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Icons in this Workbook

The ‘Section Targets’ box contains an idea of what
you should aim to get out of the current section. Per-
haps you might return to this at the end to evaluate
your progress.

Reaching this icon in your journey through the work-
book is an indication that an idea should be starting
to emerge from the various examples you have seen.

Material here includes reference either to earlier
workbooks, or to previous courses such as founda-
tions/Sets and Groups.

A caution. Watch your step over issues involved here.

Are You Ready?

To understand the material and do the problems in each section of
this workbook, you will need to be on good terms with:

Section 1: • The Euclidean Algorithm
Section 2: • Properties of Sequences

Note: You will need a pocket calculator for some of the questions in

the workbooks, and are encouraged to use one for this purpose and

to experiment with results and ideas in the course. Calculators are

NOT needed and are NOT allowed in tests or in the examination.

These workbooks were orginally written and devised by Trevor Hawkes and

and Alyson Stibbard. Ben Carr designed the LATEX template and Rob Reid

converted their drafts into elegant print. Over the years, other lecturers and
students have corrected a number of typos, mistakes and other infelicities. In
2010 John Cremona made some substantial revisions.

Send corrections, ask questions or make comments at the module forum. You
can join the MA246 forum by going to http://forums.warwick.ac.uk/wf/

misc/welcome.jsp and signing in, clicking the browse tab, and then following
the path: Departments > Maths > Modules > MA2xx modules > MA246
Number Theory.



1 Finite Continued Fractions for
Rationals

Section Targets We explore the connection be-
tween Euclid’s Algorithm and continued fractions for
rational numbers. In particular, we show that

• every finite continued fraction represents a ra-
tional number, and

• every rational number can be represented as a
finite continued fraction in an essentially unique
way.

We also investigate some interesting algebra associ-
ated with numbers qi, called partial quotients.

The Euclidean Algorithm

Recall (from Foundations, and

the last section of Workbook

1) how Euclid’s Algorithm (EA)

gives an efficient method of com-

puting the highest common fac-

tor of two integers, that avoids

having to find their factorisa-

tions.

(1.1) Important Notation. It will be helpful to
keep in mind the following standard notation that
describes the steps of the Euclidean Algorithm (EA)
applied to two integers a and b, where b > 0.

a = q0b+ r1 0 ≤ r1 < b

b = q1r1 + r2 0 ≤ r2 < r1

r1 = q2r2 + r3 0 ≤ r3 < r2 (1.a)
...

...
...

...
...

...
...

rt−2 = qt−1rt−1 + rt 0 ≤ rt < rt−1

rt−1 = qtrt

The last non-zero remainder, rt, is equal to the high-
est common factor of a and b.
Note: to make this true when b divides a we set
t = 0, a = r−1 and b = r0.
This would be a good time to revise your EA tech-
nique, including the tabular layout which we will be
making good use of in this Workbook (see Section 4
of Workbook 1).
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Continued Fractions
A continued fraction is a fraction
of the form,

q0 +
1

q1 +
1

q2 +
1

q3+
.. .

where q0 ∈ Z and qi ∈ N for all

i ≥ 1. The qis are called partial

quotients. We will consider both

finite and infinite continued frac-

tions (according to whether the

set of partial quotients is finite

or countably infinite).

(1.2) Questions on a Concrete Example.

(a) Write the following continued fraction as a ratio-
nal number a/b:

1 +
1

2 +
1

3 +
1

4

(b) Apply the EA to the pair a = 43 and b = 30.

(c) List the qis that appear in ((b)) and compare them
with the partial quotients in ((a)).

Answers to (1.2)

(a)
1 +

1

2 +
1

3 +
1

4

= 1 +
1

2 +
4

13

= 1 +
13

30
=

43

30
.

(b) In full:

43 = 1× 30 + 13
30 = 2× 13 + 4
13 = 3× 4 + 1
4 = 4× 1

(c) q1 = 1, q2 = 2, q3 = 3, q4 = 4. These are
the numbers that define the continued fraction in
part (a).

(1.3) A Worked Example. Use the Euclidean Al-
gorithm to convert the rational number 89/49 into a
continued fraction.
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Saving paper and ink
In the compact format of WB1§4
this looks like

(r) (q)
89 1
49 1
40 4
9 2
4 4
1

The column of q values gives the

partial quotients directly, with

rather less writing than on the

right!

Solution. Applying the EA to the pair a = 89 and
b = 49 yields

89 = 1× 49 + 40 (1.b)

49 = 1× 40 + 9 (1.c)

40 = 4× 9 + 4 (1.d)

9 = 2× 4 + 1 . (1.e)

From Equation (1.b) we get

89

49
= 1 +

40

49
= 1 +

1
(

49

40

) .

From (1.c) we obtain

49

40
= 1 +

9

40

and hence

89

49
= 1 +

1

1 +
9

40

= 1 +
1

1 +
1

(

40

9

)

(1.f)

Since (1.d) and (1.e) yield

40

9
= 4 +

4

9
= 4 +

1
(

9

4

) = 4 +
1

2 +
1

4

,

substitution in (1.f) yields

89

49
= 1 +

1

1 +
1

4 +
1

2 +
1

4

,

Check directly that this is true.
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Illustration
In this notation, the continued
fraction in the preceding Worked
Example is written

1 +
1

1+

1

4+

1

2+

1

4

Compact Notation for Continued Fractions.
To save space on the page, from now on we will use
the notation

q0 +
1

q1+

1

q2+
. . .

1

qn

instead of the sprawling

q0 +
1

q1 +
1

q2+
.. .

+
1

qn−1 +
1

qn

It is important to get some practice at converting
rationals into continued fractions (CFs).

Fibonacci Numbers

Fibonacci numbers are defined
recursively by the equations
F0 = 0, F1 = 1, and
Fn+1 = Fn + Fn−1 for n =
1, 2, 3, . . .. Write down the first
ten Fibonacci numbers and think
about the development of the ra-
tional number

Fn+1

Fn

as a continued fraction.

(1.4) Question on CF development. As in
Worked Example (1.3) (and the sidebar next to it),
use the EA to develop the following rationals as con-
tinued fractions,

21

13
, −11

31
,

20

31
,

42

26
.

Answers to (1.4)Applying EA to a = 21 and b = 13
gives

(r) (q)
21 1
13 1
8 1
5 1
3 1
2 2
1

Thus
21

13
= 1 +

1

1+

1

1+

1

1+

1

1+

1

2
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continued. . . Applying EA to a = −11 and b = 31:

(r) (q)
-11 -1
31 1
20 1
11 1
9 4
2 2
1

Thus,

−11

31
= −1 + 1

1+

1

1+

1

1+

1

4+

1

2

Notice that

−11

31
= −1 + 20

31

so that we get,

20

31
=

1

1+

1

1+

1

1+

1

4+

1

2

without needing to apply the EA again to 20 and 31.
Applying EA to a = 42 and b = 26:

(r) (q)
42 1
26 1
16 1
10 1
6 1
4 2
2

The partial quotients are the same as for a = 21 and
b = 13 and, as we would expect, the two expressions
42/26 and 21/13 for the same rational number have
the same continued fraction development:

1 +
1

1+

1

1+

1

1+

1

1+

1

2
.

Your work with these continued fraction develop-
ments of rational numbers should persuade you of
the following:
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Lowest Terms

Your work with 21/13 and 42/26

in (1.4) above should convince

you that “lowest terms” repre-

sentations can always be used to

develop a rational number a/b

as a CF. The EA applied to

a′ = ad and b′ = bd is obtained

from Equations (1.a) by multi-

plying a, b and all the ri’s by d

and leaving the partial quotients

q0, q1, . . . , qt unchanged.

(1.5) Theorem If Equations (1.a) denote the Eu-
clidean algorithm for natural numbers a and b, then
the continued fraction for the rational number a/b is

q0 +
1

q1+

1

q2+
· · · 1

qt
.

Alternatively, the sequence of partial quotients for a/b
are precisely the numbers in the quotient sequence for
a, b as defined in Workbook 1 Section 4.

Proof. If you still need convincing after your work
on the preceding examples, it is easy to cook up a
formal proof by induction on t, which is one less than
the number of equations in (1.a). Start the induc-
tion at t = 0, which corresponds to the case r1 = 0
and a/b = q0, yielding a continued fraction with one
partial quotient and no fractional part. If t ≥ 1, we
get

a

b
= q0 +

1
(

b

r1

) (1.g)

and the EA applied to the pair b and r1 yields the last
t equations of (1.a) with partial quotients q1, . . . , qt.
By induction, the continued fraction expansion of
b/r1 is

q1 +
1

q2+

1

q3+
· · · 1

qt

and plugging this into Equation (1.g) gives the stated
conclusion of the theorem. �
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Uniqueness

According to Theorem 1.5 the
continued fraction associated
with the rational number a/b
is determined by the partial
quotients q0, q1, . . . , qt. The
final equation in (1.a) is

rt−1 = qtrt

Since 0 < rt < rt−1, it follows
that qt > 1. The final term 1/qt
of the CF can be replaced with

1

(qt − 1)+

1

1

without changing its value since

1

qt
=

1

(qt − 1) + 1

1

.

This alternative ending can be

excluded by insisting that the fi-

nal partial quotient of a contin-

ued fraction is at least 2; with

this stipulation, continued frac-

tions for rationals are unique.

(1.6) Question on the Uniqueness of Finite
CFs. Let q0, q1, . . . , qt and r0, r1, . . . , rs be nat-
ural numbers with qt ≥ 2 and rs ≥ 2. Show that
if

q0 +
1

q1+

1

q2+
· · · 1

qt
= r0 +

1

r1+

1

r2+
· · · 1

rs
(1.h)

then s = t and qi = ri for all i = 0, 1, . . . , t.
Hint: If

x = q0 +
1

q1+
· · · 1

qt
,

show that q0 = [x], the integral part of x.

Answer to (1.6)
Step 1: Prove by induction on t that if

x = q0 +
1

q1+
· · · 1

qt
(qt ≥ 2) (1.i)

then [x] = q0. If t = 1, then q1 ≥ 2 by assumption
and so x = q0 +

1
q1

with q0 ∈ N and 0 < 1
q1

< 1.

Hence [x] = q0 in this case. Let k ≥ 2 and assume
the induction hypothesis is true for CFs with at most
k partial quotients. Then

q0 +
1

q1+
· · · 1

qk
= q0 +

1

y
,

where y = q1 +
1

q2+
· · · 1

qk
is a CF with k partial quo-

tients. By induction q1 = [y] and so y > 1 since
k ≥ 2. Thus 1

y
< 1, and so q0 is the integral part of

q0 +
1
y
= q0 +

1
q1+
· · · 1

qk
. This completes the induc-

tion step, and proves that q0 = [x] for all CFs of the
form (1.h).
Step 2: If Equation (1.h) holds, then we can equate
the integral parts of both sides, as well as the recip-
rocals of the fractional parts. By Step 1 therefore
q0 = r0 and

q1 +
1

q2+
· · · 1

qt
= r1 +

1

r2+
· · · 1

rs
.

By an obvious induction step on t, we now obtain
t− 1 = s− 1 and qi = ri for i = 1, . . . , t.
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The Partial Quotients

The numbers q0, q1, . . . , qt ap-

pearing in the CF labelled (1.j)

are called its partial quotients.

Although we require that q0 is

an integer and qi (i ≥ 1) is a

natural number when continued

fractions are under scrutiny, the

expression (1.j) makes perfectly

good algebraic sense when the

qi’s are arbitrary real numbers

or even variables. Therefore we

keep our options open.

Multivariable Polynomials

You are no doubt familiar with
polynomials involving a single
variable, e.g. 5x5 + 4x3 − 2. At
heart, polynomials are functions
that involve only the operations
of multiplication and addition.
Hence we can define multivari-
able polynomials. For instance,

3x2
1x2x

3
4 − 2x2x3 + x4

5

is a polynomial in the variables

x1, x2, . . . , x5. We say it has de-

gree 6, the degree of a polynomial

being the maximum number of

variables present in a single term.

Hint

Use the fact that

x = q0 +
1

y
,

where

y = q1 +
1

q2+

1

q3

We now focus on the numerator and denominator of
the general finite continued fraction:

q0 +
1

q1+

1

q2+
· · · 1

qt
(1.j)

(1.7) Worked Example. Transform the expression
labelled (1.j) into a quotient of two polynomials in
the qi’s for the cases t = 0, 1, 2.

Solutions. For t = 0, we get q0/1.
For t = 1, it becomes

q0 +
1

q1
=

q0q1 + 1

q1
.

For t = 2, we obtain

q0 +
1

q1 +
1

q2

= q0 +
q2

q1q2 + 1

=
q0q1q2 + q0 + q2

q1q2 + 1

(1.8) Question on this Example. Use the worked
example to transform

x = q0 +
1

q1+

1

q2+

1

q3
into a similar form.

Answer to (1.8) Use the hint and the working
of (1.7) for t = 2 to conclude that

y =
q1q2q3 + q1 + q3

q2q3 + 1
Hence

x = q0 +
1

y

= q0 +
q2q3 + 1

q1q2q3 + q1 + q3

=
q0q1q2q3 + q0q1 + q0q3 + q2q3 + 1

q1q2q3 + q1 + q3
.

8



Harry Davenport

Our treatment of continued frac-

tions, as well as the notation,

closely follows that used by H.

Davenport in his elegant in-

troduction to Number Theory

called Higher Arithmetic pub-

lished by Cambridge University

Press (copies are on sale in the

University Bookshop).

Notation It is clear from (1.7) and (1.8) that the CF

q0 +
1

q1+
· · · 1

qt

can be written as the quotient of two polynomial ex-
pressions in the variables q0, q1, . . . , qt. Denote the
numerator of this quotient by

[q0, q1, · · · , qt]

Thus, from (1.7), we see that [q0] = q0, [q0, q1] =
q0q1+1, and [q0, q1, q2] = q0q1q2+q0+q2. Your calcula-
tion in (1.8) will provide the formula for [q0, q1, q2, q3].
Observe that for t = 1, 2 in the Worked Example, the
denominator of the quotient for

q0 +
1

q1+
· · · 1

qt

has the form [q1, q2, · · · , qt]. Check this out in your
calculation for t = 3. We can prove this in general
and give a useful recursion formula for [q0, · · · , qt] in
the following result.

Convention
We define the “empty bracket”
expression [ ] to be 1 to make
sense of the formula in Part (b)
when t = 0.
The first terms of the sequence
given by applying the recurrence
with t = 1 and t = 2 are

[q0, q1] = q0[q1] + [ ] = q0q1 + 1

and [q0, q1, q2] =

q0[q1, q2] + [q2]

= q0(q1q2 + 1) + q2

= q0q1q2 + q0 + q2.

(1.9) Proposition Let [q0, q1, · · · , qt] denote the nu-
merator when the CF

q0 +
1

q1+
· · · 1

qt

is simplified as a quotient of two polynomials in vari-
ables q0, q1, · · · , qt. Then

(a) [q0, q1, · · · , qt] is defined recursively by the initial
conditions [ ] = 1, [q0] = q0, and the recursion
formula

[q0, q1, · · · , qt] = q0[q1, · · · , qt] + [q2, · · · , qt],
for t ≥ 1.

(b) q0 +
1

q1+
· · · 1

qt
=

[q0, · · · , qt]
[q1, · · · , qt]

.

for t = 0, 1, 2, . . ..
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Proof. We prove statements (a) and (b) simultane-
ously by complete induction on the number of terms
in the square bracket; both statements certainly hold
for one term (see the convention in the left-hand mar-
gin). Assume true for brackets with up to k terms for
i some k ≥ 1. Let

x = q0 +
1

q1+
· · · 1

qk
and

y = q1 +
1

q2+
· · · 1

qk
and observe that x = q0 + 1/y. By induction,

y =
[q1, · · · , qk]
[q2, · · · , qk]

and therefore

x = q0 +
[q2, · · · , qk]
[q1, · · · , qk]

=
q0[q1, · · · , qk] + [q2, · · · , qk]

[q1, · · · , qk]
.

Thus the numerator of x is given by the recursion
formula in Part (a) and the denominator has the form
asserted in Part (b). This completes the induction
step. Hence, by induction, the Proposition is true for
all t ≥ 0. �

(1.10) Question on [q0, q1, · · · , qt]. Using your an-
swer to (1.8) evaluate [1, 2, 3, 4] and [2, 3, 4]. Compare
the fraction

[1, 2, 3, 4]

[2, 3, 4]

with your answer to (1.2)(a).

Answer to (1.10) By (1.8), [q0, q1, q2, q3] =
q0q1q2q3 + q0q1 + q0q3 + q2q3 + 1, and so [1, 2, 3, 4] =
24+2+4+12+1 = 43. By (1.7) we have [q1, q2, q3] =
q1q2q3+q1+q3 and so [2, 3, 4] = 24+2+4 = 30. Thus,

as predicted by Proposition 1.9, [1,2,3,4]
[2,3,4]

is equal to the

rational number represented by the CF 1 + 1
2+

1
3+

1
4
.

You may have noticed that the recursion giving the
successive numerators and denominators is similar to
the recursive construction of the sequences denoted
(u) and (v) in Workbook 1. This is no coincidence!
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(1.11) Worked Example for Euler’s rule.

(a) Given variables q0, q1, q2, q3, q4 form the following
sum:

(i) The product of all the variables written in or-
der +

(ii) all terms obtained by deleting a pair of con-
secutive variables qiqi+1 from this product +

(iii) all terms that can be obtained by deleting 2
distinct pairs of consecutive variables from the
product.

(You should get one term from (i), four terms from
(ii), and three terms from (iii).)

(b) Use (1.7) and (1.8) together with the recur-
sion formula in Proposition 1.9(a) to compute
[q0, q1, q2, q3, q4].

(c) Compare your answers in ((a)) and ((b)).

Solution.

(a)(i) q0q1q2q3q4 .

(ii) By deleting from this product first q0q1, then
q1q2, q2q3, and q3q4 in turn, we get the contri-
bution

q2q3q4 + q0q3q4 + q0q1q4 + q0q1q2

from (ii).

(iii) There are only three ways of removing two
disjoint pairs from the product in (i); for ex-
ample, deleting q0q1 and q3q4 leaves q2. Hence
the contribution from (ii) is q0 + q2 + q4.

Now adding together the contributions from
(i), (ii) and (iii) gives the desired polynomial
with 8 terms.
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Continued. . .

(b) Using our calculations in (1.7) and (1.8) with the
recursion formula of (1.9)(a) gives

[q0, q1, q2, q3, q4]

= q4[q0, q1, q2, q3] + [q0, q1, q2]

= q4(q0q1q2q3 + q0q1 + q0q3 + q2q3 + 1)

+ (q0q1q2 + q0 + q2)

= q0q1q2q3q4 + q0q1q4 + q0q3q4 + q2q3q4

+ q0q1q2 + q0 + q2 + q4

which is exactly the same as the polynomial we
found in ((a)).

Why does Euler’s rule

work?
The rule follows easily by induc-
tion using the recursion formula

[q0, q1, · · · , qt]
= q0[q1, · · · , qt] + [q2, · · · , qt] .

The terms coming from

[q2, · · · , qt] correspond to those

from which the pair q0q1 is

omitted, while contributed by

q0[q1, · · · , qt] are precisely those

from which the pair q0q1 is not

omitted.

(1.12) Euler’s Rule. The polynomial [q0, q1, · · · , qt]
is the sum of the following terms: the product
q0q1 · · · qt together with all terms obtained by delet-
ing a consecutive pair qiqi+1 from this product, next
all terms obtained by omitting two consecutive pairs,
then likewise three consecutive pairs, and so on, al-
ways provided that when t+ 1 is even the final term
obtained by deleting t+1

2
consecutive pairs (i.e. all the

variables) is by convention set equal to 1.

(1.13) Question using Euler’s rule. Use Eu-
ler’s rule to calculate [q0, q1, . . . , q5] and [q5, q4, . . . , q0].
Compare your answers. (Bear in mind that qiqj =
qjqi.)

Answer to (1.13) [q0, q1, . . . , q5] = q0q1q2q3q4q5 +
q2q3q4q5 + q0q3q4q5 + q0q1q4q5 + q0q1q2q5 + q0q1q2q3 +
q4q5 + q2q5 + q2q3 + q0q1 + q0q3 + q0q5 +1. Given that
qiqj = qjqi for 1 ≤ i, j ≤ 5, Euler’s rule applied to
[q5, q4, . . . , q0] will give the same answer.

New Recursion Formula

The alternative version of

the recursion formula given

in (1.14)(b) is more useful than

the original version of (1.9)(a).

This is because we usually tinker

with the end rather than the

beginning when manipulating

CFs.

(1.14) Corollary to Euler’s Rule. For all t ≥ 0,

(a) [q0, q1, . . . , qt] = [qt, qt−1, . . . , q0]

(b)
[q0, q1, . . . , qt] =

qt[q0, q1, . . . , qt−1] + [q0, q1, . . . , qt−2]

12



Proof.

(a) Since qiqi+1 = qi+1qi for all i, it is clear that
Euler’s rule applied to the product qtqt−1 · · · q1q0
yields the same set of terms qi1qi2 · · · qir as when
they are applied to its mirror image q0q1 · · · qt−1qt
since these rules are left-right symmetric.

(b) First relabel the variables in the recursion for-
mula of (1.14)(b) according to the permutation
q0 → qt, q1 → qt−1, . . . , qt → q0, and then apply
Part (a).

�
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Summary of Section 1

The most important result in this section is the one-to-one correspondence
(or bijection) between the set of rational numbers a/b and the set of finite
continued fractions of the form

q0 +
1

q1+

1

q2+
· · · 1

qt

where q0 ∈ Z, q1, q2, . . . , qt ∈ N, and qt ≥ 2.

• Given the rational number a/b (with a ∈ Z and b ∈ N), the partial
quotients in the corresponding continued fraction are precisely the
numbers in the quotient sequence obtained when applying the Eu-
clidean algorithm to a and b; thus they are the numbers qi appearing
in Equations (1.a).

• Now given the continued fraction above, the key to rewriting it as a
rational number lies in the polynomials [q0, q1, . . . , qt], defined recur-
sively by the initial conditions

[ ] = 1, [q0] = q0, [q0, q1] = q0q1 + 1

and the recursion formula

[q0, q1, . . . , qt] = q0[q1, q2, . . . , qt] + [q2, q3, . . . , qt]

for t ≥ 2. You get the rational number represented by the continued
fraction

q0 +
1

q1+
· · · 1

qt

by substituting the values of qi in the formula

[q0, q1, . . . , qt]

[q1, q2, . . . , qt]
.

Finally, Euler’s rule gives a direct way of writing down the polynomial
[q0, q1, . . . , qt] without recourse to the recursion formula.
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2 Infinite Continued Fractions for
Irrational Numbers

Section Targets In Section 1 we described a one-
to-one correspondence between rational numbers and
finite continued fractions. Our main objective in this
section is to do the same for irrational numbers and
infinite continued fractions. In addition to the ma-
chinery of Section 1, we will need some basic facts
about convergent sequences: an irrational number
will be represented as the limit of an infinite sequence
of rational numbers

[q0, q1, . . . , qn]

[q1, q2, . . . , qn]
= q0 +

1

q1+

1

q2+
· · · 1

qn

constructed in turn out of an infinite sequence
q0, q1, q2, q3, . . . of partial quotients qi with q0 ∈ Z

and qi ∈ N when i ≥ 1. (This is analogous to the def-
inition of an infinite decimal b · a1a2a3 . . . as the limit
of the sequences of rational numbers b · a1a2 . . . an).

Dual View

We will retain the options of re-

garding An and Bn as polynomi-

als in variables q0, q1, . . . , qn and

of allowing the qi’s to take values

in R; however, when we substi-

tute actual values for q0 ∈ Z and

q1, q2, . . . ∈ N, then evidently

An ∈ Z and Bn ∈ N.

(2.1) Some Notation and Terminology. Given
an integer q0 and an infinite sequence of natural num-
bers q1, q2, . . . we will fix the notation

An = [q0, q1, . . . , qn] and Bn = [q1, q2, . . . , qn]

for n = 0, 1, 2, . . .. The ratio An/Bn is called the
nth convergent of the sequence. Since An ∈ Z and
Bn ∈ N, the convergents A0/B0, A1/B1, A2/B2, . . .
are all rational numbers. Later we will see that An

and Bn are always coprime, so the rationals An/Bn

are automatically in lowest terms.
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(2.2) Questions about Convergence.

(a) Recall that A0/B0 = q0/1. Write out A1/B1 and
A2/B2 as ratios of polynomials in the qi’s.

(b)Which result in Section 1 gives rise to the two
recursion formulas,

An = qnAn−1 + An−2 (2.a)

Bn = qnBn−1 + Bn−2 (2.b)

for n ≥ 2?

(c) If An−2/Bn−2 and An−1/Bn−1 are two consecutive
convergents, the next convergent An/Bn is there-
fore

qnAn−1 + An−2

qnBn−1 +Bn−2

. (2.c)

The first two convergents corresponding to the se-
quence 3, 7, 15, 1, 292, . . . are

A0

B0

=
3

1
,

A1

B1

=
q0q1 + 1

q1
=

22

7

Use (2.c) repeatedly to work out the next three
convergents, and express the rationals A3/B3 and
A4/B4 as decimals. Guess which real number has
an infinite continued fraction beginning

3 +
1

7+

1

15+

1

1+

1

292+
· · ·

Answers to (2.2)

(a)
A1

B1

=
q0q1 + 1

q1
, and

A2

B2

=
q0q1q2 + q0 + q2

q1q2 + 1
.

(b) The recursion formulas (2.a) and (2.b) were justi-
fied in Proposition 1.9(a) and Corollary 1.14(b).

(c)

A2

B2

=
15× 22 + 3

15× 7 + 1
=

333

106
A3

B3

=
1× 333 + 22

1× 106 + 7
=

355

113
= 3.141592920 . . .

A4

B4

=
292× 355 + 333

292× 113 + 106
=

103993

33102
= 3.141592653 . . .
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continued. . . Note that A3/B3 agrees with π =
3.14159265 . . . to 6 decimal places, which is remark-
able since the denominator is only just over 100. It
is not so surprising that A4/B4 agrees with π to 9
decimals, since the denominator is much larger.
As before, we can save writing by using the simple
tabular layout introduced in Section 4 of Workbook 1,
to compute the (An) and (Bn) sequences from the
partial quotient (qn) sequence. In this example the
calculation looks like this:
(q) (B) (A) A/B

1 0
3 0 1
7 1 3 3/1 = 3.0000 . . .
15 7 22 22/7 = 3.142857 . . .
1 106 333 333/106 = 3.1415094 . . .
292 113 355 355/133 = 3.141592920 . . .

33102 103993 103993/33102 = 3.1415926530 . . .

Notice that the numerator and

denominator sequences (An) and

(Bn) satisfy the same recurrence

since (2.a) and (2.b) are the

same, but they start with differ-

ent initial values: A0 = q0 and

A1 = q0q1 + 1 while B0 = 1 and

B1 = q1.

(2.3) Extend the sequences (An) and (Bn) backwards
to n = −1 and n = −2, by setting A−2 = 0, A−1 = 1,
B−2 = 1, B−1 = 0. Now use (2.a) and (2.b) with
n = 0 and n = 1 to (re)compute values for A0, A1

and B0, B1. Are they correct?

EEA revisited
Compare with the Extended Eu-
clidean Algorithm (EEA) layout
from Workbook 1 Section 4: the
sequence we are denoting here
by (An) is exactly the sequence
(v) we had there, and similarly
(Bn) = (u).

We will stick to the new names

(An), (Bn) for the sequences

here, but you will probably find

that the columnar layout you

used in WB1§4 is helpful for eval-
uating them.

Answer to (2.3)
A0 = q0A−1 + A−2 = q0 · 1 + 0 = q0: correct!
A1 = q1A0 + A−1 = q1q0 + 1: correct!
B0 = q0B−1 +B−2 = q0 · 0 + 1 = 1: correct!
B1 = q1B0 + B−1 = q1 · 1 + 0 = q1: correct!
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Hint

Use the tabular layout, with

columns labelled (q), (B) = (u)

and (A) = (v).

(2.4) Spot the Numbers. Work out the early con-
vergents An/Bn for the sequences

1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, . . .

and
2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, . . . ,

expressing each as a rational number and then as a
decimal. Any ideas? Let the inspiration strike!

Answers to (2.4)

(q) (B) (A) A/B
1 0

1 0 1
2 1 1 1/1 = 1.0000 . . .
2 2 3 3/2 = 1.5000 . . .
2 5 7 7/5 = 1.4000 . . .
2 12 17 17/12 = 1.41666 . . .
2 29 41 41/29 = 1.41379310 . . .
2 70 99 99/70 = 1.4142857 . . .

This looks like
√
2. See if you can prove it, using

the fact that the number, say x, should satisfy x =
1+1/(1+x). We’ll see more “periodic” CFs like this
in Section 3.

(q) (B) (A) A/B
1 0

2 0 1
1 1 2 2/1 = 2.0000 . . .
2 1 3 3/1 = 3.0000 . . .
1 3 8 8/3 = 2.66666 . . .
1 4 11 11/4 = 2.75000 . . .
4 7 19 19/7 = 2.7142857 . . .
1 32 87 87/32 = 2.71875 . . .
1 39 106 106/39 = 2.7179487 . . .
6 71 193 193/71 = 2.71830 . . .
1 465 1264 1264/465 = 2.718279 . . .
1 536 1457 1457/536 = 2.718283 . . .
8 1001 2721 2721/1001 = 2.7182817 . . .

e?
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(2.5) Questions about AnBn−1 −BnAn−1.

(a) Regarding A0, A1, B0, B1 as polynomials in q0 and
q1, work out and simplify the polynomial

A1B0 − B1A0 .

(b) Let q0 = 2, q1 = 1, q2 = 2, q3 = 1. In general,
set qn = 1 if n is odd and qn = 2 if n is even.
Calculate the value of the expression

AnBn−1 −BnAn−1

for n = 2, 3, 4 and 5.

(c) Make a conjecture about the value of AnBn−1 −
BnAn−1.

Answers to (2.5)

(a) A0 = q0, A1 = q0q1 + 1, B0 = 1, and B1 = q1.
Hence A1B0 −B1A0 = (q0q1 + 1)− q1q0 = 1.

(b) For the given values we have

A0 = 2, A1 = 3, A2 = 2× 3 + 2 = 8,

A3 = 1× (8) + 3 = 11, A4 = 2× 11 + 8 = 30

and
A5 = 1× 30 + 11 = 41.

Furthermore,

B0 = 1, B1 = 1, B2 = 2× 1 + 1 = 3,

B3 = 1×3+1 = 4, B4 = 2×4+3 = 11, B5 = 1×11+4 = 15.

Thus

A2B1 −B2A1 = 8× 1− 3× 3 = −1
A3B2 −B3A2 = 11× 3− 4× 8 = 1

A4B3 −B4A3 = 30× 4− 11× 11 = −1
A5B4 −B5A4 = 41× 11− 15× 30 = 1.

(c) Conjecture: AnBn−1 −BnAn−1 = (−1)n+1.
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We will now prove what we hope is your conjecture.
Let

Dn = AnBn−1 −BnAn−1

and observe that D1 = 1 by Part (a) of the preceding
question. Assume inductively that Dk = (−1)k+1.
Then, using Equations (2.a) and (2.b), we obtain

Dk+1 = Ak+1Bk −Bk+1Ak

= (qk+1Ak + Ak−1)Bk − (qk+1Bk +Bk−1)Ak

= Ak−1Bk −Bk−1Ak = −Dk

= −(−1)k+1 = (−1)(k+1)+1

Thus the induction hypothesis holds for k + 1 if it
holds for k, and since it holds for k = 1, we have
proved the following result by induction.

(2.6) Proposition If An/Bn denotes the nth conver-
gent associated with a sequence q0, q1, q2, . . ., then

AnBn−1 −BnAn−1 = (−1)n+1 (2.d)

for all n ∈ N.

(2.7) Question on the sequence B1, B2, . . .
Let qi ∈ N for i ≥ 1. Prove that {Bn}∞n=1 is a strictly
increasing sequence of natural numbers, and conclude
that Bn →∞ as n→∞.

Answer to (2.7) For all n ≥ 0 we have Bn ∈ N,
since B0 = 1 ∈ N, B1 = q1 ∈ N, and for n ≥ 2,

Bn = qnBn−1 + Bn−2 ≥ Bn−1 + Bn−2 > Bn−1,

using qn ≥ 1 and Bn−2 > 0. So

1 = B1 ≤ B1 < B2 < B3 < . . .

so Bn ≥ n for all n ≥ 1, and hence limn→∞Bn =∞.
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(2.8) Corollary

(a) For all n ∈ N,

An

Bn

− An−1

Bn−1

=
(−1)n+1

Bn−1Bn

.

(b)The even convergents,

A0

B0

,
A2

B2

,
A4

B4

, . . .

form a strictly increasing sequence of rational
numbers.

(c) The sequence of odd convergents

A1

B1

,
A3

B3

,
A5

B5

, . . .

is strictly decreasing.

Proof.

(a) Divide Equation (2.d) by Bn−1Bn.

(b) By Part (a)

A2n

B2n

− A2n−2

B2n−2

=
(−1)2n

B2n−2B2n−1

+
(−1)2n+1

B2n−1B2n

=
1

B2n−1

(

1

B2n−2

− 1

B2n

)

> 0

by your work on Question 2.7.

(c) A similar argument proves the statement about
the decreasing odd convergents. �

If we now substitute n = 2m+ 1 in (2.8)(a) and apply (2.8)(c), we obtain

A2m

B2m

=
A2m+1

B2m+1

− 1

B2mB2m+1

<
A2m+1

B2m+1

<
A1

B1

Thus the sequence of even convergents is increasing and bounded above by A1/B1,
and therefore converges to a limit, l say. Similarly the sequence of odd convergents is
decreasing and bounded below, and also tends to a limit, L say. Since

∣

∣

∣

∣

A2n+1

B2n+1

− A2n

B2n

∣

∣

∣

∣

=
1

B2n+1B2n

−→ 0 as n→∞

it follows that L = l. We have therefore proved the following theorem.
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Notation
We will denote the limit α of the
sequence An/Bn by the infinite
continued fraction,

q0 +
1

q1+

1

q2+
· · ·

(2.9) Theorem Let q0, q1, q2, . . . be a sequence with
q0 ∈ Z and qi ∈ N for i = 1, 2, . . .. Then the sequence
of rational numbers

An

Bn

= q0 +
1

q1+

1

q2+
· · · 1

qn

converges to a limit α.

Our Goal

Keep our section target in mind.

We are looking for a bijection

between irrational numbers and

infinite sequences q0, q1, q2, . . .

defining infinite continued frac-

tions.

So far we have shown how to obtain a real number

lim
n→∞

An

Bn

from an infinite sequence q0, q1, q2, . . . of partial quo-
tients qi. We will now focus on the reverse question:

Starting with a real number α, how can we find a
continued fraction which represents it?

Of course, when α is rational, we have already found
the answer in Section 1. If α = a/b, we obtain a finite
continued fraction representation for α of the form

q0 +
1

q1+
· · · 1

qt

where the qis are the partial quotients that appear
when the Euclidean algorithm is applied to the pair
a and b.
To find a clue for dealing with the case where α is
irrational, look at two consecutive steps in the EA:

rs−1 = qsrs + rs+1 (2.e)

rs = qs+1rs+1 + rs+2 (2.f)

with rs+1, rs+2 > 0. Dividing (2.e) by rs and (2.f) by
rs+1, we obtain

rs−1

rs
= qs +

rs+1

rs
, and

rs
rs+1

= qs+1 +
rs+2

rs+1

.

Let’s write αs = rs−1/rs and αs+1 = rs/rs+1. Since
rs−1 > rs > rs+1 > 0. it follows that qs is the integral
part, and rs+1/rs the fractional part of αs; further-
more αs+1 is the inverse of this fractional part.
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Fractional Part

Since q0 = [α] and α is irrational,
the fractional part α − q0 lies in
the open interval (0, 1), and so

α1 =
1

α− q0

is greater than 1.

We can proceed in exactly the same way when α is
irrational. Let q0 = [α] ∈ Z, and write

α = q0 +
1

α1

with α1 > 1 .

If α1 were rational, then q0+1/α1(= α) would also be
rational, which we have assumed not to be the case.
If we define α2 to be the inverse of the fractional part
of α1, we can write

α1 = q1 +
1

α2

with α2 > 1,

α2 = q2 +
1

α3

with α3 > 1

and so on.

After n+ 1 steps we therefore obtain

α = q0 +
1

q1+
· · · 1

qn+

1

αn+1

(2.g)

Foresight!

At this point, it is clear why we

insisted earlier that the partial

quotients appearing in continued

fractions should be allowed to

take any real values. Here the

final term 1

αn+1
is irrational.

All the computations we carried out in Section 1 are
still valid for Equations (2.g), and in particular

α =
[q0, q1, . . . , qn, αn+1]

[q1, q2, . . . , qn, αn+1]

=
αn+1An + An−1

αn+1Bn + Bn−1

(2.h)

where An/Bn is the nth convergent defined earlier in
terms of q0, q1, . . . , qn.

Hint

Appeal to Proposition 2.6.

(2.10) Question on Equation (2.h). Deduce from
(2.h) that

∣

∣

∣

∣

α− An

Bn

∣

∣

∣

∣

<
1

BnBn+1

. (2.i)

Answer to (2.10) Using (2.6), we see that

α− An

Bn

=
αn+1An + An−1

αn+1Bn + Bn−1

− An

Bn

=
An−1Bn − Bn−1An

Bn(αn+1Bn + Bn−1)

=
±1

Bn(αn+1Bn + Bn−1)

Finally, use the fact that αn+1Bn +Bn+1 > qn+1Bn +
Bn−1 = Bn+1.
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Since Bn → ∞, it follows from the inequality (2.i)
that the following result is true.

(2.11) Theorem Let q0 ∈ Z and qi ∈ N for i ≥ 1.
The infinite sequence q0, q1, q2, . . . defined recursively
by:

q0 = [α]

q1 = [α1] where α1 =
1

α− q0

and

qn = [αn] where αn =
1

αn−1 − qn−1

for n ≥ 2, yields an infinite continued fraction

q0 +
1

q1+

1

q2+
· · ·

which converges to α.

In Theorem 2.9 we saw how to give a precise meaning to

q0 +
1

q1+

1

q2+
· · ·

for any choice of q0 ∈ Z and qi ∈ N when i ≥ 1. It is defined to be the real number α
that is the limit of the convergents An/Bn. If we now take this α and develop it as a
continued fraction in the way just described in Theorem 2.11, we get back exactly the
same sequence q0, q1, q2, . . . of partial quotients, which is the answer to our best hopes.
To see why, first observe that the infinite continued fraction

β =
1

q1+

1

q2+
· · ·

lies strictly between 0 and 1; this is because it has the form

1

q1 +
1

γ

,

where

γ =
1

q2+

1

q3+
· · ·

which is the limit of convergents

1

q2+

1

q3+
· · · 1

qn
.

Since these convergents lie between 0 and 1, we have γ ∈ [0, 1], and therefore β ∈ (0, 1).
Since α = q0 + β, the upshot is that q0 = [α]. Next, when we write α = q0 + 1/α1, we
obtain

α1 = q1 +
1

q2+

1

q3+
· · · ,
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and by the same argument q1 = [α1]. Similar reasoning gives q2 = [α2], q3 = [α3], etc.,
and proves our contention that the two maps

irrational α
(2.11)−→ q0 +

1

q1+

1

q2+
· · ·

and

infinite CF q0 +
1

q1+

1

q2+
· · · (2.9)−→ α ∈ R

are mutually inverse. We have therefore found the one-to-one correspondence sought at
the outset.

Summary of Section 2

In Sections 1 and 2 we have constructed two bijections:

Q ←→ finite CFs

R\Q ←→ infinite CFs .

Taken together, these guarantee that every real number has a unique rep-
resentation as either a finite or an infinite continued fraction.
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3 Periodic Continued Fractions

CF Lingo

The correct term for a recurring

continued fraction is periodic.

Section Targets. We learn in Analysis in the first
term at Warwick that the rational numbers are char-
acterised by the property of having recurring decimal
representations (if you regard a terminating decimal
as having recurring zeros). In Section 1 we saw that
the rationals are also characterised by the property of
having finite continued fraction representations. In
this section we ask the question:

Which real numbers have recurring continued
fractions?

We will eventually give a simple answer to this ques-
tion, but will approach the question indirectly by first
describing exactly which numbers have purely peri-
odic CF representations, that is to say, periodic with
no delay. The description is not an obvious one, but
is intriguing nonetheless.

Use your calculator
When calculating the continued
fractions for an irrational num-
ber α, use your pocket calculator
to work out the integral part qi
of αi. By the way, the irrational
numbers, α0, α1, α2, . . ., defined
by

α0 = α , and

αi+1 =
1

αi − [αi]

for i = 0, 1, 2, . . . are usually

called the complete quotients.

(3.1) Worked Example. Develop the irrational
number

√
3 as an infinite continued fraction.

Solution: Set α =
√
3 ≈ 1 · 7 and so [α] = 1. Thus

q0 = 1 and

α = 1 +
1

α1

.

It follows that

α1 =
1√
3− 1

=

√
3 + 1

(
√
3− 1)(

√
3 + 1)

=

√
3 + 1

2
≈ 1 · 4 .
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We’ll show an easier way to do

this below: finding the CF for

an irrational of the form
√
D can

easily be done without using a

calculator at all!

Continued. . . Therefore q1 = [α1] = 1 and

α2 =
1

α1 − q1
=

2√
3− 1

=
2(
√
3 + 1)

(
√
3− 1)(

√
3 + 1)

=
√
3 + 1 ≈ 2 · 7 .

Hence q2 = [α2] = 2 and

α3 =
1

α2 − 2
=

1√
3− 1

= α1 .

Since α3 is the same as α1, the calculations now re-
peat themselves, and so

√
3 = q0 +

1

q1+

1

q2+

1

q1+

1

q2+
· · ·

= 1 +
1

1+

1

2+

1

1+

1

2+
· · ·

Warning
There is no standard notation for
periodic CFs. A variety of dif-
ferent symbols are found in stan-
dard textbooks. For example

[1, 1̇, 2̇]

is used by Hardy and Wright,

< 1, 1, 2, 1, 2, · · · >

is used by Niven, Zuckerman,

and Montgomery to denote the

CF for
√
3.

New Notation. We introduce a new notation to
handle periodic continued fractions. In this notation,
the continued fraction for

√
3 described in (1.3) be-

comes 1, 1, 2. A general periodic continued fraction
has partial quotients of the form

d0, d1, . . . , dm, q0, q1, . . . , qn, q0, . . .

where dm 6= qn and q0, . . . , qn is the shortest repeating
cycle. It is denoted by

d0, d1, . . . , dm, q0, q1, . . . , qn (3.a)

where the bar stretches over the periodic cycle.
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You may think that a calculator
is needed for fact (2), but it is
not! Since

q20 < D < (q0 + 1)2,

all you need to find q0 is to see

which perfect squares D lies be-

tween.

Simpler layout. For irrational numbers of the form
α =

√
D we can work out the CF expansion simply

and without any use of calculators, using only the
facts (1) that α2 = D and (2) that q0 < α < q0 + 1
where q0 = [

√
D].

Take α =
√
3 again. Since 1 < 3 < 4 we have q0 =

[
√
3] = 1. Now

√
3 = 1+ (

√
3− 1)

1√
3− 1

=

√
3 + 1

2
= 1+

√
3− 1

2
2√
3− 1

=

√
3 + 1

1
= 2+ (

√
3− 1)

The bold numbers are the quotients qn. To see how
these are obtained, take the second line for example:
since

√
3 is between 1 and 2, it follows that

√
3 + 1

is between 2 and 3, so
√
3+1
2

is between 1 and 2. We
stop when the fractional part repeats that of the first
line (in this case,

√
3− 1 repeats).

So we see that
√
3 = 1, 1, 2.

Best approximations
Since the sequence of conver-
gents An/Bn converge to α, we
can use CFs to find rational ap-
proximations to irrational num-
bers. This is called “Diophantine
Approximation”.

It is a remarkable fact that CF

convergents are guaranteed to

give the “best possible” ratio-

nal approximations. (You may

like to try to formulate a precise

definition of what that should

mean!) In the previous section

we saw this in action with the CF

expansions of e (which has a nice

pattern, but is not periodic) and

of π (whose CF expansion ap-

pears completely random). The

well-known approximation 22/7

to π is one of its convergents; and

the remarkably good approxima-

tion 355/113 is as good as it is

since it comes from truncating

the expansion just before a very

large partial quotient, 292.

Finding convergents. Once we have the CF expan-
sion, and in particular the first few partial quotients
qn, we can easily compute the convergents An/Bn us-
ing the formulas of the previous section. As always,
the simplest method is to use the tabular method.
With α =

√
3 = 1, 1, 2 the calculation goes like this:

(q) (B) (A) A/B
1 0

1 0 1
1 1 1 1
2 1 2 2
1 3 5 5/3
2 4 7 7/4
... 11 19 19/11

So A4/B4 = 19/11 = 1.7272 . . ., compared with
√
3 =

1.7320 . . ..
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(3.2) Questions on CFs for irrationals. Find
the continued fractions for the following (using the
simpler layout):
(a)
√
2; (b) 3 +

√
10; (c)

√
37; (d)

√
13.

In each case, find the convergents An/Bn for n up
to 4.

Answers to (3.2)

(a) Since 1 < 2 < 4, q0 = [
√
2] = 1. Now:

√
2 = 1+ (

√
2− 1)

1√
2− 1

=

√
2 + 1

1
= 2+ (

√
2− 1)

Thus

α = 1 +
1

2+

1

2+
· · · = [1, 2, 2, 2, 2, . . .]

or α = 1, 2 in our new notation.

To find the convergents, use the column layout:

(q) (B) (A) A/B
1 0

1 0 1
2 1 1 1
2 2 3 3/2
2 5 7 7/5
2 12 17 17/12
... 29 41 41/29

So A4/B4 = 41/29 = 1.4137931 . . ., compared
with

√
2 = 1.41421356 . . ..

(b) Since 9 < 10 < 16 we have [
√
10] = 3 and so

q0 = [3 +
√
10] = 6. Now,

3 +
√
10 = 6+ (

√
10− 3)

1√
10− 3

=

√
10 + 3

1
= 6+ (

√
10− 3)

Thus

α = 6 +
1

6+

1

6+
· · ·

or α = 6 in our new notation.
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continued. . . To find the convergents, use the col-
umn layout:

(q) (B) (A) A/B
1 0

6 0 1
6 1 6 6
6 6 37 37/6
6 37 228 228/37
6 228 1405 1405/228
... 1405 8658 8658/1405

So A4/B4 = 8658/1405 = 6.16227758 . . ., compared
with 3 +

√
10 = 6.16227766 . . ..

(c) Using 6 <
√
37 < 7:

√
37 = 6+ (

√
37− 6)

1√
37− 6

=

√
37 + 6

1
= 12+ (

√
37− 6)

So
√
37 = 6, 12. Convergents:

(q) (B) (A) A/B
1 0

6 0 1
12 1 6 6
12 12 73 73/12
12 145 882 882/145
12 1752 10657 10657/1752
... 21169 128766 128766/21169

So A4/B4 = 128766/21169 = 6.08276253011 . . .,
compared with

√
37 = 6.0827625302 . . ..

(d) √
13 = 3+ (

√
13− 3)

1√
13− 3

=

√
13 + 3

4
= 1+

√
13− 1

4
4√

13− 1
=

√
13 + 1

3
= 1+

√
13− 2

3
3√

13− 2
=

√
13 + 2

3
= 1+

√
13− 1

3
3√

13− 1
=

√
13 + 1

4
= 1+

√
13− 3

4
4√

13− 3
=

√
13 + 3

1
= 6+ (

√
13− 3)

Hence
√
13 = 3, 1, 1, 1, 1, 6. Convergents: 3/1,

4/1, 7/2, 11/3, 18/5.
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(3.3) Worked Example. Which irrational number
α is represented by the periodic continued fraction
1, 2, 3? Show that it satisfies the equation

7x2 − 8x− 3 = 0 . (3.b)

Calculating Convergents

Recall that A0 = q0, A1 = q0q1+
1, and

An = qnAn−1 +An−2

for n ≥ 2. Also, B0 = 1, B1 = q1,
and

Bn = qnBn−1 +Bn−2

for n ≥ 2.

Solution. Set

α = 1, 2, 3 = 1 +
1

2+

1

3+

1

1+

1

2+

1

3+
· · ·

= 1 +
1

2+

1

3+

1

α
=

[1, 2, 3, α]

[2, 3, α]

by Equations (2.h). Furthermore, we have

[1, 2, 3, α]

[2, 3, α]
=

αA2 + A1

αB2 + B1

,

where An/Bn denotes the nth convergent of

1 +
1

2+

1

3

for n = 0, 1, 2. Since

A0 = 1, A1 = 3, A2 = 10,

B0 = 1, B1 = 2, B2 = 7,

it follows that

α =
10α + 3

7α + 2

whence α(7α + 2) = 10α + 3, and therefore

7α2 − 8α− 3 = 0.

This proves that α is a root of the quadratic equation
labelled (3.b). Since α = 1 + 1/α1, where

α1 = 2 +
1

3+

1

1+
· · · > 0,

we conclude that α > 1. Since the roots of (3.b) are

8±
√
64 + 84

14
≈ 1 · 4 and − 0 · 3

it follows that α is equal to the positive root

(8 +
√
148)

14
.
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Conjugate Roots

The two roots of the quadratic
equation

ax2 + bx+ c = 0

are
−b±

√
D

2a
,

where D = b2 − 4ac is called

the discriminant of the equation.

The two roots are called conju-

gates of each other. Any alge-

braic expression involving one of

the roots can be transformed into

the corresponding expression for

its conjugate by replacing
√
D by

−
√
D wherever it appears.

Symmetric Relationship

Notice that it is also true that −1

α

is a root of (3.c).

(3.4) Question related to (3.3). Let β be the
number with periodic CF 3, 2, 1, the reverse of the
periodic sequence for α in the Worked Example.

(a) Show that β satisfies the quadratic equation

3x2 − 8x− 7 = 0 . (3.c)

(b) Find β.

(c) Show that −1/β is the second (negative) root of
Equation (3.b).

Answer to (3.4) As in Worked Example (3.3) we
have

β =
βA2 + A1

βB2 + B1

where An denotes the nth convergent for the finite
CF 3+ 1

2+
1
1
. By the rules for calculating convergents,

A0 = 3, A1 = 7, A2 = 10,

B0 = 1, B1 = 2, B2 = 3.

Hence

β =
10β + 7

3β + 2

and therefore β(3β + 2) = 10β + 7, that is to say,
3β2− 8β − 7. This proves (a). The roots of (3.b) are

8±
√
64 + 84

6
=

8±
√
148

6
≈ 3 · 4 and − 0 · 7

Since β > 1, it follows that

β =
8 +
√
148

6
.

To justify (c) we substitute x = −1/β in (3.b) and
use the fact that β satisfies (3.c) to get

7β−2 + 8β−1 − 3 = −β−2(3β2 − 8β − 7) = 0 ,

as desired.
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New Terms

(i) A quadratic irrational is a
real irrational root of a quadratic
equation with integer coeffi-
cients. Such numbers have the
form

x+ y
√
D

where x, y ∈ Q and D is a posi-
tive integer which is not a perfect
square.
(ii) A purely periodic CF is one
with no delay and so can be writ-
ten

q0, q1, . . . , qn

Two Observations.

(a) The examples of quadratic irrationals in (3.1)
and (3.2) have periodic continued fractions (some-
times after a delay).

(b) The purely periodic CFs of (3.3) and (3.4)

• are quadratic irrationals

• are greater than 1

• possess conjugates lying in the interval
(−1, 0) .

These turn out to be defining properties for purely
periodic CFs. We begin by showing that a purely
periodic continued fraction always represents a re-
duced quadratic irrational in the following sense.

(3.5) Definition. Let α be a quadratic irrational
number. We will call α reduced if

(a) α > 1, and

(b) its conjugate α′ satisfies −1 < α′ < 0.

Periodic CFs

Since periodic continued frac-

tions are infinite, we know they

are irrational by our work in Sec-

tions 1 and 2.

Let q0, q1, . . . , qn be a purely periodic continued frac-
tion representing α, say. The periodicity means that

α = q0 +
1

q1+
· · · 1

qn+

1

α

=
[q0, q1, . . . , qn, α]

[q1, q2, . . . , qn, α]
(3.d)

=
αAn + An−1

αBn + Bn−1

where

An = [q0, q1, . . . , qn], An−1 = [q0, q1, . . . , qn−1],

Bn = [q1, q2, . . . , qn], Bn−1 = [q1, q2, . . . , qn−1].

We want to compare α with another irrational num-
ber β represented by the purely periodic CF

qn, qn−1, . . . , q1, q0

obtained by reversing the order of the periodic se-
quence for α.
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Hint

Use the fact that

[q0, q1, . . . , qn] =

[qn, qn−1, . . . , q1, q0]

proved in Corollary 1.14.

(3.6) Questions about β. By the argument used
above,

β =
[qn, qn−1, . . . , q1, q0, β]

[qn−1, qn−2, . . . , q1, q0, β]
.

Show that

β =
βAn + Bn

βAn−1 + Bn−1

. (3.e)

Answer to (3.6) By the recursion formula of Corol-
lary 1.14, ((b)) we have [qn, qn−1, . . . , q1, q0, β] =
β[qn, qn−1, . . . , q1, q0] + [qn, qn−1, . . . , q1] = βAn + Bn

since by (1.14)(a) we have [qn, . . . , q1, q0] =
[q0, q1, . . . , qn] = An and [qn, . . . , q2, q1] =
[q1, q2, . . . , qn] = Bn. Similarly, [qn−1, . . . , q1, q0, β] =
β[q0, q1, . . . , qn−1] + [q1, q2, . . . , qn−1] = βAn−1 +Bn−1.

By (3.d) we have

α(αBn + Bn−1) = αAn + An−1

and so

Bnα
2 + (Bn−1 − An)α− An−1 = 0 .

Therefore α is a root of the quadratic equation

Bnx
2 + (Bn−1 − An)x− An−1 = 0 (3.f)

From (3.e) we similarly obtain

An−1β
2 + (Bn−1 − An)β −Bn = 0 (3.g)

and substituting x = −1/β in (3.f) yields

Bnβ
−2 − (Bn−1 − An)β

−1 − An−1

= −β−2(An−1β
2 + (Bn−1 − An)β −Bn)

= 0 by (3.g) .

Therefore −1/β is also a root of (3.f). Since q0 and
qn are natural numbers, we have α > 1 and β > 1,
and it follows that −1 < −1/β < 0.

Symmetry Again

Note also that −1/α is the con-

jugate of β.

Consequently α and−1/β are the distinct (irrational)
roots of (3.f), and so we can conclude that α is a
reduced quadratic irrational. Thus we have proved
the following.
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(3.7) Proposition A purely periodic continued frac-
tion represents a reduced quadratic irrational number.

RQI for short

Let’s agree to abbreviate the

term ‘reduced quadratic irra-

tional number’ to RQI.

Our next target is the remarkable fact that every re-
duced quadratic irrational has a purely periodic con-
tinued fraction. The proof is a bit longer than the
typical proofs we have met so far in this course, and
it might be helpful to summarise the strategy of the
proof before we get down to the nitty-gritty, which
involves a certain amount of algebra that may ob-
scure the wood from the trees. Until further notice
therefore, α will denote a reduced quadratic irrational
(RQI), that is to say a root of a quadratic equation
with integer coefficients a, b and c:

ax2 + bx+ c = 0

satisfying:

(R1) α > 1, and

(R2) −1 < α′ < 0

where α′ is the conjugate of α (i.e. the second root of
the equation).

Simpler notation

The algebra will be more trans-

parent if we work with the quan-

tities B,C and D instead of a, b

and c.

Thus, if we set,

• D = b2 − 4ac

• B = −b (3.h)

• C = 2a

we know that

α =
B +

√
D

C
and α′ =

B −
√
D

C
(3.i)

where the integer D is positive and not a perfect
square since α is assumed to be irrational.
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Square Root Sign

We use the convention that
√
D

denotes the positive real number

whose square is D.

The proof that α has a purely periodic CF goes like
this:
Step 1: Express conditions R1 and R2 in terms of al-
gebraic properties of B,C and D; in particular, show
that B and C are natural numbers bounded above by
2
√
D.

Step 2: Next begin the continued fraction develop-
ment in the familiar way by writing,

α = q0 +
1

α
(q0 = [α])

α1 = q1 +
1

α2

(q1 = [α1])

...
...

...

and so on, to obtain the partial quotients q0, q1, . . .
and the complete quotients α0(= α), α1, α2, . . .. At
any given stage we have the exact equation

α = q0 +
1

q1+
· · · 1

qn−1+

1

αn

=
[q0, . . . , qn−1, αn]

[q1, . . . , qn−1, αn]
.

Terminology

Remember we call the (irra-

tional) numbers α0, α1, . . . as the

complete quotients of the CF de-

velopment.

The key to this step is to show that each complete
quotient αi is again a reduced quadratic irrational
with the same discriminant D as α.
Step 3: The upper bounds for the natural numbers B
and C in terms ofD proved in Step 1 imply that there
are finitely many possibilities for the complete quo-
tients α0, α1, α2, . . . associated with α, and so there
must eventually be a repetition. The final step in the
proof is to show that if αm = αm+r for some r ≥ 1 and
m > 0, then αm−1 = αm+r−1. Applying this as often
as necessary leads to the conclusion that α0 = αr and
hence that α has a purely periodic continued fraction.

We now look at each step in detail. The first
is straightforward algebraic manipulation involving
Conditions R1 and R2 and equations (3.h) and (3.i).
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(3.8) Questions for Step 1.

(a) Deduce from (3.h) that

B2 −D

C
= 2c (∈ Z)

and conclude that

(P1) C divides B2 −D .

(b) From Conditions R1 and R2 deduce that α−α′ >
0, and conclude that C > 0, in other words that

(P2) C is a natural number.

(c) From Conditions R1 and R2, deduce that α+α′ >
0, and now conclude that

(P3) B is a natural number.

(d) Since α′ < 0, we have B <
√
D. Now use the

fact that α > 1 to deduce that C < B +
√
D and

conclude that

(P4) B <
√
D and C < 2

√
D .

Answers to (3.8)

(a) B2 −D

C
=

b2 − (b2 − 4ac)

2a
= 2c .

(b) Since α > 1 and −α′ > 0, certainly α − α′ is
positive. By (3.i),

α− α′ =
2
√
D

C
,

and since
√
D is positive, so is C.

(c) Since α′ > −1, we have α + α′ > 1 + (−1) = 0.
Consequently from (3.i) we see that 2B/C > 0,
and hence B > 0 by Part (b).

(d) By (3.i) we have

B +
√
D

C
= α > 1

and so C < B +
√
D < 2

√
D.
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Quadratic Irrational
Equation (3.j) tells us that

(C1α1 −B1)
2 = D

and so α1 is a root of the
quadratic equation,

C2
1x

2 − 2B1C1x+B2
1 −D = 0 .

Step 2: In this step, we aim to show that the complete
quotient α1, like α, is a RQI with discriminant D. By
definition,

1

α1

= α− q0 =
B +

√
D

C
− q0

=
B − q0C +

√
D

C
.

Set B1 = −B + q0C, and observe that

α1 =
C

−B1 +
√
D

=
C(B1 +

√
D)

−B2
1 +D

.

Since B1 ≡ B (mod C) and C divides D−B2, it also
divides −B2

1 +D. Therefore we can write

−B2
1 +D = CC1

for some C1 ∈ Z. Hence

α1 =
B1 +

√
D

C1

(3.j)

and so its conjugate α′ is given by

α′
1 =

B1 −
√
D

C1

.

The upshot of this is that α1 is a quadratic irrational
with discriminant D, the same as α.

Hints

(a) The real numbers form a vec-
tor space (of uncountable di-
mension!) over the rational
numbers.

(b)
√
D is irrational.

(3.9) Question about Conjugates. Explain why

α′
1 = −

1

q0 − α′
(3.k)

and deduce that

α1 > 1 and − 1 < α′
1 < 0 ,

in other words that α1 is an RQI.
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Answer to (3.9) If D is not a perfect square, then√
D is irrational, and therefore 1 and

√
D are linearly

independent over Q. Consequently, if a, a, b, and b are
rational numbers such that

a+ b
√
D = a+ b

√
D ,

we can conclude that a = a and b = b. It then follows
that

a+ b(−
√
D) = a+ b(−

√
D) ,

and hence that any equation involving rational num-
bers and

√
D remains valid when we replace

√
D by

−
√
D. If we apply this to the defining equation for

α1:

α1 = −
1

q0 − α

we obtain Equation (3.k). Since α−q0 is the fractional
part of α, it follows that α1 > 1, and since α′ is
negative and q0 ≥ 1, it follows from (3.k) that

−1 < α′
1 < 0 .

We can now repeat this argument as often as we like
to conclude that α1, α2, . . . are all RQIs with discrim-
inant D; in particular, αn has the form

αn =
Bn +

√
D

Cn

where Bn and Cn are natural numbers satisfying

Bn <
√
D and Cn < 2

√
D . (3.l)

by Properties P2, P3 and P4 in Question 3.8. Since
there are less than 2D pairs (Bn, Cn) satisfying the
inequalities (3.l), there are less than 2D possibilities
for αn. Hence there must be a repetition in the list

α = α0, α1, . . . , α2D .
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Step 3: We have seen from Step 2 that

αm = αn (3.m)

for different m and n satisfying 0 ≤ m < n ≤ 2D.
We will now show that if m > 0, then αm−1 = αn−1.
It follows that the smallest m for which (3.m) holds
is m = 0, and therefore that periodicity gets under
way without delay, in other words, that α is purely
periodic. For n = 0, 1, 2, . . . set

βn = − 1

α′
n

> 1

By the earlier argument,

α′
n = qn +

1

α′
n+1

or, in terms of the newly-defined βs,

βn+1 = qn +
1

βn

.

Thus, qn is the integral part both of αn and βn+1. If
αm = αn, then α′

m = α′
n, and so βm = βn. But then

qm−1, as the integral part of βm, must be equal to the
integral part qn−1 of βn. Consequently,

αm−1 = qm−1 +
1

αm

= qn−1 +
1

αn

= αn−1

as asserted above. This completes the proof of our
long-term goal that an RQI has a purely periodic CF.
Putting this fact together with Proposition 3.7 gives
the following main result.

(3.10) Theorem A real number α has a purely pe-
riodic continued fraction if and only if

(a) it is an irrational root of a quadratic equation with
integer coefficients,

(b) it is greater than 1, and

(c) it has a conjugate α′ satisfying

−1 < α′ < 0 .
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We will continue our story of continued fractions in
Workbook 5 and will leave you, as a cliff-hanger, with
the question we began with:

Which real numbers have periodic continued
fractions?

Meanwhile, here are some exercises to reinforce your
understanding of the material in this section.

(3.11) Concluding Exercises.

(a) Let α = 3 +
√
13. Is α a RQI? Work out its CF.

(b)Which irrational number is represented by the
purely periodic CF 8, 1, 2, 4, 2, 1?

(c) Prove that the highest common factor of An =
[q0, q1, . . . , qn] and Bn = [q1, q2, . . . , qn] is 1 for
n = 0, 1, 2, . . . (thus the convergents An/Bn are
rational numbers in their lowest terms.)

(d)Work out the first five convergents of

1

2+

1

6+

1

10+

1

14+
· · · ,

where the partial quotients are in arithmetic pro-
gression. Compare your answer for A4/B4 with

e− 1

e+ 1
.
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Summary of Section 3

This was a very goal-directed section. Our sole aim was to characterize the
real numbers α that are represented by purely periodic continued fractions.
Along the way, we noted that such an α

• is irrational (because periodic continued fractions are infinite)

• is a root of a quadratic equation with integer coefficients

• is greater than 1 and so has the form

α =
B +
√
D

C

where B,C and D are natural numbers and D is not a perfect square.

• has a conjugate

α′ =
B −

√
D

C

in the open interval (−1, 0).
The second half of the section was devoted to showing the remarkable fact
that these properties (of being a reduced quadratic irrational) completely
describe the real numbers that have purely periodic continued fractions.

42


