Having Fun with

 Adjoints

Two Examples:

Cylinder Wake

D Calhoun

Convection

Eigenfunctions

Boronska \& Tuckerman

Linear Stability Analysis

Navier Stokes Equations

$$
\begin{gathered}
\partial_{t} \mathbf{u}=-(\mathbf{u} \cdot \nabla) \mathbf{u}-\nabla p+\nu \nabla^{2} \mathbf{u} \\
\nabla \cdot \mathbf{u}=0
\end{gathered}
$$

Linear Stability Equations

$$
\begin{gathered}
\partial_{t} \mathbf{u}^{\prime}=-(\mathbf{U} \cdot \nabla) \mathbf{u}^{\prime}-\left(\mathbf{u}^{\prime} \cdot \nabla\right) \mathbf{U}-\nabla p^{\prime}+\nu \nabla^{2} \mathbf{u}^{\prime} \\
\nabla \cdot \mathbf{u}^{\prime}=0
\end{gathered}
$$

$$
\begin{aligned}
& \text { Linear Evolution } \\
& \partial_{t} \mathbf{u}^{\prime}=\mathcal{L} \mathbf{u}^{\prime} \\
& \mathbf{u}^{\prime}(\mathbf{x}, t)=\exp (\lambda t) \tilde{\mathbf{u}}(\mathbf{x})
\end{aligned}
$$

Eigenvalue Problem

$$
\mathcal{L} \tilde{\mathbf{u}}=\lambda \tilde{\mathbf{u}}=(\sigma+i \omega) \tilde{\mathbf{u}}
$$

Instability

$$
\sigma>0
$$

Base Solution

$$
\mathbf{U}, P
$$

Infinitesimal Perturbation

$$
\mathbf{U}+\epsilon \mathbf{u}^{\prime}, \quad P+\epsilon p^{\prime}
$$

Timestepper Approach

Navier Stokes Equations

Nonlinear Evolution

$$
\mathbf{u}(t)=\operatorname{DNS}(\mathbf{u}(0))
$$

$$
\begin{gathered}
\partial_{t} \mathbf{u}=-(\mathbf{u} \cdot \nabla) \mathbf{u}-\nabla p+\nu \nabla^{2} \mathbf{u} \\
\nabla \cdot \mathbf{u}=0
\end{gathered}
$$

Linear Stability Equations

$$
\begin{gathered}
\partial_{t} \mathbf{u}^{\prime}=-(\mathbf{U} \cdot \nabla) \mathbf{u}^{\prime}-\left(\mathbf{u}^{\prime} \cdot \nabla\right) \mathbf{U}-\nabla p^{\prime}+\nu \nabla^{2} \mathbf{u}^{\prime} \\
\nabla \cdot \mathbf{u}^{\prime}=0
\end{gathered}
$$

Linear Evolution

$$
\mathbf{u}^{\prime}(t)=\mathcal{A}(t) \mathbf{u}^{\prime}(0)
$$

Fix a time interval T and re-express eigenvalue problem $\mathcal{L} \tilde{\mathbf{u}}=\lambda \tilde{\mathbf{u}}$ in terms of $\mathcal{A}(T)$

Eigenvalue Problem

$$
\mathcal{A}(T) \tilde{\mathbf{u}}=\mu \tilde{\mathbf{u}} \quad \mu=\exp (\lambda T)
$$

Solve iteratively using matrixfree technique

Timestepper Approach

Timestepper Approach

Timestepper Approach

Linear stability analysis

Bifurcation analysis

$$
(\mathbf{I}-\triangle t \mathbf{L}) \mathbf{u}^{n+1}=(\ldots)
$$

Tuckerman \& Barkley,
"bifurcations for timesteppers" (2000)

Two Examples:

Cylinder Wake

D Calhoun

Convection

Eigenfunctions

joint with
Hugh Blackburn, Chris Cantwell, Spencer Sherwin

Examples

Expanding Pipe
Backward-Facing Step Xiaohua Wu, George Homsy and Parviz Moin

Stenosis

Expanding Pipe

Numerical Computations of

Experiments
(Latornell and Pollard, Phys Fluids 1986)

-Flow is linearly stable to large Re
-Flow undergoes oscillations beyond a poorly defined Re

- Nonlinearity is stabilizing and plays no significant role (not subcritical instability)

Fluid Dynamics

Convectively unstable shear layer

small perturbation in upstream pipe

$$
\begin{gathered}
\text { amplified by } \\
\text { highly unstable shear layer }
\end{gathered}
$$

advected downstream where it decays

How to really compute

- spatially developing flow
- non-trivial structures

Localized Convective Instability

homogeneous flow

Absolute	Convective
Instability	Instability

The flows are linearly unstable and instability can be found by computing eigenvalues

$$
\left\|\mathbf{u}^{\prime}(x, t)\right\| \sim e^{\lambda t+i k x}
$$

inhomogeneous flow

Localized region of convective instability. The flow is linearly stable.
Dynamics can not be found by eigenvalues

2-Second History

L. Gustavsson, J. Fluid Mech. 224, 241 (1991).

Transient Growth. K. Butler and B. Farrell, Phys. Fluids A 4, 1637 (1992). Subcritical Transition to
L. N. Trefethen, D. Henningson, P. Schmid et al (1993+) Turbulence
C. Cossu and J. M. Chomaz, Phys. Rev. Let. 78, 4387 (1997).

Localized convective instability and transient growth

Optimal Energy Growth

Start from normalized initial condition and look at evolved energy at $t=\tau$

$$
\left\|\mathbf{u}^{\prime}(0)\right\|=1
$$

$$
\begin{aligned}
= & \left.\mathcal{A}(\tau) \mathbf{u}^{\prime}(0), \mathcal{A}(\tau) \mathbf{u}^{\prime}(0)\right) \\
& =\left(\mathbf{u}^{\prime}(0), \mathcal{A}^{*}(\tau) \mathcal{A}(\tau) \mathbf{u}^{\prime}(0)\right)
\end{aligned}
$$

Consider eigenvalue problem

$$
\mathcal{A}^{*}(\tau) \mathcal{A}(\tau) \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j} \quad\left\|\mathbf{v}_{j}\right\|=1
$$

Starting from eigenfunction v_{j} gives energy gain λ_{j}

$$
\mathbf{u}^{\prime}(0)=\mathbf{v}_{j} \quad \frac{E(\tau)}{E(0)}=\lambda_{j}
$$

Equivalently in terms of SVD

A little more formalism

$$
\mathbf{q}=\binom{\mathbf{u}^{\prime}}{p^{\prime}}
$$

Linearized
Navier Stokes Eqs

$$
\begin{gathered}
\mathscr{H} \mathbf{q}=0 \quad(\mathbf{x}, t) \in \Gamma \\
\mathbf{u}(t=0)=\mathbf{u}_{0} \\
\mathbf{u}(\partial \boldsymbol{\Omega})=0
\end{gathered}
$$

$\left\langle\mathbf{q}, \mathbf{q}^{*}\right\rangle=\int_{0}^{\tau} \int_{\Omega} \mathbf{q} \cdot \mathbf{q}^{*} \mathrm{~d} v \mathrm{~d} t$

where

$$
\mathscr{H}^{*}=\left[\begin{array}{c|c}
\partial_{t}-\mathrm{DN}^{*}+R e^{-1} \nabla^{2} & -\nabla \\
\hline \nabla \cdot & 0
\end{array}\right]
$$

$$
\mathrm{DN}^{*} \mathbf{u}^{*}=-(\mathbf{U} \cdot \nabla) \mathbf{u}^{*}+(\nabla \mathbf{U})^{\mathrm{T}} \cdot \mathbf{u}^{*}
$$

$$
\mathbf{u}(t+s)=\mathscr{A}(s) \mathbf{u}(t)
$$

$$
\mathbf{u}^{*}(t-s)=\mathscr{A}^{*}(s) \mathbf{u}^{*}(t)
$$

A little intuition

Advection-diffusion equation

$$
\left(-\partial_{t}+\mu-c \partial_{x}+\partial_{x x}^{2}\right) u=0 \quad\left(\partial_{t}+\mu^{*}+c \partial_{x}+\partial_{x x}^{2}\right) u^{*}=0
$$

A little more intuition

$$
G(\tau)=\max _{j} \lambda_{j}=\max _{j} \sigma_{j}^{2}
$$

$$
\mathcal{A}^{*}(\tau) \mathcal{A}(\tau) \mathbf{v}_{j}=\lambda_{j} \mathbf{v}_{j}
$$

$$
\mathcal{A}(\tau) \mathbf{v}_{j}=\sigma_{j} \mathbf{u}_{j}
$$

$$
\mathcal{A}^{*}(\tau) \mathbf{u}_{j}=\sigma_{j} \mathbf{v}_{j}
$$

Timestepper Approach

Driver(s)

Optimal growth analysis
Nonlinear
Navier-Stokes Code

$$
\begin{aligned}
& \mathbf{u}_{0}, \mathbf{A}^{*} \mathbf{A} \mathbf{u}_{0},\left(\mathbf{A}^{*} \mathbf{A}\right)^{2} \mathbf{u}_{0}, \ldots \\
& \mathbf{A}^{*} \mathbf{A} \mathbf{Q}_{k}=\mathbf{Q}_{k} \mathbf{H}_{k}+h^{*} \mathbf{q}_{k} \hat{\mathbf{e}}_{k}^{T}
\end{aligned}
$$

\{ ...
\}

$$
\begin{array}{r}
\left.(\mathrm{DNu})\right|_{j}=U_{i} \partial_{i} u_{j}+\left(\partial_{i} U_{j}\right) u_{i} \\
\left.\left(\mathrm{DN}^{*} \mathbf{u}\right)\right|_{j}=-U_{i} \partial_{i} u_{j}+\left(\partial_{j} U_{i}\right) u_{i}
\end{array}
$$

Highlights of General Interest

Implemented in 3 independent spectral-element codes:

Prism, Semtex, Nektar

Convective Instability

Several prototype geometries: backward-facing step, stenosis, expanding pipe, cylinder wake

Highlights of General Interest

Physical Structures

Compare with full DNS

Complex Cases

Timestepper Approach

Linear stability analysis
Bifurcation analysis
Optimal growth analysis

DNS

Weakly nonlinear analysis

Excitable Media

joint with Irina Biktasheva
Vadim Biktashev
Andy Foulkes

Reaction-Diffusion Models

$$
\partial_{t} \mathbf{u}=\mathbf{f}(\mathbf{u})+\mathbf{D} \nabla^{\mathbf{2}} \mathbf{u}
$$

$\mathbf{u}, \mathbf{f} \in \mathbb{R}^{\ell}, \mathbf{D} \in \mathbb{R}^{\ell \times \ell}$.

Consider
two-component examples, but methods are general

Spiral waves

Scroll waves

Linear Stability and Symmetry

Base solution: \mathbf{U} rotating wave

 steady in rotating frame$$
0=\mathbf{f}(\mathbf{U})-\omega \partial_{\theta} \mathbf{U}+\mathbf{D} \nabla^{2} \mathbf{U}
$$

Stability Spectrum:

$$
\mathcal{L V}=\lambda \mathbf{V} \text { where } \quad \mathcal{L}=\mathbf{D f}-\omega \partial_{\theta}+\mathbf{D} \nabla^{2}
$$

Consider linearly stable spirals on the plane

Three neutral eigenvalues due to symmetry

0 rotational symmetry
$\pm i \omega$ translational symmetry (in rotating frame)

Neutral Eigenfunctions

Spiral Wave \quad Neutral Eigenfunctions $\quad \mathcal{L} \mathbf{V}^{(n)}=\lambda_{n} \mathbf{V}^{(n)}$

Numerics:
accurate, high-order polar grid efficient via Cayley transform

Adjoint Neutral Eigenfunctions aka Response Functions

$$
\mathcal{L}^{\dagger} \mathbf{W}^{(n)}=-i n \omega \mathbf{W}^{(n)}, \quad n=-1,0,1
$$

Adjoint linearization

$$
\mathcal{L}^{\dagger}=\mathbf{D} \mathbf{f}^{T}+\omega \partial_{\theta}+\mathbf{D} \nabla^{2}
$$

Adjoint Neutral Eigenfunctions aka Response Functions

$$
\mathcal{L}^{\dagger} \mathbf{W}^{(n)}=-i n \omega \mathbf{W}^{(n)}, \quad n=-1,0,1
$$

Adjoint Neutral Eigenfunctions aka Response Functions

$$
\mathcal{L}^{\dagger} \mathbf{W}^{(n)}=-i n \omega \mathbf{W}^{(n)}, \quad n=-1,0,1
$$

Response Functions in Excitable Media

Spiral Wave \quad Response Functions $\quad \mathcal{L}^{+} \mathbf{W}^{(n)}=\mu_{n} \mathbf{W}^{(n)}$

Localization in CGLE - I.V. Biktasheva, Yu.E. Elkin, and V.N. Biktashev, Phys. Rev. E, 57(3):2656-2659, 1998

Wave-particle dualism

I.V. Biktasheva, V.N. Biktashev, Phys. Rev. E, 67: 026221, 2003
H. Henry, V. Hakim, Phys. Rev. E, 65 (4): 046235, 2002

Equations of Motion

Perturb Equation

$$
\partial_{t} \mathbf{u}=\mathbf{f}(\mathbf{u})+\mathbf{D} \nabla^{2} \mathbf{u}+\epsilon \mathbf{h}, \quad \mathbf{h} \in \mathbb{R}^{\ell}, \quad|\epsilon| \ll 1
$$

perturbation
Use solvability condition
to obtain equations for (slow) motion for spiral core
Frequency
Shift $\Longrightarrow \dot{\Phi}=\epsilon \int_{0}^{2 \pi}\left\langle\mathbf{W}^{(0)}, \tilde{\mathbf{h}}(\mathbf{U}, \rho, \theta, \phi)\right\rangle \frac{\mathrm{d} \phi}{2 \pi}+\mathcal{O}\left(\epsilon^{2}\right)$,
Motion $\Longrightarrow \dot{R}=\epsilon \int_{0}^{2 \pi} e^{-i \phi}\left\langle\mathbf{W}^{(1)}, \tilde{\mathbf{h}}(\mathbf{U}, \rho, \theta, \phi)\right\rangle \frac{\mathrm{d} \phi}{2 \pi}+\mathcal{O}\left(\epsilon^{2}\right)$
adjoint translation
eigenfunction
perturbation

Example: Step Heterogeneity

$$
\mathbf{f}=\mathbf{f}(\mathbf{u}, p), \quad p=p(\vec{r})=p_{0}+\epsilon p_{1}(\vec{r}) \quad p_{1}(x)=\mathrm{H}\left(x-x_{s}\right)
$$

Heaviside function

$$
\partial_{t} \mathbf{u}=\mathbf{D} \nabla^{2} \mathbf{u}+\mathbf{f}\left(\mathbf{u}, p_{0}\right)+\epsilon p_{1}(\vec{r}) \partial_{p} \mathbf{f}\left(\mathbf{u}, p_{0}\right)
$$

Example: Step Heterogeneity

$$
\mathbf{f}=\mathbf{f}(\mathbf{u}, p), \quad p=p(\vec{r})=p_{0}+\epsilon p_{1}(\vec{r}) \quad p_{1}(x)=\mathrm{H}\left(x-x_{s}\right)
$$

Heaviside function

$$
\partial_{t} \mathbf{u}=\mathbf{D} \nabla^{2} \mathbf{u}+\mathbf{f}\left(\mathbf{u}, p_{0}\right)+\epsilon p_{1}(\vec{r}) \partial_{p} \mathbf{f}\left(\mathbf{u}, p_{0}\right)
$$

Motion

$\dot{R}=\frac{\epsilon}{\pi} \int_{0}^{2 \pi} \int_{\left|x_{s}-X\right|}^{\infty} w^{(1)}(\rho, \theta) \mathrm{e}^{-\mathrm{i} \theta} \sqrt{1-\left(\frac{x_{s}-X}{\rho}\right)^{2}} \rho \mathrm{~d} \rho \mathrm{~d} \theta$
where, $w^{(n)}(\rho, \theta)=\left[\mathbf{W}^{(n)}(\rho, \theta)\right]^{+} \partial_{p} \mathbf{f}\left(\rho, \theta ; p_{0}\right)$

Example: Step Heterogeneity

$$
\mathbf{f}=\mathbf{f}(\mathbf{u}, p), \quad p=p(\vec{r})=p_{0}+\epsilon p_{1}(\vec{r}) \quad p_{1}(x)=\mathrm{H}\left(x-x_{s}\right)
$$

Heaviside function

$$
\partial_{t} \mathbf{u}=\mathbf{D} \nabla^{2} \mathbf{u}+\mathbf{f}\left(\mathbf{u}, p_{0}\right)+\epsilon p_{1}(\vec{r}) \partial_{p} \mathbf{f}\left(\mathbf{u}, p_{0}\right)
$$

Motion

$\dot{R}=\frac{\epsilon}{\pi} \int_{0}^{2 \pi} \int_{\left|x_{s}-X\right|}^{\infty} w^{(1)}(\rho, \theta) \mathrm{e}^{-\mathrm{i} \theta} \sqrt{1-\left(\frac{x_{s}-X}{\rho}\right)^{2}} \rho \mathrm{~d} \rho \mathrm{~d} \theta$
where, $w^{(n)}(\rho, \theta)=\left[\mathbf{W}^{(n)}(\rho, \theta)\right]^{+} \partial_{p} \mathbf{f}\left(\rho, \theta ; p_{0}\right)$

Example: Step Heterogeneity

$$
\mathbf{f}=\mathbf{f}(\mathbf{u}, p), \quad p=p(\vec{r})=p_{0}+\epsilon p_{1}(\vec{r}) \quad p_{1}(x)=\mathrm{H}\left(x-x_{s}\right)
$$

Heaviside function

$$
\partial_{t} \mathbf{u}=\mathbf{D} \nabla^{2} \mathbf{u}+\mathbf{f}\left(\mathbf{u}, p_{0}\right)+\epsilon p_{1}(\vec{r}) \partial_{p} \mathbf{f}\left(\mathbf{u}, p_{0}\right)
$$

Motion

$\dot{R}=\frac{\epsilon}{\pi} \int_{0}^{2 \pi} \int_{\left|x_{s}-X\right|}^{\infty} w^{(1)}(\rho, \theta) \mathrm{e}^{-\mathrm{i} \theta} \sqrt{1-\left(\frac{x_{s}-X}{\rho}\right)^{2}} \rho \mathrm{~d} \rho \mathrm{~d} \theta$
where, $w^{(n)}(\rho, \theta)=\left[\mathbf{W}^{(n)}(\rho, \theta)\right]^{+} \partial_{p} \mathbf{f}\left(\rho, \theta ; p_{0}\right)$

Range of Validity, Scaling

Applicable to other cases

Periodic Forcing

Parameter Gradient

Electrophoresis

Medium Defects - Pinning

Exciting Details at 3pm Today

Acknowledgments

Laurette Tuckerman

Chris Cantwell
Hugh Blackburn
Spencer Sherwin

Irina Biktasheva
Vadim Biktashev
Andy Foulkes

Bjorn Sandstede

EPSRC

Leverhulme Trust/Royal Society

