A dynamical systems approach to spiral wave dynamics
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A simple system of five nonlinear ordinary differential equations is shown to reproduce many
dynamical features of spiral waves in two-dimensional excitable media.

I. INTRODUCTION

The spiral waves found in excitable media, such as
Belousov—Zhabotinsky reagent, often do not rotate rigidly
about stationary centers. For many choices of system param-
eters, spiral waves execute complicated motions as they ro-
tate. This is now well confirmed both in experimental sys-
tems free from dust and other imperfections'™ and in fully
resolved numerical simulations of homogeneous two-
dimensional excitable media."*~® References 9—11 are re-
cent reviews of the subject.

We illustrate the situation in Fig. 1 with a two-parameter
phase diagram of wave dynamics in the Fitzhugh—Nagumo
model of excitable media.!® The model and phase diagram
are discussed in detail below. Here we wish simply to show
some of the variety of spiral dynamics found in excitable
media and to emphasize that distinct dynamical states are
separated by curves (bifurcation loci) in parameter space.

What is particularly interesting and important about the
phase diagram in Fig. 1 is its ubiquity: all two-parameter
surveys of spiral dypnamics in excitable media, both compu-
tational and experimental, have revealed states and transi-
tions simitar to those in Fig. 1, organized approximately in

- the same way HOILE A5 yet there is no explanation for the
genericity of spira

In this paper, we offer a very simple picture of spiral

- dynamics and take the first steps toward explaining why the
behavior of spiral waves in diverse excitable media is typi-
cally organized in parameter space qualitatively as shown in
Fig. 1. Our approach is to examine a minimal dynamical
system (system of ordinary differential equations) which
possesses cettain key bifurcations and symmetries of spiral
waves, The behavior which follows from only such general
considerations will necessarily be independent of the details
of any particular excitable systemn. Thus we can readily de-
termine which aspects of spiral dynamics depend on system
details and which aspects depend only on generic properties
of bifurcations with symmetry. The approach we take
abounds in the study of nonlinear dynamical systems.!#16
Such a dynamical-systems approach is, however, new to the
study of spiral waves in excitable media.
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Il. FITZHUGH-NAGUMO RESULTS

In this section we elaborate on the dynamics shown in
Fig. 1. The results were obtained by Winfree!® in a detailed
numerical study of the Fitzhugh—Nagumo (FHN) model of
excitable media:

du
E=V2u+f(u,v)=vzu+ e Wu—u*/3—0),

au

= g(w,0)=e(ut = o). 1)

The fields u and v are functions of two-dimensional space in
addition to time. The model parameters are 5, v, and ¢
where £ controls the asymmetry between excitation and re-
covery, and e controls the spatiotemporal scale separation in
the system. Further discussion of excitable media and details
of the FHN model can be found elsewhere,®!!

In his study, Winfree fixed the parameter y at 0.5, and
conducted numerical simulations of Egs. (1) as a function of
the other two parameters, 8 and e. For all parameter values
the system has a spatially homogeneous steady state given by
fu, u)—g(u v)=0. For £=2/3 this state is linearly stable;
however, it may be nonlinearly unstable, i.e., large perturba-
tions of certain types may not decay to the homogeneous
steady state but instead evolve into propagating patterns. We
now describe the vatious regions shown in Fig 1.

For B and € large (lower leit of the figure), no wave
propagation is possible: all initial conditions evolve to the
homogeneous steady state. Heuristically, in this parameter
region, the medium is not sufficiently excitable to support
wave propagation. The curve dP denotes the boundary of
propagation: everywhere above this curve the system can
sustain plane waves.

While wave propagation is possible everywhere above
the curve 9P, spiral waves only exist above the curve dR
(“rotor boundary”). Thus there is a small region of param-
eter space (between the curves 9P and JR) in which wave
propagation is possible but spiral waves do not exist.

The best illustration we know for the behavior in the
vicinity of the curves dP and JR is from the work of Zykov
and Mikhailov'’ reproduced in Fig. 2. Zykov and Mikhailov
did not study the FHN model, but a similar model. The be-
havior under discussion is, nevertheless, peneric for spiral
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FIG. 1. Phase diagram for spiral-wave dynamics in the FHN model with
¥=0.5. Adapted with permission from Ref. 10. Curves separating various
regions arc labeled as follows. dF denotes the limit of propagating solu-
tions. #R the rotor boundary: the limit of rotating-wave solutions, M de-
notes the transition to ““mcandering™ waves, which we call modulated
waves, dC denotes the transition to “complex™ states. The dashed curve
denotes the locus of modulated-traveling waves. Shown are tip-path plots
centered at corresponding parameter points. The cireles correspond to rotat-
ing waves; “flowers™ correspond to various types of modulated and com-
picx states.,

waves and the same transitions exist in the model they stud-
ied. (See ailso Refs. 18 and 19 for discussion of the behavior
near 8R.)

Figure 2 shows the propagation of an initial broken wave
segment for 4 different cases. Consider first Fig. 2(d). The
model parameters lie inside the region of spiral waves (cor-
responding to above AR in Fig. 1), and the initial broken
segment evolves into a rotating spiral wave. This is also true
for Fig. 2(c); here, however, the wave tip rotates with such a
large radius that the spiral wave will not fit inside the domain
shown. In Fig. 2(b) the tip-path radius has become infinite
and the initial segment propagates along a straight line. Case
2(b) is precisely at the boundary dR. Figure 2(a) shows a
case between dR and JP: wave propagation is possible, but
spiral waves do not exist. In such cases wave tips are said to
retract. Note that retracting wave Lips propagate along
straight lines throughout the region between R and &P.
Also note that at the limit of propagation, ¢P, wave seg-
ments generally propagate at finite speed.

We now turn to the spiral dynamics shown above JR in

Hier Tn renracant tha usrinue cniral ctatpe Winfraa nlnte o
i 15 FAE RS l\lt}l\.ﬂ)\.ﬂlll’ Lllv Yadlivug \Jk}llul OLetgy  FYALILL WL tll\lt\) i

segment of the path traced out by the tip of the spiral as it
evolves in time. Each tip trace is centered on the correspond-
ing parameter point.

The region of periodic states lies above 4R and to the
left of the curve #M. These periodic states are rotating
waves, that is, these spirals rotate rigidly about fixed centers
and there is a uniformly rotating frame of reference in which

i@ ib)

i
il

FIG. 2. Nustration of the behavior of a wave segment for paramelers near
the rotor boundary of an excitable medium (e.g. near the curve @R in Fig. 1).
Adapted with permission from Ref. 17. Details can be found there, (&)
Paramcter values between JP and 8R: the initial segment retracts. (b) Pa-
ramcter values exactly on the curve aR. (c), (d} Parameter values inside the
region of rotating-wave solutions: initial scgments evolve into rotating
waves; (¢) is closer to the rotor boundary than (d).

{c) (d)

they are steady.®'>1%% Their tip paths form circles. We shall
let «, denote the rotation frequency of rotating-wave solu-
tions. For S near zero, the tip-path radius is quite small. Near
the curve dR the radius becomes large, and as JR is ap-
proached, the tip-path radius, sp1ra1 period, and spiral wave-
length all diverge to infinity.'*!7-1

The curve dM denotes the transition to “meandering.”
In a numerical linear stability study of a model similar to the
FHN, the curve M has been shown to be a single smooth
locus of Hopf bifurcations from the rotating spiral waves."
Throughout most of the region between dM and JC, the
states are modulated rotating waves (MRW). These are two-
frequency quasiperiodic states that appear as periodic in a
uniformly rotating frame.>'>'%%" In the context of excitable
media, the MRW states are usually referred to as
meandering' or as compound rotations.” We shall let @, de-
note the secondary (Hopf) frequency which arises at the
Hopf bifurcation.

Figure 3 shows tip paths from simulations of the FHN
model in addition to those shown directly in Fig. 1. The tip
paths of the MRW form “flower” patterns. The flowers are

nf two tunae thace with inward netale e o Fioe e and
Vb 1y U Ly U0, LIIVOW VEALIL LYY AU puaaas jUuRe Da50 \L) Gala

3(d)], and those with outward petals [e.g. Figs. 3{a) and
3()].

Separating the two distinct flower types is a curve in
parameter space (dashed curve in Fig. 1) on which the flower
size is infinite. Winfree shows only a portion of this curve in
Fig. 1; it continues to larger 8 and smaller e. Figure 3(e)
shows a tip-path segment for an “infinite flower.” These
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{d) - {e}

FIG. 3. Spiral tip paths for the FHN modcl at scveral points of the diagram
in Fig. 1. Adapted from Ref, 10 with permission. (a} and (b) are modulated-
rotating-wave (MRW) states with outward petals lying above the dashed
curve in Fig, 1. (¢) and (d) are MRW states with inward petals lying below
the dashed curve in Fig. 1. {¢} is a modulated-traveling-wave (MTW) state
lying on the dashed curve in Fig. 1. Parameter values are as in Fig. 1 with
(a) €=0.20, B=0.770, (b} ¢=0.11, B=1.200, (c) e=0.12, B=1.200, (d)
e=0.20, $=0.955, (¢) e=0.20, §=0.937.

states are modulated traveling waves (MTW); they are peri-
odic in a uniformly fransiating reference frame. The value of
3 for the MTW state in Fig. 3(e) lies between that for 3(a)
and 3(d) [Figs. 3(a), 3(d), and 3(e) are all for £=0.2]. Figures
3(]3) and 3(9) illustrate ]argp flowers hnng near the MTW

locus,

The locus of MTW states emerges from the locus of
Hopf bifurcations, M, at the point where the bifurcating
frequency and the rotational frequency are equal. This reso-
- nant Hopf bifurcation will piay the central roie in the anaiy-
sis which follows. The traveling speed for the MTW states
goes to zero as the distance from the Hopf curve goes to
zero. Winfree sketches a “corner” in the Hopf locus dM at
the point of resonance (Zykov* also draws nonsmooth behav-
jor in the curve JdM at this point). Accurate stability
computations'>*! using a model similar to the FHN model,
show that the curve M is, in fact, smooth. It is simply
difficult to obtain accurate results by direct simulation in this
region.

The final region shown in the FHN phase diagram is that
to the right of #C. Winfree calls the states here “hyperme-
andering” “complex.” While these states are possibly
chaotic, the dynamics in this region are uncharacterized as
yet except to the extent that they are more complicated than
two-frequency quasiperiodic.

. ODE MODEL

Tha Ardina Aiffarantial fOIMEY madal «
1nc Uluulaly'\.uuuxuuucu \a\.iuauuu WALy moacT we COon-

sider is motivated by a numerical bifurcation analysis of ro-
tating spiral waves. In particular, the model is based on an
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analysis of the resonant Hopf bifurcation from rotating si)iral
waves in which the Hopf frequency is equal to the rotation
frequency of the spiral wave. This analysis is presented in
separate publications.’**! OQur emphasis here shall be prima-
rily on the global behavior of the model equations, and in
particuiar, on the exient to which the ODE model reproduces
the phase diagram shown in Fig. 1.

We recount important features of the bifurcation analysis
and how we are led to the model we consider. The analysis
was carried out on a partial-differential-equation (PDE)
model of the FHN model type.?? The following was found:
Everywhere on the Hopf locus (analogous to dM in Fig, 1),
rotating spiral waves have five eigenvalues on the imaginary
axis (neutral eigenvalues); all other eigenvalues have nega-
tive real part. Of the five eigenvalues, there is a complex-
conjugate pair associated with the Hopf bifurcation to modu-
lated waves, A= %iw,, where w, is the secondary (Hopf)
frequency arising at the bifurcation. The remaining three ei-
genvalues are associated with symmetries of the plane: there
is a real eigenvalue due to rotational symmetry, A\=0, and a
complex pair due to translational symmetry, A=*iw,
where @ is the primary rotation frequency of the spiral
wave.”?

By simultaneously ad]ustlng two parameters, it is pos-
sible to find a codimension-two point in parameter space at
which the bifurcating frequency at the Hopf bifurcation
equals the primary rotation frequency of the spiral:
wy= ;. At this point the complex pair of Hopf eigenvalues
comes into coincidence with the complex pair of eigenvalues
due to translational symmetry. In addition, as the two param-
eters are adjusted to move toward the codimension-two
point, the complex pair of eigenvectors associated with the
Hopf bifurcation align themselves with the complex pair of
eigenvectors associated with translational invariance. At the
codimension-two point the two pairs of eigenvectors coin-

cide and we find a single complex pair of eigenvectors plus a
(‘nmn]g}; nmr of oPanlwed moenve(‘fnr

Such a codlmensmn two resonant Hopf point exists in
Fig. 1: it is at the apex of the Hopf locus #M where the curve
of modulated-traveling wave solutions emanates from the
Hopf locus. In the vicinity of such a codimension-two pojnt
there are stable rotating waves, modulated rotating waves of
both types (inward and outward petals), and modulated trav-
eling waves.

The low-dimensional ODE model that we consider has
been chosen to capture the resonant Hnnf bifurcation as sim-

ply as possible. That is, we study a 31mple, weakly nonlinear
system of ODEs which (i) are invariant under a representa-
tion of distance-preserving transformations of the plane (ro-
tations, reflection, and translations), and which (ii) have
rotating-wave solutions which undergo a Hopf bifurcation.,
By adjusting two parameters of the model, it is possible to
bring the Hopf eigenvalues into coincidence with the neutral
eigenvalues due to translational symmetry. At such a point
the model has a resonant Hopf bifurcation of the same type
as the PDE models.
The ODE model is of the following form:

, 1994
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p=uv,
v=v-{f(lv]?,

w=w-g(|v|2,w2)_,

wh+iw-h(|v)%wd)}, (2

where p and v are comp

valued functions specified below. The model system is of
real dimension 5 because there are five neutral eigenvalues
along the Hopf locus in the PDE system.

For any choice of f, g, and 4, these equations are in-
variant under the following representations of rotations
through angle v, R,, reflections, «, and translations by
a+iB, T

o
=]
2.

i f o ol
HIVE R R Y -T) angag a2 are rea:

[P\ (<)
MR >
w w , .
p$
K =\ v* |, (4)
—w

-— F ¢

p p+a’+iﬁ\

T K

where * denotes complex conjugation. Thus the ODE model
equations are invariant under a represemtation of distance-
preserving transformations of the plane.

Letting p=x-+iy and v=se'?, with s=0, the equations
become:

.)}=S sin ¢7 (,‘b=W'h.(5‘2,W2),

§F=s-fls%w?),

The lowest-order expansions for f, g, and & which we
found to give the desired codimension-two bifurcation, and
which yield bounded trajectories for the model, are:

X=5 cos ¢,

w=w-g(s%w?). (6)

flstw?) =ap+ a 5%+ aw?—st,

g(sz,w2)=—1+,8132~w2, N

h(SZ’w2) = Yo-

Taking into account possible rescalings of v, w, and time,
three coefficients have been set to unit magnitude. This then
is our ODE model: Eqgs. (2) and (7) or equivalently Eqs. (6)
and (7).

Before turning to the analysis of this model we shall
make some further observations and simplifications. As the
notation suggests, p=x+iy is thought of as the position of
the sniral hn Then v is its linear vPlnmtv fv 15 the hn eneed)

A opAlal P8 ivH A3 AL RadaTiir ¥ RN A5 AL P SV,

and = vow the instantaneous rotational frequency. The fact
that p does not enter the right-hand side of the ODE system
is synonymous with the fact that the dynamics of a spiral are
independent of its position. While we shall appeal to this
heuristic interpretation of the equations, we stress that the
model is based on a detailed numerical study of reaction-
diffusion PDEs.

FIG. 4. Phase diagram for the ODE model. Parameters are apy=—1/4, 8,
B1=1, and y;=5.6. P denotes the locus of saddie-node bifurcations: the
limit of propagating solutions. R denotes the locus of drift-pitchfork bifur-
cations: the limit of rotating-wave solutions. #M denotes the locus of Hopf
bifurcations from rotating waves: part of the boundary of modulated rotating
waves (MRW). 2C denotes the locus of heteraclinic connections: also part
of the boundary of modulated waves. The dashed curve denotes the locus of
modulated-traveling waves (MTW). Shown are “‘tip-path” plots, i.c., plots
of (x,y), at various paramcier points. The circles correspond to rotating
waves, The radii of the circles diverge as dR is approached. Two modulated-
rotating wave statés and a modulated-traveling-wave state arc shown.

The (s, w) subsystem in Eqs. (6} decouples from the
other three equations and ¢(¢), x(¢), and y(¢) can be found
by quadrature once the last two equations are solved. Thus
for much of the analysis, we need only consider the dynarn-
irge nf thie enhoyatam ia ngafnl 4n dafinma voriakla e

Tt
o UL [FREE) DUUD)’DLCILL L 1O U iUl WU ugrille VdJ.].ClUle g allil

¢ by: £=5% and {=w?. This yields the two-variable system:
€=2¢f(£,0),
{=2Lg(&,0).

We shall refer to this as the reduced system and Eqs. (6) as
the full system.
The final simplification which we make it to set

— 114 and 2 —1 far tha samaoindar ~f tha mamar Thaoas
1/ aliu g1 = 1 100 ulC ITHdinacty ot the paper. These

(8)

Qo=
parameter values give typical behavior and yet simplify later
expressions. With these,

& == st e+ a{— &,

9
g(&)=§-{—1. ®

IV. RESULTS

In Fig. 4 we show a phase diagram for the ODE model
as a function of the two parameters ¢; and «; with fixed
¥o. We have plotted the diagram so as to emphasize its
similarity to the FHN phase diagram in Fig. 1. In the model
phase diagram there exist rotating waves, modulated rotating
waves of both types (inward and outward petals), and modu-
lated traveling waves. In addition, we find a curve in param-
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FIG. 5. Plots of (x,y) for the ODE model at various parameter values.
(a)—(c) illustrate plots which rescmble tip-path plots for spiral waves in the
FHN model, i.c., Fig. 3(d} and (e) illustratc plots which do not resemble
knowa tip-path plots for spiral waves. For all plots: a=—1/4 and g,=1.0.
The other parameters valucs are: (a) a;=5.0, ap=—5.5, and %=3.0. (b)
@,=6.95, a=—5.8, and =3.1. (¢} &,=6.95, a,=—5.8, and ¥,=3.6. (d)
a=6.95, ap=—5.8, and ¥,=5.6. (¢) &;=5.0, a;=—35.5, and %=8.0.

eter space along which the radius of the rotating waves di-
verges to infinity and a second curve which is the existence
boundary for traveling solutions,

Figure 5 shows model “tip-path” plots, (x.y), for sev-
eral choices of a,, a,, and v,. Figures 5(a)-5(c) are ex-

amples which bear a striking resemblance to spiral tip paths
in excitable media (cf Flo 3 and also Refs, 1-6, 8, 10, 12

LI WANALGURT LLURIG a. SoRuall daot) ISTLs, Oy LV, ALy

13). By choosing the three parameters appropnately, we are
easily able to reproduce essentially all types of spiral tip
paths reported in the literature on homogeneous excitable
media {excluding those paths which lie in the complex re-
gion). However, it is also easy to generate plots that do not
correspond to any known spiral paths. Figures 5(d) and 5(¢)
show two such cases. These are cases for which the primary
rotation frequency is large compared to the secondary rota-
tion frequency. The choice of 7y, is very important in deter-
mining the (x,y) flower patierns as well as the location of
the MTW locus (dashed curve) in phase diagram in Fig. 4.

The remainder of this section is devoted to an analysis of
the model dynamics. For reference we show in Fig. 6 phase
portraits for the (s, w) subspace at several different param-
eter points in Fig. 4.

A. Trivial steady state

The state £=¢=0 is a steady state of Egs. (8) for all
parameter values. By our choice of constant terms in f and
g, this steady state is linearly stable for all values of @; and
. This is evident in all the phase portraits shown in Fig. 6.

B. Traveling pulses

Next we consider the steady states of Egs. (8) for which
£=0 and f(£,0)=0. For the full system, these states have
nonzero speed, s # 0, but zero rotational frequency, w=0.
They give propagation along straight lines in the (x,y) sub-
space and correspond to retracting tips in the FHN model.
For purposes of discussion, we shall call them traveling
pulses.

1.0t {a) 1.0} (b)

FIG. 6. Phase portraits for the ODE model at scveral parameter points in the
diagram in Fig. 4. Shown arc the dynamics in the (s,w) subspace, Reflec-
tion symmetry implics that the phasc portraits arc symmetric about w=0
and so only values of w=0 are shown. (a) Below oF: ey=0.5, a,=-5.0.
The origin in the only asymptotic state and it is stable. (b) Between #P and
8R: o;=1.125, a,=—35.0. The saddle and stable node which bifurcate at éP
are secn. The saddle lies between the “upper” stable steady statc and the
trivial stable steady state at the origin. (¢) Above 4R but below dM: o =2.5,
ey =—25.0. The rotating wave which bifurcates at R is seen as a steady state
with nonzero values of s and w. (d) Above dM: a;=4.0, ay=—5.0. The
modulated wave which bifurcated from the rotating wave is seen as a stable
periodic orbit, The rotating wave is now unstable, (¢) On the curve §C:
o,==5.040, a,=-—5.8. Heteroclinic connection between the steady states
with w=0. The period of the periodic orbit in the (s,w) subsystem goes to
infinity at the point. (f) Above 8C: &5=5.5, ay== —5.8. After the heteroclinic
connection the only stable state s the trivial state at the origin (0,0).

The traveling-pulse states, §,,, are solutions of

f(§,0)=0=
&= —(a I~ (10)

There are two branches of traveling pulse solutions: an “up-
per” branch, with “speed” s* = V& and a “lower” branch,
with “speed” s~ =&~ [Fig. 6(b)]. These branches come
together when «;=1, and this defines a locus of saddle—
node bifurcations. We label the locus of saddle—nodes as
AP in Fig. 4 to emphasize the similarity with the correspond-
ing curve in Fig. 1. Just as for retracting tips in the FHN
system, JP in Fig. 4 marks the limit of pulse propa-
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gation: for @, <1 there are no traveling pulses and all initial
conditions evolve to the trivial state s=w=0 [Fig, 6(a)], and
at the saddle—node bifurcation, traveling pulses propagate at
finite speed: s, = Ve, =11\2.

A simple linear stability calculation, which we do not

kkkkkkkkk hrann~h
reproauce nere, sncws that the lower branch {s unstable for

all parameter values we consider. The upper branch is stable
for oy between JP and 4R in Fig. 4. At 4R, the upper branch
becomes unstable in a pitchfork bifurcation as discussed in
the next subsection.

C. Rotating waves

Rotating waves are states with constant, nonzero values

for s and w. They obtain when, in the reduced system,

flE, O =g(£,£)=0, for positive £ and {. This implies:
E—(ay+a))é+ay+ =0, (11}
=&~ 1 (12)

Only the larger root of Eq. (11) gives a state with positive
£and £t

= s {atart (ot o) —4ar—1}, (13)

‘7;

=6 1. (14}

We define @, to be the rotating-wave frequency:
wl—qb Yo w1—+y0\/~ Due to reflectional symmetry, «,
rotating waves must come in counter-rotating pairs. Those
with @,>0 rotate in the opposite sense from those with
w<0, and the reflection operator, «, takes each of these
waves into the other.

Integrating the X-equation in Egs. (6)

solution, one obtains:
x(t)=xp+(5)/w;)sin(w,t)
=XQ+R Siﬂ((ﬂ;f)

and similarly for y, where R==5, /e, is the radius of the
rotating wave in the (x,y) subspace: |R|= v, ' V& /¢;.

The rotating waves are born at «y = 5/4, when the upper
branch of travel pulses undergoes a pitchfork bifurcation.
This bifurcation locus is labeled dR in Fig. 4. Figure 6(c)
shows a phase portrait after the pitchfork bifurcation to ro-
tating waves. As the locus of pitchfork bifurcations is ap-
proached, the rotational frequency, @), goes to zero, and the
radius, |R| diverges to infinity. Thus the boundary of rotating
waves in the ODE model has the same character as the rotor
boundaty in the FHN madel. However, the rotor boundary in
the FHN model is not well understood from the point of view
of bifurcation theory, so we cannot make detailed compari-
sons with the ODE model at this time.

D. Modulated waves

Modulated waves in the model system correspond -to
time-periodic behavior for s(¢) and w(r). The bifurcation
from rotating to modulated waves is simply a Hopf bifurca-
tion, in the reduced system, from a steady state (£,,{,) to a

periodic orbit. An expression for the locus of Hopf bifurca-
tions in the model is easily obtained as follows. The stability
matrix for Egs. (8) is:
Efel6,0) & &0
._é‘gf(g'é‘) é‘g{{‘g:g)d’
where subscripts denote differentiation and for now we drop
the subscripts on £ and {.

A necessary condition for a Hopf bifurcation is that the
trace of the stability matrix is zero:

This gives

28%—a £+ L=0. (16)
This condition, together with the two expressions for the
rotating waves, Egs. (13) and (14), defines the Hopf locus in
parameter space. [The determinant of (15) is always of the

correct sign.] After a little algebra one obtains the following
expression for the Hopf locus;

a;— )+ ai—2a,+9},

_3—2(ay+1)&y
WG

(15)

The first equation gives &g, the value of £ at the Hopf bi-
furcation, in texms of ;. The second then gives a, for the
Hopf bifurcation in terms of £ and . This Hopf locus is
plotted in Fig. 4 and labeled M.

The MTW locus emerges from the Hopf locus at the
codimension-two point where the Hopf frequency equals the
rotation frequency. This point is easily found. We deﬁne ws

ta ha tha ITanf fraqana tho = ./ Ma trharo MNat 1o tha
to be the ].J.UPI u\«\iuwub'y, that is Wy = Vuvt, wiere et is tne

determinant of the linearization (15) at the bifurcation. Then
W§=4§§(fgg‘;—f§ ge)

=4£0(28— a1~ o),
this can be simplified using Eq. (16) to give:

03=4{(1—(au+1)én).
Thus the frequency ratio at any point along the Hopf locus is:

2
lw2{w1l= 7\11—(a2H+ 1)5};.

The resonant Hopf point is where |w2/w1| =1 on the Hopf
locus.

In addition to the dependence on parameters a, and
@3, the frequency ratio |w,/w;| depends on the parameter
vn. Hence the codimension-two point, and also the locus of
MTW states which emerges from this point, depend on vy,.
The other bifurcation loci dP, R, M, and 3C in Fig. 4 are
all independent of 9. Thus, by varying ¥y, it is possible to
locate the codimension-two point anywhere on the Hopf
curve éM, or to eliminate this point from the phase diagram
entirely. We have chosen g in Fig. 4 such that the
codimension-two point is at the apex of the Hopf curve, so
that the model phase diagram most closely resembles the
spiral phase diagram in Fig. 1. The location of the
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codimension-two point and the curve of MTW states are ar-
bitrary in the model system. We return to this in Sec. V.

We do not have closed-form solutions for the modulated
waves which bifurcate from the rotating waves at dM. For
the modulated waves we resort to numerical integration of
Eqs. (6). The (x,y} plots of modulated waves shown in Figs.
4 and 5 have been obtained numerically. The locus of MTW
states (dashed curve in Fig. 4) has also been obtained nu-
merically by searching for parameter values which give
MTW states.

Erom anr gimulatinne
LIVALL WL O AUAILD,

Hopf bifurcations in Fig. 4 is everywhere supercritical, i.e.,
the various ﬂower patterns grow continuously from circles.
Likewise, we have found that the translation speed of the
MTW states goes to zero at the Hopf locus and that the
translation speed scales as the square-root of the parameter
distance from the Hopf locus as an analysis of the
codimension-two point predicts.”

wea have frund that the lasnig o
v HAYVLY LUULIIU LIIAL LIIv IULUD WS

=

Finally we consider the possibility of complex states in
the ODE model. Because there are only two nontrivial vari-
ables, s and w, in Egs. (6), the model cannot exhibit dynam-
ics more complicated than modulated waves (quasiperiodic
states). Thus, to obtain complex states it is necessary to add
additional variables to the model. While we shall not exam-
ine the effect of additional variables in any detail here, we
point out one important effect they could have.

The model possesses heteroclinic orbits. These are con-
nections between the two traveling pulse states £ and £~
Figure 6(e) shows such a connection in phase space. In Fig.
4 we label the loci of such connections by #C. To the right
of the curve dC in Fig. 4 the trivial steady state, s=0,
w=0, is the only stable state of the system [Fig. 6(f)]. If any
other degrees of freedom were added to the model, then ge-
nerically this connection would become a tangle and in the
vicinity of this tangle there would exist complex dynamics

{cee oo Ref 14\ This interpretation of the complex stateg in

oA LB N A RRASG AR PR VLLIRAR UL Ry DAL A A DRaLLG 22

spiral systems in rather tenuous and the complex spiral states
might instead arise via some other mechanism.

V. DISCUSSION AND CONCLUSION

We have shown that it is possible to capture much of the
spiral-wave dynamics in excitable media with a very simple
system of ordinary differential equations. In so doing, we
have demonstrated a new method for investigating and un-
derstanding spiral dynamics which is distinct from, but
complements other approaches such as the kinematical ap-
proach, e.g. Refs. 17 and 24, the free-boundary approach,
e.g. Refs, 18, 19 and 25-29, and direct simulations of
reaction-diffusion PDEs, e.g., Refs. 1, 4-8, 10, and 22.

In addition to allowing easy study of spiral dynamics,
our approach has provided the first steps toward explaining
why phase diagrams like that in Fig. 1 are so ubiquitous in
spiral systems. The model we have studied is not based on
any SpECiuC propetties of excitable media. The model is in-
stead based on a particular codimension-two bifurcation: a
Hopf bifurcation from rotating waves in which Hopf eigen-

modes interact with symmetries of the plane. Thus, the dy-
namics exhibited by our ODE model are entirely indepen-
dent of the details of any particular excitable medium. In this
sense, the model applies to all excitable media (and, in fact,
to any system having such a resonant Hopf bifurcation).
What remains, is the important step of explaining why
spiral waves in excitable media generically exhibit the kind
of Hopf bifurcation we have considered. Why, for example,
are the primary and secondary frequencies for spiral waves
always found to be so nearly equal? The ODE model was

lacad an thic nhearvatinn kit daee nnt avnlain why it ic on
st Ul DS OUSCIVALLUIL, DUl U0CSs IO Lapidlll Wiy I IS SU.

This impertant question must be answered by some other
means. Kessler, Levine, and Reynolds have performed sta-
bility analyses starting directly from reaction-diffusion equa-
tions, ¢.g., Egs. (1), in the limit of zero € and have found
unstable modes.’**! Unfortunately, in the limit in which they
have been able to obtain results, they do not find unstable
complex (Hopf) eigenmodes. Nevertheless, this work is very
promising and we hope that ultimately it will be pessible to
explain why resonant Hopf bifurcations are to be expected
for spirals in excitable media.

Another, perhaps related question which our approach
has not answered is; Why does the resonant Hopf bifurcation
typically occur at the apex of the Hopf locus in spiral sys-
tems? In our ODE model, the frequency ratio at the Hopf
bifurcation is entirely independent of location on the Hopf
locus (see Sec. IV D}, and hence, the codimension-two point
can be located anywhere on the Hopf locus in the ODE sys-
tem. In phase diagrams for PDE models, however, the
codimension-two point is always near a sharp turn in the
Hopf locus (see Fig. T and aiso Refs, 4, 10, 12, and 13). The
explanation for this must depend on details of excitable me-
dia in some way which we do not currently understand.

Even within the dynamical-systems approach we have
taken, the ODE mode! presented is not complete. For ex-
ample, we know that including more variables in the model
will affect the model dynamics significantly in the vicinity of
the curve 3C in Fig. 4. In addition, high-order expansions for
the functions f, g, and k in Egs. (7) might change aspects of
the model dynamics. Moreover, at this time, we have not
established direct correspondence between parameters of the
ODE model and the parameters of any excitable media; how-
ever, a comparison of the model phase diagram and the dia-
gram for the FHN model suggests that this can be accom-
plished.

The ordinary-differential-equation model presented in
this work should be viewed as a first step in finding low-

dimensinnal descrintion of sniral wave dvnnm1ne Several
aimensional gescription ol splra:i wav 1amics, oeveral

important questions still remain open. We beheve, however,
that soon it will be possibie to capture completely the dynam-
ics of spiral waves in an excitable medium with such a low
dimensional model. We also hope that our approach can be
extended to more complicated situations, such as periodi-

" cally forced spiral systems™ and three-dimensional excitable

media. >
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