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Non-specular reflections in a macroscopic system with wave-particle duality:
Spiral waves in bounded media
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Spiral waves in excitable media possess both wave-like and particle-like properties. When resonantly

forced (forced at the spiral rotation frequency) spiral cores travel along straight trajectories, but may

reflect from medium boundaries. Here, numerical simulations are used to study reflections from two

types of boundaries. The first is a no-flux boundary which waves cannot cross, while the second is a

step change in the medium excitability which waves do cross. Both small-core and large-core spirals

are investigated. The predominant feature in all cases is that the reflected angle varies very little

with incident angle for large ranges of incident angles. Comparisons are made to the theory of

Biktashev and Holden. Large-core spirals exhibit other phenomena such as binding to boundaries.

The dynamics of multiple reflections is briefly considered. VC 2013 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4793783]

Wave-particle duality is typically associated with quan-

tum mechanical systems. However, in recent years, it has

been observed that some macroscopic systems commonly

studied in the context of pattern formation also exhibit

wave-particle duality. Two systems in particular have

attracted considerable attention in this regard: drops

bouncing on the surface of a vibrated liquid layer1–6 and

waves in chemical media.7–12 The second case is the focus

of this paper. We explore non-specular reflections associ-

ated with spiral waves in excitable media—reflections not

of the waves themselves, but of the particle-like trajecto-

ries tied to these waves.

I. INTRODUCTION

Rotating spirals are a pervasive feature of two-dimensional

excitable media, such as the Belousov-Zhabotinsky reaction.13–16

Figure 1(a) illustrates a spiral wave from a standard model of

excitable media discussed below. The wave character of the

system is evident. As the spiral rotates, a periodic train of exci-

tation is generated which propagates outward from the center,

or core, of the spiral. Much of the historical study of excitable

media has focused on the wave character of the problem, as

illustrated by efforts to determine the selection of the spiral

shape and rotation frequency.17–21

However, it is now understood that these spiral waves also

have particle-like properties. This was first brought to the fore-

front by Biktasheva and Biktashev7 and has been developed in

more recent years.8,11,12,22,23 One of the more striking illustra-

tions of a particle-like property is resonant drift,8,11,24–31

shown in Figs. 1(b)–1(d). Resonant drift can occur spontane-

ously through instability, or due to spatial inhomogeneity, or

as here, by means of resonant parametric forcing (periodically

varying the medium parameters in resonance with the spiral

rotation frequency). As is seen, the core of the spiral drifts

along a straight line. The speed is dictated by the forcing am-

plitude while the direction is set by the phase of the forcing, or

equivalently the initial spiral orientation.

The trajectories of drifting spirals are unaffected by the

domain boundaries (or other spirals should they be present)

except on close approach, where often the result is a reflec-

tion of the drifting core,26,27,32 as illustrated in Fig. 1(c).

FIG. 1. Illustration of resonant drift and reflection for spiral waves in excit-

able media. (a) Periodically rotating spiral wave in the unforced regime. The

wave rotates around a fixed core and the path of the spiral tip (white) is a

circle. (b) Resonant drift. The medium is parametrically forced at the spiral

rotation frequency. The core moves along a straight path and the spiral tip

traces out a cycloid (white). (c) Reflection of drifting spiral from a no-flux

boundary. The incident and reflected angles, hi and hr, are indicated. (d)

Path of a drifting spiral in a square box. The underlying spiral wave at one

instant in time is shown faintly. In all cases, the plotted fields are the excita-

tion variable, u, of the reaction diffusion model. Details are given later in the

text.
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b)D.Barkley@warwick.ac.uk.

1054-1500/2013/23(1)/013134/9/$30.00 VC 2013 American Institute of Physics23, 013134-1

CHAOS 23, 013134 (2013)

http://dx.doi.org/10.1063/1.4793783
http://dx.doi.org/10.1063/1.4793783
http://dx.doi.org/10.1063/1.4793783
mailto:J.Langham@warwick.ac.uk
mailto:D.Barkley@warwick.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4793783&domain=pdf&date_stamp=2013-03-01


Reflections are not specular—the reflected angle hr is not in

general equal to the incident angle hi. When placed in a

square box, the drift trajectory typically will ricochet off

each boundary in such a way to eventually be attracted to a

unique square path, where hi þ hr ¼ 90�, as shown in Figure

1(d). (This is the more common case, but others are consid-

ered herein.)

The primary goal of this paper is first to determine accu-

rately, through numerical simulations, the relationship

between the reflected and incident angles for some represen-

tative cases of spiral waves in excitable media, and second to

explore the qualitative features of reflections in excitable

media, particularly multiple reflections in square domains.

While the numerical and theoretical study of reflecting tra-

jectories was undertaken by Biktashev and Holden many

years ago,26,27 much more extensive results are now possible

and desirable, especially since phenomena strikingly similar

to that seen in Figs. 1(c) and 1(d) have been observed in

other macroscopic systems with both wave-like and particle-

like properties.3,6,9,10,33,34

II. MODEL AND METHODS

Our study is based on the standard Barkley model

describing a generic excitable medium.35 In the simplest

form, the model is given by the reaction-diffusion equations

@u

@t
¼ r2uþ 1

�
uð1� uÞ u� vþ b

a

� �
; (1)

@v

@t
¼ u� v; (2)

where u(x, y) is the excitation field (plotted in Fig. 1) and

v(x, y) is the recovery field; a, b, and � are parameters. The

parameters a and b collectively control the threshold for and

duration of excitation, while the parameter � controls the

excitability of the medium by setting the fast timescale of ex-

citation relative to the timescale of recovery.

We consider two parameter regimes—known commonly

as the small-core and large-core regimes. The small-core

case is shown in Fig. 1. As the name implies, the core region

of the spiral, where the medium remains unexcited over one

rotation period, is small. This is the more generic case for

the Barkley model and similar models and occupies a rela-

tively large region of parameter space in which waves rotate

periodically. Small-core spirals are found in the lower right

part of the standard two-parameter phase diagram for the

Barkley model (see Figure 4 of Ref. 36). Large-core spirals

rotate around relatively large regions [see Fig. 8(a) discussed

below]. Such spirals occur in a narrow region of parameter

space36,37 near the boundary for propagation failure. The

core size diverges to infinity near propagation failure.

Parametric forcing is introduced through periodic varia-

tion in the excitability. Specifically, we vary � according to

�ðtÞ ¼ �0ð1þ A sinðxf tþ /ÞÞ; (3)

where A and xf are the forcing amplitude and frequency.

The phase / is used to control the direction of resonant drift.

The forcing frequency producing resonant drift will be close

to the natural, unforced, spiral frequency. However, due to

nonlinearity, there is a change in the spiral rotation fre-

quency under forcing and so xf must be adjusted with A to

produce resonant drift along a straight line.

We have studied reflections in two situations. The first is

reflection from a no-flux boundary. This type of boundary

condition corresponds to the wall of a container containing

the medium. We set the reflection boundary to be at x¼ 0

and impose a homogeneous Neumann boundary condition

there

@u

@x
ð0; yÞ ¼ 0: (4)

Since there is no diffusion of the slow variable, no boundary

condition is required on v. The medium does not exist for

x < 0.

The second situation we have studied is reflections from

a step change in excitability across a line within the medium.

We locate step change on the line x¼ 0. We vary the thresh-

old for excitation across this line by having the parameter b
vary according to

bðx; yÞ ¼ b0 if x � 0

b0 ��b if x < 0:

�
(5)

Unlike for the no-flux boundary, in this case, waves may

cross the line x¼ 0 and so there is no boundary to wave

propagation. Nevertheless, drifting spirals may reflect from

this step change in the medium and we refer to this a step
boundary.

The numerical methods for solving the reaction-

diffusion equations are standard and are covered else-

where.35,38 Some relevant computational details particular

to this study of spiral reflections are as follows. A con-

verged spiral for the unforced system is used as the initial

condition. Simulations are started with parametric forcing

and the spiral drifts in a particular direction dictated by the

phase / in Eq. (3). The position of the spiral tip is sampled

once per forcing period and from this the direction of drift,

i.e., the incident angle hi, is determined by a least-squares

fit over an appropriate range of drift (after the initial spiral

has equilibrated to a state of constant drift, both in speed

and direction, but before the spiral core encounters a bound-

ary). Likewise, from a fit to the sampled tip path after the

interaction with the boundary, we determine the reflected

angle hr. By varying /, we are able to scan over incident

angles.

The simulations are carried out in a large rectangular do-

main with no-flux boundary conditions on all sides. For

reflections from a Neumann boundary (4), we simply direct

waves to the computational domain boundary corresponding

to x¼ 0. We also study reflections more globally from all

sides of a square domain with Neumann boundary condi-

tions, such as in Fig. 1(d). In the study of reflections from the

step boundary (5), the computational domain extends past

the step change in parameter. We have run cases with the

left computational boundary both at x¼�7.5 and x¼�15
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and these are sufficiently far from x¼ 0 that trajectory reflec-

tion is not affected by the computational domain boundary.

The dimensions of the rectangular computational domain are

varied depending on the angle of incidence. For hi ’ 690�,
we require a long domain in the y-direction, whereas for

hi ’ 0� a much smaller domain may be used. In all cases, we

use a grid spacing of h¼ 1/4. The time step is varied to

evenly divide the forcing period, but �t ’ 0:019 is typical.

Except where stated otherwise, the model parameters for the

small-core case are: a¼ 0.8, b¼ 0.05, and �0 ¼ 0:02. For the

large-core case, they are a¼ 0.6, b¼ 0.07, and �0 ¼ 0:02.

For the step boundary, b0 ¼ 0:05 and �b ¼ 0:025. Different

values of the forcing amplitude and period, A and xf , are

considered. Given the desire to measure incident and

reflected angles precisely, we have required drift be along

straight lines to high precision and in turn this has required

high accuracy in the imposed forcing amplitude and period.

Tables I and II in the Appendix report the exact values for

the forcing parameters used in the quantitative incidence-

reflection studies.

III. RESULTS

Before presenting results from our study of reflections,

it is important to be precise about the meaning of incident

and reflected angles. As is standard, angles are measured

with respect to the boundary normal. This is illustrated in

Fig. 1(c). What needs to be stressed here is that spirals have

a chirality—right or left handedness—and this implies that

we need to work with angles potentially in the range

½�90�; 90��, rather than simply ½0�; 90��.
Specifically, we consider clockwise rotating spirals

and define hi to be positive in the clockwise direction from

the normal. We define hr to be positive in the counterclock-

wise direction from the normal. Both hi and hr are positive in

Fig. 1(c) and for specular reflections hr ¼ hi.

A. Small-core case

We begin with the small-core case already shown in

Fig. 1. Figures 2 and 3 illustrate the typical behavior we find

in reflections from both types of boundaries. In both figures,

the upper plot shows measured reflected angle hr as a func-

tion of incident angle hi over the full range of incident

angles. The lower plots show representative trajectories for

specific incident angles indicated. Here and throughout, the

no-flux nature of the Neumann boundary is indicated with

shading (x¼ 0 is the at the rightmost edge of the shading),

while the step in excitability at a step boundary is indicated

with sharp lines. All parameters are the same for the two

cases; they differ only in the type of boundary that trajecto-

ries reflect from.

The reflections are far from specular. This is particu-

larly striking for hi < 0 where the incoming and outgoing

trajectories lie on the same side of the normal. The

reflected angle is nearly constant, independent of the inci-

dent angle, except for incident angles close to hi ¼ 90�.
There is a slight variation in the reflected angle, seen as

undulation in the upper plots, but the amplitude of the

variation is small.

One can also observe in the lower plots that the point of

closest approach is also essentially independent of incident

angle, except close to hi ¼ 90� where the distance grows.

Spiral trajectories come much closer to the step boundary

than to the Neumann boundary.

It is worth emphasizing that there is no effect of forcing

phase in the results presented in Figs. 2 and 3. As the inci-

dent angle is scanned, the phase of the spiral as it comes into

interaction with the boundaries will be different for different

incident angles. While this could have an effect on the

reflected angle, we have verified that there is no such effect

for the small-core cases we have studied, except at large

forcing amplitudes near where spirals annihilate at the

boundary (discussed later).

While we have not conducted detailed studies at other

parameter values, we have explored the small-core region of

parameter space. Figure 4 shows representative results at dis-

tant points within the small-core region. The figure indicates

not only a qualitative robustness but also a quantitative insen-

sitivity to model parameter values throughout the small-core

region. In each case, the upper plot shows hi � 0�, while the

lower plot shows hi � �70�. The reflected angle varies by

only a few degrees throughout all cases shown in the figure.

Cases (a) and (b) are close to the meander boundary, while

(c) and (d) are far from the meander boundary and corre-

sponds to a very small core. Cases (e)-(h) are relatively large

values of parameters a and b, both with Neumann and step

boundary conditions.

FIG. 2. Illustrative results for reflection from a no-flux boundary, i.e.,

Neumann boundary condition. (a) Reflected angle hr versus incident angle

hi. (b) Representative tip trajectories showing reflections at the incident

angles marked with crosses in (a). The reflected angle is nearly constant for

the full range of incident angles. The forcing amplitude is A¼ 0.072.
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In the step boundary case, there is also the effect of �b
to consider. Across a number of representative incident

angles, we observed that as �b is incremented from 0.025

up to 0.05, the closest approaches of the spiral tips occur fur-

ther from the boundary. We also find a slight reduction in the

angle of reflection. Decrementing �b has the opposite effect.

However, if �b is too small, then the repulsive effect at the

boundary will be too small and spiral cores will cross the

boundary.

We have examined the effect of forcing amplitude A.

Figures 5 and 6 show reflected angle as a function of incident

angle for various values A as indicated. There is a decrease

in the reflected angle with increasing forcing amplitude, or

equivalently increasing drift speed. Generally, there is also

an increase in the oscillations seen in the dependence of

reflected angle on incident angle. The solid curves are from

the Biktashev-Holden theory discussed in Sec. IV A.

For sufficiently large forcing amplitudes, small-core spi-

rals may be annihilated as they drift into Neumann bounda-

ries. In such cases, no reflection occurs. We have not

investigated this in detail as it is outside the main focus of

our study on reflections. Nevertheless, we have examined the

effect of increasing the forcing amplitude through the point

of annihilation for the case of a fixed incident angle hi ¼ 0�.
The results are summarized in Figure 7. The reflected angle

reaches a minimum for A ’ 0:11, and thereafter increases

slightly, but does not vary by more than 4� up to the ampli-

tude where annihilation occurs, A � 0:225, as indicated in

Figure 7(a). The forcing amplitude at which annihilation first

occurs is rather large in that it corresponds to displacing the

spiral considerably more than one unforced core diameter

per forcing period. Figure 7(b) shows tip trajectories on ei-

ther side of the amplitude where annihilation occurs, while

Figure 7(c) shows annihilation at much larger forcing ampli-

tude. We note that the exact amplitude at which annihilation

first occurs depends slightly on the rotational phase of the

spiral as it approaches the boundary. (Annihilation first

occurs in the range 0:22 � A � 0:23 depending on phase.)

Likewise, the spiral phase can affect the reflected angle by

nearly 1� for A � 0:16. The influence of phase is nevertheless

FIG. 3. Illustrative results for reflection from a step boundary, i.e., a step

change in the excitability of the medium. (a) Reflected angle hr versus inci-

dent angle hi. (b) Representative tip trajectories showing reflections at the

incident angles marked with crosses in (a). The reflected angle is nearly con-

stant for the full range of incident angles. The forcing amplitude is A¼ 0.072.

FIG. 4. Illustration of the insensitivity of reflections throughout the small-

core region of parameter space. Upper plots show hi � 0�, including faint

visualization of the u-field at a particular time instance, while lower plots

show hi � �70�. The reflected angle is nearly constant independently of

incident angle, parameter values, and boundary type. Model parameters span

a substantial range of the non-meandering small-core region: in (a) and (b)

a¼ 0.7, b¼ 0.01; in (c) and (d) a¼ 0.95, b¼ 0.01; in (e)-(h) a¼ 0.95,

b¼ 0.08. Cases (g) and (h) are step boundary, the others are all Neumann

boundaries. A¼ 0.072 throughout.

FIG. 5. Effect of forcing amplitude on reflection of small-core spirals for the

case of a Neumann boundary. Points are measured reflected angle as func-

tion of incident angle at forcing amplitudes A indicated. Solid curves are

from Biktashev-Holden theory discussed in Sec. IV A.
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small for the small-core spirals. It is, however, more pro-

nounced in the large-core case which we shall now discuss.

B. Large-core case

We now turn to the case where unforced spirals rotate

around a relatively large core region of unexcited medium.

This case is illustrated in Fig. 8(a), where a rotating spiral

wave and corresponding tip trajectory are shown in a region

of space the same size as in Fig. 1. The larger tip orbit and

unexcited core, as well as the longer spiral wavelength, in

comparison with those of Fig. 1(a) are clearly evident. While

such spirals occupy a relatively narrow region of parameter

space, they are nevertheless of some interest because asymp-

totic treatments have some success in this region39,40 and

because this is nearly the same region of parameter space

where wave-segments studies are performed.9,10,41

Figure 8(b) shows a typical case of non-specular reflec-

tion for a large-core spiral compared with a small-core spiral

forced at the same amplitude. While many features are the

same for the two cases, large-core spirals are found often to

reflect at smaller hr and moreover, they can exhibit different

qualitative phenomena.

Figures 9 and 10 summarize our findings for large-core

spirals. Reflected angle as a function of incident angle for

three forcing amplitudes is shown in Fig. 9. One sees the

overall feature, as with the small-core case, that reflected

angle is approximately constant over a large range of incident

angles. This is particularly true of low-amplitude forcing,

A¼ 0.022. However, there are also considerable differences

with the small-core case.

For large-core spirals, the reflected angle increases with

forcing amplitude. This is opposite to what is found for

small-core spirals in Figs. 5 and 6. Moreover, the reflected

angles are noticeably smaller than for the small-core case, as

was already observed in Fig. 8(b).

We now focus in more detail on what happens in various

circumstances. The left portion of Fig. 9 indicates the differ-

ent dynamics we observe, depending on forcing amplitude,

at large negative incident angles (hi ��52�), and Figs.

10(a)–10(c) show representative trajectories with hi � �60�.
At A¼ 0.05, trajectories glance off the boundary. That is,

they remain close for short while before moving off with a

well defined large negative reflected angle. The reflected

angle is nearly constant at hr � �85� for incident angles

FIG. 6. Effect of forcing amplitude on reflection of small-core spirals for the

case of a step boundary. Points are measured reflected angle as function of

incident angle at forcing amplitudes A indicated. Solid curves are from

Biktashev-Holden theory discussed in Sec. IV A.

FIG. 7. (a) Reflected angle as a function of forcing amplitude A up to the

point of annihilation at a Neumann boundary for small-core spirals. The

incident angle is fixed at hi ¼ 0�. (b) Tip trajectories a little below

(A¼ 0.215) and a little above (A¼ 0.235) the forcing amplitude resulting in

annihilation of the spiral at the boundary. (c) Tip trajectory at A¼ 0.05

showing annihilation at very large forcing amplitude.

FIG. 9. Summary of results for large-core spirals. Reflected angle is plotted

versus incident angle for three forcing amplitudes as labeled. Neumann

boundary conditions are used. For A¼ 0.05, spirals are frequently annihi-

lated at the boundary, [Fig. 10(d)], over the range of incident angles indi-

cated. For A¼ 0.05 and hi ��52�, trajectories glance from the boundary

[Fig. 10(a)]. For A¼ 0.036 and hi ��52�, trajectories become bound to the

boundary [see text and Fig. 10(b)]. Wiggles are the effect of incident phase.

FIG. 8. Illustration of a large-core spiral wave. (a) A portion of a rotating

spiral and corresponding tip trajectory in a square region 40� 40 space units

[same size as Fig. 1(a)]. (b) Resonant forcing and reflection for a large-core

spiral shown in comparison to that of a small-core spiral. The forcing ampli-

tude is A¼ 0.05 in both cases.
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hi ��52�. At A¼ 0.036, hi ��52�, trajectories become

bound to the boundary and move parallel to it indefinitely. In

Fig. 10(c), with A¼ 0.022, one observes the trajectory mov-

ing along the boundary for a distance before abruptly leaving

the boundary at a well-defined, relatively small positive

reflected angle. This behavior is not restricted to hi ��52�

and is observed until hi � þ20�. In fact, this type of reflec-

tion is also observed for the other two forcing amplitudes

studied for hi in a range above �52�. For A¼ 0.036, this

occurs until hi is approximately �15�, while for A¼ 0.05

this is seen only until hi is about �45�.
At the higher forcing amplitudes, as indicated for the

case A¼ 0.05 in Fig. 9, large-core spirals are frequently anni-

hilated when they come into contact with the boundary.

Figure 10(d) shows a typical example. Whether or not a spi-

ral is annihilated depends very much on the spiral phase on

close approach to the boundary. The points shown in Fig. 9

with A¼ 0.05 are those where the trajectory reflected; the ab-

sence of points indicates annihilation. However, these results

are for spirals all initiated a certain distance from the bound-

ary. Changing that distance would affect the spiral phase at

close approach and hence a different set of points would be

obtained. Nevertheless, the marked range of frequent annihi-

lation is indicative of what occurs at this forcing amplitude.

Finally, we address the wiggles in the reflected angle

curves in Fig. 9, most evident at large forcing amplitudes.

These wiggles are also due to the fact that the phase of spi-

rals on close approach varies with incident angle. Figure

10(e) illustrates how the reflected angle depends on phase by

showing two trajectories shifted by half a core diameter.

This shifts the spiral phase upon approach to the boundary

and results in slightly different reflected angles. Rather than

eliminating these wiggles by averaging over various initial

spiral distances, we leave them in as an indication of the var-

iability due to this effect. In general, reflections of large-core

spirals are much more sensitive to phase than reflections of

small-core spirals, and one should understand that the data in

Fig. 9 will vary slightly if similar cases are run with spirals

initiated at different distances from the boundary.

While we have not studied the step boundary in detail

for large-core spirals, we have carried out a cursory investi-

gation for such a boundary with �b ¼ 0:035. With the

exception that there is no annihilation at the step boundary,

we observe qualitatively similar behavior to that just pre-

sented for the Neumann case. Most notably we find both

glancing and bound trajectories.

IV. DISCUSSION

A. Biktashev-Holden theory

Many years ago, Biktashev and Holden26,27 carried out a

study very similar in spirit to that presented here. Moreover,

they understood that a primary cause for the reflection from

boundaries was the small changes in spiral rotation frequency

occurring as spiral cores came into interaction with bounda-

ries. Based on this, they proposed an appealing simple model

to describe spiral reflections. The model is based on the

assumption that both the instantaneous drift speed normal to

the boundary and spiral rotation frequency are affected by

interactions with a boundary, with the interactions decreasing

exponentially with distance from the boundary. While the

actual interactions between spiral and boundaries are now

known to be more complex (see below), it is worth investigat-

ing what these simple assumptions give. The beauty of the

simple model is that it can be solved to obtain a relationship

between the reflected and incident angles, depending on only

a single combination of phenomenological parameters. (They

called this combination h, but we shall call it p. They also

used different definitions for incident and reflected angles.)

The model naturally predicts large ranges of approxi-

mately constant reflected angle depending on the value of p.

What is nice is that while fitting the individual phenomeno-

logical parameters in their model would be difficult, it is also

unnecessary. The value of p can be selected to match the pla-

teau value of hr observed in numerical simulations. Then,

the entire relationship between hr and hi from the theory is

uniquely determined.

Curves from the Biktashev-Holden theory are included

in Figs. 5 and 6. While there are obvious limitations to the

theory, it is nevertheless interesting to see that some of the

features are reproduced just from simple considerations. The

FIG. 10. Catalog of interesting trajectories for large-core spirals. (a)-(c)

show impacts with hi � �60� at different forcing amplitudes. (a) With

A¼ 0.05, the trajectory glances from the boundary and moves off nearly par-

allel to it (hr � �85�). (b) With lower amplitude A¼ 0.036, the trajectory

becomes bound to the boundary. (c) With yet lower amplitude A¼ 0.022,

the trajectory hugs the boundary for a while then leaves abruptly at an

oblique angle (hr � 23�). In (d), the incoming spiral with large forcing,

A¼ 0.05, is annihilated at the boundary. In (e), the effect of phase is seen

with two approaching trajectories shifted by half a core diameter. Otherwise,

the conditions are identical, A¼ 0.05. The resulting reflected angles differ

slightly.
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theory would be expected to work best where the drift speed

is small: low amplitude forcing. For the large-core spirals,

the theory does not apply and so the corresponding curves

are not shown in Fig. 9.

We do not intend here to propose a more accurate theory

for the reflection of drift trajectories. It is worth emphasizing,

however, that in recent years much has been understood about

the interaction between spiral waves and various symmetry

breaking inhomogeneities.11,12 The key to this understanding

has been response functions, which are adjoint fields corre-

sponding to symmetry modes for spirals in homogeneous

media.7,22 In principle, one could now obtain rather accurate

description of reflections using this approach, at least for cases

in which the boundary could be treated as a weak perturbation

of a homogeneous medium. This is beyond the scope of the

present study and we leave this for future research.

B. Multiple reflections

As noted in the introduction, Fig. 1(d), when placed

within a square domain the trajectory of a drifting spiral will

typically approach a square, reflecting from each domain

boundary such that hi þ hr ¼ 90�. The reasons for this are

simple (see for example Prati et al.33), but a brief analysis is

useful, particularly for understanding when square orbits

become unstable.

Figure 11 shows the geometry of a consecutive pair of

reflections in the case where the reflected angle is larger than

45�. In this case, the path will necessarily strike consecutive

sides of the domain. Consider first the path in terms of angles

and let hn
i and hn

r denote, respectively, the nth incident and

reflected angles, starting from the initial reflection h0
i ; h

0
r .

Trivially, the geometry of the square domain dictates that

hnþ1
i þ hn

r ¼ 90�. Then, if the trajectory approaches an

attracting path with constant angles, limn!1 hn
i ¼ h�r ;

limn!1 hn
r ¼ h�r , it must be that this path satisfies

h�i þ h�r ¼ 90�. That is, it must be a square or a rectangle.

Denoting the relationship between the incident and reflected

angle by hr ¼ HðhiÞ, then a necessary condition for the

square path to be attracting is that jH0ðh�i Þj < 1. For the cases

we have studied, this is true since jH0ðh�i Þj ’ 0.

Turning now to the points at which the path strikes

the edge of the domain, we let dn denote the position of the

nth reflection along a given side, relative to the length of a

side. One can easily see from the geometry that dnþ1

¼ ð1� dnÞcot hn
r . Now, since hr ! h�r , the fixed point d� is

given by d� ¼ ð1� d�Þcot h�r , or d� ¼ 1=ð1þ tan h�r Þ. This

corresponds to a square trajectory. For example, from Fig. 5

with a forcing amplitude A¼ 0.072, one can see that h�r will

necessarily be about 74�, giving d� � 0:22. These are the

values seen in the simulation in Fig. 1(d). A necessary condi-

tion for this fixed point to be stable is jcot h�r j < 1. For small-

core spirals h�r > 45�, so cot h�r < 1, and hence their square

paths are stable.

While square trajectories occur for small-core spirals, for

large-core spirals other trajectories are possible. Examples

are shown in Fig. 12. These occur when the reflected angle is

smaller than 45�. (It is possible that hr < 45� might occur for

small-core spirals in some regimes, although we have not

observed them.) When hr < 45�, it is not necessarily the case

that trajectories will strike consecutive sides of a square box.

This is seen in Fig. 12(a) where the spiral reflects between op-

posite sides of the domain. The reflections satisfy hr ¼ �hi.

The more interesting case is when hr is only slightly less

than 45� as is seen in Fig. 12(b). The square trajectory is

unstable. While jH0ðh�i Þj < 1 and the angles converge quickly

to hn
i þ hn

r ’ 90�, the equation dnþ1 ¼ ð1� dnÞcot hn
r exhibits

growing period-two oscillations for cot hn
r slightly larger than

1. Period-two oscillations in dn with hn
i þ hn

r ’ 90� corre-

spond to approximately rectangular trajectories that approach

a diagonal. This ultimately leads the spiral into a corner of

the domain where it may reflect in complicated manner.

The analysis just presented should not be viewed as a

model for spiral trajectories. Rather, it just shows what global

dynamics can be deduced simply from a measured relation-

ship between the incident and reflected angles. Essentially,

this same analysis appears as part of a study of cavity soli-

tions33 which also undergo non-specular reflections from

walls and hence exhibit square orbits similar to Figure 1(d).

Our simple analysis should be contrasted with the situation

for drops bouncing on the surface of an oscillating liquid, so

called walkers. Here, physical models of the liquid surface

and drop bounces account for many varied features of the sys-

tem.3,4,42–45 The corresponding theory for spiral waves would

FIG. 11. Sketch showing the geometry of multiple reflections in a portion of

a square box of normalised length. dn is the location, relative to the length of

a side, of the nth reflection.

FIG. 12. Examples of non-square paths for large-core spirals. (a) A¼ 0.022.

The reflected angle is considerably smaller than 45� and the resulting trajec-

tory bounces between opposite sides of the domain. The spiral is shown

faintly at one time instance. (b) A¼ 0.034. The square trajectory is unstable.

For the first circuit around the nearly square path, the full tip trajectory is

plotted. Subsequently, for clarity only, the tip path sampled once per forcing

period is shown. The trajectory collapses towards the diagonal. The final

portion of the trajectory before the spiral approaches the corners is shown in

bold. The spiral undergoes a complicated reflection from the corner (gray,

dotted).
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be that based on response functions in which many details of

drift trajectories can be predicted,11,12 although as of yet not

reflections from boundaries. Memory effects are important

for walkers because bouncing drops interact with surface

waves generated many oscillations in the past, and models

necessarily take this into account.4,43–45 However, path mem-

ory is absent from spiral waves in excitable media and this

constitutes a significant difference between the two systems.

C. Concluding remarks

We have reported some quantitative and some qualita-

tive features of resonant-drift trajectories in excitable media.

The main message is that reflections are far from specular—

the reflected angle generally depends only weakly on the

incident angle and typically is nearly constant over a sub-

stantial range of incident angles (particularly negative inci-

dent angles). Biktashev-Holden theory26,27 accounts for

some of the observed features, but a more detailed theory

based on response functions7,11,12 is needed. We have seen

that the behavior of large-core spirals is more varied than

that for small-core ones. Rather than simply reflecting from a

boundary, large-core spirals may sometimes become bound

to, or glance from, or be annihilated at a boundary, even at

moderate forcing amplitudes. Finally, we have considered

what can occur as spirals undergo multiple reflections within

a square domain, and in particular have shown that while

small-core spirals are observed to meet the conditions of sta-

ble square trajectories, large-core spirals may fail to meet

these conditions and exhibit more interesting dynamics.

We motivated this study with a broader discussion of

macroscopic systems with wave-particle duality. A large

number of analogues to quantum mechanical systems have

been reported for walkers on the surface of a vibrated liquid

layer.1–6 As far as we are aware, this is less the case for the

propagating wave segments studied by Showalter et al.9,10,41

or the drifting spirals in excitable media considered here.

(We examined briefly small-core drift trajectories through a

single slit, but did not observe diffraction-like behavior.)

Nevertheless, for the reflection problem, spiral trajectories,

propagating wave segments, cavity solitons, and walkers all

share the feature of non-specular reflections3,10,33,46 and as a

result these systems can show similar dynamics when under-

going multiple reflections within a bounded region.3,6,10,33,34

It will be of interest to make further quantitative comparisons

between these different systems in the future and to explore

theoretical basis of this behavior.
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APPENDIX: FORCING PARAMETER VALUES

In the appendix we report the exact values for the forc-

ing parameters used in the detailed quantitative incidence-

reflection studies, since obtaining high-precision values for

resonant drift can be time consuming. Table I gives values in

the small-core case and Table II gives values in the large-

core case. The values stated in the body of the paper are

reported only to two significant figures.
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