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(c) To help you learn a mathematical topic, in this
case Number Theory, through calculation and
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Icons in this Workbook

The ‘Section Targets’ box contains an idea of what
you should aim to get out of the current section. Per-
haps you might return to this at the end to evaluate
your progress.

Reaching this icon in your journey through the work-
book is an indication that an idea should be starting
to emerge from the various examples you have seen.

Material here includes reference either to earlier
workbooks, or to previous courses such as founda-
tions/Sets and Groups.

A caution. Watch your step over issues involved here.

Are You Ready?

To understand the material and do the problems in each section of
this workbook, you will need to be on good terms with:

Section 1:
Section 3:

e The Remainder theorem (for polynomials)
e orders of elements in groups
e binomial expansions and induction

Note: You will need a pocket calculator for some of the questions in
the workbooks, and are encouraged to use one for this purpose and
to experiment with results and ideas in the course. Calculators are
NOT needed and are NOT allowed in tests or in the examination.

These workbooks were orginally written and devised by Trevor Hawkes and
and Alyson Stibbard. Ben Carr designed the ITEX template and Rob Reid
converted their drafts into elegant print. Over the years, other lecturers and
students have corrected a number of typos, mistakes and other infelicities. In
2010 John Cremona made some substantial revisions.

Send corrections, ask questions or make comments at the module forum. You
can join the MA246 forum by going to http://forums.warwick.ac.uk/wf/
misc/welcome.jsp and signing in, clicking the browse tab, and then following
the path: Departments > Maths > Modules > MA2xx modules > MA246
Number Theory.




1 Primitive Roots & Finite Logarithms

Motivation — a Worked Example

(a) Find a unit g in Z/11Z whose powers generate the group of units Uy, in other
words, such that

Ull - {1797927937947 s 799}

(b) For each u € Uy, define (u) to be the smallest non-negative integer such that
g™ = . Complete the following “log table”:

w [1]2]3]4]5][6[7][8]9]10
((u)

Solution

(a) Since 11 is prime, Uy; consists of all non-zero elements of Z/11Z; thus
U = {1,2,3,4,5,6,7,8,9,10}

We now look at the set of powers {¢’ : i € N} for various choices of g € Uyy. If
g =1, then {g,9% ¢% ...} = {1}, so 1 generates the identity subgroup of U;;. We
are looking for an element g which generates the whole group Uy;. Try g = 2;
then ¢ = 4,¢°> = 8,¢* = 5 (because 2* = 16 = 5 (mod 11)), ¢° = 10 (because
22 =21x2=5x%x2=10 (mod 11)), ¢ =9,9" = 7,6 = 3,9 = 6,9 = 1 = ¢".
Thus, at our second attempt we have found a generator for Uy, namely g = 2. If
we tried g = 3, we would have found

{3":i e N} ={3,9,5,4,1}

which is a subgroup of Uy of order 5 (recall that Uy; has order 10) and had we
chosen g = 10(= —1 (mod 11)), then we would have found

{10": i € N} = {10, 1}

a subgroup of Uy; of order 2.

(b) We can now use the above calculation to complete the log table to the base 2,
recalling that ¢(u) is the smallest non-negative power of 2 congruent to v mod 11.

w [1[2][3[4[5]6]7[8]9]10
(wy|o[1]8[2[4]9[7[3]6] 5




How do we know that

0 </{(u) < p(n)?

Remark Recall that Uy; has order ¢(11) = 10, and
so an element g that generates Uj; is simply an ele-
ment of order 10 in the group Uy;. Observe that we
have defined £(1) to be zero rather than 11 to ensure
that the “log” function ¢ takes values in the group
(Z/10Z,+), whose underlying set is {0,1,...,9}.

(1.1) Definition An element g that generates the
group U, of units in Z/nZ is called a primitive root
modulo n.

(1.2) Remarks

(a) In the language of group theory, a primitive root
is simply a generator for the multiplicative group
of units U, of Z/nZ. We have not yet proved
that such a generator ever exists (except in the
case n = 11, in the example above)! One of the
goals of this workbook is to see which n € N have
primitive roots; in other words, to determine for
which n the group U, is cyclic.

(b) In general, cyclic groups have many generators; so
when there exists a primitive root modulo n there
will (in general) be many of them. We will count
how many there are later.

(c) In the language of congruences a primitive root
is viewed as an integer (not an element of Z/nZ)
with the property that the set of its positive pow-
ers contains a complete set of residues for U,.
Many authors of books on Number Theory use
this definition.

(1.3) Definition Let g be a primitive root of Z/nZ.
For all v € U,,, we define ¢(u), the logarithm of u (to
the base g) to be the smallest non-negative integer
such that ¢‘™ = u. We refer to the function

0:U, = Z/$(n)Z

given by u +— l(u) as a finite logarithm or discrete
logarithm. As we shall see, such functions share many
properties with the standard logarithms.



Interesting Point
In those cases when Z/nZ has a
primitive root, it turns out that
it has precisely ¢(¢(n)) of them.
You might like to think about

why this is so.

Section Targets

(a) to investigate the question, ‘for which values of n
does Z/nZ have a primitive root?’

(b) to study

e properties of the finite logarithm

e an interesting fact about FKEuler’s phi-
function

e the generators of cyclic groups
e the number of primitive roots

e some unsolved problems

(1.4) Questions about primitive roots
For the values,

(i) n=7,
(i) n = 10,
(ifi) n =12,

(a) list the elements of U,
(b) work out the orders of each of these elements,

(c) use (b) to write down the primitive roots modulo
n, if any exist,

(d) where appropriate, compare the number of prim-
itive roots modulo n with the value ¢(¢(n)).

(e) Calculate the log table to the base g, where g is
the smallest primitive root in each case where a
primitive root exists.




Answers to (1.4)

(iii)




Good old Days
When the authors started school,
pocket calculators had not been
invented. In those days, school
children used log tables for the
real numbers to convert a multi-
plication task to one of addition.
Here the log table modulo n (to a
given base) allows us to carry out
multiplication in U,, by adding in
Z/$(n)Z. Finite log tables also
play an important part in mod-

ern cryptography.

(1.5) Question about using log tables It is a
fact that 197 is a prime and that 2 is a primitive root
modulo 197. Write out the log table to the base 2
just for the values of ¢(u) = 0,1,2,...,15, and use
it to work out the product 64 x 118 in Uy9; without
carrying out the multiplication. Check your answer
with your calculator.

Answer to (1.5)




Let (G,e) and (H,*) be two
groups with binary operations e
and * respectively. A map f :
G — H is called a (group) ho-
momorphism if

f(g1092) = f(g1) * f(g2)

for all g1, 92 € G. In words: “the
image of a product is the product
of the images”.

If additionally f is a bijection, it

is called an isomorphism.

(1.6) Theorem Let g be a primitive root modulo
n. Then the finite logarithm map (base g) defined
in (1.83) is an isomorphism from the group (U, x) to
the group (Z/p(n)Z,+).

Proof It is a general fact in group theory that any
two cyclic groups of the same order m are isomorphic.
Now U, is a cyclic multiplicative group of order m =
¢(n), with multiplicative generator g (by definition of
primitive root); and Z/mZ is a cyclic additive group
with additive generator 1, so our Theorem is a special
case of the general result.

To prove it directly, it is more convenient to work with
the map e : Z/¢(n)Z — U, defined by [ — ¢(l) = ¢
This map is well-defined, since

=l (mod ¢(n)) = lh=10+ko(n)
s gle = ghtkem)

=g¢"(g"")F =g¢"  (mod n)

since g% = 1 by Euler’s theorem.
It is a group homomorphism, since

e(l+1") = gt = ¢lg" = e(De(l').

It is surjective, since by definition of primitive root
every a € U, has the form a = g' = ¢(l) for some .
It must therefore also be injective, since |Z/¢(n)Z| =
¢(n) = |U,|. One could also check directly that

gll — gl2 — [ =1, (mOd ¢(n))

Finally, the inverse of the map e : [ — ¢’ is just the
discrete logarithm ¢ : ¢! — . O

Note that it follows from the proof that
(zy) = £(x) + L(y),

since if x = ¢"* and y = ¢'2 then xy = g1+, It does
not matter that 0 <y < ¢(n) and 0 < Iy < ¢(n) do
not imply 0 < I; + Iy < ¢(n), since the values of ¢ lie
in Z/¢(n)Z so only matter modulo ¢(n).

We now prepare the way to proving the existence of primitive roots modulo primes.



(1.7) Question on divisors of n
For the values, (i) n =6, (ii) n = 8, (iii) n = 12,

(a) write down all the divisors of n in increasing order,
dl = 1,d2,...,dk = n.
(b) write down the set

n n n
R ARy
and compare it with the set {d;,ds, ..., dg}

(c) work out the following sum,

> ¢(d) = p(di) + ¢(do) + -+ p(di)  (La)

dln

(d) work out the following sum

>0 (2) w

dn

(e) make a conjecture (for general n) for the values
of the sums labelled (1.a) and (1.b).

Answers to (1.7)

(a)
(b)




(1.8) Question about HCFs Let s and n be in-
tegers. Prove that hcef{s,n} = d if and only if

S

Answer to (1.8)

Notation Let n be a natural number and let S =
{1,2,...,n}. Define

Sqa={s € S5 :hef{s,n} =d}

(1.9) Question on the meaning of this notation
If d fn, then S; = (). Therefore we are only interested
in the sets S; for divisors d of n.

(a) For (i) n = 8 and (ii) n = 12, write down the sets
Sy for all d dividing n.

(b) Observe that the sets S; form a partition of S
(that is to say, a division of S into pairwise-
disjoint subsets)

(c) In each case, compare |S;| with ¢ (g)




Answers to (1.9)

(1.10) Lemma Let n € N and let S, denote the set
Sq={s:1<s<mn,hef{s,n} =d}

(a) the sets Sy, such that dln, partition the set
{1,2,...,n}.

() I5al = 6 ().

Proof

(a) Each element s € {1,...,n} has a unique highest
common factor with n and therefore belongs to
one and only one of the sets S;. This is precisely
what we mean by saying that the subsets Sy form
a partition of {1,...,n}.

(b) By definition s € S, if and only if hef{s,n} = d
if and only if hef{s/d,n/d} =1 by (1.8). There-
fore the number of elements in Sy is equal to the
number of elements s; (= s/d) which are rela-
tively prime to n/d and this is equal to ¢(n/d) by
definition of the Euler phi-function.




Alternative proof
Consider the n fractions

01 2 n—1

)

5 geeey

n-nn n

Reduce each to lowest terms: %
with 0 <7 < n reduces to % with
0 <a < d and hef(a,d) = 1.

Which integers d appear as de-
nominators in the list? The divi-
sors of n.

How many numerators a appear
on top of each denominator d?

o(d).

How many fractions are there in
the list? n.

Gauss was the first to discover and prove the following
interesting property of the Euler phi-function.

(1.11) Proposition Ifn € N and dy,ds, ..., dy are
the distinct divisors of n, then

n = ¢(dy) + o(dy) + - + o(dy)

= > ¢(d)

d|n

(1.12) Example
0= 142+ 6= 6(1) + 6(3) + $(9) = Ty 6(d).

Proof of (1.11) Since the sets S; where d|n partition
the set S ={1,...,n}, we have

n = |Sd1|+"'+|sdk| (1'0)

= )15
= 20(3)

din
by (1.10)(b). As d runs through the divisors of n, so

does — (see (1.7)(b)), and therefore we can rearrange

the sum as follows

>oo(5) =Y @ (Ld)
dn

dn

Equations (1.c) and (1.d) together yield the desired
conclusion of Proposition 1.11 O

The next result, when expressed in the language of
congruences, is due to Lagrange. It is simply a state-
ment, for the field Z/pZ, of the well-known result that
a polynomial of degree n has at most n distinct roots.
This is true for polynomials over any field, but fails
for polynomials over rings with zero-divisors. For ex-
ample, the polynomial x> — 1 has 4 roots in Z/8Z
(count them!).

10



Recall that a zero-divisor a is
a non-zero element (in some set
with multiplication) for which
there is a second non-zero ele-
ment b such that ab = 0.
Dividing the polynomial (z — a)
into the polynomial ¢(z) gives

q(z) = (z —a)q(z) +r,
where ¢;(z) is a polynomial of
degree d — 1 and r € Z/pZ. Sub-
stituting = a gives r = ¢(a).
This is the Remainder Theorem.
In particular, if a is a root of
q(x), then r = 0 and ¢(z) =

(x — a)q1(x).

(1.13) Theorem Let p be a prime and let
gz) =2+ a2+ agax+oag

be a polynomial of degree d > 0 with coefficients a; in
ZJpZ. Then q(a) = 0 for at most d distinct values of
a in Z/pZ.

Proof Since p is a prime, Z/pZ has no zero divisors;
in other words, if a,b € Z/pZ with a # 0, and if
ab =0, then b = 0.

We use induction on the degree d. If d = 0 then
q(z) is the constant polynomial 1 which has no roots.
Suppose that d > 1 and that the result holds for
polynomials of degree d — 1.

If g(z) has no roots in Z/pZ that is fine since 0 < d.
If () has a root a, then by the Remainder Theorem,

q(z) = (v — a)q: ()

for some polynomial ¢;(x) of degree d — 1. Now ¢ ()
has at most d — 1 roots by induction, and every root
b of q(x) is either a root of ¢;(z) or is equal to a (or
both), since

q(b) = (b—a)q(b) =0 <= b=aor q(b) =0.

(This is where we use the fact that Z/pZ has no zero-
divisors.) So the number of roots of ¢(z) is at most
(d —1) 4 1 = d as required.

U

(1.14) Questions on generators for cyclic
groups

(a) Let G = {g,4¢% ¢°, g%, ¢°, g° = 1} be a cyclic group
of order 6, generated by g. Which elements of GG
are also generators of G (in other words, which
elements of G have order 6)?

(b) Let (Z/8Z,+) be the additive group of integers
modulo 8. Which elements (if any) are genera-
tors?

(c) Make a conjecture about the number of generators
in a cyclic group of order n.

11




Answers to (1.14)

(a)

()

The next result is a group-theoretical version of the
frisbee question answered in Section 2 of Workbook 1.

(1.15) Lemma Let g be a generator of a cyclic group
G of order n. Then g* is a generator of G if and only
if hef{a,n} = 1. In particular, G has ¢(n) genera-
tors.

Proof If hef{a,n} = d > 1, then (¢g%)"? = (g")¥/4 =
(1)#4 = 1, and so the order of ¢* is at most n/d < n,
whence g% is not a generator. Conversely, suppose
that hef{a,n} = 1 andlet 0 < b < n—1. By Theorem
2.9 of Workbook 1, there exists an x such that ax =
b+ kn, and we get

(ga):c — gb—l—kn — gbgkn — gb(gn)k — gb.

Hence every element ¢” of G can be expressed as a
power of ¢%, and therefore g is a generator of G. [J

We now have all the machinery in place to prove the
main result in this section. In the language of group
theory, it states that when p is a prime, the group of
units U, = {1,2,...,p— 1} of Z/pZ is cyclic.

12




A generalization
Exactly the same proof shows
that for every field F, every fi-
nite subgroup of the multiplica-
tive group F* of F'is cyclic. [Just
replace p — 1 by the order of the
group.|
For example, taking F' = C, we
see that the only finite subgroups
of C* are the cyclic groups u, =

{]-a C7 <2a ey Cn_l}, where C =
e2™/"  containing all nth roots

of unity, for each n > 1.

Taking it further

(1.16) Euler-Lagrange-Legendre Theorem For
every prime p, there exist primitive roots modulo p.
The number of primitive roots modulo p is ¢(p — 1).

Proof Let f(d) denote the number of elements in
U, of order d. Since the order of each element in
U, = {1,2,...,p — 1} is a natural number dividing
p — 1, it follows that

p—1=>_ f(d (1.e)

dlp—1

It therefore follows from Proposition 1.11 that

S A =Y ) (L)

d|p—1 dlp—1

We will now show that

f(d) = ¢(d) (1.g)
for each and every divisor d of p — 1.

Case 1: f(d) > 0. Let a be an element of order d.
Then a generates a cyclic subgroup {a,a?,...,a? =
1} of U, and these d distinct elements are all roots
of the equation ¢ — 1 = 0. By Theorem 1.13,
these are the only roots of this equation: so the ele-
ments of order d in U, are all among these elements
{a,a?, ..., a%}. But by Lemma 1.15 only ¢(d) of these
have order d, and so f(d) = ¢(d) in this case, as re-

quired.

Case 2: f(d) = 0. Since ¢(d) > 1, we see that
f(d) < ¢(d). But this is impossible given equation 1.f
and the result in Case 1.

Thus we can conclude that f(d) = ¢(d) for all divi-
sors d of p— 1. In particular, f(p—1) =¢(p—1) > 1
as claimed. O

(a) We saw in Question 1.4 that there is no primitive root modulo 12. In fact, it is
easy to check that this is the second smallest value of n for which no primitive
roots exist. In his Disquisitiones Arithmeticae, Gauss gave a complete description
of which values of n have primitive roots. We will give this description, and prove

it, later in this Workbook.

(b) For many primes, 2 is a primitive root (for the primes 3,5, 11, 13,29, 37, 53,59, 61, 67
and so on.) It is conjectured that, but not known whether 2 is a primitive root for
infinitely many primes. We will see later in this Workbook how to test efficiently if
a given integer a is a primitive root modulo a prime p.

(c) For a given n, let x(n) denote the smallest (positive) primitive root modulo n. You
might like to work out x(23). For primes p < 181 it is known that x(p) < 7.

13



However x(191) = 19 and it is known that for any M € N, there exists a prime p
with x(p) > M.

(d) In conclusion, you might like to try the following exercise: Let p be an odd prime,
and let a be an integer satisfying
(a) 1 <a<p-—1,and

(b) a = b* (mod p) for some b € Z.
Show that a is not a primitive root modulo p. Artin has conjectured that all integers
apart from +1 and perfect squares are primitive roots for infinitely many primes.

Summary of Section 1

Our main efforts have been directed towards proving the existence of prim-
itive roots in a prime modulus. En route we looked at finite log tables for
the units U,, of Z/nZ and highlighted the fact that the two groups (U, x)
and (Z/¢(n)Z,+) are isomorphic when a primitive root exists. We showed
that

i de ¢(d) = n,

e polynomials with coefficients in Z/pZ can have no more distinct roots
than their degree, and

e a cyclic group of order n has ¢(n) distinct generators.

We then put these facts together to prove Theorem 1.16, sometimes called

the ‘theorem of the primitive root’.
In the next section we’ll see how to actually find primitive roots modulo
primes in practice.

14




2 Primitive Roots modulo primes

Given a prime p, Theorem 1.16 shows us that there exist primitive roots modulo p, but
the proof of that theorem was not constructive: it does not tell us how to actually find
a primitive root. So, how do we find one? We may assume that p is odd since p = 2
has g = 1 as primitive root (trivially, since U; = {1} is the trivial group).

Question
Why does it not make sense to
test @ = 47 Or any square?

Question
Can you see how to halve the
amount of work here?  Why
can you stop when o = —1
(mod p)?

(2.1) If we have a way of testing whether a given
integer a is or is not a primitive root, then we can
apply this test to a = 2,3,5,6,... until we find one
that works.

So, how do we test a candidate a for being a primitive
root modulo p? the obvious thing to do is to list the
powers

a,a*;a”,... (mod p)

where each successive power is obtained by multiply-
ing the previous one by a and then reducing modulo p,
and making sure that the first time you get a* = 1 is
for k=p—1.

(2.2) Example: p = 17. the powers of 2 modulo 17
are, in order and reduced to lie between —8 and +8:
2,4,8,—1,—2,—4,-8,1

s0 22 =1 (mod 17) and so a = 2 is not a primitive
root modulo 17.
Taking a = 3 instead, we find the powers to be

3,—8,-7,—4,5,-2,-6,—1,...

which shows that the first power congruent to 1 is
3% so that 3 is a primitive root modulo 17.

(2.3) Find a primitive root modulo p = 19.

Answer to (2.3)

Using this method is time-consuming, and not very efficient: it takes about p/2 steps
(assuming that you stop when you reach —1), so will be prohibitive when p is large.
Also, we are not using to full advantage the strength of Lagrange’s theorem, which says
that the order of a (mod p) must be a divisor of p — 1 (since p — 1 is the order of the

15




group U,). So we do not need to look at a* (mod p) for all exponents k, only for some

of them.

(2.4) Let p = 31. List the divisors of p — 1 = 30.
Suppose that d | 30 but d {6, d 1 10, d 1 15. What is
d? Hence show that if a € Uz, and a® # 1, a'® # 1,
a'® #£ 1 (mod 31), then a is a primitive root mod-
ulo 31.

Answer to (2.4)

The point about the numbers 6,10, 15 in the previous example is that 6 = 30/5, 10 =
30/3, 15 = 30/2, so these are the numbers 30/q where ¢ is a prime factor of 30 = p — 1.

This example generalizes to give a useful theorem:

This is a contrapositive proof.
Make sure you understand its

logic!

(2.5) Theorem Let p be an odd prime, and let
q1,q2, - - ., q be the prime divisors of p — 1. Suppose
that a is coprime to p and satisfies

aPD/e £ (mod p) fori=1,2,... k.

Then a is a primitive root modulo p.

(2.6) Proof of Theorem 2.5: Justify the steps in
the following argument, which proves the Theorem:

(a) If a is not a primitive root, then its order modulo p
is d= (p—1)/m for some m > 1.

(b) m is divisible by at least one of the g;.
(c) So 1%1 | 2L for at least one i.
qi

(d) So aP~V/% =1 for at least one i.

16




Answer to (2.6)

()

(2.7) Example: p=37: p—1=236 =2%2-3%s0 q; = 2
and ¢go = 3. To test whether a is a primitive root
modulo 37 we thus only need to check that a'? # 1
and a'® # 1. These can be computed in the order

Testing a = 2: a®> =4, a®> =8, a® = 8% = 64 = —10,
a2 = (=102 =100 = —11 # 1, a'® = (-10)(-11) =
110 = =1 # 1 (mod 37). So 2 is a primitive root
modulo 37.

(2.8) Example: p=257: p—1 =256 = 2% s0 q; =2
is the only relevant prime, and to test whether a is a
primitive root modulo 257 we thus only need to check
that a'® # 1. We can compute a'?® by repeated
squaring.

Testing a = 2: note that p = 2% + 1, so 28 = —1
(mod p) and 2'% = 1. So 2 is not a primitive root
modulo 257.

Testing a = 3: we find 32 =9, 3* = 81, 3% =812 =
136, 31 = (136)? = —8 = (—2)3, a® = (-2)° = 29,
a® =2%2= -2 (since 28 = —1),a®=28=-1#1
(mod 257). So 3 is a primitive root modulo 257.

There are other tricks one can play to find primitive roots modulo primes. It is also
possible to use the theory of primitive roots to prove that large primes really are primes!

Do not assume that p is prime

just because it is called “p”!

(2.9) Let p = 65537 = 2! + 1. Given that 3" = —1
(mod p) (which you do not need to check unless you
really want to), show that p is prime.

17




Answer to (2.9)

Using this method, and a slightly more sophisticated version of it called the Pocklington
Primality Test, it is quite easy to prove that enormous primes p actually are prime,
provided that p — 1 can be factorised. Try looking it up online if you are interested
(there’s a reasonably good article on Wikipedia.)

(2.10) More examples of primitive roots. Find
the smallest primitive root for (a) p = 29; (b) p = 31;
(c) p=41.

Answer to (2.10)

(a)

Summary of Section 2

In this section we saw how to test efficiently whether or not a given inte-
ger a is or is not a primitive root modulo a given prime p, based on the
factorization of p — 1.

As an application, we saw how the same technique can be used to prove

that primes are prime, without actually having to try to find factors.
In the next section we’ll move on to considering primitive roots modulo
composite numbers (numbers which are not prime).

18




3 Primitive Roots for other moduli

We have seen that every prime modulus has a primitive root, or in other words that
U, is cyclic for prime p. What about U,, for composite n? In this section we will prove
that the only numbers n which have primitive roots are n = p® and n = 2p° where p is
an odd prime and e > 1, as well as (trivially) n = 1,2 and 4. This was proved by Gauss
in his Disquisitiones Arithmeticae.

We will reach this goal by proving some negative statements, of the form
“if n = ... then n does not have a primitive root”,
and some positive statements of the form
“if n = ... then n does have a primitive root”.

The negative statements are easier, so we will do those first.

Powers of 2

U, = {1} and Uy = {1,3} are cyclic, while Ug =
Check these statements. {1,3,5,7} is not.
What about larger powers of 27

(3.1) Multiple square roots

(a) Show that 41 and 49 are all solutions to z? = 1
(mod 16).

(b) Show that 41 and +17 are all solutions to z?
(mod 32).

(c) Can you generalise?

Answer to (3.1)
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Reminder (3.2) The last question shows that when m > 3

In a cyclic group of order NN, for we have (at least) four distinct solutions to the con-
every d | N the number of el- gruence ¥ = 1 (mod 2™), namely x = 41 and
ements of order d is ¢(d). We xr = +(1+2™71). This is enough to show that there
proved this in the first section of cannot be a primitive root modulo n = 2™! The rea-
this Workbook (where?). son is that if U,, were a cyclic group it could have only

1 element of order 2 in it, while we have found three
(—1 and £(1 + 2™ 1)). Hence the following result:

(3.3) Theorem For m > 3, the group Usm is not
cyclic, and n = 2™ has no primitive roots.

Taking it further The group Us,m, which has order 27! is not cyclic; no element of
the group has order as big as 2™~ 1. But it is almost cyclic! It has elements of half the
order, namely 272, And in fact 5 always has order 2"~ modulo 2™ (for all m > 2).
This is not too hard to prove: see if you can show, by induction on k£ > 0, that

52 = 1422 (mod 2¢%)

and take it from there.

Numbers with at least two prime factors

Leaving odd prime powers to one side for the moment, we now turn our attention to
numbers which are not prime powers, i.e. numbers with two or more (distinct) prime
factors. We will see that (with one type of exception) these never have primitive roots.

One way to see this is to use the “Chinese Remainder theorem Mark V” from Work-
book 2 (see Corollary (3.4) there) and a fact from group theory that the direct product
of two finite groups whose orders are not coprime is never cyclic. But we will work more
directly with congruences instead.

(3.4) Let n € N. If n is not a prime power then there
Check that you understand this is a factorization n = niny where ny,ny > 1 and the
(see the following question). It factors ny, noy are coprime.
follows from the Fundamental

Theorem of Arithmetic.

(3.5) Find such a factorization for n = 6, n = 100,
n = 250 and n = 2310.

Answer to (3.5)
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Properties of ¢
Recall (from Workbook 2) what
it means for ¢ to be multiplica-
tive. We need hcf(ng,ng) = 1
here.
Can you remember why ¢(m) is

even for all m > 37

(3.6) By the multiplicativity of ¢ we then have
o(n) = ¢(ny)p(ny). If we further assume that both
ni,ne > 3 then both ¢(ny) and ¢(ny) are even. So
we can write

ot = (30 ) otns) = ) (30t

From this it will follow that

1

az*™ =1 (mod n) (*)

for all a coprime to n (improving on Euler’s theorem
for these n) so that n cannot have a primitive root:
no a has order as large as ¢(n).

It remains to justify the preceding claim, and to check
exactly which integers n this all applies to.

(3.7) Example Let n =55 =511, so that ¢(n) =
#(5)p(11) =4 -10 = 40. Show that, for all a coprime

a)a® =1 (mod 5) and hence ¢** =1 (mod 5);
1

o
S~—r
IS)

=1 (mod 11) and hence a*° =

(
(
(c) a®*® =1 (mod 55);
(

Answers to (3.7)

(3.8) Theorem Let n = niny where ny,ny > 3 and hef(ny,ny) = 1. Then n has no

primitive roots.

(3.9) Proof of Theorem 3.8 As noted above, ¢(n) = ¢(ny)p(ns), and both ¢(n;), ¢(ns)

are even. Let a € N be coprime to n; then a is also coprime to each of ny, ny. Now Euler’s

Theorem modulo n; gives

a®™) =1 (mod ny).

21



Raising to the integral power 1¢(n,) gives
1 n
az9™ = (a¢(”1)) 29(m2) — 4 (mod ny).
Similarly, a2%™ =1 (mod n). Since hef(ny, ny) = 1 the two congruences together imply

that ¢2%™ =1 (mod n). So a has order at most $¢(n) and is therefore not a primitive
root modulo n.

(3.10) Applying the Theorem Which numbers n
does Theorem 3.8 apply to?

Answer to (3.10)

As an alternative method of proof of Theorem 3.8 you
can also use the same method as we used for powers
of 2: if there is any solution to > = 1 (mod n) other
than £1, then n cannot have a primitive root. To find
such an x when n = niny with nq,ny coprime and

> 3, use the Chinese Remainder Theorem to find
x such that both z = 1 (mod n;) and also z = —1
(mod ny). Details left to the reader!

Recall the Chinese Remainder
Theorem from Workbook 2.

Summary of “negative” results
The following numbers do not have primitive roots:

e powers of 2 (apart from 2 and 4);

e all numbers which are not of the form p® or 2p® where p is an odd prime and e > 1.

Odd prime powers

We now turn to proving some positive results. We will show that all the numbers not
excluded in the previous subsection actually do have primitive roots.

Let p be an odd prime. We know by Theorem 1.16 that p has a primitive root, say g.
Miraculously, it turns out that this same integer ¢ is (almost) always a primitive root
modulo every power of p, and also (almost) of 2p°.

We deal with the prime powers first, and start with n = p?.
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Orders
If g is an element of some group
and has order d, then ¢¢ is the
identity if and only d | e. Look
this up if you need to.

(3.11) Let p be an odd prime with primitive root g,
and let n = p?. What can we say about the order of ¢
modulo p??

(3.12) Show that the order of g modulo p*:
(a) is a divisor of p(p — 1);
(b) is a multiple of p — 1;

(c) is either p — 1 or p(p — 1).

Answers to (3.12)

So all we need to check to see if g is also a primitive
root modulo p? is whether g?~! = 1 (mod p?). Even
if this is the case, it is easy to fix:

(3.13) Theorem Let p be an odd prime and ¢ a
primitive root modulo p.

If g1 # 1 (mod p?), then g is a primitive root mod-
ulo p?.

Otherwise, if g?"1 =1 (mod p?), then g+p is a prim-
itive root modulo p?.

(3.14) Proof of Theorem 3.13 The first part was
proved above, so suppose that ¢g?"! = 1 (mod p?).
Set g1 = g + p; since g3 = ¢ (mod p), g1 is also a
primitive root modulo p. So we just have to check
that ¢" ' # 1 (mod p?). Using the binomial expan-
sion,

G =gt = (p—-1)g"
=1-—pg"?* (mod p*),

which is not 1 since p 1 g.
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(3.15) Examples modulo prime squares

(a) Show that 2 is a primitive root modulo 9, and also
modulo 25.

(b) Find a primitive root modulo 49.

Answers to (3.15)
(a)

(b)

Once we have a primitive root modulo p?, we are home and dry, since (as we will see)
the same number is then automatically also a primitive root modulo every power of p.

We start with a primitive root g modulo p satisfying g?~! £ 1 (mod p?). As we proved
above, if the first primitive root modulo p fails the second condition, we just add p to
it to get one which passes.

This is the key to the induction argument:

(3.16) Lemma. Let p be an odd prime and g a prim-
itive root modulo p satisfying ¢"~* # 1 (mod p?).
Show by induction that for all e > 2,

gpeiz(pfl) Z1 (mod p°).

Answer to (3.16)
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(3.17) Theorem Let g be a primitive root modulo the prime p, such that g?~! # 1
(mod p?). Then g is a primitive root modulo p¢ for all e > 1.

(3.18) Proof of Theorem 3.17 Induction on e: true for e = 1 by hypothesis. Suppose
true for e—1, i.e. that g is a primitive root modulo p°~!. Let d be the order of g modulo p®.
As in an earlier proof, we have that d is a multiple of ¢(p®~!) = p*?(p — 1) and a divisor
of ¢(p¢) = p*~1(p — 1), hence either d = p*~?(p — 1) or d = p*~*(p — 1). The first case is
ruled out by the Lemma, so the second case holds, and this says that g has order ¢(p®)
modulo p®, so ¢ is a primitive root modulo p°.

(3.19) Examples modulo prime powers

(a) Show that 2 is a primitive root modulo 3¢ and
modulo 5¢ for all e > 1.

(b) Find an integer g which is a primitive root mod-
ulo 7¢ for all e > 1.

Answers to (3.19)

(a)

(3.20) And finally. .. The only moduli n for which we have neither proved the existence
of primitive roots nor shown that they do not exist are n = 2p° where p is an odd prime
and e > 1. Since ¢(2p°) = ¢(2)p(p°?) = ¢(p°), the groups Upe and Us,e have the same
order, and it is almost true to say that any g which generates the first (i.e., which is a
primitive root modulo p¢) also generates the second. The only problem is that g may be
even and so not even in Uge!
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(3.21)

(a) We know that 3 is a primitive root modulo 5.
What is the order of 3 modulo 107

(b) We know that 3 is a primitive root modulo 7.
What is the order of 3 modulo 147

(c) Given that 6 is a primitive root modulo 41, can
you find a primitive root modulo 827

(d) Find primitive root modulo 250.

Answer to (3.21)

(3.22) Theorem Let g be a primitive root modulo the prime p, such that g is odd and
g’ # 1 (mod p?). Then g is a primitive root modulo 2p° for all e > 1.

(3.23) Proof of Theorem 3.22 By Theorem 3.17 we know that ¢ has order ¢(p®)
modulo p, so the smallest positive exponent k such that ¢* = 1 (mod p°) is k = ¢(p°).
But since ¢g* — 1 is even for all k > 0,

¢"=1 (modp) <= ¢"=1 (mod 2p°),
so the smallest k such that that ¢* = 1 (mod 2p°) is also k = ¢(p°) = #(2p°). So g is a

primitive root modulo 2p°.

(3.24) To summarise this subsection: for any odd prime p, take any primitive root g
modulo p. If "' = 1 (mod p?), replace g by g+ p. Then g is a primitive root modulo p*
for all e > 1; if g is odd then g is also a primitive root modulo 2p° for all e > 1, while if
g is even then g + p°© is a primitive root modulo 2p® for all e > 1.
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Taking it further

e Just as 5 has almost, but not quite, large enough order to be a primitive root
modulo powers of 2, it is possible to show that for every odd prime p, the number
1 + p has exact order p°~! modulo p¢, for every e > 1. That is not enough for
it to be a primitive root, since a primitive root has to have order p*~!(p — 1). In
fact, p 4+ 1 generates the subgroup of U, consisting of the residues congruent to 1
(mod p), which has order p°~! (just as 5 generates the subgroup of Use consisting
of the residues which are congruent to 1 (mod 4)).

You can try to prove this, by first proving by induction on e > 2 that
(I+p " =1+p~" (mod p°).

e [t is actually quite hard to find primes p whose smallest primitive root g satisfies
g*' =1 (mod p?). One example is p = 40487, for which g = 5 is the smallest
primitive root and 51948 =1 (mod 40487).

In the case g = 2, primes p such that 2°~! = 1 (mod p?) are very special and
also rare: they are called Wieferich primes, after Arthur Wieferich (1909) who
encountered them in trying to prove Fermat’s Last Theorem with exponent p.
Only two are known, but it is an unsolved problem to decide whether or not there
are infinitely many of them! The smallest is p = 1093. Can you find the only other
known example?

Summary of Section 3

In this section we have given a complete answer to the question
which n € N have primitive roots?
The answer is:
n=1,24n=p°and n = 2p° for p any odd prime.

We also saw that (almost) every primitive root modulo p is also a primitive
root modulo p® and 2p°.
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