

We now consider an inhomogeneity which is unity within
a disc of radius Rin centered at (xd, yd), and which is zero
outside the disc. Thus we have

p̃1(&r) = H
(

R2
in − (x − xd)

2 − (y − yd)
2
)

.

Then calculations, similar to those for a stepwise inhomo-
geneity, lead to

K0 =
1

π
arccos

(

ρ2 + l2 −R2
in

2lρ

)

, (39)

K1 =
eiϑ0

π

√

1−

(

ρ2 + l2 −R2
in

2lρ

)2

, (40)

where l and ϑ0 designate the distance and the direction from
the current centre of the spiral to the centre of the inhomo-
geneity, i.e. xd = X + l cosϑ0, yd = Y + l sinϑ0.
This leads to the equations for the drift velocities in the

form

where,

4

C. Electrophoretic Drift

Here we consider an anisotropic perturbation which breaks
rotational symmetry

h(!r) = B
∂U

∂x
(21)

where B ∈ R!×! is a constant matrix. This perturbation cor-
responds to action of an external electric field on a chemical
reaction where some of the species are electrically charged.
In this case matrix B is diagonal and its nonzero elements
represent motilities of the ions of the reaction species. The
same sort of perturbation appears in the asymptotic dynamics
of scroll waves [34, 35], whereB = D.
In the co-rotating system of reference, the perturbation (21)

can be written using the Goldstone modes (8), as

h̃(U, ρ, θ,φ) = −B
(

V(−1)e−iφ +V(1)eiφ
)

, (22)

which, by substituting into (14), gives

αn(ρ, θ) = −B

∫ 2π

0
e−inφ

(

V(−1)e−iφ +V(1)eiφ
)dφ

2π
(23)

Thus, α0 = 0, α1(ρ, θ) = −BV(1), which following (12)
and (13) gives the velocity of the electrophoretic drift

!̇R = −ε
〈

W(1)(ρ, θ) , BV(1)(ρ, θ)
〉

(24)

which remains constant in time.

D. Inhomogeneity induced Drift

1. General

We now consider the case when the reaction kinetics f in
(1) depend on a parameter p, and the value of this parameter
varies slightly in space,

f = f(u, p), p = p(!r) = p0 + εp1(!r). (25)

Substitution of (25) into (1) gives, to the first order in ε,

∂tu = D∇2u+ f(u, p0) + εp1(!r)∂pf(u, p0),

with the perturbation in the laboratory frame of reference

h(u,!r, t) = ∂pf(u, p0) p1(!r). (26)

Substitution of (26) into (14) gives

αn(ρ, θ) = ∂pf(U(ρ, θ), p0) e
−inθKn(ρ), (27)

where

Kn(ρ) =

∫ 2π

0
einϑ p̃1(ρ,ϑ)

dϑ

2π
, (28)

and p̃1(ρ,ϑ) is the parameter perturbation considered in the
co-moving frame of reference. The final equations for the drift
velocities can then be written in the form

Φ̇ = ε

2π
∫

0

∞
∫

0

w(0)(ρ, θ)K0(ρ) ρ dρ dθ, (29)

Ṙ = ε

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθK1(ρ) ρ dρ dθ, (30)

where for brevity we introduce

w(n)(ρ, θ) =
[

W(n)(ρ, θ)
]+

∂pf(ρ, θ; p0). (31)

2. Linear Gradient

Let p1 vary linearly in a sufficiently large region containing
the spiral tip and its subsequent drift trajectory. Specifically
we consider p1 = x − x0, where the x-coordinate of the tra-
jectory remains near x0. In the co-moving reference frame,
the linear gradient perturbation will be

p̃1 = X − x0 + ρ cos(ϑ). (32)

Substituting (32) into (28) gives

Kn(ρ) = (X − x0)δn,0 +
1

2
ρ (δn,1 + δn,−1) .

Then, by (27), (12) and (13), the velocity of the drift due to
gradient of a model parameter will be

Φ̇ = ε(X − x0)

2π
∫

0

∞
∫

0

w(0)(ρ, θ) ρ dρ dθ,

Ṙ =
ε

2

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθ ρ2 dρ dθ. (33)

An important feature of equations (33) is that the first of
them depends on X while the second does not. The depen-
dence on X means that the drift velocity changes during the
drift, unless the drift proceeds precisely along the y-axis. As
it happens, at first order in ε, only the temporal drift, that is the
correction to the frequency, shows this dependence. Namely,
the first of equations (33) shows that the instant rotation fre-
quency corresponds to the parameter value at the current cen-
tre of rotation, p = p0 + εp1 = p0 + ε(X − x0). The spatial
drift, described by the second of equations (33), does not de-
pend onX . That means that while the drift proceeds, its speed
and direction remain the same, at least at the asymptotic order
considered. This is an important observation, firstly, because
it allows us to treat linear gradient induced drift in the same
way as the electrophoretic drift, i.e. expecting drift along a
straight line, and secondly, that unlike electrophoretic drift,
the assumption is inherently limited to suchX that ε(X−x0)
remains sufficiently small.

Heaviside function
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FIG. 4: (color online) Drift in stepwise inhomogeneity (45,47). First row: theoretical predictions for the drift forces components as functions
of the distance to the steps, d = X − xs, in parameters (a) α, (b) β and (c) γ, in the FitzHugh-Nagumo model. Second row: same for
Barkley model, steps in parameters (d) a, (e) b and (f) c. Third row: comparison of theoretical predictions with DNS. (g) A phase portrait
of the drift in the FitzHugh-Nagumo model, in theory, (37), and DNS, (4,45,47), with a step inhomogeneity of parameter α (corresponds to
panel (a)), at ε = 10−2. Shown are the theoretical vector field (black arrows; the lengths are nonlinearly scaled for visualization), a selection
of theoretical trajectories (red filled circles) and a selection of numerical trajectories (blue open circles) of the centres of the spiral waves.
Trajectories are arbitrarily shifted in the vertical direction for visual convenience. Dashed-dotted vertical lines correspond to the root of the
theoretical horizontal component of the speed, and the location of the step X − xs = 0. (h) Speed of the established vertical movement along
the stepwise inhomogeneity as in panel (g), as a function of inhomogeneity strength. (i) A phase portrait of the drift in the Barkley model with
a step inhomogeneity of parameter c (corresponds to panel (f)), at ε = 3 · 10−4. Notation is the same as in panel (g).
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5

3. Step inhomogeneity

Here we consider a step perturbation located at x = xs,

p1(x) = H(x − xs),

where H() denotes the Heaviside unit step function. In the
co-moving frame of reference we have

p̃1(ρ,ϑ) = H (X + ρ cos(ϑ)− xs) . (34)

Substitution of (34) into (28) gives

Kn =

∫ 2π

0
cos(nϑ) H

(

cos(ϑ)−
xs −X

ρ

)

dϑ

2π
.

We consider three intervals for xs−X
ρ
.

(1) ρ < |xs −X | , xs > X . Then H
(

cos(ϑ)− xs−X
ρ

)

= 0,
thereforeK0 = K1 = 0.

(2) ρ < |xs −X | , xs < X . Then H
(

cos(ϑ)− xs−X
ρ

)

= 1,
thereforeK0 = 1,K1 = 0.

(3) ρ ≥ |xs −X |. Then, for ϑ0 = arccos
(

xs−X
ρ

)

,

H

(

cos(ϑ)−
xs −X

ρ

)

=

{

1 , ϑ ∈ [−ϑ0,ϑ0]
0 , otherwise.

Thus,

K0 =
1

π
arccos

(

xs −X

ρ

)

, (35)

K1 =
1

π

√

1−

(

xs −X

ρ

)2

. (36)

Substituting the aboveKn for the three intervals into (13) and
(12), we get the velocities of the drift due to a step-wise inho-
mogeneity of a model parameter in the form

Ṙ =
ε

π

2π
∫

0

∞
∫

|xs−X|

w(1)(ρ, θ)e−iθ

√

1−

(

xs −X

ρ

)2

ρ dρ dθ, (37)

Φ̇ =
ε

π

2π
∫

0

∞
∫

|xs−X|

w(0)(ρ, θ) arccos

(

xs −X

ρ

)

ρ dρ dθ + εH(X − xs)

2π
∫

0

|xs−X|
∫

0

w(0)(ρ, θ)ρ dρ dθ. (38)

Note that both Ṙ and Φ̇ are functions of the current x-
coordinate of the spiral with respect to the step, d = X − xs,
and Ṙ is an even function of this coordinate.

4. Disk-shaped inhomogeneity

We now consider an inhomogeneity which is unity within
a disc of radius Rin centered at (xd, yd), and which is zero
outside the disc. Thus we have

p̃1(&r) = H
(

R2
in − (x − xd)

2 − (y − yd)
2
)

.

Then calculations, similar to those for a stepwise inhomo-
geneity, lead to

K0 =
1

π
arccos

(

ρ2 + l2 −R2
in

2lρ

)

, (39)

K1 =
eiϑ0

π

√

1−

(

ρ2 + l2 −R2
in

2lρ

)2

, (40)

where l and ϑ0 designate the distance and the direction from
the current centre of the spiral to the centre of the inhomo-
geneity, i.e. xd = X + l cosϑ0, yd = Y + l sinϑ0.
This leads to the equations for the drift velocities in the

form

4

C. Electrophoretic Drift

Here we consider an anisotropic perturbation which breaks
rotational symmetry

h(!r) = B
∂U

∂x
(21)

where B ∈ R!×! is a constant matrix. This perturbation cor-
responds to action of an external electric field on a chemical
reaction where some of the species are electrically charged.
In this case matrix B is diagonal and its nonzero elements
represent motilities of the ions of the reaction species. The
same sort of perturbation appears in the asymptotic dynamics
of scroll waves [34, 35], whereB = D.
In the co-rotating system of reference, the perturbation (21)

can be written using the Goldstone modes (8), as

h̃(U, ρ, θ,φ) = −B
(

V(−1)e−iφ +V(1)eiφ
)

, (22)

which, by substituting into (14), gives

αn(ρ, θ) = −B

∫ 2π

0
e−inφ

(

V(−1)e−iφ +V(1)eiφ
)dφ

2π
(23)

Thus, α0 = 0, α1(ρ, θ) = −BV(1), which following (12)
and (13) gives the velocity of the electrophoretic drift

!̇R = −ε
〈

W(1)(ρ, θ) , BV(1)(ρ, θ)
〉

(24)

which remains constant in time.

D. Inhomogeneity induced Drift

1. General

We now consider the case when the reaction kinetics f in
(1) depend on a parameter p, and the value of this parameter
varies slightly in space,

f = f(u, p), p = p(!r) = p0 + εp1(!r). (25)

Substitution of (25) into (1) gives, to the first order in ε,

∂tu = D∇2u+ f(u, p0) + εp1(!r)∂pf(u, p0),

with the perturbation in the laboratory frame of reference

h(u,!r, t) = ∂pf(u, p0) p1(!r). (26)

Substitution of (26) into (14) gives

αn(ρ, θ) = ∂pf(U(ρ, θ), p0) e
−inθKn(ρ), (27)

where

Kn(ρ) =

∫ 2π

0
einϑ p̃1(ρ,ϑ)

dϑ

2π
, (28)

and p̃1(ρ,ϑ) is the parameter perturbation considered in the
co-moving frame of reference. The final equations for the drift
velocities can then be written in the form

Φ̇ = ε

2π
∫

0

∞
∫

0

w(0)(ρ, θ)K0(ρ) ρ dρ dθ, (29)

Ṙ = ε

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθK1(ρ) ρ dρ dθ, (30)

where for brevity we introduce

w(n)(ρ, θ) =
[

W(n)(ρ, θ)
]+

∂pf(ρ, θ; p0). (31)

2. Linear Gradient

Let p1 vary linearly in a sufficiently large region containing
the spiral tip and its subsequent drift trajectory. Specifically
we consider p1 = x − x0, where the x-coordinate of the tra-
jectory remains near x0. In the co-moving reference frame,
the linear gradient perturbation will be

p̃1 = X − x0 + ρ cos(ϑ). (32)

Substituting (32) into (28) gives

Kn(ρ) = (X − x0)δn,0 +
1

2
ρ (δn,1 + δn,−1) .

Then, by (27), (12) and (13), the velocity of the drift due to
gradient of a model parameter will be

Φ̇ = ε(X − x0)

2π
∫

0

∞
∫

0

w(0)(ρ, θ) ρ dρ dθ,

Ṙ =
ε

2

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθ ρ2 dρ dθ. (33)

An important feature of equations (33) is that the first of
them depends on X while the second does not. The depen-
dence on X means that the drift velocity changes during the
drift, unless the drift proceeds precisely along the y-axis. As
it happens, at first order in ε, only the temporal drift, that is the
correction to the frequency, shows this dependence. Namely,
the first of equations (33) shows that the instant rotation fre-
quency corresponds to the parameter value at the current cen-
tre of rotation, p = p0 + εp1 = p0 + ε(X − x0). The spatial
drift, described by the second of equations (33), does not de-
pend onX . That means that while the drift proceeds, its speed
and direction remain the same, at least at the asymptotic order
considered. This is an important observation, firstly, because
it allows us to treat linear gradient induced drift in the same
way as the electrophoretic drift, i.e. expecting drift along a
straight line, and secondly, that unlike electrophoretic drift,
the assumption is inherently limited to suchX that ε(X−x0)
remains sufficiently small.

4

C. Electrophoretic Drift

Here we consider an anisotropic perturbation which breaks
rotational symmetry

h(!r) = B
∂U

∂x
(21)

where B ∈ R!×! is a constant matrix. This perturbation cor-
responds to action of an external electric field on a chemical
reaction where some of the species are electrically charged.
In this case matrix B is diagonal and its nonzero elements
represent motilities of the ions of the reaction species. The
same sort of perturbation appears in the asymptotic dynamics
of scroll waves [34, 35], whereB = D.
In the co-rotating system of reference, the perturbation (21)

can be written using the Goldstone modes (8), as

h̃(U, ρ, θ,φ) = −B
(

V(−1)e−iφ +V(1)eiφ
)

, (22)

which, by substituting into (14), gives

αn(ρ, θ) = −B

∫ 2π

0
e−inφ

(

V(−1)e−iφ +V(1)eiφ
)dφ

2π
(23)

Thus, α0 = 0, α1(ρ, θ) = −BV(1), which following (12)
and (13) gives the velocity of the electrophoretic drift

!̇R = −ε
〈

W(1)(ρ, θ) , BV(1)(ρ, θ)
〉

(24)

which remains constant in time.

D. Inhomogeneity induced Drift

1. General

We now consider the case when the reaction kinetics f in
(1) depend on a parameter p, and the value of this parameter
varies slightly in space,

f = f(u, p), p = p(!r) = p0 + εp1(!r). (25)

Substitution of (25) into (1) gives, to the first order in ε,

∂tu = D∇2u+ f(u, p0) + εp1(!r)∂pf(u, p0),

with the perturbation in the laboratory frame of reference

h(u,!r, t) = ∂pf(u, p0) p1(!r). (26)

Substitution of (26) into (14) gives

αn(ρ, θ) = ∂pf(U(ρ, θ), p0) e
−inθKn(ρ), (27)

where

Kn(ρ) =

∫ 2π

0
einϑ p̃1(ρ,ϑ)

dϑ

2π
, (28)

and p̃1(ρ,ϑ) is the parameter perturbation considered in the
co-moving frame of reference. The final equations for the drift
velocities can then be written in the form

Φ̇ = ε

2π
∫

0

∞
∫

0

w(0)(ρ, θ)K0(ρ) ρ dρ dθ, (29)

Ṙ = ε

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθK1(ρ) ρ dρ dθ, (30)

where for brevity we introduce

w(n)(ρ, θ) =
[

W(n)(ρ, θ)
]+

∂pf(ρ, θ; p0). (31)

2. Linear Gradient

Let p1 vary linearly in a sufficiently large region containing
the spiral tip and its subsequent drift trajectory. Specifically
we consider p1 = x − x0, where the x-coordinate of the tra-
jectory remains near x0. In the co-moving reference frame,
the linear gradient perturbation will be

p̃1 = X − x0 + ρ cos(ϑ). (32)

Substituting (32) into (28) gives

Kn(ρ) = (X − x0)δn,0 +
1

2
ρ (δn,1 + δn,−1) .

Then, by (27), (12) and (13), the velocity of the drift due to
gradient of a model parameter will be

Φ̇ = ε(X − x0)

2π
∫

0

∞
∫

0

w(0)(ρ, θ) ρ dρ dθ,

Ṙ =
ε

2

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθ ρ2 dρ dθ. (33)

An important feature of equations (33) is that the first of
them depends on X while the second does not. The depen-
dence on X means that the drift velocity changes during the
drift, unless the drift proceeds precisely along the y-axis. As
it happens, at first order in ε, only the temporal drift, that is the
correction to the frequency, shows this dependence. Namely,
the first of equations (33) shows that the instant rotation fre-
quency corresponds to the parameter value at the current cen-
tre of rotation, p = p0 + εp1 = p0 + ε(X − x0). The spatial
drift, described by the second of equations (33), does not de-
pend onX . That means that while the drift proceeds, its speed
and direction remain the same, at least at the asymptotic order
considered. This is an important observation, firstly, because
it allows us to treat linear gradient induced drift in the same
way as the electrophoretic drift, i.e. expecting drift along a
straight line, and secondly, that unlike electrophoretic drift,
the assumption is inherently limited to suchX that ε(X−x0)
remains sufficiently small.

5

3. Step inhomogeneity

Here we consider a step perturbation located at x = xs,

p1(x) = H(x − xs),

where H() denotes the Heaviside unit step function. In the
co-moving frame of reference we have

p̃1(ρ,ϑ) = H (X + ρ cos(ϑ)− xs) . (34)

Substitution of (34) into (28) gives

Kn =

∫ 2π

0
cos(nϑ) H

(

cos(ϑ)−
xs −X

ρ

)

dϑ

2π
.

We consider three intervals for xs−X
ρ
.

(1) ρ < |xs −X | , xs > X . Then H
(

cos(ϑ)− xs−X
ρ

)

= 0,
thereforeK0 = K1 = 0.

(2) ρ < |xs −X | , xs < X . Then H
(

cos(ϑ)− xs−X
ρ

)

= 1,
thereforeK0 = 1,K1 = 0.

(3) ρ ≥ |xs −X |. Then, for ϑ0 = arccos
(

xs−X
ρ

)

,

H

(

cos(ϑ)−
xs −X

ρ

)

=

{

1 , ϑ ∈ [−ϑ0,ϑ0]
0 , otherwise.

Thus,

K0 =
1

π
arccos

(

xs −X

ρ

)

, (35)

K1 =
1

π

√

1−

(

xs −X

ρ

)2

. (36)

Substituting the aboveKn for the three intervals into (13) and
(12), we get the velocities of the drift due to a step-wise inho-
mogeneity of a model parameter in the form

Ṙ =
ε

π

2π
∫

0

∞
∫

|xs−X|

w(1)(ρ, θ)e−iθ

√

1−

(

xs −X

ρ

)2

ρ dρ dθ, (37)

Φ̇ =
ε

π

2π
∫

0

∞
∫

|xs−X|

w(0)(ρ, θ) arccos

(

xs −X

ρ

)

ρ dρ dθ + εH(X − xs)

2π
∫

0

|xs−X|
∫

0

w(0)(ρ, θ)ρ dρ dθ. (38)

Note that both Ṙ and Φ̇ are functions of the current x-
coordinate of the spiral with respect to the step, d = X − xs,
and Ṙ is an even function of this coordinate.

4. Disk-shaped inhomogeneity

We now consider an inhomogeneity which is unity within
a disc of radius Rin centered at (xd, yd), and which is zero
outside the disc. Thus we have

p̃1(&r) = H
(

R2
in − (x − xd)

2 − (y − yd)
2
)

.

Then calculations, similar to those for a stepwise inhomo-
geneity, lead to

K0 =
1

π
arccos

(

ρ2 + l2 −R2
in

2lρ

)

, (39)

K1 =
eiϑ0

π

√

1−

(

ρ2 + l2 −R2
in

2lρ

)2

, (40)

where l and ϑ0 designate the distance and the direction from
the current centre of the spiral to the centre of the inhomo-
geneity, i.e. xd = X + l cosϑ0, yd = Y + l sinϑ0.
This leads to the equations for the drift velocities in the

form

where,

4

C. Electrophoretic Drift

Here we consider an anisotropic perturbation which breaks
rotational symmetry

h(!r) = B
∂U

∂x
(21)

where B ∈ R!×! is a constant matrix. This perturbation cor-
responds to action of an external electric field on a chemical
reaction where some of the species are electrically charged.
In this case matrix B is diagonal and its nonzero elements
represent motilities of the ions of the reaction species. The
same sort of perturbation appears in the asymptotic dynamics
of scroll waves [34, 35], whereB = D.
In the co-rotating system of reference, the perturbation (21)

can be written using the Goldstone modes (8), as

h̃(U, ρ, θ,φ) = −B
(

V(−1)e−iφ +V(1)eiφ
)

, (22)

which, by substituting into (14), gives

αn(ρ, θ) = −B

∫ 2π

0
e−inφ

(

V(−1)e−iφ +V(1)eiφ
)dφ

2π
(23)

Thus, α0 = 0, α1(ρ, θ) = −BV(1), which following (12)
and (13) gives the velocity of the electrophoretic drift

!̇R = −ε
〈

W(1)(ρ, θ) , BV(1)(ρ, θ)
〉

(24)

which remains constant in time.

D. Inhomogeneity induced Drift

1. General

We now consider the case when the reaction kinetics f in
(1) depend on a parameter p, and the value of this parameter
varies slightly in space,

f = f(u, p), p = p(!r) = p0 + εp1(!r). (25)

Substitution of (25) into (1) gives, to the first order in ε,

∂tu = D∇2u+ f(u, p0) + εp1(!r)∂pf(u, p0),

with the perturbation in the laboratory frame of reference

h(u,!r, t) = ∂pf(u, p0) p1(!r). (26)

Substitution of (26) into (14) gives

αn(ρ, θ) = ∂pf(U(ρ, θ), p0) e
−inθKn(ρ), (27)

where

Kn(ρ) =

∫ 2π

0
einϑ p̃1(ρ,ϑ)

dϑ

2π
, (28)

and p̃1(ρ,ϑ) is the parameter perturbation considered in the
co-moving frame of reference. The final equations for the drift
velocities can then be written in the form

Φ̇ = ε

2π
∫

0

∞
∫

0

w(0)(ρ, θ)K0(ρ) ρ dρ dθ, (29)

Ṙ = ε

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθK1(ρ) ρ dρ dθ, (30)

where for brevity we introduce

w(n)(ρ, θ) =
[

W(n)(ρ, θ)
]+

∂pf(ρ, θ; p0). (31)

2. Linear Gradient

Let p1 vary linearly in a sufficiently large region containing
the spiral tip and its subsequent drift trajectory. Specifically
we consider p1 = x − x0, where the x-coordinate of the tra-
jectory remains near x0. In the co-moving reference frame,
the linear gradient perturbation will be

p̃1 = X − x0 + ρ cos(ϑ). (32)

Substituting (32) into (28) gives

Kn(ρ) = (X − x0)δn,0 +
1

2
ρ (δn,1 + δn,−1) .

Then, by (27), (12) and (13), the velocity of the drift due to
gradient of a model parameter will be

Φ̇ = ε(X − x0)

2π
∫

0

∞
∫

0

w(0)(ρ, θ) ρ dρ dθ,

Ṙ =
ε

2

2π
∫

0

∞
∫

0

w(1)(ρ, θ)e−iθ ρ2 dρ dθ. (33)

An important feature of equations (33) is that the first of
them depends on X while the second does not. The depen-
dence on X means that the drift velocity changes during the
drift, unless the drift proceeds precisely along the y-axis. As
it happens, at first order in ε, only the temporal drift, that is the
correction to the frequency, shows this dependence. Namely,
the first of equations (33) shows that the instant rotation fre-
quency corresponds to the parameter value at the current cen-
tre of rotation, p = p0 + εp1 = p0 + ε(X − x0). The spatial
drift, described by the second of equations (33), does not de-
pend onX . That means that while the drift proceeds, its speed
and direction remain the same, at least at the asymptotic order
considered. This is an important observation, firstly, because
it allows us to treat linear gradient induced drift in the same
way as the electrophoretic drift, i.e. expecting drift along a
straight line, and secondly, that unlike electrophoretic drift,
the assumption is inherently limited to suchX that ε(X−x0)
remains sufficiently small.

Heaviside function
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FIG. 2: (color online) Drift speeds as functions of corresponding perturbation amplitudes. Top row: FitzHugh-Nagumo model. Bottom row:
Barkley model. First column: resonant drift. Second column: electrophoretic drift. Third column: drift in linear gradient inhomogeneity,
namely (c) with respect to parameter β in the FHN model, and (f) with respect to parameter a in the Barkley model. In the second and the
third columns, the symbols represent simulations and the lines represent theoretical predictions. Numerical parameters: (a) ∆x = ∆ρ = 0.1,
ρmax = 50, (b) ∆x = ∆ρ = 0.1, ρmax = 25, (c) ∆x = 0.08, ∆ρ = 0.02, ρmax = 25, (d) ∆x = ∆ρ = 0.05, ρmax = 25, (e)
∆x = ∆ρ = 0.02, ρmax = 12.5, (f) ∆x = ∆ρ = 0.06, ρmax = 24.

For the resonant drift, the motion equations given by (18),
(19) and (20) can be summarized, in terms of complex coor-
dinate R = X + iY , as

dR

dt
= eiΦp,

dΦ

dt
= q, (49)

where p = 1
2

∣

∣ε
〈

W(1) , A
〉
∣

∣ is predicted by the theory at

leading order, and q = O(ε2) is not, and we only know its
expected asymptotic order. The theoretical trajectory is a cir-
cle of radius p/q, and the spiral drifts along it with the speed
p. In the simulations, we determined both the radius and the
speed by fitting. The speed is used for comparison and the
radius is ignored.

For the other two types, electrophoretic drift and linear gra-
dient inhomogeneity drift, the theory predicts drift at a straight
line, according to (24) and (33) respectively. In these cases,
we measure and compare the x and y components of the drift
velocities separately.

For numerical comparison in the case of linear gradient in-
homogeneity, we chose a pieces of trajectories not too far from
x = x0, selected empirically to achieve a satisfactory quality
of fitting.

A common feature of all graphs is that at small enough ε,
there is a good agreement between theory and simulations. As
expected, differences appears for larger ε with the disagree-
ment occurring sooner (for smaller values of drift speed) for
the linear gradient inhomogeneity drift. This is related to an

extra factor specific to the inhomogeneity-induced drift: the
properties of the medium where they matter, i.e. around the
core of the spiral, changes as the spiral drifts. Since we re-
quire a certain number of full rotations of the spiral for fit-
ting, faster drift meant longer displacement along the x axis
and more significant change of the spiral properties along that
way, which in turn affects the accuracy of the fitting.

B. Numerical convergence

Fig. 3 illustrates numerical convergence of results with dis-
cretization parameters. We consider the simple drift cases
and focus on forces, defined as the drift speed/velocity per
unit perturbation amplitude ε. The discretization parameter
that primarily dictates the accuracy of solutions is a spatial
discretization step: ∆x in the simulations and the radial dis-
cretization step ∆ρ in the response functions calculations.

In simulations, the forces are determined for values of ε
well within the linear range as determined in Fig. 2. These are
calculated for different values of the space discretization step
∆x, where the time discretization changed simultaneously so
that the ratio ∆t/(∆x)2 remaines constant.

In theoretical predictions, the forces are given by the val-
ues of the corresponding integrals of response functions as
described by Section II, and we have calculated the response
functions and the corresponding integrals with various values



Before discussing the performance of our numerical tech-
niques, we briefly present typical solutions. Figures 1 and 2
illustrate the spiral wave solution and the GMs and RFs for
!max=25, N!=1280, and N"=64. This solution is taken as the
best achievable given memory restrictions !4 Gbyte of real
memory". The angular velocity for it was found to be #̂
#0.581 934 174 877 601 7. For the GMs and RFs, we show
the n=0 and n=1 modes only, since the calculated n=−1
modes are almost exactly the complex conjugates of the n
=1 modes, which of course they should be. One can see that
the GMs V̂ are indeed proportional to the corresponding de-
rivatives of the spiral wave solution Û and that the RFs Ŵ
are localized in a small region of the spiral tip and are indis-
tinguishable from zero outside that region.

The character of the decay of the RFs with distance is
illustrated in more detail in Fig. 3. We plot the angle-
averaged values of the solutions, defined as

$X%i
!n"!!" = & 1

2$
' (X̂i

!n"!!,""(2d")1/2

,

for X=U, V, and W. Note the difference in the behavior of
$U%i

!n" and $V%i
!n" on one hand and $W%i

!n" on the other hand. In
the semilogarithmic !linear for horizontal axis, logarithmic
for vertical axis" coordinates of Fig. 3!c" the graphs of
$W%i

!n"!!" are straight for a large range of !, not too close to

0 or !max=25, and for several decades of magnitude of
$W%i

!n". This clearly shows the expected exponential localiza-
tion of the RFs. For comparison, we also show the conver-
gence of #̂= #̂!!max" in a disk as a function of the disk radius
!max. Theory *36,47–49+ predicts that the $W%i

!n"!!" and
%#!!max"= #̂!!max"− #̂!&" dependencies should both be de-
caying exponentials with the same characteristic exponent;
this agrees well with the numerical results shown in Fig.
3!c".

Sandstede and Scheel *19,20+ computed exponential
decay/increase rates of eigenfunctions of periodic wave
trains in one spatial dimension. A similar technique should,
in principle, also work for the adjoint eigenfunctions. Know-
ing the asymptotic wavelength of the spiral wave, this can be
used to predict the exponential decay rates of the RFs of
spiral waves. As can be seen from the results of Wheeler and
Barkley *21+, although such correspondence between 1D and
2D calculations can be established, the accuracy of decay
rate estimates for two-dimensional eigenfunctions achieved
in this way is insufficient for a meaningful estimate of the
accuracy of those eigenfunctions.

B. Convergence

We now turn to the main results of our study. Conver-
gence of the method has been tested by changing one of the
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FIG. 2. Same visualization as
in Fig. 1, for the adjoint linearized
problem *Eqs. !13" and !15"+, i.e.,
the response functions.
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FIG. 3. !Color online" Radial dependence of the angle-averaged solutions for the !a" spiral wave, !b" Goldstone modes, and !c" response
functions. In !c", the dependence of %#!!max"= #̂!!max"− #̂!25" is shown for comparison, where #̂!!max" is the numerically found spiral
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