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A model for fast computer simulation 
of waves in excitable media 

Dwight  Bark ley  

Applied and Computational Mathematics Department, Princeton Unicersity, Princeton, NJ 08544, USA 

Starting from a two-variable system of reaction-diffusion equations, an algorithm is devised for efficient simulation of 
waves in excitable media. The spatio-temporal resolution of the simulation can be varied continuously. For fine resolutions 
the algorithm provides accurate solution of the underlying reaction-diffusion equations. For coarse resolutions, the 
algorithm provides qualitative simulations at small computational cost. 

1. Introduction 

Wave propagation in excitable media provides 
an important and beautiful example of spa- 
tio-temporal self-organization. Spiral waves in 
unstirred Belousov-Zhabotinsky reagent and 
impulse propagation along nerve axons are two 
well-known examples of this phenomenon. Nu- 
merous other examples can be found throughout 
the literature #j. Given the widespread interest in 
these waves, numerical techniques for fast com- 
puter simulations of excitable media are of con- 
siderable importance. This is particularly true if 
numerical studies are to be made of large two- 
and three-dimensional excitable systems. 

The fundamental difficulty in simulating ex- 
citable media is the separation of spatio-temporal 
scales in such systems. The time scale on which 
variables change as the system becomes locally 
excited is typically several orders of magnitude 
faster than the time scale on which interesting 
behavior occurs in the extended medium. Simi- 
larly, spatial gradients at fronts where excitation 
occurs are vastly larger than gradients elsewhere 
in the medium. If a numerical scheme is to accu- 
rately simulate a given excitable system, then it 

'¢lThese Proceedings give the most recent review of the 
field. Refs. [1-3] are other reviews of interest. 

must resolve the fast dynamics of excitation, and 
unfortunately this requires a fine spatial mesh 
and a time step which is very small in comparison 
with the time scale of ultimate interest. 

Cellular-automaton models have been pro- 
posed as method of circumventing the scale-sep- 
aration problem [4-10]. In effect, these models 
reduce the fast dynamics of excitation to a single, 
discontinuous, jump in some state variable. Re- 
cently, very impressive high-speed simulations of 
waves in excitable media have been obtained 
using the cellular-automaton approach [8-10]. 
Despite the success of automaton models, they 
have some disadvantages: (1) they are governed 
by somewhat ad hoc rules, and (2) because they 
do not resolve the fast dynamics, they cannot 
obtain arbitrarily fine spatio-temporal resolution. 
This second point means that it is difficult to 
assess the validity of results from automaton sim- 
ulations without resorting to simulations by other 
methods. 

Here we propose a simple numerical model 
which offers most of the advantages of cellular 

automata, but in addition has the following 
virtues: (1) it is based directly on a system of 
reaction-diffusion equations and (2) the spatio- 
temporal resolution can be adjusted continuously. 
For coarse resolutions, the fast dynamics is not 
accurately resolved by the model, but the impor- 
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Fig. 1. Illustration of the local dynamics. The axes are the variables u and t'. Shown are the system nullclines: the t' nullcline 
g(u,i,)-Ois the line c = u ,  and the u nullcline f(u,l') /)consists of three lines: u= lL  u=  1, and u--uth(C) (l'+b)/a. An 
excitable fixed point sits at the origin where the u and t' nullclines intersect, uth is the excitability threshold for the fixed point. 
Initial conditions near the fixed point and to the left of the threshold, decay directly to the fixed point. Initial conditions to the right 
of the threshold undergo a large excursion before returning to the fixed point. ,a denotes a small "boundary layer" flanking the left 
branch of the u nullcline. If the system is outside the boundary layer then is excited, otherwise it is recovering. 

t an t  cha r ac t e r i s t i c s  o f  exci tabi l i ty  a re  ma in -  

t a i n e d  #2. In  t he  l imi t  o f  a f ine r e so lu t ion ,  the  

n u m e r i c a l  s c h e m e  p r o v i d e s  a c c u r a t e  so lu t ions  to 

t he  u n d e r l y i n g  r e a c t i o n - d i f f u s i o n  e q u a t i o n s .  T h u s  

l o w - r e s o l u t i o n  s i m u l a t i o n s  can  be  u s e d  to ga in  

ins ight  and  e x p l o r e  p a r a m e t e r  space  at smal l  

c o m p u t a t i o n a l  e x p e n s e ,  wh i l e  h i g h - r e s o l u t i o n  

s i m u l a t i o n s  a r e  ava i l ab le  wi th  t he  s a m e  c o m p u t e  

c o d e  and  can  be  used  to assess  t he  va l id i ty  o f  

l o w - r e s o l u t i o n  resul ts .  

the  local  k ine t i cs  of  t he  two va r i ab l e s  u and  c. By 

c h o i c e  o f  l eng th  scales,  t he  d i f fus ion coef f i c i en t  

for  t he  u -va r i ab l e  is sca led  to unity.  F o r  s impl ic-  

ity, we a s s u m e  tha t  c d o e s  no t  d i f fuse  and  discuss  

t he  app l icab i l i ty  of  this a p p r o x i m a t i o n  at the  

conc lus ion .  A t  p r e s e n t  t he  spa t ia l  d o m a i n  is 

a rb i t ra ry ;  l a t e r  we  shall  spec ia l i ze  to a two-  

d i m e n s i o n a l  s q u a r e  d o m a i n  wi th  N e u m a n n  

b o u n d a r y  cond i t ions .  

W e  m o d e l  t he  local  k ine t ics  wi th  e q u a t i o n s  

2. The model  

O u r  s t a r t i ng  p o i n t  is a two-va r i ab l e  sys tem of  

r e a c t i o n - d i f f u s i o n  e q u a t i o n s  m o d e l i n g  t h e  dy- 

n a m i c s  o f  an  exc i t ab le  m e d i u m :  

~u ~h' 
~T = f ( u ' t ' )  + V 2 u '  Ot - g ( u , c ) ,  (1)  

w h e r e  t he  f u n c t i o n s  f(u,L,) and  g(u,L,) expres s  

#2For coarse spatio-temporal discretizations, it is perhaps 
appropriate to consider our model as a coupled-map lattice, 
see e.g. ref. [11]. 

= •  1.(1 - . ) [ . - . t h ( ,  )], 

g ( u , c )  = u - t , ,  (2) 

w h e r e  U t h ( l ' ) =  (l, + b) /a ,  and  a, b, and  • a re  

p a r a m e t e r s ,  wi th  • g e n e r a l l y  small .  T h e  local  

dynamics ,  tha t  is t he  d y n a m i c s  in the  a b s e n c e  o f  

d i f fus ion,  is i l l u s t r a t ed  in fig. 1 wi th  a typical  

nu l l c l ine  p i c t u r e  o f  p h a s e  space .  T h e  sys tem has a 

s t ab le  bu t  exc i t ab le  fixed po in t  at t he  or ig in  w h e r e  

the  nu l lc l ines ,  f (u ,  c)  = 0 and  g(u, t,) = 0, in te r -  

sect .  T h e  va r i ab l e s  u and  t, a re  k n o w n  as the  

exc i t a t i on  and  r e c o v e r y  var iab les ,  r espec t ive ly .  

T w o - v a r i a b l e  m o d e l s  o f  this  k ind a re  u b i q u i t o u s  
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in the study of excitable systems [2, 3]#3; these 
particular local kinetics have been used recently 
in the study of the periodic-quasiperiodic transi- 
tion for spiral waves [12]. Only three parameters 
appear in the local kinetics and this is of consid- 
erable advantage when it comes to exploring 
parameter  space and classifying the model dy- 
namics. We return to this point at the conclusion. 

Any numerical scheme for solving (1) should 
recognize and take advantage of the two distinct 
dynamical states of the system: excitation and 
recovery. To be precise, consider a small 
"boundary layer", of size 8, flanking the left 
branch of the u nullcline as shown in fig. 1. For 
our purposes here, we call a given point in the 
spatial domain excited if ( u , v )  lies outside the 
boundary layer, i.e. if u > 8. A point in the spatial 
domain is recovering if it is within the boundary 
layer. Regions of excitation and recovery for two 
cases are shown in plates Ic and Ie discussed 
below #4. 

The following features of excitation and recov- 
ery should be considered in the design of efficient 
numerical schemes. (i) Within the excited region, 
the time scale of u can be very fast due to the 
small parameter  e. In particular, transitions be- 
tween the vertical branches of the u-nullcline are 
very quick. Thus, either small time steps must be 
taken to accurately resolve the fast dynamics, or 
if large (less accurate) time steps are to be used, 
then care must be taken to prevent numerical 
instabilities and to preserve the qualitative char- 
acter of the fast jumps in u. (ii) Within the 
recovery region the dynamics is very simple. The 
excitation variable u is essentially zero, so that 
the local dynamics effectively reduces to exponen- 

#3It should be noted that  problems can arise in our  model  
if the system gets close to the "corners"  where the diagonal 
segment  of  the u-null-cline intersects the vertical segments.  
There are no such difficulties for the spiral waves presented 
here. 

#4For some purposes,  one might want to called a point 
excited if it lies to the right of  the excitability threshold Uth , 
and recovering if it lies to the left of  the threshold. Also, in 
some cases the term "boundary  layer" is used for regions of 
space where u makes  fast jumps.  

tial decay of the recovery variable v. Moreover, in 
the interior of recovery regions, diffusion is negli- 
gible because the spatial profile of u is basically 
flat. With these points in mind, we design an 
algorithm for solving (1). 

2.1. Local  dynamics 

For the moment we ignore the diffusion term 
and consider a scheme for time stepping the local 
dynamics. With the approximation that u = 0 
within the boundary layer, we obtain the follow- 
ing simple algorithm for the local dynamics: 

i f u n < 8  

U n+l = O, 

v ~+l = ( 1 - A t ) v  ~, 

else 

Utn = (v" + b ) / a ,  

v~+l = v ~ + A t ( u  ~ -  v~), 

u~+l = F ( u  ~, Uth) , 

where u n and v n are the value of variables u and 
v at the nth time step (at some point in the 
spatial domain) and At is the time step. The 
function F gives the time stepping of u outside 
the boundary layer and will be discussed momen- 
tarily. Inside the boundary layer, u is simply set 
to zero. 

The variable v is stepped both inside and out- 
side the boundary layer by the explicit-Euler 
method, with the condition that u is set to zero 
within the boundary layer. The time scale of v is 
so slow in comparison with the time scale of u, 
that even with time steps very large relative to the 
u time scale, explicit-Euler stepping of v is both 
stable and accurate. 

The function F for stepping the u-dynamics 
may be either of explicit or implicit form. With 
explicit-Euler time stepping, we have found that 
A t - - e  is the maximum At for obtaining reason- 
ably accurate results in the fast regions. This At 
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is also near the stability limit for an explicit-Euler 
step. In order to take very large, less accurate, 
time steps a semi-implicit form for F can be used. 
This is obtained from: 

/2 n + l  = i t  n q- ( A t  / / e ) u n +  l ( 1  --  u n ) (  u n - u t h  ) 

if u n _< Uth, 

= U n -~- ( A t / e ) u n ( 1  --/.~n + 1) (b/n -- b/th ) 

if u n > Uth , 

while remaining continuous for any finite At. 
This large-At (or small-e) limit models the fast 
excitation dynamics in the crudest way possible, 
and is reminiscent of cellular automata [9] in 
which the u-variable takes on just two values, 0 
and 1. Thus, (3) is a representation for u- 
dynamics which in the s m a l l - A t / e  limit gives an 
accurate time step, while in the l a r g e - A t / e  limit 
preserves the important characteristics of ex- 
citability. 

where u at the future time is used in those 
factors on the right-hand side which undergo 
largest change as the system approaches the sta- 
ble branches of the u-nullcline. This semi-implicit 
form keeps the time stepping of the kinetics from 
overshooting the stable branches of the u-null- 
cline even if a large time step is taken in the fast 
region. Solving the above expressions for u n÷~, 
we obtain 

U n 

F ( u ~ ' u t h )  = 1 -- ( A t / e ) ( 1  - - u " ) ( u  n --Uth ) 

if u n < Uth , 

U n q- ( a t / e ) U " ( U "  -- Uth ) 

1 + ( A t / E ) u n ( u  n --  Uth ) 

if U n > Uth. (3) 

For small A t / e  the denominators in the above 
expression can be expanded to recover the ex- 
plicit-Euler form for F: 

F (  u",  Uth ) = U" + ( A t / e ) U " ( 1  -- U")(  U" -- Urn ) 

+ G ( A t 2 ) .  

2.2. Diffusion 

Having presented a scheme for stepping the 
local dynamics, we turn to the efficient treatment 
of the diffusion term. With the approximation 
that u = 0 within the boundary layer, the u-field 
is fiat in the interior of recovery regions, and 
hence the Laplacian is zero there and need not 
be evaluated. To avoid unnecessary computation, 
the Laplacian can be evaluated "actively" rather 
than "passively". By this we mean the following. 
Consider the five-point finite-difference Lapla- 
cian formula 

h2~72bl i j  = bli+ l, j d- Lli_ l, j -~- / ' / i ,j+ 1 -~ U i , j -  I --  4b l i j ,  

w h e r e  u i j  with the value of u at grid point (i, j )  
and h is the grid spacing. (We now restrict atten- 
tion to regular square lattices.) Passive evaluation 
of the Laplacian is obtained by looping grid in- 
dices and evaluating directly the above formula at 
each point in the spatial domain, that is, 

for each i, j 

For large At~E,  F goes over to the limit l aP i j  *-- Ui+ l, j + lgi_ l, j -}- lg i , j+ 1 .q- u i , j _  1 --  4 U i j .  

F ( u " , u t h  ) = 0  if un < Uth, 

= U t h  if un  = Uth, 

= 1 if u n > Uth , 

The factor of h 2 is absorbed into the diffusion 
coefficient. 

Alternatively, active evaluation is obtained by 
considering the contribution that each point 
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makes to the Laplacian of nearby points, that is, 

for each i, j 

lapij ~- 0, 

for each i, j 

lapiy ~- lapij - -  4Uij , 

laPi+ 1,j ~- laPi+l,y + Uij, 

lap/_l,j ~-- laPi_ l,j + uij, 

laPi,j+l *--lap/,j+ 1 + Uij, 

lap/,j_ 1 ~ lap/,j_ l + uij. 

Clearly the two methods of evaluating the 
Laplacian give the same result. What makes ac- 
tive evaluation of the Laplacian desirable is that 
it can be incorporated into the algorithm for the 
local dynamics in such a way that unnecessary 
computation is avoided at points which make 
zero contribution to the Laplacian of the u-field. 
Specifically, the following algorithm updates a 
single grid point in the spatial domain and com- 
putes its contribution to the Laplacian of neigh- 
boring points for use at the next time step: 

if uij < 

Uij  ~'- D laPkiy , 

Viy ~- (1 -- At)viy 

else 

Uth ~ (Vii + b ) / a ,  

Uij ~"  Uij "~- At  (uiy - vii), 

u ~ / ~  F(u n, uth) + D laPki/, 

lapk,ij , -  lapk,/j - 4uij , 

lapk',i+ i.j ~-- lapk',i+ l,j + Uij, 

lapk,,/_ i, / ~-- lapk,,i_ 1. j + uij, 

lapk, i,j+ l *-lapk,.i,y+l + Uij, 

lapk,,i,j_ l ~- lapk,,i,j_ 1 + uij, 

laPki / ,-- 0 (4) 

where D = A t / h  2. The Laplacian laPk.i,/ has 
three subScripts, the first of which takes on just 
two values (zero and one, say). The values of k 
and k'  are interchanged at every time step. In 
effect, there are two Laplacian fields which are 
used in alternation: the first (unprimed) is used to 
update the u-field at the current step and is then 
set to zero for use at the next time step. The 
second (primed) Laplacian is computed for use at 
the next time step. A complete subroutine for 
taking one time step is given in the appendix. In 
the limit At, h, 8 ~ 0, and with appropriate 
boundary conditions, we expect the numerical 
solution obtained from (4) to converge to the 
solution of PDE (1) [13]. 

3. Results 

We have simulated spiral waves using the sub- 
routine given in the appendix with the implicit 
form for the function F. The spatial domain is a 
square grid of area L 2 containing N 2 grid points. 
Hence, the grid spacing is h = L / ( N  - 1). No-flux 
boundary conditions are imposed on the domain 
boundary. There are seven parameters for the 
problem: the four "physical parameters",  a, b, e, 
and L, and three "numerical parameters",  At, 8, 
and N. As a practical matter, we have found it 
convenient to fix the relationship between spatial 
and temporal discretizations. For all results re- 
ported here At = L E / 5 ( N -  1) 2. 

Plate I shows some representative results from 
our model. Plates Ia and Ib show a single spiral 
wave at two different resolutions. The parameter 
values for (a) are: a = 0.3, b -- 0.01, 1 / e  = 200, 
L = 40, N = 81, and 8 -- 10 -4. With these param- 
eters, h = 0.5 and A t / e  = 10, and this is the 
coarsest resolution found to produce meaningful 
results. For coarser resolutions grid effects be- 
come dominant and there is significant slowing in 
the wavespeed along the grid diagonals. Even at 
the resolution of Ia significant grid effects are 
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sometimes observed #5. Note that the time step is 
an order of magnitude larger than that which is 
possible with explicit time stepping of the reac- 
tion kinetics. 

Simulations at the resolution of plate Ia are 
extremely fast: the execution time required for 
one wave rotation is about 2 s using single preci- 
sion arithmetic on a Silicon Graphics 4D/200  
series workstation with a Mips R3000 processor. 
This execution time is comparable to that re- 
cently reported for cellular-automata simulations 
[9]. An exact comparison of computational speeds 
is not possible, however, because of differences 
between cellular-automaton approach and that 
used here. While we do not expect our simula- 
tions to achieve quite the speed of well-optimized 
cellular automata (due primarily to the number of 
floating-point operations required to compute the 
function F), we do expect our model to be com- 
petitive on machines with good floating-point 
hardware. 

The advantage of our model is that the spatio- 
temporal resolution of the simulation can be 
increased in a well controlled manner. For 
example, the spiral tip in plate Ia exhibits com- 
plex motions (meandering [14]), but at the resolu- 
tion of the figure it is not possible to obtain 
quantitative results on this motion. Plate Ib shows 
the same situation as Ia except that the number 
of grid points had been increased to N = 121 and 
the box size has been decreased to L = 25 so that 
the motion of the spiral tip is easily discernible. 
The white curve shows the path of the spiral tip 

over the two wave rotations leading to the state 
shown. The spiral tip is defined as the intersec- 
tion of the two contours u = 1 /2  and f(u= 
1/2,  v) = 0, where f is given in (2). Increasing the 
resolution further produces only small quantita- 
tive changes in the wave dynamics ~'6. 

Shown in plates Ic and Id are contours for the 
excitation and recovery variables for a pair of 
co-rotating spiral waves. The parameter  values 
are the same as in Ia except that N = 241. This 
gives h = 0.167 and At/E = 1, corresponding to a 
well resolved simulation. The point we wish to 
make here is that even at fine resolutions our 
algorithm is very efficient. Throughout the blue 
region in Ic the system is within the boundary 
layer illustrated in fig. 1. Hence throughout this 
region (more than 70% of the domain), our algo- 
rithm requires just one conditional evaluation 
and two floating-point multiplications per grid 
point per time step. The execution time on the 
aforementioned Silicon Graphics workstation for 
one wave rotation is only 80 s at this resolution. 

Plates Ie and If show representative simula- 
tions in large boxes containing many spiral waves. 
The parameter  values for Ie are the same as for 
Ic except that a = 0 . 4 ,  1 / e - - 1 5 0 ,  L = 1 0 0  and 
t~ = 10 -3. The waves shown were obtained by 
breaking the waves of Ic many times. (We have 
found that wave breaking is easily accomplished 
by transposing the right and left halves of the 
domain.) The parameter values for If are the 
same as for Ic except that a = 0.5, L = 200, N = 

~'SGrid anisotropy can be reduced by using a nine-point 
Laplacian formula and operator splitting as discussed in ref. 
[12]. 

#6The path of the spiral tip provides a very stringent 
diagnostic of  numerical solutions. For completely converged, 
anisotropic results the resolution must  be increased beyond 
that of plate Ib. 

~ lPla te  I. Representative results from model simulations. Parameter  values are given in the text. (a) and (b) show the v-field for a 
single spiral wave at two different resolutions. Colors range from red at the minimum value of v to blue at the maximum value of 
v. The white curve in (b) is the path of the spiral tip during two wave rotations. (c) and (d) show the u- and v-fields, respectively, for 
a pair of  co-rotating spiral waves. Those points in (c) which are within the boundary layer of  fig. 1 are shown in blue, points outside 
the boundary layer, but to the left of  the threshold are green, points to the right of the threshold are yellow. Colors in (d) range 
from white at the minimum value of c to read for the maximum value of v. (e) and (f) show two different simulations in large 
domains. In (e) the u-field is shown with the same color map as (c). In (f) the v-field is shown with the same color map as (a). 
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401, and S = 10 -3. The initial condition for If was 
a random (u, v) field. Both Ie and If are coarse- 
resolution simulations and are quite fast: the 
execution time per wave rotation is about 25 s in 
the case of Ie and about 55 s in the case of If. 
These low-resolution simulations illustrate how 
results can be obtained for large domains at 
relatively high speed using our model. This, in 
turn, will make the future investigation of such 
large domains practical. 

4. Discussion and conclusion 

A few comments on the applicability of our 
model are in order. The model, specifically the 
local dynamics (2), has been chosen both for 
simplicity and for efficient numerical implementa- 
tion. While the model is not derived from any 
particular excitable system, it is based on widely 
recognized characteristics of excitability and the 
model dynamics should be generally representa- 
tive of excitable media. There are only three 
model parameters, a, b, and E, by which the 
properties of the medium can be adjusted, thus 
making a complete classification of parameter  
space a possibility. By the same token, certain 
details of any particular system might elude our 
model, for there undoubtedly is not enough free- 
dom with only three parameters to accurately 
match the detailed characteristics of any specific 
medium. For this it will be necessary to change 
the form of the local kinetics. 

The numerical parameters 6, At, and h enter 
the model parameter  space only in so far as 
results might vary somewhat with these parame- 
ters if they are not sufficiently small for results to 
be converged to the solution of the underlying 
PDE. When using low spatio-temporal resolution 
to explore parameter  space, one hopes that the 
same structure (bifurcation points, etc.) exists at 
low resolutions as at high resolutions and that 
only quantitative variation arises as the resolution 
is varied. This must be verified in practice and 
this is easily addressed using the proposed model. 

It should be kept in mind that in PDE (1) only 
the excitation variable diffuses. This is appropri- 
ate for simulating systems such as neuro-muscu- 
lar tissue [1-3, 15] and catalytic surfaces [16, 17] 
in which the recovery variable is immobile. How- 
ever, caution should be observed in using (1) to 
simulate systems, such as chemical reactions, in 
which all species diffuse with approximately the 
same diffusion coefficient. Our motivation for 
leaving v-diffusion out of the model is that the 
simulations are considerably faster with only the 
excitation variable diffusing. The hope is that 
under many circumstances neglecting diffusion of 
the recovery variable does not result in much 
quantitative error when simulating chemical sys- 
tems such as the Belousov-Zhabotinsky reaction. 
In any case, it is a simple matter  to add v-diffu- 
sion to the simulations #7. 

In conclusion, we have presented an efficient 
algorithm for simulating waves in excitable media 
and have shown a variety of results from such 
simulations. We have focused on the ability of 
our model to provide both high-speed qualitative 
results and accurate simulations to the underlying 
system of reaction-diffusion equations. The nu- 
merical scheme is based on a model which is 
simple and yet contains the essential features of a 
broad class of excitable systems. The algorithm 
itself is easily implemented and requires less than 
50 lines of computer code for the time-stepping 
subroutine. Thus, the mbdel presented here of- 
fers much in terms of simplicity, speed, and wide 
applicability. 
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Appendix 

The following is a complete  subroutine,  in the language C, for taking one time step of  the model.  

float u[N+l] [N+I], v[N+l] [N+I], lap[2] [N+23 [N+23 ; 

void step() 
{ 
int i, j ; 
float u_th ; 

/* interchange k and kprm */ 
ktmp = kprm ; 
kprm = k ; 
k = ktmp ; 

/* main loop */ 
for( i=1; i<=N; i++ ) 

f o r (  j=i; j<=N; j++ ) 
{ 
if ( u[i][j] < DELTA ) 

{ 
u[i][j] = D * lap [k] [i] [j ] ; 
vii] [j] = one_re_d% * vii] [j] 

} 
else 

{ 

} 
lap [k3 [i] [j ] 
} 

u_th = one_o_a * viii [j] + b_o_a ; 
viii[j] = viii[j] + d% * ( u[i][j] - v[i][j] ) ; 
u[i][j] - F( u[i][j], u_th ) + D * lap [k] [i] [j ] ; 
lap [kprm] [i] [j ] = lap [kprm] [i] [j] - 4.* u[i][j] ; 
lap[kprm] [i+13 [j] - lap[kprm] [i+13 [j] + u[i] [j] ; 
lap[kprm] [i-1] [j] lap[kprm] [i-l] [j] + u[i] [j] ; 
lap[kprm] [i] [j+l] ~ lap[kprm] [i] [j+1] + u[i] [j] ; 
lap[kprm] [i] [j-l] = lap[kprm] [i] [j-l] + u[i] [j] ; 

- - 0 .  ; 

/ *  impose no-flux boundary conditions * /  
for( i=I; i<=N; i++ ) 

{ 
lap [kprm] [i] [1] 
lap [kprm] El] [i] 
lap [kprm] [i] [N] 
lap [kprm] IN] [i] 

} 
} 

where the parameters  have the following meanings:  d t  = At, o n e  m d t  = 1 -  At, o n e  
b o a = b / a .  

= lap [kprm] [i] [13 + u[i][2] ; 
lap [kT~] [13 [i] + u[23 [i] ; 

= lap [kprm] [i] IN] + u[i] [N-I] 
= lap[kprm] IN] [i] + u[N-l] [i] 

o a = l / a ,  
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Note that while the grid indices run from 1 to N, the second two subscripts on the variable lap run 
from 0 to N + 1. This over-dimensioning of the Laplacian is necessary in active Laplacian evaluation to 
keep the subscripts from going out of bounds at the domain boundaries. For simplicity, the variables u 

and v are also over-dimensioned (because C uses zero-based indexing). 
The function F is only used symbolically in the preceding subroutine. We suggest in-line coding of the 

function in the following way: 

#if EXPLICIT /* explicit form for F */ 

u[i][j] = u[i][j] + dt_o_eps * u[i][j] 
+ D * lap[k][i] [j]; 

#else / *  implicit form for F * /  

* ( 1 . 0 - u [ i ] [ j ] )  * ( u [ i ] [ j ]  - u_th) 

if( u[i][j] < u_th ) 
u[i][j] = u[i][j] / (1.-dt_o_eps * (1.0-uFi][j]) * (u[i][j] -u_th) ) 

+ D * lap[k] [i] [j] ; 
else 

{ 
temp = dt_o_eps * u[i] [j] * (u[i] [j] - u_th) 
u[i][j] = (u[i][j] + temp) / (1. + temp ) + 

} 

I 

D * lap[k] [i] [j] ; 

#endif 

where d t  o eps=At/e. The explicit form should be used for d t  o e p s < l  because it is more 

efficient than the implicit form. The implicit form should be used for larger time steps. 
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