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Icons in this Workbook

The ‘Section Targets’ box contains an idea of what
you should aim to get out of the current section. Per-
haps you might return to this at the end to evaluate
your progress.

Reaching this icon in your journey through the work-
book is an indication that an idea should be starting
to emerge from the various examples you have seen.

Material here includes reference either to earlier
workbooks, or to previous courses such as founda-
tions/Sets and Groups.

A caution. Watch your step over issues involved here.

Are You Ready?

To understand the material and do the problems in each section of
this workbook, you will need to be on good terms with:

Section 1: • The Quadratic Formula
Section 2: • Linear Dependence

Note: You will need a pocket calculator for some of the questions in

the workbooks, and are encouraged to use one for this purpose and

to experiment with results and ideas in the course. Calculators are

NOT needed and are NOT allowed in tests or in the examination.
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and Alyson Stibbard. Ben Carr designed the LATEX template and Rob Reid

converted their drafts into elegant print. Over the years, other lecturers and
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Send corrections, ask questions or make comments at the module forum. You
can join the MA246 forum by going to http://forums.warwick.ac.uk/wf/

misc/welcome.jsp and signing in, clicking the browse tab, and then following
the path: Departments > Maths > Modules > MA2xx modules > MA246
Number Theory.



1 Periodic Continued Fractions
- the dénouement

Section Targets We left the story of periodic con-
tinued fractions unfinished at the end of Workbook 4.
At that stage we had perfectly described those CFs
whose periodicity begins without delay – the purely
periodic continued fractions, as we called them.
Our aim in this section is to characterise the real num-
bers that have general periodic continued fractions,
delay included. The answer turns out to be very sim-
ple: they are just irrational roots of quadratic equa-
tions (quadratic irrationals as we will call them); with
delay, the “reduced” requirement falls away.

Recall

We proved in Section 3 of Work-

book 4 that a real number α has

a purely periodic CF iff it is a re-

duced quadratic irrational, that

is to say, an irrational root of

a quadratic equation satisfying

α > 1 and −1 < α′ < 0 where

α′ is the conjugate of α.

(1.1) Questions on Quadratic Irrationals

(a) Let α = 2+
√
5

3
. What is the conjugate α′ of α?

(b) Find the rational numbers α + α′ and αα′.

(c) Write down a quadratic equation with integer co-
efficients satisfied by α.

(d) Find rational numbers R and S such that

β =
1 + 6α

2− 3α
= R + S

√
5 .

Hint: you can do this one directly, but a more gen-
eral method would be to multiply top and bottom
by 2− 3α′ and use the previous part.

(e) Find a quadratic relation with integer coefficients
which has β as a root.
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The Quadratic Formula

The two roots of ax2+ bx+ c are

α, α′ =
−b±

√
b2 − 4ac

2a
.

They satisfy α+ α′ = −b/a and

αα′ = c/a.

Definition

A quadratic irrational is a num-
ber satisfying a quadratic equa-
tion with integer coefficients.
Quadratic irrationals have the
form

B ±
√
D

C

where B is an integer, C and D

are natural numbers andD is not

a perfect square.

Answers to (1.1)

(a) α = (2 +
√
5)/3 has conjugate α′ = (2 −

√
5)/3.

(Just change the sign on the square root).

(b) So α+ α′ = (2 +
√
5)/3 + (2−

√
5)/3 = 4/3, and

αα′ = (2 +
√
5)(2−

√
5)/9 = −1/9.

(c) For the roots of ax2 + bx+ c to be α, α′ we need
−b/a = α + α′ = 4/3 and c/a = αα′ = −1/9. To
get integers, take a = 9; then b = −4a/3 = −12
and c = −a/9 = −1, so a suitable quadratic is
9x2 − 12x− 1 = 0. (Any nonzero integer multiple
of this would also do.)

You could also multiply out (x − α)(x − α′) =
x2− (α+α′)x+αα′ = x2− (4/3)x−1/9 and then
clear denominators by multiplying through by 9.

(d) Multiply top and bottom by 2 − 3α′ and use (b)
to obtain β = −2−

√
5.

(e) The equation

(x− β)(x− β′) = x2 − (β + β′)x+ ββ′

= x2 + 4x− 1 = 0

has β and β′ as roots.

Observation
Since α is irrational, the real
numbers 1 and α are linearly in-
dependent over Q, and so are 1
and α′. Hence, for rational C,D,

C +Dα = 0 ⇐⇒ C = D = 0

⇐⇒ C +Dα′ = 0.

(1.2) Lemma Let α be a quadratic irrational, and
let A, B, C and D be rational numbers such that
AD 6= BC (in particular, C and D are not both zero).
Then the real number

β =
A+ Bα

C +Dα

is also a quadratic irrational.
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Non-zero Denominator

The denominator of (1.a) is the

product of two non-zero real

numbers (see the previous side

comment) and is therefore non-

zero.

(1.3) Question on the proof of Lemma 1.2
Fill in the details of the following outline proof of
Lemma 1.2.

(a) Show that α + α′ and αα′ are rational numbers.

(b) Multiply the numerator and denominator of β by
the non-zero number C +Dα′ to get

β =
(A+ Bα)(C +Dα′)

(C +Dα)(C +Dα′)
. (1.a)

and show that the denominator of (1.a) is a non-
zero rational and that the numerator equals

AC+AD(α+α′)+BDαα′+(BC−DA)α = R+Sα

with R, S ∈ Q and S 6= 0.

(c) Deduce that β = X+Y
√
d withX, Y ∈ Q, Y 6= 0,

and d equal to the discriminant of α.

Out in the Wash
Notice from this proof that α and
β have the same discriminant D
(up to a square factor). We will
use this later.
In fact this proof shows that for
any quadratic irrational α, the
set

Q(α) = {x+ yα | x, y ∈ Q}

is closed under all the arithmetic

operations (except for division

by zero, of course), so forms a

field. Such a field is called a real

quadratic field.

Answer to (1.3)

(a) Since α is a quadratic irrational we know that
α = (b +

√
d)/c and α′ = (b −

√
d)/c for suitable

integers b, c and d with c 6= 0 and d not a perfect
square. Thus α+ α′ = 2b/c and αα′ = (b2 − d)/c
are both rational.

(b) The denominator is C2 + CD(α + α′) + D2αα′

and this is rational by (a), and nonzero. For the
numerator, take R = AC+AD(α+α′)+BDαα′,
which is rational by (a), and S = BD−AC which
is non-zero rational by hypothesis.

(c) This follows at once from (b) in view of the form
of α described in the answer to (a).
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Bar Time

Don’t forget the meaning of a bar

over the periodic cycle of partial

quotients. The notation is de-

fined in Workbook 4.

(1.4) Corollary Let β be a real number represented
by a periodic continued fraction, say

β = d0, d1, . . . , dr, q0, q1, . . . , qt .

Then β is a quadratic irrational.

Proof. Set α = q0, q1, . . . , qt. Since α is purely peri-
odic, it is a quadratic irrational by Theorem 3.10(a)
in Workbook 4. Now

β = d0+
1

d1+
· · · 1

dr+

1

α
=

[d0, d1, . . . , dr, α]

[d1, d2, . . . , dr, α]
=

Arα + Ar−1

Brα + Br−1

where Ar−1

Br−1

and Ar

Br
are the convergents of d0 +

1
d1+

· · · 1
dr+

· · · . By proposition 2.4 in Workbook 4 we
have

ArBr−1 − Ar−1Br = ±1

and so by Lemma 1.2 our β, like α, is a quadratic
irrational. �.

Thus far in this section we have shown that pe-
riodic CFs represent quadratic irrational numbers.
To round off the story, it remains to show that all
quadratic irrationals are represented by periodic CFs.

TAKE NOTE For the rest of this section α will denote an

arbitrary quadratic irrational number.
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Reference

Equation (1.b) appears in Work-

book 4 as Equation (2.h).

Carrying on
If we develop α as far as the com-
plete quotient αn+1, writing

α = d0 +
1

d1+
. . .

1

dn+

1

αn+1

,

and then develop αn+1 as

αn+1 = q0 +
1

q1+

1

q2+
. . . ,

we obtain the CF for α by joining
the two bits together like this:

α = d0+
1

d1+
. . .

1

dn+

1

q0+

1

q1+
. . . .

Using the recursive procedure

α = q0 +
1

α1

(α1 > 1)

α1 = q1 +
1

α2

(α2 > 1)

α2 = . . .

(repeatedly taking the integral part of αi to find qi
and upending the fractional part to find αi+1), we
obtain the infinite sequence of complete quotients
α0(= α), α1, . . . , αn+1, . . . related by the equation

α =
[q0, q1, . . . , qn, αn+1]

[q1, q2, . . . , qn, αn+1]
=

Anαn+1 + An−1

Bnαn+1 + Bn−1

. (1.b)

This equation can be rearranged to make αn+1 the
subject giving

αn+1 =
−Bn−1α + An−1

Bnα− An

. (1.c)

As we pointed out in the margin during the proof
of Lemma (1.2), the complete quotient αn+1 is not
only another quadratic irrational, but also has the
same discriminant (D say) as α. Thus if we substitute
−
√
D wherever it appears in Equation (1.c) we obtain

α′
n+1 =

−Bn−1α
′ + An−1

Bnα′ − An

= −Bn−1

Bn

(

α′ − An−1/Bn−1

α′ − An/Bn

)

.

(1.d)

Our aim will be to find an n such that

−1 < α′
n+1 < 0 (1.e)

for then αn+1 will be a reduced quadratic irrational
and will have a purely periodic continued fraction,
by Theorem 3.10. From this point on, the contin-
ued fraction development for α will then be periodic,
which is what we want to show.
To see that (1.e) is eventually satisfied, it is just a
matter of staring carefully at Equation (1.d). This
equation can be rewritten:

α′
n+1 = −Bn−1

Bn

(

α′ − α + (α− An−1/Bn−1)

α′ − α + (α− An/Bn)

)

.

(1.f)
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(1.5) Question to focus on Equation (1.f)

(a) Show that α− α′ 6= 0.

(b) Find the chapter and verse in Workbook 4 for the
following facts:

(i) 0 < B1 < . . . < Bn−1 < Bn < . . . .

(ii) limn→∞

(

α− An

Bn

)

= 0 .

(iii) α− An

Bn
is positive when n is even and negative

when n is odd.

Answers to (1.5)

(a) From Equation 3.i in Workbook 4 (or the answer

to part (a) of (1.3)) we have α−α′ = ±2
√
D

C
6= 0 .

(b) For assertion (i) see Question 2.5. Assertion (ii)
follows from Theorem 2.7 where it was shown
that limn→∞

(

An

Bn

)

= α . Assertion (iii) is a con-

sequence of Corollary 2.6. In part (b) we showed
that even convergents form an increasing sequence
bounded above by α and in part (c) we showed
that the odd convergents form a decreasing se-
quence bounded below by α.

(1.6) Questions leading to a proof that αn+1 is
reduced for some n.
Suppose throughout that α′ − α > 0.

(a) Show that there exists a natural number N such
that both of the following conditions are satisfied:

(i) 0 > α− AN−1

BN−1

> −1
2
(α′ − α), and

(ii) α− AN

BN

> 0.

(b) Setting β = α′−α+(α−AN−1/BN−1)

α′−α+(α−AN/BN )
show that 0 <

β < 1.

(c) Conclude that −1 < α′
N+1 < 0.
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Answers to (1.6)

(a) Since limn→∞

(

α− An

Bn

)

= 0 there exists n0 such

that
∣

∣

∣

∣

α− An

Bn

∣

∣

∣

∣

<
1

2
(α′ − α) (1.g)

for all n > n0. By choosing N to be an even num-
ber greater than n0+1, it follows from (1.5)(b)(iii)
that α− AN−1

BN−1

is negative, but not as negative as

−1
2
(α′ −α) by (1.g). Since N is even, α− An

Bn
> 0

by (1.5)(b)(iii).

(b) It follows from Part (a) that the numerator of β
lies in the interval ((α′ − α)/2, α′ − α) while the
denominator is greater than α′−α. Since α′−α is
deemed to be positive, this means that 0 < β < 1.

(c) Since 0 < BN−1/BN < 1 by (1.5)(b)(i), it follows
from Part (b) that −α′

N+1 = BN−1β/BN lies in
the interval (0, 1) and hence that α′

N+1 ∈ (−1, 0).

In your answer to (1.6) you have shown that αN+1 is
reduced on the assumption that α′ − α > 0. In the
event that α− α′ > 0, a similar argument applied to

α− α′ + (−α + AN−1/BN−1)

α− α′ + (−α + AN/BN)

yields a value for N for which this expression lies
between 0 and 1, and as before we conclude that

−1 < α′
N+1 < 0

for this value of N .
Thus we have proved that all quadratic irrationals
eventually have a complete quotient that is reduced.
Therefore they have periodic continued fractions.
Putting this together with Corollary (1.4), we reach
the stated goal of this section.

(1.7) Theorem A real number has a periodic con-
tinued fraction if and only if it is an irrational root
of a quadratic equation with integer coefficients.

To practice the ideas of Section 1 you will find some
concluding exercises below.
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(1.8) Concluding Exercises

(a) If D is not a perfect square, set q0 = [
√
D]. Show

that q0 −
√
D ∈ (−1, 0) and deduce that q0 +

√
D

has a purely periodic continued fraction.

(b) Prove that
√
D = q0, q1, q2, . . . , qt, 2q0 for some t.

[Hint: Use Part (a).] Show further that qt = q1,
qt−1 = q2, qt−2 = q3, and so on. In other words,
that the sequence q1, q2, . . . , qt is unchanged when
written in reverse order. [Hint: Consider Ques-
tion 3.6 in Workbook 4.]

(c) Let n be a natural number. Prove that the con-
tinued fraction representation (i) for

√
n2 + 1 is

n, 2n; (ii) for
√
n2 + 2 is n, n, 2n; and (iii) for√

n2 + 2n is n, 1, 2n.

(d) Use Part (c) to find a rational approximation to√
15 that is accurate to four decimal places.

Summary of Section 1

Our main achievement was to characterise real numbers with periodic con-
tinued fractions as quadratic irrationals (QIs). To prove that periodic CFs
represent QIs we needed the fact that if α is a QI, then so is Aα+B

Cα+D , provided
AD 6= BC. In the reverse direction, we proved that eventually one of the
complete quotients, αn, of α has a conjugate in the interval (−1, 0). This
ensures that αn is reduced and therefore has a purely periodic CF. The CF
for α then becomes periodic from the nth partial quotient on.
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2 Pell’s Equation

Addition Impossible

What is
(

1

1+

1

2+

1

3

)

+

(

1

3+

1

3

)

?

Section Targets
We now ask: “What are continued fractions good
for?” They are poor substitutes for decimal nota-
tion when it comes to basic arithmetic - try the sum
on the left without reverting to standard rational
or decimal notation, for example. However, contin-
ued fractions reveal important properties of numbers
that are hidden in other representations, and they
sometimes provide an explicit construction for the
solution to a problem where other methods show at
best merely the existence of a solution. One exam-
ple of this is the famous Diophantine equation known
(erroneously - see http://en.wikipedia.org/wiki/
Pell’s_equation) as Pell’s Equation

x2 −Dy2 = 1 (2.a)

where D is a natural number which is not a perfect
square. Our aim in this section is to show how to
use continued fractions to construct infinitely many
solutions to equation (2.a).

Diophantine Equations

These are equations where the
focus is on integer or rational so-
lutions. They are named after
Diophantine of Alexandria who
lived in the third century AD and
wrote a 13 volume work called
Arithmetica, only six volumes of
which survive. In these we find
the first consistent use of math-
ematical notation and a system-
atic study of solutions of equa-
tions in integers. The most fa-
mous Diophantine Equation is

xn + yn = zn

which Fermat claimed, in the

margin of his copy of Arith-

metica, has no solutions when

n ≥ 3. This was finally proved

by Andrew Wiles (who subse-

quently received an honorary de-

gree from Warwick!) in the

1990’s.

(2.1) Questions about Equation (2.a)

(a) Prove that if D is a perfect square then Equa-
tion (2.a) has no solutions with x, y ∈ Z and
y 6= 0.

(b) By trial and error, find two positive integer solu-
tions to Equation (2.a) when D = 2.

Answers to (2.1)

(a) Set D = d2 for some natural number d. Then
(2.a) factorises as (x+ dy)(x− dy) = 1 and there-
fore x+ dy and x− dy are both either 1 or −1. It
follows that

2x = (x+ dy) + (x− dy) = ±2 .

Hence x = ±1 and this forces y = 0. (These are
known as the trivial solutions.)

(b) Substitute y = 1, 2, 3, .... in 2y2 + 1 until you get
a perfect square. The first two positive solutions
are (x, y) = (3, 2) and (17, 12).
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TAKE NOTE

The Pell Convention

In any discussion of Pell’s Equa-

tion we make the unspoken as-

sumption that the natural num-

ber D is not a perfect square.

The key to finding solutions to Pell’s Equation (2.a)
is to study the continued fraction for

√
D. We will

show that one of its convergents

An/Bn

satisfies A2
n − DB2

n = 1. In fact, this holds for in-
finitely many of the convergents of

√
D, and each one

of them yields a solution to Pell’s Equation.

(2.2) Question on the CF for
√
D

(a) Let D be a natural number which is not a per-

fect square. Set q0 =
[√

D
]

the integer part of
√
D, and set α = q0 +

√
D. Show that α is a

reduced quadratic irrational and therefore has a
purely periodic continued fraction

2q0, q1, ..., qt .

(b) Deduce that
√
D = q0 , q1 , · · · , qt , 2q0 .

Answer to (2.2)

(a) Evidently α is an irrational root of (x− q0)
2 = D

and α > 1. If α′ is the conjugate of α, then α′ =
q0 −

√
D = − (

√
D − q0). Since

√
D − q0 is the

fractional part of
√
D, it follows that −1 < α′ < 0

and hence that α is reduced. The first partial

quotient of α is
[

q0 +
√
D
]

= q0 +
[√

D
]

= 2q0

and therefore the periodic cycle in the CF for α
begins with 2q0.

(b) From Part (a) we can evidently write

q0 +
√
D = 2q0 + q1 , · · · , qt , 2q0 .

Subtracting q0 from both sides of this equation
yields the desired conclusion.
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Ring a Bell?

Compare Equation 2.b with

Equation 3.d in Workbook 4.

From (2.2) we see that

√
D = α− q0 = q0 +

1

q1+
....

1

qt+

1

α

and therefore

√
D =

αAt + At−1

αBt +Bt−1

(2.b)

where At = [q0, q1, ..., qt], etc.

(2.3) Question on Equation 2.b. By multiplying
through by αBt+Bt−1 and substituting α = q0+

√
D,

show that you can rewrite Equation (2.b) in the form
X + Y

√
D = 0, where X and Y are the following

rational numbers:

X = BtD − Atq0 − At−1

Y = Btq0 + Bt−1 − At (2.c)

Answer to (2.3) Multiplying across and taking
terms to the left-hand side, we have

Btα
√
D + Bt−1

√
D − Atα− At−1 = 0 .

Substitution of q0 +
√
D for α now yields

0 = Bt(q0
√
D +D) + Bt−1

√
D − At(q0 +

√
D)− At−1

= (BtD − Atq0 − At−1) + (Btq0 + Bt−1 − At)
√
D

as desired.
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Familiar Argument

Since 1 and
√
D are independent

over Q, the equation

X + Y
√
D = 0

implies X = Y = 0.

Since
√
D is irrational, we conclude that X = Y = 0,

and therefore

At−1 = BtD − Atq0

Bt−1 = At − Btq0 (2.d)

We now substitute for At−1 and Bt−1 in Equation 2.d
of Workbook 4 to obtain

(−1)t+1 = AtBt−1 −BtAt−1

= At(At −Btq0)− Bt(BtD − Atq0)

= A2
t −DB2

t

HEY PRESTO! If t is odd, then (−1)t+1 = 1, and we
have found a solution

x = At , y = Bt

to Pell’s Equation.

(2.4) Questions to test this claim

(a) Show that 3 +
√
14 = 6, 1, 2, 1. Deduce that√

14 = 3, 1, 2, 1, 6.

(b) For 0 ≤ n ≤ 3 compute An, Bn, the convergent
An/Bn and the value of A2

n− 14B2
n. [Use the tab-

ular layout as in Workbook 4.]
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Answer to (2.4)

(a) Since 3 =
[√

14
]

, we know from (2.2) that 3+
√
14

has a purely periodic CF. Now
[

3 +
√
14
]

= 6 and
we find

√
14 + 3 = 6+ (

√
14− 3)

1√
14− 3

=

√
14 + 3

5
= 1+

√
14− 2

5
5√

14− 2
=

√
14 + 2

2
= 2+

√
14− 2

2
2√

14− 2
=

√
14 + 2

5
= 1+

√
14− 3

5
5√

14− 3
=

√
14 + 3

Thus we have completed the periodic cycle, and

3 +
√
14 = 6, 1, 2, 1 . (2.e)

Subtracting 3 from both sides of Equation 2.e
gives √

14 = 3, 1, 2, 1, 6

as desired.

(b) Using the column layout:

q B A A/B A2 − 14B2

1 0
3 0 1
1 1 3 3/1 −5
2 1 4 4/1 +2
1 3 11 11/3 −5

4 15 15/4 +1

Hence A2
3 − 14B2

3 = 1. Since t(= 3) is odd, this
solution for Pell’s equation with D = 14 agrees
with the predictions of our theory. You can also
see that the signs of A2

n − 14B2
n alternate, as ex-

pected (see previous page); the absolute values of
these quantities are just the denominators of the
complete quotients (1, 5, 2, 5, 1).
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The Period of
√
D

The way we have labelled the CF
for

√
D as

q0, q1, . . . , qt, 2q0

means that the periodic cycle

contains t+ 1 terms.

We still lack a solution when t is even. Fortunately,
the same idea will work if we go one complete cycle
further along the continued fraction for

√
D thus:

√
D = q0 +

1

q1+
· · · 1

qt+

1

2q0+

1

q1+
· · · 1

qt+

1

α

=
A2t+1α + A2t

B2t+1α + B2t

.

Starting from this equation rather than Equation 2.b,
we can follow the same sequence of algebraic steps as
before to conclude that

A2
2t+1 −DB2

2t+1 = (−1)2t+2 = 1

and once more we have found a solution for Pell’s
Equation, even when t is odd. We now summarise
what we have proved.

Counting from zero

Since the first convergent A0/B0

for a continued fraction

q0 +
1

q1+

1

q2+
. . .

is suffixed with a zero, the

convergent An/Bn, although la-

belled with n, is in fact the

(n+ 1)st on the list.

(2.5) Theorem Let D be a natural number which
is not a perfect square. Then

√
D = q0 , q1 , · · · , qt , 2q0

for some t ≥ 1 , and if An/Bn denotes the (n + 1)st
convergent of this periodic continued fraction, we ob-
tain the following solutions to Pell’s Equation x2 −
Dy2 = 1:

(x, y) = (At, Bt) if t is odd;

(x, y) = (A2t+1, B2t+1) if t is even.

(2.6) Questions to test this Theorem when t
is even Recall from Workbook 4 Question (3.2)(d)
that

√
13 = 3 , 1 , 1 , 1 , 1 , 6. Calculate An, Bn,

and A2
n − 13B2

n for n ≤ 9.
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Pell in ancient Greece

Pell’s Equation has a long his-
tory. The Cattle Problem of

Archimedes (said to have been
proposed by Archimedes as a
challenge to Eratosthenes) in-
volves 8 unknowns involving dif-
ferent kinds of cattle, together
with two extra conditions that
certain numbers are not perfect
squares. The problem boils down
to solving the equation

x2 − 4729494y2 = 1 .

The least solution (given by

Amthor in 1880) involves a num-

ber x with 41 digits. The exis-

tence of this problem raises the

question whether Pell’s Equation

was known to the mathemati-

cians of antiquity.

Answer to (2.6)

q B A A2 − 13B2

1 0
3 0 1 +1
1 1 3 −4
1 1 4 +3
1 2 7 −3
1 3 11 +4
6 5 18 −1
1 33 119 +4
1 38 137 −3
1 71 256 +3
1 109 393 −4

180 649 +1

The last line shows that

A2
9−13B2

9 = 6492−13×1802 = 421201−421200 = 1 ,

and the smallest nontrivial solution to x2 − 13y2 = 1
is (x, y) = (649, 180).

Mysterious −1

It is an unsolved problem to de-

termine for exactly which natu-

ral numbers D there is a solution

to the negative Pell equation!

(2.7) Turning a negative into a positive

(a) Verify the identity

(x2 +Dy2)2 −D(2xy)2 = (x2 −Dy2)2.

(b) Deduce that if (x0, y0) give a solution to the “neg-
ative Pell equation”

x2 −Dy2 = −1

then (x, y) = (x2
0+Dy20, 2x0y0) is a solution to the

usual Pell equation x2 −Dy2 = +1.

(c) Use this and the working of the previous question
to solve the Pell equation with a lot less work.

15



Answers to (2.7)

(a) Simple algebra.

(b) x2 − Dy2 = (x2
0 + Dy20)

2 − D(2x0y0)
2 = (x2

0 −
Dy20)

2 = (−1)2 = +1.

(c) At the half-way point, at n = 4 and after ex-
actly one cycle of the CF expansion, we had found
(A4, B4) = (18, 5) satisfying the negative equation
182 − 13 · 52 = 324 − 325 = −1. Taking these as
(x0, y0) we find that x = x2

0 +13y20 = 324+ 325 =
649 and y = 2x0y0 = 180 satisfy x2 − 13y2 = 1 as
predicted.

(2.8) Negative practice Find the CF expansion of√
10. By writing down the first few convergents (you

will not need very many!) first solve the negative Pell
equation x2 − 10y2 = −1 and then the Pell equation
itself.

Answer to (2.8) Using 3 <
√
10 < 4:

√
10 = 3+ (

√
10− 3)

1√
10− 3

=
√
10 + 3 = 6+ (

√
10− 3)

we see that
√
10 = 3, 6.

(q) (B) (A) A2 − 10B2

1 0
3 0 1
6 1 3 −1

So A0, B0 already give the (rather obvious) solution to
the negative Pell equation: A2

0−10B2
0 = 9−10 = −1.

Squaring: (3 +
√
10)2 = 19 + 6

√
10, so (19, 6) is a

solution to the Pell equation itself. (This would come
from the next line in the table anyway: t = 1 here,
so this is the smallest possible example!)
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Large numbers

Notice that the solution you have

obtained to Pell’s Equation for

D = 13 in Question 2.6 is already

large relative to D (if your so-

lution is between 500 and 1,000

you have found the smallest pos-

itive solution). The size of the

smallest solution generally bears

little relation to the size of D.

For example, the smallest solu-

tion for D = 60 is x = 31 and

y = 4. For D = 61 the smallest

solution is x = 17663319049 and

y = 226153980 while for D = 62

the smallest solution is x = 63

and y = 8.

There are two effective ways of generating infinitely
many solutions. One is to use the trick we used to
prove Theorem 2.5 in the case when t is even. The
same argument shows that the convergents that cor-
respond to the end of every periodic cycle yield solu-
tions when t is odd, whereas the alternate ones yield
solutions when t is even.
The second method is to use a known solution to
generate new ones. In a way similar to the trick we
used to turn negative solutions into positive ones, we
can generate new positive solutions from a given one,
as illustrated in the following question.

(2.9) Questions on new solutions for old

(a) Multiply out

(x1 + y1
√
D)(x2 + y2

√
D),

giving the result in the form x3+y3
√
D with x3, y3

expressed in terms of x1, y1, x2, y2 and D (with no
square roots).

(b) Deduce that if (x1, y1) and (x2, y2) are both solu-
tions to the Pell equation x2 −Dy2 = 1, then so
is (x3, y3).

(c) Let α = x + y
√
D, where (x, y) is a nontrivial

solution to the Pell equation. By induction on n,
show that for all n ≥ 1,

αn = Pn +Qn

√
D

where Pn, Qn ∈ Z and P 2
n −DQ2

n = 1. [So every
(Pn, Qn) is a solution to Pell.]

(d)What does this say about the number of solutions
to the Pell equation?

17



Pell in India

Versions of his famous equation
were known to mathematicians
in India more than 1000 years
before they reappeared in Eu-
rope. For instance, in the 7th
century AD, Brahmagupta gave
his definition of a mathematician
as “someone who could solve

x2 − 92y2 = 1

within a year”. If you would like

to measure yourself against this

yardstick, bear in mind that 7th

century mathematicians did not

have electronic calculators.

Answer to (2.9)

(a) x3 = x1x2 +Dy1y2 and y3 = x1y2 + x2y1.

(b) By (a), x3 and y3 are both integers when
x1, y1, x2, y2 are. Now conjugating both sides of

(x1 + y1
√
D)(x2 + y2

√
D) = x3 + y3

√
D

gives

(x1 − y1
√
D)(x2 − y2

√
D) = x3 − y3

√
D

and now multiplying the two equations together
gives

(x2
1 −Dy21)(x

2
2 −Dy22) = x2

3 −Dy23;

but x2
1 − Dy21 = x2

2 − Dy22 = 1, so x2
3 − Dy23 = 1

also.

(c) When n = 1 we have P1 = x and Q1 = y, which
starts the induction. If true for n, then

αn+1 = αnα = (Pn +Qn

√
D)(x+ y

√
D)

= (xPn +DyQn) + (xQn + yPn)
√
D

which is of the correct form with Pn+1 = xPn +
DyQn and Qn+1 = xQn + yPn. To see that P 2

n −
DQ2

n = 1 for all n, apply part (b).

(d) Since (x, y) 6= (±1, 0) (remember the definition
of a non-trivial solution), α 6= ±1. But then the
powers αn are all different. Each one (for n ≥ 1)
gives a nontrivial solution so the Pell equation. So
there are infinitely many solutions.

Pell was innocent

Pell actually had very little to

do with his equation. Euler is

responsible for the erroneous at-

tribution; he came across Pell’s

name in Wallis’s Opera Mathe-

matica and mistakenly connected

it with the famous equation.

(2.10) Proposition Let D be a natural number
which is not a perfect square. If A and B are natu-
ral numbers satisfying Pell’s Equation x2 −Dy2 = 1,
then the pairs (Pn, Qn) defined by

(A+ B
√
D)n = Pn +Qn

√
D

for n ≥ 1 are further solutions to Pell’s Equation,
and are all distinct.

In fact one can show that if we start with the minimal solution in positive integers
(A,B) then every nontrivial solution has the form (±Pn,±Qn) for some n ≥ 1. And
moreover, the continued fraction method will always find this minimal solution! So,
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using CFs we have been able to completely solve Pell’s Equation.

To establish these additional facts, it is probably better to use a slightly more highbrow
viewpoint than we have been. The set of all numbers of the form x+y

√
D with x, y ∈ Z

is closed under addition and multiplication, so forms a ring, denoted Z[
√
D]:

Z[
√
D] = {x+ y

√
D | x, y ∈ Z}.

Solutions (x, y) to Pell’s equation correspond to α = x+y
√
D ∈ Z[

√
D] which are units,

whose conjugate α′ = x−y
√
D is also its inverse 1/α, since αα′ = (x+y

√
D)(x−y

√
D) =

x2 − Dy2 = 1. So our proof that Pell’s equation always has infinitely many solutions
actually shows that the ring Z[

√
D] has infinitely many units. And the facts of the

previous paragraph amount to saying that all these units have the form ±αn
0 with

n ∈ Z, if we take α0 = x0 + y0
√
D corresponding to the smallest solution to Pell’s

equation.

Who solved it?

Fermat may have had a general
solution but if so he did not let
on. He tantalised his contem-
poraries by issuing challenges to
solve ever-more-difficult special
cases. Two British mathemati-
cians, John Wallis and his patron
Lord Brouncker of Ireland, took
up the gauntlet and solved, for
instance, the equation

x2 − 313y2 = 1 .

Subsequently Euler made

progress on the general solution

using the continued fraction

development for
√
D. But it

was Lagrange who finally settled

the matter when in 1768 he

published the first rigorous

proof that the convergents of√
D provide all the positive

solutions.

(2.11) Concluding Exercises

(a) Show that the solutions x = Pn and y = Qn to
Pell’s Equation x2−Dy2 = 1 described in Propo-
sition 2.10 are strictly increasing in the sense that
A = P1 < P2 < P3 < P4 . . . and B = Q1 < Q2 <
Q3 < Q4 . . ..

(b) Substitute y = 1, 2, 3, · · · successively into the
expressionDy2+1 until you reach a perfect square
for (i) D = 7, (ii) D = 19, and (iii) D = 39. This
is a slow but systematic method of finding the
smallest positive integers x and y satisfying Pell’s
Equation.

(c) Use the previous question and Proposition 2.10
to find an integral solution to the equation x2 −
39y2 = 1 with x ≥ 10, 000.

(d) Let N be a natural number such that the equation

x2 −Dy2 = N (2.f)

has an integral solution (here, as usual, D is a
natural number and not a perfect square). Use
Proposition 2.10 to prove that Equation (2.f) then
has infinitely many solutions.
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Summary of Section 2

The thrust of this section was to find natural numbers x and y satisfying
Pell’s Equation x2 − Dy2 = 1, where D is a natural number which is not
the square of another natural number. The key result is that a solution
x = An and y = Bn can always be found among the first 2t+2 convergents
An/Bn of the periodic continued fraction for

√
D, where t+1 is the length

of the period. For n = 2, 3, · · · , any given solution x = A and y = B gives

rise to new solutions x = P and y = Q when the power
(

A+B
√
D
)n

is expanded and arranged in the form P + Q
√
D with P and Q natural

numbers.

20


