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The mixed-mode oscillations observed at high flow rates in the Belousov—Zhabotinskii (BZ)
reaction are considered and comparison is made between these oscillations and the dynamics of
three different mathematical models based on slow manifolds. It is shown that the model
proposed by Rdéssler for the generation of complex behavior in nonequilibrium chemical
reactions is in conflict with the behavior of the BZ reaction. It is also shown that a slow-
manifold model based on the hysteresis-Hopf normal form fails to accurately reproduce the
oscillations found at high flow rates in the BZ system. A model of the type first proposed by
Boissonade is presented; the model consists of the coupling of two simple systems. It is shown
that this model naturally generates mixed-mode oscillations like those observed in the BZ

reaction.

I. INTRODUCTION

Nonequilibrium chemical systems are often governed
by many component reactions whose time scales range over
several orders of magnitude. These differing time scales re-
sult in slow manifolds in the state spaces of many chemical
systems. This is illustrated in Fig. 1 where we show the slow
manifold and steady state for a hypothetical reaction evolv-
ing three chemical species. The state-space coordinates cor-
respond to the concentration of the species in a homoge-
neous reactor. While on the slow manifold, the system
evolves by some relatively slow process. If, however, the sys-
ter passes over a pleat, or is otherwise in a state that does not
lie on the slow manifold, then a fast process takes over, caus-
ing concentrations to quickly adjust and bring the system
back to the surface shown.

Much of the dynamics exhibited by chemical reactions
has been modeled'~ using S-shaped or pleated slow mani-
folds like that illustrated in Fig. 1. These slow-manifold
models provide simple geometrical pictures of the variety of
dynamics found in experiments and in simulations of larger,
chemically based models.

The slow-manifold models used to describe the chemi-
cal reactions fall mainly into one of two types, which we shall
refer to as the Rassler and Boissonade types, after the auth-
ors who first (and almost simultaneously) introduced
them."> While models of both types are based on S-shaped
slow manifolds, there are differences between the two which
are of fundamental importance for explaining the dynamics
of chemical reactions. Apart from a brief discussion by De-
Kepper and Boissonade, '° these important distinctions have
not been stressed.

The purpose of this paper is to review and contrast dif-
ferent slow-manifold models. In particular, we shaill show
that, initial appearances to the contrary, Fig. 1 provides an
incorrect picture for the mixed-mode oscillations of the Be-
lousov—Zhabotinskii (BZ) reaction. While our study fo-
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cuses on the BZ reaction, we believe that many of our find-
ings hold for other chemical reactions as well. (For a review
of slow-manifold models different from those considered
here, see Rinzel.!!)

Because we incorporate into our discussion many mod-
els as well as experimental results, a few words are in order
concerning the organization of the paper. OQur approach
shall be to compare the dynamics of experiments and simula-
tions of the BZ reaction with the dynamics of three math-
ematical models based on slow manifolds: the Rossler mod-
el, the hysteresis-Hopf normal form, and a model of the
Boissonade type.

We begin by considering the complex dynamics found at
high flow rates in the BZ reaction; this includes results both
from experiments and from simulations of an Oregonator
model'? of the reaction. We then describe the Rossler slow-
manifold picture and compare and contrast the dynamics of
Rossler models with that of the BZ reaction. We look briefly
at a slow-manifold model based on the hysteresis-Hopf nor-
mal form. This model is similar to those of the Rdssler type,
but is sufficiently different to warrant a separate treatment.

We then present a model of our own design, which we
call model A, based on the coupling of two simpler models.
Using this model, we discuss the Boissonade slow-manifold
picture and show that it naturally generates most features of

Slow
Manifold

FIG. 1. Illustration of a slow mani-
fold in the state space of a hypo-
thetical chemical reaction. The co-
ordinates represent the con-
centrations of chemical species in a
homogeneous reaction. The steady
state is stable transverse to the stow
manifold and unstable along it.
The trajectory illustrates the evo-
lution typical of such a system.

Steady
State
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the BZ dynamics. Finally, in the Appendix we present a gal-
lery of interesting states found in model A.

Ii. MIXED-MODE OSCILLATIONS IN THE BZ REACTION

Our ultimate goal is formulating the proper slow-mani-
fold picture for the mixed-mode oscillations found at high
flow rates in the BZ reaction. Therefore, we begin with a
discussion of these oscillations in experiments and simula-
tions.

A. Experiment

Shown in Fig. 2 are results obtained by Hudson et al."?
in experiments on the BZ reaction in a well-stirred flow reac-
tor. We shall refer to the multipeaked states shown as mixed-
mode oscillations, for they are composed of mixtures of two
distinct modes of oscillation: small-amplitude nearly har-
monic oscillations and large-amplitude relaxation oscilla-
tions.

Figure 3 (from Hudson et al.'*) provides an excellent
illustration of the variety of oscillations that can be observed
as a control parameter is varied. Representative time series
are shown at several values of the control parameter (flow
rate). The other constraints (feed concentrations, tempera-
ture, etc.) are the same as those of Fig. 2.
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FIG. 2. Representative mixed-mode oscillations from experiments on the
BZ reaction in a CSTR. Shown is the output of a bromide-ion electrode as a
function of time at two different flow rates. The flow rate in (a) is 4.34 ml/
min and in (b) is 5.37 ml/min (see Fig. 3). Reproduced with permission
from Hudson, Hart, and Marinko (Ref. 13).
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FIG. 3. Summary of states as a function of flow rate from experiments on
the BZ reaction in a CSTR. Representative time series are shown at several
flow rates. The experimental conditions are the same as in Fig. 2. Repro-
duced with permission from Hudson, Marinko, and Dove (Ref. 14).

It is evident from Fig. 3 that as flow rate is increased
thereis an increase in ratio of small to large oscillations in the
mixed-mode states. At high flow rates (5.4 ml/min) thereis
a transition from mixed-mode to small oscillations, and
above this (5.5 ml/min), there is a transition to steady state.

The state shown in Fig. 2(b) is that found just before the
transition to small oscillations. For reasons which will be
clear, we shall refer to this as a spiral state or spiral attractor.
Itis characterized by long periods of quiescence, followed by
growing small oscillations and then a relaxation oscillation.
Decaying small oscillations are sometimes observed to pre-
cede the period of quiescence. The spiral attractor provides
important insight into the proper slow-manifold picture of
the BZ reaction. The dynamics associated with this state will
be the main focus of our analysis.

B. The SNB model

While the experimental observations are of principal
importance, they provide only limited information. General-
ly in experiment, the concentration of a single chemical spe-
cies is measured as a function of time. Furthermore, the
study of transients, which gives important information for
the evaluation of slow-manifold models, is experimentally
difficult.

To overcome these difficulties, we turn to a model of the
BZ reaction which is of chemical origin, and which provides
simulation of the behavior of interest. Note that our use of
this chemical model is different from our use in later sections
of models based on slow manifolds: here we simulate, as
accurately as possible, the dynamics of the chemistry; in sub-
sequent sections we use simple geometrical models to obtain
insight into this dynamics.

The model we employ is due to Showalter, Noyes, and
Bar-Eli (SNB)'?; it is a modification of the original Oregon-
ator proposed by Field and Noyes.'* (SNB originally intro-
duced the model, in part, to account for the variety of oscilla-
tions observed by Hudson et al.) The model consists of the
following six reaction steps:
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where A=BrO;, Y=Br-, X=HBrO, P=HOBr,
W=Br0,-, Z=Ce**, C=Ce*". (Note that we shall use
these same capital letters to denote the concentrations of the
corresponding chemical species; the meaning will be clear
from the context. ) This kinetic scheme gives rise in the usual
way to a system of coupled ordinary differential equations
for the concentrations of the chemical species in a well-
stirred flow reactor.

We use the values originally given by SNB for the rate
constants of the first five reactions:

k,=0084, k_,=10x%10%
ky=40X10%, k_,=50x10"5,
ky,=20%10°, k_,=20x10,
ky=13X10° k_,=24X10,
ks =40x10", k _5=40x10""".

These constants arein M ™' s~ !and assume [H"] = 0.2 M.
Unless stated otherwise, the following values are assigned to
the remaining model parameters:
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FIG. 4. Mixed-mode oscillations obtained from the SNB model. This state

is similar to that seen in experiment [Fig. 2(b)]. Enlarged are the small
oscillations which precede and follow the relaxation oscillations.
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FIG. 5. Phase portrait for the mixed-mode state shown in Fig. 4. The en-
largement shows the spiral natore of the attractor associated with these os-
cillations. The X marks a saddle-focus fixed point.

ko=2.1%X10"2s"" k,=29s"!, g =042,
Ay=0.14M, C, =2.7x1074M, ¥, = 1.0X10~7 M, (1)

where k, = flow rate/reactor volume, and A,, C,, and Y,
denote the feed concentration of BrO;, Ce**, and Br™, re-
spectively. All other feed concentrations are zero. All results
for the SNB model, and for model A presented in Sec. V,
have been obtained by numerical integration using the Gear
method (IMSL subroutine DGEAR'® modified for relative-
error checking), with a one-step error tolerance of 10 '°,

In Figs. 4 and 5 we show a numerically generated
mixed-mode state similar to that seen in experiment [Fig.
2(b)]. We show time series for the concentrations of Y and
P in Fig. 4 and a phase portrait of the associated spiral in Fig.
5. To allow for comparison with experiment,'” we have plot-
ted — log Y as a function of time in Fig. 4(a). We have also
plotted — log P on the ordinate of Fig. 5 [and of the ordi-
nate of Fig. 4(b)], so that the spiral attractor is oriented
with the growing small oscillations at the bottom of the
phase portrait. We shall follow this convention when pre-
senting other spiral states (e.g., Fig. 1).

The spiral lies extremely close to a saddle-focus fixed
point (three negative real cigenvalues and a complex conju-
gate pair of eigenvalues with positive real part). This fixed
point is shown in the enlargement of the phase portrait. The
attractor associated with the oscillations in Fig. 4 (and pre-
sumably Fig. 2) is thus very nearly a homoclinic orbit. How-
ever, the oscillations are not of infinite period, and therefore
the spiral is, in fact, not homoclinic. Simulations of the spiral
are very susceptible to numerical “noise,” however, and it is
difficult to ascertain whether the spiral is exactly a periodic
state, and if so, its period. o

While the BZ spiral resembles that analyzed by Silni-
kov,'® it does not meet the Silnikov condition for chaos (see
Guckenheimer and Holmes,'® and Argoul ez al.®). That s, in
the SNB model (for the parameters we consider), the time
scale by which trajectories approach the saddle focus is
slower than the time scale by which they leave. This is con-
trary to the hypotheses of the Silnikov theorem guaranteeing
complex dynamics near homoclinic orbits. As will be seen,
this slow approach to the saddle focus in the BZ system is of
fundamental importance.
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The expanded portion of the time series emphasizes the
small oscillations. The period of these oscillations is smaller
than in experiment. This discrepancy, a characteristic of the
SNB model, will not be of importance here. The enlargement
also shows the decaying small oscillations immediately fol-
lowing the relaxation oscillation. These decaying oscilla-
tions are seen at the top of the phase portrait. Similar small
oscillations are seen in the experimental time series [Fig. 3
and just after the second and third relaxation oscillation in
Fig. 2(b)]. In the simulation, the first of these decaying os-
cillations is seen as a large (low bromide-ion) spike in the
time series. This large spike does not appear in the experi-
mental time series (see Ref. 17).

As the flow rate in the simulation is decreased below
that of Fig. 4, the ratio of small to large oscillations decrease
until only large oscillations are found. As the flow rate is
increased slightly above that for the spiral state, the system
makes a transition to small oscillations and then to steady
state via a Hopf bifurcation. Both of these facts are in accord
with experiment (Fig. 3). Therefore, we take the model dy-
namics to be a good representation of that observed in exper-
iment.

We note, however, that the SNB model does not repro-
duce (for the parameters we consider) the chaos reported
experimentally (i.e., the chaotic regions in Fig. 3). This ab-
sence of chaos in simulations is well documented,?>*? and is
consistent with the Silnikov condition discussed above.
However, Lindberg® does report chaos in the SNB model
similar to that seen in experiments at Jow flow rates. Chaos
has also been observed in the SNB model between small and
mixed-mode oscillations.?* While the question of chaos in
chemical reactions is important, it is outside the focus of this
paper and we shall only touch upon it as needed.

The behavior illustrated in Figs. 2-5, specifically the
spiral attractor and the sequence of transitions, mixed-mode
oscillations — small oscillations — steady state, has been ob-
served at high flow rates in both experiments and simula-
tions for a variety of conditions in addition to those
shown.®**"?* Thus, while other behavior might be possible,
the spiral should be thought of as characteristic of the high
flow-rate dynamics of the BZ reaction and not specific to the
parameters selected here. The remainder of the paper is de-
voted to the interpretation this behavior in terms of simple
slow-manifold models.

lll. THE ROSSLER PICTURE

We now examine the slow-manifold picture due to
Rossler.' This is the picture illustrated in the introduction
(Fig. 1). We shall show that while this picture would seem to
explain the mixed-mode oscillations in the BZ reaction, it in
fact, does not.

A. The Gaspard-Nicolis equations

Several different reaction schemes and mathematical
models based on the original ideas of Rossler have been put
forth. Gaspard and Nicolis?® have introduced a system of
equations, deriving from mass-action kinetics, which is par-
ticularly well suited for illustrating the Rossler model.

The Gaspard-Nicolis equations are

x=x(dx—fy—z+g), (2a)

y=y(x+sz-1), (2b)

.'z:i(x——azg‘—{-bzz—cz). (2¢)
€

We shall often refer to Egs. (2) as the Réssler model.
Most of the results which we report for this model have been
obtained with parameter values investigated by Gaspard and
Nicolis, namely

a=055b=3.0,c¢=5.0,
F=05g=061=13,
s=0.3, =001, (3)

with d taken as an adjustable control parameter.

The first requirement of models of the Rossler type is a
pleated slow manifold. Together, the cubic nature of the z
equation and the smallness of the parameter € provide such a
slow manifold in Eqgs. (2). The quantity |2| is large in com-
parison with | x| and ||, except when the right-hand side of
Eq. (2¢) is near zero. Thus setting z = 0, we obtain the fol-
lowing expression for the slow manifold:

x=az — bz’ + cz. (4)

This is the surface shown in Fig. 1. Note that only the upper
and lower sheets are attracting; small perturbations will
drive the system off the middle sheet.

In addition to the pleated manifold, the Rossler picture
requires a saddle-focus fixed point on one of the stable sheets
of the manifold (the lower sheet in Fig. 1). The fixed point is
unstable with oscillatory behavior along the slow manifold.
Due to the attraction to the manifold, the fixed point is stable
in a transverse direction.

The system evolves in time as follows: orbits starting
near the saddle focus spiral away on the slow manifold until
they reach the lower pleat. They then jump to the upper
sheet where they again move slowly. The pleats are arranged
in such a way that trajectories are reinjected back onto the
lower sheet in the vicinity of the fixed point, and the process
repeats. Depending on the system parameters, the resulting
behavior may be periodic or chaotic (see Fig. 6 discussed
below).

B. Similarities between the Rossler and BZ dynamics

Early on, Schmitz, Graziani, and Hudson® realized that
a slow-manifold model, like that proposed by Rossler, could
be used to explain the multipeaked oscillations observed in
the BZ reaction (see also Tyson* and Maselko®). The nearly
harmonic oscillations are attributed to spiraling from the
saddle focus, and relaxation oscillations with jumps between
the sheets of the slow manifold.

Schmitz e al. further noted that the slow manifold
could be used to explain the variety of states observed in
experiments (e.g., Fig. 3). Their interpretation of experi-
mental results is illustrated in Fig. 6 with states obtained
from Eqs. (2). We shall describe the correspondence
between the states shown in Fig. 6 and experimental results
shown in Fig. 3 in order of decreasing flow rate. [Fig. 6(a)
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FIG. 6. Sequence of states for the Réssler slow-manifold picture. States
were obtained from Egs. (2) with (a) d = 0.26: stable fixed point; (b)
d =0.35: unstable fixed point and small-amplitude limit cycle; (d)
d = 0.49: periodic mixed-mode state; and (d) d = 0.51: chaotic mixed-
mode state. The coordinate axes shown are not centered on the origin, and
the x-axis point in the direction of decreasing values.

corresponds to high flow rates, and Fig. 6(d) to low flow
rates. |

At high flow rates, the BZ reaction exhibits a stable
steady state, and as the flow rate is decreased, this steady
state gives way to small oscillations. In the Rossler picture,
this simply corresponds to a stable steady state on the slow
manifold [Fig. 6(a) ] becoming unstable to nearly harmonic
oscillations [Fig. 6(b)] via a Hopf bifurcation.

As the flow rate is lowered in experiments, the ampli-
tude of the small oscillations grows until there is a transition
to mixed-mode oscillations. In the Rgssler picture, this cor-
responds to the amplitude of the limit cycle growing as a
function of a control parameter (as it does after a Hopf bifur-
cation), until the limit cycle reaches the pleat and “falls off
the edge” [Fig. 6(c)].

The Rdssler picture can also account for the decrease in
the ratio of small to large oscillations seen in experiment.
Corresponding to the growth in amplitude of the limit cycle
as a function of parameter, there is a growth in the rate at
which trajectories leave the vicinity of the fixed point. Spe-
cifically, the real part of the complex pair of eigenvalues
associated with the Hopf bifurcation grows, while the imagi-
nary parts of these eigenvalues remain approximately con-
stant. Thus, one expects fewer small orbits on the lower sheet
of the slow manifold per reinjection.

Finally, as in experiment, there are parameter intervals
in the Rossler model for which chaos is observed [Fig.
6(d)]. (Rossler, in fact, originally introduced slow-mani-
fold models to generate chaotic dynamics.)

C. Differences between the Rossler and BZ dynamics

It would appear that the original Réssler mechanism
provides a very comprehensive picture of the mixed-mode

dynamics in the BZ reaction; however, this is not so. While
much of the interpretation of Schmitz er al. is correct, the
orientation of the slow manifold in the BZ system is not as in
the Rdossler picture. In this section we note three major dis-
crepancies between the Rossler model and the BZ system; in
Sec. V we show how these problems are overcome with a
different slow-manifold model.

(i) The most fundamental difference between the BZ
and Rossler dynamics concerns the time dependence of the
reinjection variable: the variable corresponding most closely
to the direction along which the system returns to the steady
state. For the BZ system (specifically the SNB model), this
variable is the concentration P (see Fig. 5). For the Rossler
model [Eqgs. (2)], z is the reinjection variable. In Fig. 7 we
show a portion of a time series for z with d = 0.51.

The behavior of the SNB model [Fig. 4(b)] is entirely
different from that of the Rossler picture (Fig. 7). In the
SNB model, the approach to the saddle focus is siow. That is,
the decay is governed by the slowest time scale associated
with the fixed point. (The eigenvalue closest to zero is ap-
proximately — flow.) The behavior in the Rdssler picture
(Fig. 7) is exactly the opposite: the system makes a rapid
approach to the fixed point. (Note the abrupt ““stop” of z as
the system it hits the slower sheet of the slow manifold.) The
approach to the fixed point in the Rdssler model is transverse
to the slow manifold, and is therefore fast by definition. This
fast approach to the fixed point is fundamentally in conflict
with the BZ dynamics.

(i1) The second discrepancy between the BZ dynamics
and that of the Rdssler picture concerns the funneling of
trajectories to the fixed point. This is illustrated in Fig. 8
where, for both systems, we show portions of trajectories
starting from three different initial conditions.

For the SNB model [Fig. 8(a)], independently of
where trajectories begin, they wrap around the *“‘stable mani-
fold*° of the fixed point and are then funneled to the fixed
point itself. This wrapping of trajectories produces decaying
small oscillations in the time series. For the Réssler picture
[Fig. 8(b)] the behavior is quite different: trajectories go
directly (vertically) to the slow manifold, showing no affin-
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FIG. 7. Time series for the reinjection variable z obtained from the Réssler
model with d = 0.51 [the same condition as in Fig. 6(d) ]. Shown are two
relaxation oscillations separated by three small oscillations. The relaxation
oscillations show the rapid return of trajectories to the fixed point (lower
sheet of the slow manifold).
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(a)

FIG. 8. Transient behavior for both (a) the SNB model and (b) the Rossler
model. In each case portions of trajectories are shown starting from three
different initial conditions. The parameters for (a) are the same as for Figs.
4 and 5; the parameters for (b) are the same as for Fig. 6(d). For the BZ
system (a) trajectories are funneled to the fixed point. This is not the case
for the Rossler model (b).

ity for the fixed point. There are no decaying small oscilla-
tions in the Réssler model.

(iii) The third point of note is very much related to the
previous point and concerns the transition from mixed-
mode to small oscillations. In the BZ reaction, preceding the
high flow-rate transition to small oscillations, there is a sig-
nificant range of flow rates for which the spiral lies very close
to the fixed point. In this parameter range, the reinjection
always brings the system very close to the fixed point and the
small oscillations of the mixed-mode state grow from nearly
zero amplitude [see Fig. 2(b) and the enlargement in Fig.
4]. This nearly homoclinic condition just before the transi-
tion to small oscillations is a very robust feature of the BZ
system. It has been observed in experiments,®*”?® and simu-
lations?*** with control parameters different from those dis-
cussed here (see also Larter et al.,>' Albahadily and Schell,*?
and Argoul et al.*)

The situation is different for the RSssler model: there is
no mechanism causing the spiral to come close to the fixed
point. For the parameter values used to generate Fig. 6, the
steady state lies approximately under the upper pleat, so that
after the transition to mixed-mode behavior, trajectories
come close to the fixed point. However, this is not robust—
with a different choice of parameters the transition will not
be to a nearly homoclinic spiral.

In Fig. 9 we show the situation after the transition to
mixed-mode behavior in the Rdssler model at parameter val-
ues different from those of Fig. 6. Specifically, we have
changed/ to 0.8 and d t00.41; all other parameters are given
by Eqgs. (3). Because the slow manifold depends only on the
parameters a, b, and ¢ [Eq. (4)] and these are unchanged
from Fig. 6, the pleats of the slow manifold are unmoved.
The position of the fixed point has changed considerably,
however, and it no longer lies directly under the upper pleat.
Because there is no correlation between the location of the
upper pleat and the fixed point, spirals like that shown in
Fig. 9 can easily be found after the transition to mixed-mode
oscillations in the Rossler model. This is very different from
the BZ system.

From the above three discrepancies we conclude that
the Réssler model provides an incorrect description of the

BZ dynamics. There is an S-shaped manifold giving rise to
the variety of the states in the BZ system; however, it is not
oriented as in the Rdssler picture. This is the subject of Sec.
V. However, before turning to this we examine a different
model, the hysteresis-Hopf normal form. The slow manifold
arising in the normal form is basically of the Rossler type,
but its shape is significantly different from that of more tra-
ditional Réssler models (e.g., the Gaspard-Nicolis equa-
tions) and this has never been stressed.

IV. THE HYSTERESIS-HOPF NORMAL FORM

The hysteresis-Hopf normal form (HHNF) is a re-
duced system of equations describing the dynamics found in
the vicinity of a hysteresis-Hopf bifurcation. (See Gucken-
heimer and Holmes'® for a general discussion of normal
forms, and Richetti er al.** and Barkley er al.** for a discus-
sion of the HHNF in the context of the BZ reaction.) Our
purpose here is to use the normal form only as a slow-mani-
fold model and contrast its dynamics with that of the BZ
reaction.

The normal form is given by the following system of
equations™:

X=x(z—p) —wy, y=wx+y(z—p),

2:—1~{/1+az—z‘/3+ (X2 4+ ) (b +gx + ez)},
€

where a, 3, and A are bifurcation parameters, and w, b, g, ¢, €
are nonzero constants.*® We have added the parameter € to
make the correspondence with other stow-manifold models
more transparent. This redundant parameter can be re-
moved by rescaling z and time.

For g = 0, the normal form can be transformed into cy-
lindrical coordinates as

F=r(z—f3)

f=w
2=i{/1+az—z3/3+r2(b+ez)}
€

which, for € small, has a slow manifold given by
r=(2/3 —az—A)/(b + ez).

For appropriate choices of parameters, this manifold
has an hourglass shape. With ¢ nonzero the hourglass is no
longer axisymmetric. Figure 10 shows a cutaway of the slow
manifold at two values of 4 with g nonzero. The parameters
values are

FIG. 9. Results from the Rossler mod-
el [Egs. (2)] with /=0.8, d = 0.41,
and other parameters given by Egs.
(3). The state shown occurs after the
transition to mixed-model behavior,
yet the reinjection does not bring tra-
jectories close to the fixed point.
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a=10,F=0.5, =40,
b= —50,e=20g= —08,e=1x10"2 (5)

In relation to the BZ dynamics, the significant improve-
ment of the HHNF over the Réssler model is that the hour-
glass shape of the slow manifold in the normal form causes
trajectories to be funneled into a thin tube and then to the
fixed point itself. Compare Fig. 10(a) for the HHNF with
Fig. 5 for the SNB model, and note that decaying small oscil-
lations are found in both. Contrast this behavior with that of
the Rossler picture shown in Fig. 6.

Still, major differences exist between the HHNF and BZ
dynamics. Most notably, the time dependence of the reinjec-
tion variable z in the normal form is contrary to that of the
reinjection variable P in the SNB model: in the HHNF tra-
jectories approach the saddle-focus transverse to the slow
manifold, and thus with a fast time scale (rather than a slow
time scale as in the BZ system ). Point (i) of Sec. III C there-
fore applies to the normal form as well as to the more tradi-
tional Rdssler model.

Shown in Fig. 11 is a time series for the variable z in the
normal form. The rapid jumps between sheets of the slow
manifold are clearly seen. It is important to note that while
this time series bears resemblance to time series obtained for
the BZ reaction (both experiments and simulations), this
resemblance is misieading. Figure 11 is a plot of the reinjec-
tion variable; the time series it resembles in the BZ system
are for the concentrations of Br— or Ce**, and these are not
the reinjection variable.

The other important differences between the HHNF
and BZ dynamics concern the funneling of trajectories.
First, although trajectories in the HHNF are funneled to a
narrow tube, this funneling is quite different from the funnel-
ing in the BZ system. It is clear that in the normal form (Fig.
10), all trajectories spiral inward to a thin tube at the same
distance from the saddle-focus fixed point. In the SNB mod-
el, however, trajectories starting from different initial condi-
tions spiral inward at different distances from the fixed point
[Fig. 8(a)].

Second, in the HHNF, the funneling of trajectories and
the decaying small oscillations are associated with a “virtual

FIG. 10. Cutaway of the slow manifold in the hysteresis-Hopf normal form:
(a) A = 0.68; (b) A = 0.60. For clarity the coordinate axes are not shown;
the slices are at x = 0, and z is increasing downward. Also shown are fixed
points and illustrative trajectories. The X’s at the bottom of the figures
correspond to the saddle-focus fixed points previously discussed in the BZ
and Rossler systems. The + *sin (b) mark two fixed points which arise by a
saddle-node bifurcation at A = 2/3; the upper (middle) fixed point is stable
(unstable). It is meaningful to associate the contracting spiral in (a) with
the pair of fixed points which appear in (b).
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FIG. 11. Time series for the reinjection variable z in hysteresis-Hopf normal
form. Parameter values are those of Fig. 10(a). Note that trajectories spend
a long time passing through the neck of the hourglass in Fig. 10(a).

pair” of fixed points. While it is tempting to also associate
the decaying small oscillations in the BZ system with a vir-
tual pair of fixed points, we find that this cannot be done in
general.

More specifically, in the normal form, trajectories are
funneled to a thin tube only when the neck of the hourglass is
very narrow [ (Fig. 10(a)]. But then, for a slight change of
parameters, the neck pinches off, resulting in a saddle-node
bifurcation. The two new fixed points [Fig. 10(b)] have
complex conjugate eigenvalues with negative real part; the
upper (middle) fixed point is stable (unstable). The dynam-
ics in the nonbifurcating directions x and y, is approximately
the same in both (a) and (b); trajectories spiral inward.
Thus, for the normal form, it is appropriate to associate the
decaying small oscillations at the top of Fig. 10(a) with a
virtual pair of fixed point which become actual fixed points
in Fig. 10(b).

This simple picture does not apply to the BZ system.
Referring back to the time series (Fig. 4) and phase portrait
(Fig. 5) for the SNB model, we see that the reinjection vari-
able P changes very rapidly throughout the decay of small
oscillations. The decaying oscillations are found just after

— log P reaches a maximum and begins to decrease; how-
ever, from the time series, after P changes sign, — log P de-
creases very rapidly.

Contrast this with the behavior in the HHNF (Figs. 10
and 11): the reinjection variable z slows down as the system
passes through the neck of the hourglass. Thus, trajectories
spend a long time in the region of phase space where the
funneling occurs. Using a funneling mechanism like that il-
lustrated in Fig. 10, one would have to be exceedingly close
to a saddle-node bifurcation to get small oscillations to decay
to the extent that they do in the BZ system [Figs. 2(b), 4,
and 5].

Finally, it has been our observation that, in the SNB
model, saddle-node bifurcations generally occur away from
the decaying small oscillations. This is illustrated in Fig. 12.
The plus sign shows a typically located saddle node on the
BZ spiral. For larger flow rates a pair of fixed points merges
from this saddle node. Each fixed point has all real eigenval-
ues. It is easy to verify that such a bifurcation is not possible
in the hysteresis-Hopf normal form.**
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FIG. 12. Phase portrait from the SNB model showing the location of a sad-
dle node (marked by + ) on the spiral attractor. As before the saddle focus
is marked by an X . The parameter values are given by Eqs. (1) except that
k, =2.035x107%s ", and ¥, =2.2x107°M.

V. THE BOISSONADE PICTURE

We now turn to a slow-manifold model which over-
comes the failures of the Rdssler model and hysteresis-Hopf
normal form, and which exhibits mixed-mode oscillations
like those seen in the BZ system. We have independently
developed a model that provides an illustration of a class of
models which we collectively refer to as the Boissonade type.
We refer to our model as model A. While many researchers
have developed models along similar lines,>*”**"~** Bois-
sonade was the first to recognize the important process that
gives rise to mixed-mode oscillations in chemical reactions.

A. Model A

We begin by presenting model A in very general terms.
(Below we present a system of equations which makes the
model precise.) Consider first two systems, which we denote
I and II, whose properties are illustrated in Fig. 13. For sys-
tem I we show a bifurcation diagram; 4 and B represent state
variables, and 3 represents a control parameter. As /3 is de-
creased the system undergoes a Hopf bifurcation to nearly
harmonic oscillations. This is the only property of I essential
to the generation of mixed-mode oscillations in model A.
The effect of terminating the oscillations in I at low values of
3 will be discussed below.

SYSTEM 1 /

SYSTEM I

FIG. 13. Schematic diagram
of model A. For system I, a
bifurcation diagram is shown
for a two-variable system ex-
hibiting a Hopf bifurcation.
For system II, the nullclines
of a two-variable slow-mani-
fold model are shown; the
trajectory illustrates the evo-
lution after a sufficiently
large perturbation of the ex-
citable fixed point. Model A
is formed by coupling sys-
tems I and II: the nearly har-
monic oscillations in I per-
turb the excitable fixed point
inII, and the relaxation oscil-
lations in II increase the ef-
fective bifurcation parameter
in .

System II is a two-variable system whose nullclines
(U =0, J” = 0) are as shown. Trajectories are attracted to
the solid portion of the U nullcline much faster than they are
attracted to the ¥ nullcline. The behavior of such a system is
well known>*!94% depending upon where the nullclines in-
tersect, the system will exhibit either relaxation oscillations
or an excitable steady state. We illustrate the excitable case
in Fig. 13. For small pertubations of the fixed point, the
system returns directly to the fixed point. For larger pertur-
bations, the system undergoes a large excursion {as shown)
before returning to the steady state.

Model A consists of systems I and II coupled as shown
schematically in Fig. 13. The small-amplitude oscillations of
I perturb the fixed point of II. The instantaneous value of the
variable V in II influences the effective bifurcation param-
eter for I. Specifically, an increase in V raises the value of
seen by L.

We assume that the time scale for the variable Uis much
faster than that of the other three variables. Thus the slow
manifold in model A is the U nullcline. Figure 14 shows a
sketch of a spiral attractor for our (four-dimensional) model
projected onto a three-dimensional subspace. The U null-
cline, itself three dimensional, is seen as two dimensional in
the projection. We illustrate the model A spiral with a sketch
because the actual small oscillations of the spiral are too
small to be visible on the scale of the slow manifold (see Fig.
16 below).

The essential feature of our model, and all models of the
Boissonade type, is that a relaxation oscillation in one system
(II), drives another system (I) back and forth across a Hopf
bifurcation. The slow manifold arises in connection with the
relaxation oscillations. There have been many variations on
this theme. Chemical feedback or coupling between compo-
nent systems has most often been studied.”>"#37-3%42=44
Various physical couplings have also been consid-
ered.?*%#144 In many of these studies the Hopf bifurcation is
subcritical. (See Baer et al.** for a general discussion of slow
passage through a Hopf bifurcation.)

As will be seen, the influence of system IT on system I is
primarily responsible for generating the spiral attractor.
Such a coupling is also very natural from a chemical point of
view. Consider /3 as the feed concentration of chemical spe-
cies 4 in a CSTR. Then virtually any reaction which pro-
duces 4 from V (e.g., ¥—A) will provide the desired cou-
pling: an increase in ¥ will increase the effective feed of 4.

The exact form of the influence of system I on system I1
is probably important for detailed modeling of the BZ reac-

FIG. 14. Projection of the slow mani-
fold for model A onto a three-dimen-
sional subspace, together with a sketch
of a spiral attractor on this manifold.
The axes are not centered on the ori-
gin, and the U-axis points in the direc-
tion of decreasing U. At large values of
V,the small oscillations decay; as V de-
creases the effective bifurcation pa-
rameter in system I crosses the Hopf
bifurcation and growing small oscilla-
tions appear.
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tion; however, we have investigated different couplings and
have found that the generation of mixed-mode oscillations
are largely insensitive to its details. From a chemical point of
view, this means that many reactions can provide an appro-
priate coupling of the two systems. For model A we choose a
coupling which generates a simple slow manifold: we let the
variable B in system I perturb the variable ¥ in system II.

We shall not present a kinetic scheme to model the
above systems, rather we simply use known differential
equations arising from chemical models to derive a system of
differential equations which describes the coupled system.
We shall use the model studied by Gray and Scott*’ as an
example of system I, and the model studied by Tyson and
Fife** as an example of system I11.4¢

The differential equations for the Gray-Scott system
are

A= —AB? — ky(4 — A4,),
B=AB?>— k,B— k,(B— B,),
and those of the Tyson-Fife system are

U:i[U(l—U)-bV(U_")},
€ U+ a

V=U—vV.
We couple these systems by introducing the coupling con-

stants g, and g,, and a constant k to adjust the relative time-
scales of the subsystems. We obtain

A: —ABz—aA +g1V+B’
B=AB?—yB + 6,

: k U—a
U=—1U1-U) —b(V B ) 6
p ( ) (V+g )(U+a)] (6)

V=k(U-V—gB),

where we have made the obvious redefinitions of parameters.
The couplings are as advertised: g, V' serves the same role as
B (B = kyA,), and g,B perturbs the value of V.

=

[
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FIG. 15. Mixed-mode oscillations obtained from model A: 8 = 3.0 1072,
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FIG. 16. Phase portrait of the mixed-mode state shown in Fig. 15. The en-
largement shows the small oscillations and the saddle-focus fixed point
(marked with an X).

B. Resulits

We now present results obtained by numerically inte-
grating model Egs. (6). The results presented in this section
concern the mixed-mode oscillations observed at high flow
rates in the BZ reaction; the Appendix contains a variety of
other states of interest. Unless stated otherwise, the model
parameters are assigned the following values throughout:

a=10"%y=0126=20x10"3
a=10"%b6=25k=50x10"3
g, =02,g = —20x10"2 =103 (7)

In Fig. 15 and 16 we show a time series and phase por-
trait at 8= 3.0 1072 Figure 17 provides a summary of
states as a function of 5. The similarity between the model
dynamics and that seen in the BZ system is striking [cf.
experiment (Figs. 2 and 3) and simulation (Figs. 4 and 5)].
Note, however, that Fig. 17 is somewhat misleading in that
the vertical scale changes as a function of 3; the mixed-mode
oscillations at high /3 are of smaller amplitude in A than
those at low £.

Referring to Figs. 13-15, we see that mixed-mode be-
havior occurs naturally in model A as follows: consider sys-
tem II initially near steady state and the amplitude of the
small oscillations in system I increasing (time = 2 10* in
Fig. 15). Eventually, due to the perturbation of I on II, sys-
tem II is driven to make a large relaxation oscillation
(time=2.9 X 10*). The resulting increase in V causes the
effective value of 8 to increase past the Hopf bifurcations in
system I and this brings about the decay of small-amplitude
oscillations (time~3x 10*). Then, as ¥ relaxes back to its
“steady state” value, B decreases back through the Hopf
bifurcation and small oscillations return (from almost zero
amplitude). The process then repeats.

The transition from steady state to mixed-mode oscilla-
tions at large 8 (Fig. 17, 3.0 X 1072<3<3.2X 10~ ?), occurs
essentially in the way put forth by Schmitz et al.> At large
values of 3, system I has a stable steady state, and so too with
the coupled system. As /3 is decreased, a Hopf bifurcation
occurs in I giving rise to small oscillations. At some value of
B the amplitude of the small oscillations becomes large
enough to perturb 11 into its relaxation mode, thus bringing
about the transition to the spiral state. (We say more about
this transition in Sec. VI.) Just as in the Rossler picture, as
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FIG. 17. Summary of states observed in model A as a function of the control
parameter 3. Representative time series (log A vs time) are shown at sever-
al values of 8. The vertical scale changes as a function of 3: the states at low
f3 are of greater amplitude than those at high .

is decreased further the ratio of large to small oscillations
increases until only large oscillations are found.

Ultimately, as /3 is decreased, there is a hysteretic jump
back to steady state. This hysteresis comes about as follows:
for the parameter values considered, the oscillations in sys-
tem I (the Gray-Scott model) terminate, at low values of 8
in a Hopf bifurcation. Below this Hopf bifurcation the steady
state in system I is stable, and hence, so is the steady state for
the coupled system. Given a sufficiently large perturbation,
however, system II will undergo a relaxation oscillation, and
this increases the effective bifurcation parameter in system I.
If 3 is sufficiently close to the lower Hopf bifurcation, the
increase in the effective parameter is such that as II returns
to its steady state, the oscillations in I are large enough to
perturb II again. Thus, a stable large-amplitude limit cycle
can coexist with the steady state stabilized at the lower Hopf
bifurcation. From a bifurcation-theoretic point of view,
model A has subcritical (though almost degenerate) Hopf
bifurcation at # = — 8.271 X 10~%.

We now note how the Boissonade picture (model A in
particular) overcomes the three failures of the Rossler pic-
ture discussed in Sec. ITI C.

(1) The time dependence during the reinjection phase in
model A is the same in as in the SNB model [compare Figs.
15(b) and 4(b) 1. Specifically, model A shows the same slow
approach to the saddle focus as does the BZ system. The
reason for this is clear from the slow manifold illustrated in
Fig. 14: the system is on the slow manifold as it approaches
the fixed point [unlike in the Rossler picture (Fig. 1) where
the system approaches the fixed point transverse to the slow
manifold].

(ii) In Fig. 18 we show, for model A, portions of trajec-
tories starting at three different initial conditions. Trajector-
ies wrap around the “stable manifold” of the fixed point in
much the way they do in the SNB model [Fig. 8(a)]. The

reason is as follows: the steady state curve of system I, taken
as a function of V rather than of 3, closely approximates the
“stable manifold” of the fixed point for model A. For large
V, the effective value of 3 seen by system I is above the Hopf
bifurcation. Thus at large ¥, trajectories in model A spiral
into the pseudo-steady state of system I, i.e., the stable mani-
fold of the fixed point.

(1i1) The mixed-mode behavior in model A just below
the transition to small oscillations (Fig. 17,8 = 3.0x1072)
is the same as in the BZ reaction (Fig. 3, flow = 5.37 ml/
min). There is a range of control parameter below the transi-
tion for which the spiral lies very close to the fixed point.
[Compare the phase portraits for the SNB model (Fig. 5)
and model A (Fig. 16) and contrast these with the phase
portrait for the Rossler model shown in Fig. 9.] We empha-
size, as we did for the BZ system (Secs. II and III C), that
this is a robust feature of model A. While the spiral we show
was chosen because it closely matches that seen in simula-
tions and experiment, similar spirals are extremely common
in model A at the transition from mixed-mode to small oscil-
lations.

Vi. DISCUSSION

We proceed with a further examination of model A and
note some areas where future work is needed. We focus on
six points.

(1) Our method has been to compare the dynamics of
experiments and simulations of a chemically based model
(SNB) with the dynamics of mathematical models based on
slow manifolds. However, one might also take a more direct
approach and try to derive an analytic expression (in some
approximation ) for the slow manifold in the SNB model. We
have not succeeded in accomplishing this. (Note that the
differential equations for the SNB model have a total of 47
terms and 17 parameters.)

Tyson et al.***** have derived expressions which ap-
proximate slow manifolds in other models of the BZ reac-
tion. In fact, the Tyson-Fife equations which we have incor-
porated into model A represent a slow-variable reduction of
the irreversible Oregonator model.'® However, these expres-
sions give an inadequate approximation to the slow manifold
in the SNB model (note Ref. 48). This is simply because, in
the SNB model, HOBr( = P) is the reinjection variable, but
this variable plays no role in the irreversible Oregonator.
Thus no reduction of the irreversible Oregonator can give a

FIG. 18. Transients for model A.
Trajectories are shown starting
from three initial conditions. The
parameters are the same as those of
Figs. 15 and 16. The view is from
positive Uand shows the side of the
slow-manifold opposite that of Fig.
14. As in the BZ system, trajector-
ies are funneled to the fixed point
(marked by an X ).
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slow manifold with P as the reinjection variable. In the anal-
ysis of Tyson and Fife, Vis proportional to the concentration
of Ce**; in the SNB model, however, the dynamics of Ce*™
( =2Z) is very similar to that of Br~ ( =Y).

Turner® has studied a reversible model treating P as a
slow variable. Janz et al.,” Rinzel and Troy,*?® have studied
bursting in the irreversible Oregonator with the stoichiome-
tric factor fparameterized by P. Still, we know of no analytic
expression for the slow manifold in the SNB, or any other
model, having P as the reinjection variable. Such an expres-
sion would clearly be of great value.

(il) While the sequence of states for model A (Fig. 17),
closely resembles that of experiment (Fig. 3), the model se-
quence does not have the chaotic regions reported in experi-
ment. (A similar absence of chaos was also noted for the
SNB model in Sec. II B.) For model A, the sequence con-
tains period doublings, but apparently no full cascade to cha-
os. Also found are partial Farey sequences, that is, a few
concatenations of patterns.’® The transitions between peri-
odic states with different patterns are often hysteretic.

Note, however, that it is not hard to find chaos in model
A (see the Appendix, Fig. 20). Still we have not been able to
exactly match the experiments of Hudson et al. Specifically,
we have not found a sequence which simultaneously shows
chaos and a spiral lying close to a saddle-focus. Whether or
not this is fundamental to the Boissonade picture needs
further investigation.

(iit) Itis of igterest that models of the Boissonade type
lead naturally to Silnikov spirals (i.e., spiral attractors lying
near saddle-focus fixed points), and that these models gener-
ate nearly homoclinic spirals over a range of parameters val-
ues. While this “persistent homoclinicity” is common at
high flow rates in the BZ system, it is not common in the
Rossler models which have been used to investigate homo-
clinic behavior.?>?'"? Bifurcation diagrams for models of
the Boissonade type are undoubtedly different from those
typically associated with Silnikov behavior. This point needs
much further study.

(iv) We note that simulations®* of the hysteresis-Hopf
normal form have produced mixed-mode states resembling
those seen in experiments.>* Simulations of a different model
(also of the Rossler type) have yielded dynamics which
compare very well with experiment.” In this latter case, Ar-
goul et al. have interpreted experimental observations of
chaos in the BZ reaction as arising from nearly homoclinic
conditions.

While the analysis of Argoul ez al. regarding the proxim-
ity to homoclinicity is undoubtedly correct, the mechanism
giving rise to the homoclinicity is probably not as they as-
sumed. In fact, their experimental data provides an excellent
illustration of the differences between slow manifolds of
Rossler and Boissonade types. Specifically, the experimental
phase portrait in Fig. 1(b) of Argoul et al.” is very similar to
those of model A (Figs. 16 and 18). It is apparent that the
experimental trajectory strikes a slow manifold and then un-
dergoes decaying small oscillations as it approaches the (as-
sumed) fixed point. Thus, while their simulations compare
favorably with experiment, the reinjection mechanism of
their model is probably not correct. It would be of interest to

estimate the relative eigenvalues of the fixed point directly
from the experimental data, and also to see if model A can
reproduce the dynamics reported in these experiments.

(v) Model A necessarily requires a four-dimensional
state space. This is as follows: because orbits cannot inter-
sect, the dynamics shown in the phase portrait enlargement
(Fig. 16), and transient plot (Fig. 18), for model A requires
at least three dimensions [see also Figs. 5 and 8(a) for the
SNB model]. But these dynamics take place on the slow
manifold. Because the dimension of the full state space must
be at least one greater than that of the slow manifold, the
state space must be at least four dimensional.

This would suggest a reason why complex oscillations
have never been observed in the three-variable simple Ore-
gonator model (SOM) of Field and Noyes'>: there simply
are not enough variables. The SOM represents too drastic a
reduction of the mechanism of the BZ reaction. The SOM
has an S-shaped slow manifold and correspondingly it exhib-
its relaxation oscillations; however, because there is no possi-
bility of complex dynamics occurring within the slow mani-
fold itself, there is no possibility for the SOM to show the
kind of mixed-mode behavior which we have examined here.
It is possible, however, that with parameters such that time
scales become comparable, the SOM shows complex dynam-
ics, i.e., chaos. (Of course there are other three variable mod-
els exhibiting complex dynamics, e.g., the model analyzed by
Rinzel and Troy.?)

(vi) Finally, we discuss the two most notable the short-
comings of model A. The first is the virtual absence of super-
critical secondary-Hopf bifurcations between the smail and
mixed-mode oscillations. In the SNB model, secondary-
Hopf bifurcations, and hence tori, are often found at the
transition from mixed-mode to small oscillations.>* While
Hudson ef al.'* do not show a torus in their experimental
diagram (Fig. 3), they report oscillations between the small
and mixed-mode oscillations which undoubtedly lie on a
torus. In model A, however, the transition to mixed-mode
oscillations almost always occurs via either period-doubling
or subcritical secondary-Hopf bifurcations. For the se-
quence of model states shown in Fig. 17, the transition oc-
curs after a period doubling of the small oscillations (we
have not resolved the details of the transition). An extensive
search has revealed supercritical secondary-Hopf bifurca-
tions in model A, but these occur far too infrequently to
account for the tori seen in the BZ system.

It is possible that a different coupling of the two compo-
nent systems of model A would solve this problem. We have
briefly explored a few variations in the way system I perturbs
system II, but to no avail. We now feel that the absence of
tori reflects a more fundamental insufficiency of our model.
Improvement of model A could probably come by incorpor-
ating slow-manifold models different from those considered
here (e.g., those reviewed by Rinzel'').

The second major shortcoming of model A is that the
steady-state structure of the model is different from that of
the SNB model. Specifically, it is possible to find fixed points
in model A with four unstable directions (eigenvectors).
This is expected because each of the components systems, I
and II, can independently exhibit Hopf bifurcations. How-
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ever, to our knowledge, no one has ever observed a steady
state in a chemical model of the BZ reaction which has more
than trwo unstable directions. Ringland*® was unable to find
such fixed points in the SNB model after many systematic
attempts. We believe that this limitation of steady states of
two unstable directions is a fundamental part of the BZ dy-
namics, yet model A fails to capture this feature. It would be
of great interest to have a simple geometrical model which
reflected this interesting steady-state character of the BZ
system.

VIl. CONCLUSION

We have examined the mixed-mode oscillations in the
BZ reaction with an eye to understanding the slow-manifold
picture which explains them. We have extensively contrast-
ed the dynamics found in the BZ system with the dynamics
found in models of the type originally proposed by Réssler.
We have developed a simple slow-manifold model (model
A) of the type first proposed by Boissonade. This model is
based on the coupling of two very simple systems. We have
shown that model A naturally reproduces most of the dy-
namics observed at high flow rates in the BZ reaction.

While we have focused on mixed-mode oscillations in
the BZ reaction, many other systems show similar complex
oscillations.?!323%4034 T some cases, the observed oscilla-
tions are also understood in terms of the coupling (chemical
or physical) of oscillators. Therefore our analysis of the fun-
damental differences between slow-manifold models is ap-
plicable to these systems as well. We, in fact, feel that the
Rossler slow-manifold picture illustrated in the introduction
(Fig. 1), is unlikely to account for the mixed-mode oscilla-
tions in any homogeneous chemical system; models of the
Boissonade type are much more appropriate for complex
chemical reactions.

Finally, we note that there are some features of the BZ
dynamics that our simple model fails to capture; in particu-
lar, the details of the transition from small to mixed-mode
oscillations are lacking. Thus there is a need for further de-
velopment of simple geometrical models for the dynamics of
the BZ reaction.
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APPENDIX

In this Appendix we present interesting dynamics found
in model A. We focus on three of the most important types of
behavior in the BZ reaction: quasiperiodicity, chaos, multi-
peaked periodicity (i.e., Farey sequences). Only those pa-
rameter values different from Egs. (7) are given.

Figure 19 shows a time series and phase portrait for a
quasiperiodic state, i.e., a two torus. This state is quite simi-
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FIG. 19. Time series and phase portrait for a quasiperiodic state, i.e., a two
torus. Parameters: @ = 2.0x 1077, f= — 1.5084x 1072, § = 4.0x 1073,
b=24,k=10""g, =208, =005¢e=10""

3335 and in

lar to that observed in the Bordeaux experiments
simulations of the SNB model.**

Figure 20 shows a time series and phase portrait for a
chaotic state. This state is a chaotic mixture of two patterns:
one large four small and one large five small [ Cs in the nota-
tion originally used by the Texas group,’® C}* in the Bor-
deaux notation.>*] The phase portrait shows 10 000 time

units (though we have integrated over a much longer time

0.2

LOG A

-LOGBL

__0.2 B T 1 1 1
-1.6 LOGA 0.2

FIG. 20. Time series and phase portrait for a chaotic state. Parameters:
a=20X10"%B=36x10"7 g =01,g =40x1072
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FIG. 21. Three multipeaked-periodic states illustrating concatenation of
patterns, that is, Farey sequences. Parameters: @ = 0.02, k= 0.1, g, = 0.1,
g = —50x107% and from left to right: B=3.734x 1072 3.7365
%1072, and 3.738 < 1072,

and not observed the system to repeat). In the phase por-
trait, — log B is plotted to emphasize the similarity to the
Texattractor.”®>" Note that the parameters are not very dif-
ferent from those of Fig. 17 for which no chaos was found.
This state represents bands on a wrinkled torus [e.g., Ref.
24, Fig. 8(c) ].

Figure 21 shows three multipeaked-periodic states illus-
trating concatenation of patterns (Farey sequences). Shown
are time series (log U vs time) ordered as a function of con-
trol parameter . Between the two relatively simple parent
states is found the daughter whose pattern is the concatena-
tions of those of the parents. In the two gaps between these
states are many more (perhaps infinitely many) periodic
states ordered by this rule. Compare with experiment®® and
simulations.?' See Barkley®® for an explanation of these se-
quences.
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