

Two Examples:

Cylinder Wake

Convection

Boronska & Tuckerman

Linear Stability Analysis

Fix a time interval *T* and re-express eigenvalue problem $\mathcal{L}\tilde{\mathbf{u}} = \lambda \tilde{\mathbf{u}}$ in terms of $\mathcal{A}(T)$

Eigenvalue Problem $\mathcal{A}(T)\tilde{\mathbf{u}} = \mu \tilde{\mathbf{u}}$ $\mu = \exp(\lambda T)$

Solve iteratively using matrixfree technique

Two Examples:

Cylinder Wake

Convection

This approach fails for many flows of interest

joint with Hugh Blackburn, Chris Cantwell, Spencer Sherwin

Examples

Expanding Pipe

Backward-Facing Step

Xiaohua Wu, George Homsy and Parviz Moin

Expanding Pipe

- Flow is linearly stable to large Re
- Flow undergoes oscillations beyond a poorly defined Re
- Nonlinearity is stabilizing and plays no significant role (not subcritical instability)

Fluid Dynamics

Convectively unstable shear layer

small perturbation in upstream pipe

amplified by highly unstable shear layer

advected downstream where it decays

How to really compute

spatially developing flow
non-trivial structures

Localized Convective Instability

homogeneous flow

The flows are <u>linearly unstable</u> and instability can be found by computing eigenvalues

 $||\mathbf{u}'(x,t)|| \sim e^{\lambda t + ikx}$

inhomogeneous flow

Localized region of convective instability. The flow is <u>linearly stable</u>. Dynamics can not be found by eigenvalues

2-Second History

L. Gustavsson, J. Fluid Mech. 224, 241 (1991). K. Butler and B. Farrell, Phys. Fluids A 4, 1637 (1992). L. N. Trefethen, D. Henningson, P. Schmid et al (1993+)

. . .

Transient Growth. Subcritical Transition to (+) Turbulence

C. Cossu and J. M. Chomaz, Phys. Rev. Let. 78, 4387 (1997).

Optimal Energy Growth

Start from normalized initial condition and look at evolved energy at $t = \tau$

$$||\mathbf{u}'(0)|| = 1$$

Typically interested in largest (aka optimal) energy growth

$$G(\tau) = \max_j \lambda_j$$

$$\frac{E(\tau)}{E(0)} = ||\mathbf{u}'(\tau)||^2 = \left(\mathbf{u}'(\tau), \mathbf{u}'(\tau) \right)$$
$$(\mathbf{u}, \mathbf{v}) \equiv \int_{\Omega} \mathbf{u} \cdot \mathbf{v} \, dv$$
$$= \left(\mathcal{A}(\tau)\mathbf{u}'(0), \mathcal{A}(\tau)\mathbf{u}'(0) \right)$$

$$= (\mathbf{u}'(0) \quad \mathcal{A}^*(\tau) \mathcal{A}(\tau) \mathbf{u}'(0))$$

Consider eigenvalue problem

$$\mathcal{A}^*(\tau)\mathcal{A}(\tau)\mathbf{v}_j = \lambda_j \mathbf{v}_j \qquad ||\mathbf{v}_j|| = 1$$

Starting from eigenfunction v_j gives energy gain λ_j

$$\mathbf{u}'(0) = \mathbf{v}_j \qquad \frac{E(\tau)}{E(0)} = \lambda_j$$

Equivalently in terms of SVD

A little more formalism

A little intuition

Advection-diffusion equation

$$\left(-\partial_t + \mu - c\partial_x + \partial_{xx}^2\right)u = 0$$

$$\left(\partial_t + \mu^* + c\partial_x + \partial_{xx}^2\right)u^* = 0$$

Green's functions

A little more intuition

Highlights of General Interest

Implemented in 3 independent spectral-element codes: *Prism, Semtex, Nektar*

Convective Instability

Several prototype geometries: backward-facing step, stenosis, expanding pipe, cylinder wake

Highlights of General Interest

Compare with full DNS

Complex Cases

Excitable Media

joint with Irina Biktasheva Vadim Biktashev Andy Foulkes

Reaction-Diffusion Models

$$\partial_t \mathbf{u} = \mathbf{f}(\mathbf{u}) + \mathbf{D} \nabla^2 \mathbf{u}$$
 $\mathbf{u}, \mathbf{f} \in \mathbb{R}^{\ell}, \mathbf{D} \in \mathbb{R}^{\ell \times \ell}$

Consider two-component examples, but methods are general

Spiral waves

Scroll waves

l

Linear Stability and Symmetry

Base solution: U rotating

rotating wave steady in <u>rotating frame</u>

$$0 = \mathbf{f}(\mathbf{U}) - \omega \partial_{\theta} \mathbf{U} + \mathbf{D} \nabla^2 \mathbf{U}$$

Stability Spectrum:

$$\mathcal{L} = \lambda \mathbf{V}$$
 where $\mathcal{L} = \mathbf{D} \mathbf{f} - \omega \partial_{\theta} + \mathbf{D} \nabla^2$

Consider linearly stable spirals on the plane

Three neutral eigenvalues due to symmetry

0 rotational symmetry

 $\pm i\omega$ translational symmetry (in rotating frame)

Neutral Eigenfunctions

Adjoint Neutral Eigenfunctions aka Response Functions

$$\mathcal{L}^{\dagger}\mathbf{W}^{(n)} = -in\omega\mathbf{W}^{(n)}, \quad n = -1, 0, 1$$

Adjoint linearization

$$\mathcal{L}^{\dagger} = \mathbf{D}\mathbf{f}^T + \omega\partial_{\theta} + \mathbf{D}\nabla^2$$

Keener JP, *Physica D,* 31(2), pp 269-276, **1988 Biktashev VN and Holden AV**, *Chaos Solitons & Fractals,* vol. 5, Issue: 3-4, pp 575-622, **1995**

Adjoint Neutral Eigenfunctions aka Response Functions

$$\mathcal{L}^{\dagger}\mathbf{W}^{(n)} = -in\omega\mathbf{W}^{(n)}, \quad n = -1, 0, 1$$

Adjoint Neutral Eigenfunctions aka Response Functions

$$\mathcal{L}^{\dagger}\mathbf{W}^{(n)} = -in\omega\mathbf{W}^{(n)}, \quad n = -1, 0, 1$$

Response Functions in Excitable Media

Spiral Wave Response Functions

 $\mathcal{L}^+ \mathbf{W}^{(n)} = \mu_n \mathbf{W}^{(n)}$

H. Henry, V. Hakim, Phys. Rev. E, 65 (4): 046235, 2002

Equations of Motion

Perturb Equation $\partial_t \mathbf{u} = \mathbf{f}(\mathbf{u}) + \mathbf{D}\nabla^2 \mathbf{u} + \epsilon \mathbf{h}, \quad \mathbf{h} \in \mathbb{R}^{\ell}, \quad |\epsilon| \ll 1$ perturbation

Use solvability condition to obtain equations for (slow) motion for spiral core

Frequency Shift $\dot{\Phi} = \epsilon \int_{0}^{2\pi} \left\langle \mathbf{W}^{(0)}, \tilde{\mathbf{h}}(\mathbf{U}, \rho, \theta, \phi) \right\rangle \frac{d\phi}{2\pi} + \mathcal{O}(\epsilon^{2}),$ Motion $\dot{R} = \epsilon \int_{0}^{2\pi} e^{-i\phi} \left\langle \mathbf{W}^{(1)}, \tilde{\mathbf{h}}(\mathbf{U}, \rho, \theta, \phi) \right\rangle \frac{d\phi}{2\pi} + \mathcal{O}(\epsilon^{2})$ adjoint translation eigenfunction perturbation

$$f = f(u, p),$$
 $p = p(\vec{r}) = p_0 + \epsilon p_1(\vec{r})$ $p_1(x) = H(x - x_s)$

Heaviside function

$$\partial_t \mathbf{u} = \mathbf{D} \nabla^2 \mathbf{u} + \mathbf{f}(\mathbf{u}, p_0) + \epsilon p_1(\vec{r}) \partial_p \mathbf{f}(\mathbf{u}, p_0)$$

Motion

$$\dot{R} = \frac{\epsilon}{\pi} \int_{0}^{2\pi} \int_{|x_s - X|}^{\infty} w^{(1)}(\rho, \theta) e^{-i\theta} \sqrt{1 - \left(\frac{x_s - X}{\rho}\right)^2} \rho d\rho d\theta$$

where,
$$w^{(n)}(\rho,\theta) = \left[\mathbf{W}^{(n)}(\rho,\theta)\right]^+ \partial_p \mathbf{f}(\rho,\theta;p_0)$$

Range of Validity, Scaling

Applicable to other cases

Exciting Details at 3pm Today

Acknowledgments

Laurette Tuckerman

Chris Cantwell Hugh Blackburn Spencer Sherwin

Bjorn Sandstede

Irina Biktasheva Vadim Biktashev Andy Foulkes

EPSRC Leverhulme Trust/Royal Society