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Icons in this Workbook

The ‘Section Targets’ box contains an idea of what
you should aim to get out of the current section. Per-
haps you might return to this at the end to evaluate
your progress.

Reaching this icon in your journey through the work-
book is an indication that an idea should be starting
to emerge from the various examples you have seen.

Material here includes reference either to earlier
workbooks, or to previous courses such as founda-
tions/Sets and Groups.

A caution. Watch your step over issues involved here.

Are You Ready?

To understand the material and do the problems in each section of
this workbook, you will need to be on good terms with:

Section 1: • The Remainder theorem (for polynomials)
Section 3: • orders of elements in groups

• binomial expansions and induction

Note: You will need a pocket calculator for some of the questions in

the workbooks, and are encouraged to use one for this purpose and

to experiment with results and ideas in the course. Calculators are

NOT needed and are NOT allowed in tests or in the examination.

These workbooks were orginally written and devised by Trevor Hawkes and
and Alyson Stibbard. Ben Carr designed the LATEX template and Rob Reid
converted their drafts into elegant print. Over the years, other lecturers and
students have corrected a number of typos, mistakes and other infelicities. In
2010 John Cremona made some substantial revisions.

Send corrections, ask questions or make comments at the module forum. You
can join the MA246 forum by going to http://forums.warwick.ac.uk/wf/

misc/welcome.jsp and signing in, clicking the browse tab, and then following
the path: Departments > Maths > Modules > MA2xx modules > MA246
Number Theory.



1 Primitive Roots & Finite Logarithms
Motivation — a Worked Example

(a) Find a unit g in Z/11Z whose powers generate the group of units U11, in other
words, such that

U11 = {1, g, g2, g3, g4, . . . , g9}

(b) For each u ∈ U11, define ℓ(u) to be the smallest non-negative integer such that
gℓ(u) = u. Complete the following “log table”:

u 1 2 3 4 5 6 7 8 9 10
ℓ(u)

Solution

(a) Since 11 is prime, U11 consists of all non-zero elements of Z/11Z; thus

U11 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

We now look at the set of powers {gi : i ∈ N} for various choices of g ∈ U11. If
g = 1, then {g, g2, g3, . . .} = {1}, so 1 generates the identity subgroup of U11. We
are looking for an element g which generates the whole group U11. Try g = 2;
then g2 = 4, g3 = 8, g4 = 5 (because 24 = 16 ≡ 5 (mod 11)), g5 = 10 (because
25 = 24 × 2 = 5 × 2 = 10 (mod 11)), g6 = 9, g7 = 7, g8 = 3, g9 = 6, g10 = 1 = g0.
Thus, at our second attempt we have found a generator for U11, namely g = 2. If
we tried g = 3, we would have found

{3i : i ∈ N} = {3, 9, 5, 4, 1}

which is a subgroup of U11 of order 5 (recall that U11 has order 10) and had we
chosen g = 10(≡ −1 (mod 11)), then we would have found

{10i : i ∈ N} = {10, 1}

a subgroup of U11 of order 2.

(b)We can now use the above calculation to complete the log table to the base 2,
recalling that ℓ(u) is the smallest non-negative power of 2 congruent to u mod 11.

u 1 2 3 4 5 6 7 8 9 10
ℓ(u) 0 1 8 2 4 9 7 3 6 5
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Remark Recall that U11 has order φ(11) = 10, and
so an element g that generates U11 is simply an ele-
ment of order 10 in the group U11. Observe that we
have defined ℓ(1) to be zero rather than 11 to ensure
that the “log” function ℓ takes values in the group
(Z/10Z,+), whose underlying set is {0, 1, . . . , 9}.

(1.1) Definition An element g that generates the
group Un of units in Z/nZ is called a primitive root
modulo n.

(1.2) Remarks

(a) In the language of group theory, a primitive root
is simply a generator for the multiplicative group
of units Un of Z/nZ. We have not yet proved
that such a generator ever exists (except in the
case n = 11, in the example above)! One of the
goals of this workbook is to see which n ∈ N have
primitive roots; in other words, to determine for
which n the group Un is cyclic.

(b) In general, cyclic groups have many generators; so
when there exists a primitive root modulo n there
will (in general) be many of them. We will count
how many there are later.

(c) In the language of congruences a primitive root
is viewed as an integer (not an element of Z/nZ)
with the property that the set of its positive pow-
ers contains a complete set of residues for Un.
Many authors of books on Number Theory use
this definition.

How do we know that

0 ≤ ℓ(u) < φ(n)?

(1.3) Definition Let g be a primitive root of Z/nZ.
For all u ∈ Un, we define ℓ(u), the logarithm of u (to
the base g) to be the smallest non-negative integer
such that gℓ(u) = u. We refer to the function

ℓ : Un → Z/φ(n)Z

given by u 7→ ℓ(u) as a finite logarithm or discrete
logarithm. As we shall see, such functions share many
properties with the standard logarithms.
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Section Targets

(a) to investigate the question, ‘for which values of n
does Z/nZ have a primitive root?’

(b) to study

• properties of the finite logarithm

• an interesting fact about Euler’s phi-
function

• the generators of cyclic groups

• the number of primitive roots

• some unsolved problems

Interesting Point

In those cases when Z/nZ has a

primitive root, it turns out that

it has precisely φ(φ(n)) of them.

You might like to think about

why this is so.

(1.4) Questions about primitive roots
For the values,

(i) n = 7,

(ii) n = 10,

(iii) n = 12,

(a) list the elements of Un,

(b) work out the orders of each of these elements,

(c) use (b) to write down the primitive roots modulo
n, if any exist,

(d) where appropriate, compare the number of prim-
itive roots modulo n with the value φ(φ(n)).

(e) Calculate the log table to the base g, where g is
the smallest primitive root in each case where a
primitive root exists.
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Answers to (1.4)

(a)(i) U7 = {1, 2, 3, 4, 5, 6}

(ii) U10 = {1, 3, 7, 9}

(iii) U12 = {1, 5, 7, 11}

(b) In all Un, the element 1 has order 1

(i) In U7, the element 2 has order 3, as does the
element 4. The element 6 has order 2, while 3
and 5 both have order 6.

(ii) In U10, the element 9 (≡ −1 (mod 10)) has
order 2, while 3 and 7 both have order 4.

(iii) In U12, the elements 5, 7 and 11 have order 2.

(c) The primitive roots (i) modulo 7 are 3 and 5 and
(ii) modulo 10 are 3 and 7. (iii) There are no
primitive roots modulo 12.

(d)(i) φ(7) = 6, φ(φ(7)) = 2,

(ii) φ(10) = 4, φ(φ(10)) = 2

Thus, in the two cases n = 7 and n = 10, the
number of primitive roots modulo n is non-zero
and equal to φ(φ(n)).

(e)(i) The smallest primitive root modulo 7 is 3 and
the log table to base 3 is

u 1 2 3 4 5 6
ℓ(u) 0 2 1 4 5 3

(ii) The smallest primitive root modulo 10 is 3
and the log table to base 3 is

u 1 3 7 9
ℓ(u) 0 1 3 2

(iii) In the absence of a primitive root, there is no
log table!

4



Good old Days

When the authors started school,

pocket calculators had not been

invented. In those days, school

children used log tables for the

real numbers to convert a multi-

plication task to one of addition.

Here the log table modulo n (to a

given base) allows us to carry out

multiplication in Un by adding in

Z/φ(n)Z. Finite log tables also

play an important part in mod-

ern cryptography.

(1.5) Question about using log tables It is a
fact that 197 is a prime and that 2 is a primitive root
modulo 197. Write out the log table to the base 2
just for the values of ℓ(u) = 0, 1, 2, . . . , 15, and use
it to work out the product 64 × 118 in U197 without
carrying out the multiplication. Check your answer
with your calculator.

Add to Multiply

Observe that, given the table, we

have used only the single addi-

tion 6 + 9 = 15 to compute the

product 64× 118 in U197.

Answer to (1.5) Here is a part of the log table mod-
ulo 197 to base 2:

u 1 2 4 8 16 32 64 128 59
ℓ(u) 0 1 2 3 4 5 6 7 8

u 118 39 78 156 115 33 66
ℓ(u) 9 10 11 12 13 14 15

From the table, modulo 197, we have 64 ≡ 26 and
118 ≡ 29. Hence,

64× 118 = 26 × 29 = 26+9 = 215

and again from the table,

215 = 66

Using a calculator, one checks that

64× 118 = 138× 197 + 66 ≡ 66 (mod 197)

thereby confirming that 64× 118 = 66 in U197.
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Let (G, •) and (H, ∗) be two
groups with binary operations •
and ∗ respectively. A map f :
G → H is called a (group) ho-
momorphism if

f(g1 • g2) = f(g1) ∗ f(g2)

for all g1, g2 ∈ G. In words: “the
image of a product is the product
of the images”.

If additionally f is a bijection, it

is called an isomorphism.

(1.6) Theorem Let g be a primitive root modulo
n. Then the finite logarithm map (base g) defined
in (1.3) is an isomorphism from the group (Un,×) to
the group (Z/φ(n)Z,+).

Proof It is a general fact in group theory that any
two cyclic groups of the same orderm are isomorphic.
Now Un is a cyclic multiplicative group of order m =
φ(n), with multiplicative generator g (by definition of
primitive root); and Z/mZ is a cyclic additive group
with additive generator 1, so our Theorem is a special
case of the general result.
To prove it directly, it is more convenient to work with
the map e : Z/φ(n)Z → Un defined by l 7→ e(l) = gl.
This map is well-defined, since

l1 ≡ l2 (mod φ(n)) =⇒ l2 = l1 + kφ(n)

=⇒ gl2 ≡ gl1+kφ(n)

≡ gl1(gφ(n))k ≡ gl1 (mod n)

since gφ(n) = 1 by Euler’s theorem.
It is a group homomorphism, since

e(l + l′) = gl+l′ = glgl
′

= e(l)e(l′).

It is surjective, since by definition of primitive root
every a ∈ Un has the form a = gl = e(l) for some l.
It must therefore also be injective, since |Z/φ(n)Z| =
φ(n) = |Un|. One could also check directly that

gl1 = gl2 =⇒ l1 ≡ l2 (mod φ(n)).

Finally, the inverse of the map e : l 7→ gl is just the
discrete logarithm ℓ : gl 7→ l. �

Note that it follows from the proof that

ℓ(xy) = ℓ(x) + ℓ(y),

since if x = gl1 and y = gl2 then xy = gl1+l2 . It does
not matter that 0 ≤ l1 < φ(n) and 0 ≤ l2 < φ(n) do
not imply 0 ≤ l1 + l2 < φ(n), since the values of ℓ lie
in Z/φ(n)Z so only matter modulo φ(n).

We now prepare the way to proving the existence of primitive roots modulo primes.
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(1.7) Question on divisors of n
For the values, (i) n = 6, (ii) n = 8, (iii) n = 12,

(a) write down all the divisors of n in increasing order,
d1 = 1, d2, . . . , dk = n.

(b) write down the set
{

n

d1
,
n

d2
, . . . ,

n

dk

}

and compare it with the set {d1, d2, . . . , dk}

(c) work out the following sum,
∑

d|n

φ(d) = φ(d1) + φ(d2) + · · ·+ φ(dk) (1.a)

(d) work out the following sum
∑

d|n

φ
(n

d

)

(1.b)

(e) make a conjecture (for general n) for the values
of the sums labelled (1.a) and (1.b).

Answers to (1.7)

(a) (i) 1, 2, 3, 6, (ii) 1, 2, 4, 8, (iii) 1, 2, 3, 4, 6, 12

(b) (i) {6, 3, 2, 1}, (ii) {8, 4, 2, 1}, (iii) {12, 6, 4, 3, 2, 1}
in each case, the sets {n/d1, . . . , n/dk} and
{d1, d2, . . . , dk} are equal.

(c)(i) φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(6) = 2. Thus,
∑

d|6 φ(d) = 6
(ii) φ(1) = 1, φ(2) = 1, φ(4) = 2, φ(8) = 4. Thus,

∑

d|8 φ(d) = 8
(iii) φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) =

2, φ(6) = 2, φ(12) = 4. Thus
∑

d|12 φ(d) = 12.

(d) As d runs through the divisors of n, so also does
n/d (since n = d × n/d). Hence

∑

d|n φ(d) =
∑

d|n φ(n/d) since the terms of the sums are the
same in different orders.

(e) Conjecture:
∑

d|n φ(d) =
∑

d|n φ(n/d) = n.
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(1.8) Question about HCFs Let s and n be in-
tegers. Prove that hcf{s, n} = d if and only if

hcf{
s

d
,
n

d
} = 1.

Answer to (1.8) Let hcf{s, n} = d. Then s = ds1
and n = dn1 for suitable s1, n1 ∈ Z. If e > 0 divides
s1 and n1, then de divides s and n. It follows that
de ≤ d and therefore that e = 1. Since s1 = s/d and
n1 = n/d, we can conclude that hcf{s/d, n/d} = 1.
Suppose conversely that hcf{s/d, n/d} = 1. By the
Euclidean algorithm, there exist integers a and b such
that

1 = a
s

d
+ b

n

d

and so d = as + bn. Thus divisors of s and n also
divide d and therefore d is indeed the highest common
factor of s and n.

Notation Let n be a natural number and let S =
{1, 2, . . . , n}. Define

Sd = {s ∈ S : hcf{s, n} = d}

(1.9) Question on the meaning of this notation
If d 6 |n, then Sd = ∅. Therefore we are only interested
in the sets Sd for divisors d of n.

(a) For (i) n = 8 and (ii) n = 12, write down the sets
Sd for all d dividing n.

(b) Observe that the sets Sd form a partition of S
(that is to say, a division of S into pairwise-
disjoint subsets)

(c) In each case, compare |Sd| with φ
(n

d

)

.
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Answers to (1.9)

(a)(i) For n = 8, S1 = {1, 3, 5, 7}, S2 = {2, 6}, S4 =
{4}, S8 = {8}.

(ii) For n = 12, S1 = {1, 5, 7, 11}, S2 = {2, 10},
S3 = {3, 9}, S4 = {4, 8}, S6 = {6}, S12 = {12}

(b) By inspection, each element of S = {1, 2, . . . , n}
lies in one and only one of the sets Sd for n = 8
ad 12.

(c)(i) |S1| = 4 = φ(8), |S2| = 2 = φ(4), |S4| = 1 =
φ(2), |S8| = 1 = φ(1)

(ii) |S1| = 4 = φ(12), |S2| = 2 = φ(6), |S3| =
2 = φ(4), |S4| = 2 = φ(3), |S6| = 1 =
φ(2), |S12| = 1 = φ(1).

Thus in each case |Sd| = φ(n/d).

(1.10) Lemma Let n ∈ N and let Sd denote the set

Sd = {s : 1 ≤ s ≤ n, hcf{s, n} = d}

(a) the sets Sd, such that d|n, partition the set
{1, 2, . . . , n}.

(b) |Sd| = φ
(n

d

)

.

Proof

(a) Each element s ∈ {1, . . . , n} has a unique highest
common factor with n and therefore belongs to
one and only one of the sets Sd. This is precisely
what we mean by saying that the subsets Sd form
a partition of {1, . . . , n}.

(b) By definition s ∈ Sd if and only if hcf{s, n} = d
if and only if hcf{s/d, n/d} = 1 by (1.8). There-
fore the number of elements in Sd is equal to the
number of elements s1 (= s/d) which are rela-
tively prime to n/d and this is equal to φ(n/d) by
definition of the Euler phi-function.
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Gauss was the first to discover and prove the following
interesting property of the Euler phi-function.

(1.11) Proposition If n ∈ N and d1, d2, . . . , dk are
the distinct divisors of n, then

n = φ(d1) + φ(d2) + · · ·+ φ(dk)

=
∑

d|n

φ(d)

(1.12) Example
9 = 1 + 2 + 6 = φ(1) + φ(3) + φ(9) =

∑

d|9 φ(d).

Alternative proof
Consider the n fractions

0

n
,
1

n
,
2

n
, . . . ,

n− 1

n
.

Reduce each to lowest terms: i
n

with 0 ≤ i < n reduces to a
d with

0 ≤ a < d and hcf(a, d) = 1.

Which integers d appear as de-
nominators in the list? The divi-
sors of n.

How many numerators a appear
on top of each denominator d?
φ(d).

How many fractions are there in

the list? n.

Proof of (1.11) Since the sets Sd where d|n partition
the set S = {1, . . . , n}, we have

n = |Sd1 |+ · · ·+ |Sdk | (1.c)

=
∑

d|n

|Sd|

=
∑

d|n

φ
(n

d

)

by (1.10)(b). As d runs through the divisors of n, so

does
n

d
(see (1.7)(b)), and therefore we can rearrange

the sum as follows

∑

d|n

φ
(n

d

)

=
∑

d|n

φ(d) (1.d)

Equations (1.c) and (1.d) together yield the desired
conclusion of Proposition 1.11 �

The next result, when expressed in the language of
congruences, is due to Lagrange. It is simply a state-
ment, for the field Z/pZ, of the well-known result that
a polynomial of degree n has at most n distinct roots.
This is true for polynomials over any field, but fails
for polynomials over rings with zero-divisors. For ex-
ample, the polynomial x2 − 1 has 4 roots in Z/8Z
(count them!).
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(1.13) Theorem Let p be a prime and let

q(x) = xd + a1x
d−1 + . . .+ ad−1x+ ad

be a polynomial of degree d ≥ 0 with coefficients ai in
Z/pZ. Then q(α) = 0 for at most d distinct values of
α in Z/pZ.

Recall that a zero-divisor a is
a non-zero element (in some set
with multiplication) for which
there is a second non-zero ele-
ment b such that ab = 0.
Dividing the polynomial (x − a)
into the polynomial q(x) gives

q(x) = (x− a)q1(x) + r,

where q1(x) is a polynomial of

degree d− 1 and r ∈ Z/pZ. Sub-

stituting x = a gives r = q(a).

This is the Remainder Theorem.

In particular, if a is a root of

q(x), then r = 0 and q(x) =

(x− a)q1(x).

Proof Since p is a prime, Z/pZ has no zero divisors;
in other words, if a, b ∈ Z/pZ with a 6= 0, and if
ab = 0, then b = 0.
We use induction on the degree d. If d = 0 then
q(x) is the constant polynomial 1 which has no roots.
Suppose that d ≥ 1 and that the result holds for
polynomials of degree d− 1.
If q(x) has no roots in Z/pZ that is fine since 0 ≤ d.
If q(x) has a root a, then by the Remainder Theorem,

q(x) = (x− a)q1(x)

for some polynomial q1(x) of degree d− 1. Now q1(x)
has at most d− 1 roots by induction, and every root
b of q(x) is either a root of q1(x) or is equal to a (or
both), since

q(b) = (b− a)q1(b) = 0 ⇐⇒ b = a or q1(b) = 0.

(This is where we use the fact that Z/pZ has no zero-
divisors.) So the number of roots of q(x) is at most
(d− 1) + 1 = d as required.

�

(1.14) Questions on generators for cyclic
groups

(a) Let G = {g, g2, g3, g4, g5, g6 = 1} be a cyclic group
of order 6, generated by g. Which elements of G
are also generators of G (in other words, which
elements of G have order 6)?

(b) Let (Z/8Z,+) be the additive group of integers
modulo 8. Which elements (if any) are genera-
tors?

(c) Make a conjecture about the number of generators
in a cyclic group of order n.
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Answers to (1.14)

(a) Since (g2)3 = 1, the element g2 has order 3. Sim-
ilarly g4 has order 3, while g3 has order 2. How-
ever, if h = g5, we get h2 = g10 = g4, h3 = g15 =
g3, h4 = g20 = g2, h5 = g25 = g, h6 = g30 = 1.
Hence g5 is another generator of G.

(b) Let Z/8Z = {0, 1, 2, . . . , 7} and if a ∈ Z/8Z, use
na to denote a+ a+ · · ·+ a, the sum of n copies
of a. (Note that na is the additive equivalent of
the multiplicative notation gn used in part (a))
Evidently Z/8Z = {n.1 : 1 ≤ n ≤ 8}, and so 1 is a
generator. Since 4.2 = 4.6 = 0, 2.4 = 0 and 1.0 =
0, the elements 0, 2, 4 and 8 have orders dividing 4
and are not generators. However, 1.3 = 3, 2.3 =
6, 3.3 = 1, 4.3 = 4, 5.3 = 7, 6.3 = 2, 7.3 = 5,
and 8.3 = 0. Hence 3 is a generator of (Z/8Z,+)
and similarly 5 and 7 are also generators.

(c) See Lemma 1.15 below.

The next result is a group-theoretical version of the
frisbee question answered in Section 2 of Workbook 1.

(1.15) Lemma Let g be a generator of a cyclic group
G of order n. Then ga is a generator of G if and only
if hcf{a, n} = 1. In particular, G has φ(n) genera-
tors.

Proof If hcf{a, n} = d > 1, then (ga)n/d = (gn)a/d =
(1)a/d = 1, and so the order of ga is at most n/d < n,
whence ga is not a generator. Conversely, suppose
that hcf{a, n} = 1 and let 0 ≤ b ≤ n−1. By Theorem
2.9 of Workbook 1, there exists an x such that ax =
b+ kn, and we get

(ga)x = gb+kn = gbgkn = gb(gn)k = gb.

Hence every element gb of G can be expressed as a
power of ga, and therefore ga is a generator of G. �

We now have all the machinery in place to prove the
main result in this section. In the language of group
theory, it states that when p is a prime, the group of
units Up = {1, 2, . . . , p− 1} of Z/pZ is cyclic.
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(1.16) Euler-Lagrange-Legendre Theorem For
every prime p, there exist primitive roots modulo p.
The number of primitive roots modulo p is φ(p− 1).

A generalization
Exactly the same proof shows
that for every field F , every fi-
nite subgroup of the multiplica-
tive group F ∗ of F is cyclic. [Just
replace p− 1 by the order of the
group.]

For example, taking F = C, we

see that the only finite subgroups

of C∗ are the cyclic groups µn =

{1, ζ, ζ2, . . . , ζn−1}, where ζ =

e2πi/n, containing all nth roots

of unity, for each n ≥ 1.

Proof Let f(d) denote the number of elements in
Up of order d. Since the order of each element in
Up = {1, 2, . . . , p − 1} is a natural number dividing
p− 1, it follows that

p− 1 =
∑

d|p−1

f(d) (1.e)

It therefore follows from Proposition 1.11 that
∑

d|p−1

f(d) =
∑

d|p−1

φ(d) (1.f)

We will now show that

f(d) = φ(d) (1.g)

for each and every divisor d of p− 1.

Case 1: f(d) > 0. Let a be an element of order d.
Then a generates a cyclic subgroup {a, a2, . . . , ad =
1} of Up and these d distinct elements are all roots
of the equation xd − 1 = 0. By Theorem 1.13,
these are the only roots of this equation: so the ele-
ments of order d in Up are all among these elements
{a, a2, . . . , ad}. But by Lemma 1.15 only φ(d) of these
have order d, and so f(d) = φ(d) in this case, as re-
quired.

Case 2: f(d) = 0. Since φ(d) ≥ 1, we see that
f(d) < φ(d). But this is impossible given equation 1.f
and the result in Case 1.
Thus we can conclude that f(d) = φ(d) for all divi-
sors d of p− 1. In particular, f(p− 1) = φ(p− 1) ≥ 1
as claimed. �

Taking it further

(a) We saw in Question 1.4 that there is no primitive root modulo 12. In fact, it is
easy to check that this is the second smallest value of n for which no primitive
roots exist. In his Disquisitiones Arithmeticae, Gauss gave a complete description
of which values of n have primitive roots. We will give this description, and prove
it, later in this Workbook.

(b) For many primes, 2 is a primitive root (for the primes 3, 5, 11, 13, 29, 37, 53, 59, 61, 67
and so on.) It is conjectured that, but not known whether 2 is a primitive root for
infinitely many primes. We will see later in this Workbook how to test efficiently if
a given integer a is a primitive root modulo a prime p.

(c) For a given n, let χ(n) denote the smallest (positive) primitive root modulo n. You
might like to work out χ(23). For primes p ≤ 181 it is known that χ(p) ≤ 7.
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However χ(191) = 19 and it is known that for any M ∈ N, there exists a prime p
with χ(p) > M .

(d) In conclusion, you might like to try the following exercise: Let p be an odd prime,
and let a be an integer satisfying

(a) 1 ≤ a ≤ p− 1, and

(b) a ≡ b2 (mod p) for some b ∈ Z.
Show that a is not a primitive root modulo p. Artin has conjectured that all integers
apart from ±1 and perfect squares are primitive roots for infinitely many primes.

Summary of Section 1

Our main efforts have been directed towards proving the existence of prim-
itive roots in a prime modulus. En route we looked at finite log tables for
the units Un of Z/nZ and highlighted the fact that the two groups (Un,×)
and (Z/φ(n)Z,+) are isomorphic when a primitive root exists. We showed
that

•
∑

d|n φ(d) = n,

• polynomials with coefficients in Z/pZ can have no more distinct roots
than their degree, and

• a cyclic group of order n has φ(n) distinct generators.

We then put these facts together to prove Theorem 1.16, sometimes called
the ‘theorem of the primitive root’.
In the next section we’ll see how to actually find primitive roots modulo
primes in practice.
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2 Primitive Roots modulo primes
Given a prime p, Theorem 1.16 shows us that there exist primitive roots modulo p, but
the proof of that theorem was not constructive: it does not tell us how to actually find
a primitive root. So, how do we find one? We may assume that p is odd since p = 2
has g = 1 as primitive root (trivially, since U1 = {1} is the trivial group).

Question

Why does it not make sense to

test a = 4? Or any square?

(2.1) If we have a way of testing whether a given
integer a is or is not a primitive root, then we can
apply this test to a = 2, 3, 5, 6, . . . until we find one
that works.
So, how do we test a candidate a for being a primitive
root modulo p? the obvious thing to do is to list the
powers

a, a2, a3, . . . (mod p)

where each successive power is obtained by multiply-
ing the previous one by a and then reducing modulo p,
and making sure that the first time you get ak ≡ 1 is
for k = p− 1.

Question

Can you see how to halve the

amount of work here? Why

can you stop when ak ≡ −1

(mod p)?

(2.2) Example: p = 17. the powers of 2 modulo 17
are, in order and reduced to lie between −8 and +8:

2, 4, 8,−1,−2,−4,−8, 1

so 28 ≡ 1 (mod 17) and so a = 2 is not a primitive
root modulo 17.
Taking a = 3 instead, we find the powers to be

3,−8,−7,−4, 5,−2,−6,−1, . . .

which shows that the first power congruent to 1 is
316, so that 3 is a primitive root modulo 17.

(2.3) Find a primitive root modulo p = 19.

Answer to (2.3) Testing the powers of a = 2 we
find (reducing each to lie between −9 and +9):

2, 4, 8,−3,−6, 7,−5, 9,−1, . . .

so 2 is a primitive root modulo 19.

Using this method is time-consuming, and not very efficient: it takes about p/2 steps
(assuming that you stop when you reach −1), so will be prohibitive when p is large.
Also, we are not using to full advantage the strength of Lagrange’s theorem, which says
that the order of a (mod p) must be a divisor of p − 1 (since p − 1 is the order of the
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group Up). So we do not need to look at ak (mod p) for all exponents k, only for some
of them.

(2.4) Let p = 31. List the divisors of p − 1 = 30.
Suppose that d | 30 but d ∤ 6, d ∤ 10, d ∤ 15. What is
d? Hence show that if a ∈ U31 and a6 6≡ 1, a10 6≡ 1,
a15 6≡ 1 (mod 31), then a is a primitive root mod-
ulo 31.

Answer to (2.4) The divisors of 30 are
1, 2, 3, 6, 5, 10, 15, 30. All except d = 30 divide one
of 6, 10, 15. If a6 6≡ 1, a10 6≡ 1, a15 6≡ 1 (mod 31)
then the order, say d, of a mod 31, divides 30 but
does not divide 6, 10 or 15 so d = 30 and a is a
primitive root.

The point about the numbers 6, 10, 15 in the previous example is that 6 = 30/5, 10 =
30/3, 15 = 30/2, so these are the numbers 30/q where q is a prime factor of 30 = p− 1.

This example generalizes to give a useful theorem:

(2.5) Theorem Let p be an odd prime, and let
q1, q2, . . . , qk be the prime divisors of p− 1. Suppose
that a is coprime to p and satisfies

a(p−1)/qi 6≡ 1 (mod p) for i = 1, 2, . . . , k.

Then a is a primitive root modulo p.

This is a contrapositive proof.

Make sure you understand its

logic!

(2.6) Proof of Theorem 2.5: Justify the steps in
the following argument, which proves the Theorem:

(a) If a is not a primitive root, then its order modulo p
is d = (p− 1)/m for some m > 1.

(b)m is divisible by at least one of the qi.

(c) So p−1
m

| p−1
qi

for at least one i.

(d) So a(p−1)/qi ≡ 1 for at least one i.
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Answer to (2.6)

(a) Let d be the order of a modulo p; then d | (p− 1)
and d < (p− 1) since a is not a primitive root, so
p− 1 = dm with m > 1.

(b) Since m > 1, it is divisible by a prime q, and
q = qi for some i since q | p− 1.

(c) qi | m =⇒ p−1
m

| p−1
qi

.

(d)We have a(p−1)/m = ad ≡ 1 (mod p); raise to the
(integer) power m/qi to get a

(p−1)/qi ≡ 1 (mod p).

(2.7) Example: p = 37: p−1 = 36 = 22 ·32 so q1 = 2
and q2 = 3. To test whether a is a primitive root
modulo 37 we thus only need to check that a12 6≡ 1
and a18 6≡ 1. These can be computed in the order

a2, a3 = a · a2, a6 = (a3)2, a12 = (a6)2, a18 = a6 · a12.

Testing a = 2: a2 ≡ 4, a3 ≡ 8, a6 ≡ 82 = 64 ≡ −10,
a12 ≡ (−10)2 = 100 ≡ −11 6≡ 1, a18 ≡ (−10)(−11) =
110 ≡ −1 6≡ 1 (mod 37). So 2 is a primitive root
modulo 37.

(2.8) Example: p = 257: p− 1 = 256 = 28 so q1 = 2
is the only relevant prime, and to test whether a is a
primitive root modulo 257 we thus only need to check
that a128 6≡ 1. We can compute a128 by repeated
squaring.
Testing a = 2: note that p = 28 + 1, so 28 ≡ −1
(mod p) and 216 ≡ 1. So 2 is not a primitive root
modulo 257.
Testing a = 3: we find 32 ≡ 9, 34 ≡ 81, 38 ≡ 812 ≡
136, 316 ≡ (136)2 = −8 = (−2)3, a32 ≡ (−2)6 = 26,
a64 ≡ 212 ≡ −24 (since 28 ≡ −1), a128 ≡ 28 ≡ −1 6≡ 1
(mod 257). So 3 is a primitive root modulo 257.

There are other tricks one can play to find primitive roots modulo primes. It is also
possible to use the theory of primitive roots to prove that large primes really are primes!

Do not assume that p is prime

just because it is called “p”!

(2.9) Let p = 65537 = 216 +1. Given that 32
15

≡ −1
(mod p) (which you do not need to check unless you
really want to), show that p is prime.
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Answer to (2.9) Since 32
15

≡ −1 6≡ 1 (mod p), and
(squaring) 32

16

≡ 1 (mod p), the order of 3 modulo p
divides 216 but does not divide 215, so the order is
exactly 216. So Up contains at least 2

16 = p−1 distinct
elements (the powers of 3). This forces φ(p) = |Up| ≥
p− 1, so in fact φ(p) = p− 1 and p is indeed prime.

Using this method, and a slightly more sophisticated version of it called the Pocklington
Primality Test, it is quite easy to prove that enormous primes p actually are prime,
provided that p − 1 can be factorised. Try looking it up online if you are interested
(there’s a reasonably good article on Wikipedia.)

(2.10) More examples of primitive roots. Find
the smallest primitive root for (a) p = 29; (b) p = 31;
(c) p = 41.

Answer to (2.10)

(a) p− 1 = 28 = 22 · 7, so test a4 and a14.

a = 2 gives a4 ≡ 16 6≡ 1 and a14 ≡ −1, so 2 is a
primitive root modulo 29.

(b) p− 1 = 30 = 2 · 3 · 5, so test a6, a10 and a15.

a = 2 gives a5 ≡ 1 (and also a15 ≡ 1), so 2 is not
a primitive root.

a = 3 gives a6 ≡ −15, a10 ≡ −6 and a15 ≡ −1, so
a = 3 is a primitive root modulo 31.

(c) p− 1 = 40 = 23 · 5, so test a8 and a20.

a = 2 fails since 220 ≡ 1; a = 3 fails since 38 ≡ 1;
a = 5 fails since 520 ≡ 1; but a = 6 passes (68 ≡ 10
and 620 ≡ −1), so 6 is a primitive root modulo 41.

Summary of Section 2

In this section we saw how to test efficiently whether or not a given inte-
ger a is or is not a primitive root modulo a given prime p, based on the
factorization of p− 1.
As an application, we saw how the same technique can be used to prove
that primes are prime, without actually having to try to find factors.
In the next section we’ll move on to considering primitive roots modulo
composite numbers (numbers which are not prime).
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3 Primitive Roots for other moduli
We have seen that every prime modulus has a primitive root, or in other words that
Up is cyclic for prime p. What about Un for composite n? In this section we will prove
that the only numbers n which have primitive roots are n = pe and n = 2pe where p is
an odd prime and e ≥ 1, as well as (trivially) n = 1, 2 and 4. This was proved by Gauss
in his Disquisitiones Arithmeticae.

We will reach this goal by proving some negative statements, of the form

“if n = . . . then n does not have a primitive root”,

and some positive statements of the form

“if n = . . . then n does have a primitive root”.

The negative statements are easier, so we will do those first.

Powers of 2

Check these statements.

U2 = {1} and U4 = {1, 3} are cyclic, while U8 =
{1, 3, 5, 7} is not.
What about larger powers of 2?

(3.1) Multiple square roots

(a) Show that ±1 and ±9 are all solutions to x2 ≡ 1
(mod 16).

(b) Show that ±1 and ±17 are all solutions to x2 ≡ 1
(mod 32).

(c) Can you generalise?

Answer to (3.1) (a) (±1)2 = 1 and (±9)2 ≡ 81 ≡ 1
(mod 16). (b) (±1)2 = 1 and (±17)2 ≡ 289 ≡ 1
(mod 32). (c) Let x = 1+2m−1. Then x2 ≡ 1+2m+
22m−2 ≡ 1 (mod 2m), provided that 2m − 2 ≥ m, or
m ≥ 2. So, provided that m ≥ 3, the congruence
x2 ≡ 1 (mod 2m) has (at least) four distinct solu-
tions, ±(1 + 2m−1) and ±1. (When m = 2 this gives
±3 and ±1 modulo 4, which is only 2 distinct solu-
tions since ±3 ≡ ∓1.)
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Reminder

In a cyclic group of order N , for

every d | N the number of el-

ements of order d is φ(d). We

proved this in the first section of

this Workbook (where?).

(3.2) The last question shows that when m ≥ 3
we have (at least) four distinct solutions to the con-
gruence x2 ≡ 1 (mod 2m), namely x ≡ ±1 and
x ≡ ±(1 + 2m−1). This is enough to show that there
cannot be a primitive root modulo n = 2m! The rea-
son is that if Un were a cyclic group it could have only
1 element of order 2 in it, while we have found three
(−1 and ±(1 + 2m−1)). Hence the following result:

(3.3) Theorem For m ≥ 3, the group U2m is not
cyclic, and n = 2m has no primitive roots.

Taking it further The group U2m , which has order 2m−1 is not cyclic; no element of
the group has order as big as 2m−1. But it is almost cyclic! It has elements of half the
order, namely 2m−2. And in fact 5 always has order 2m−2 modulo 2m (for all m ≥ 2).
This is not too hard to prove: see if you can show, by induction on k ≥ 0, that

52
k

≡ 1 + 2k+2 (mod 2k+3)

and take it from there.

Numbers with at least two prime factors

Leaving odd prime powers to one side for the moment, we now turn our attention to
numbers which are not prime powers, i.e. numbers with two or more (distinct) prime
factors. We will see that (with one type of exception) these never have primitive roots.

One way to see this is to use the “Chinese Remainder theorem Mark V” from Work-
book 2 (see Corollary (3.4) there) and a fact from group theory that the direct product
of two finite groups whose orders are not coprime is never cyclic. But we will work more
directly with congruences instead.

Check that you understand this

(see the following question). It

follows from the Fundamental

Theorem of Arithmetic.

(3.4) Let n ∈ N. If n is not a prime power then there
is a factorization n = n1n2 where n1, n2 > 1 and the
factors n1, n2 are coprime.

(3.5) Find such a factorization for n = 6, n = 100,
n = 250 and n = 2310.

Answer to (3.5) 6 = 2 ·3, 100 = 4 ·25, 250 = 2 ·125,
2310 = 10 · 231 (with many more possibilities in the
last case).
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Properties of φ
Recall (from Workbook 2) what
it means for φ to be multiplica-
tive. We need hcf(n1, n2) = 1
here.

Can you remember why φ(m) is

even for all m ≥ 3?

(3.6) By the multiplicativity of φ we then have
φ(n) = φ(n1)φ(n2). If we further assume that both
n1, n2 ≥ 3 then both φ(n1) and φ(n2) are even. So
we can write

1

2
φ(n) =

(

1

2
φ(n1)

)

φ(n2) = φ(n1)

(

1

2
φ(n2)

)

.

From this it will follow that

a
1

2
φ(n) ≡ 1 (mod n) (*)

for all a coprime to n (improving on Euler’s theorem
for these n) so that n cannot have a primitive root:
no a has order as large as φ(n).
It remains to justify the preceding claim, and to check
exactly which integers n this all applies to.

(3.7) Example Let n = 55 = 5 · 11, so that φ(n) =
φ(5)φ(11) = 4 · 10 = 40. Show that, for all a coprime
to 55,

(a) a4 ≡ 1 (mod 5) and hence a20 ≡ 1 (mod 5);

(b) a10 ≡ 1 (mod 11) and hence a20 ≡ 1 (mod 11);

(c) a20 ≡ 1 (mod 55);

(d) a is not a primitive root modulo 55.

Answers to (3.7) (a) a4 ≡ 1 (mod 5) by Eu-
ler/Fermat since hcf(a, 55) = 1 =⇒ hcf(a, 5) = 1.
Raise to the power 5 to get a20 ≡ 1 (mod 5). (b)
a10 ≡ 1 (mod 11) by Euler/Fermat since hcf(a, 55) =
1 =⇒ hcf(a, 11) = 1. Raise to the power 2 to get
a20 ≡ 1 (mod 11). (c) a20 − 1 is divisible by both 5
and 11, hence also by 55 = 5 ·11, since hcf(5, 11) = 1.
(d) a has order at most 20 < 40 = φ(55) so is not a
primitive root.

(3.8) Theorem Let n = n1n2 where n1, n2 ≥ 3 and hcf(n1, n2) = 1. Then n has no
primitive roots.

(3.9) Proof of Theorem 3.8 As noted above, φ(n) = φ(n1)φ(n2), and both φ(n1), φ(n2)
are even. Let a ∈ N be coprime to n; then a is also coprime to each of n1, n2. Now Euler’s
Theorem modulo n1 gives

aφ(n1) ≡ 1 (mod n1).

21



Raising to the integral power 1
2
φ(n2) gives

a
1

2
φ(n) =

(

aφ(n1)
)

1

2
φ(n2)

≡ 1 (mod n1).

Similarly, a
1

2
φ(n) ≡ 1 (mod n2). Since hcf(n1, n2) = 1 the two congruences together imply

that a
1

2
φ(n) ≡ 1 (mod n). So a has order at most 1

2
φ(n) and is therefore not a primitive

root modulo n.

(3.10) Applying the Theorem Which numbers n
does Theorem 3.8 apply to?

Answer to (3.10) The condition that n = n1n2 with
coprime factors rules out all prime powers, and only
prime powers. The requirement that both factors be
at least 3 rules out just one more type of number,
namely those of the form n = 2pe where p is an odd
primes and e ≥ 1.

Recall the Chinese Remainder

Theorem from Workbook 2.

As an alternative method of proof of Theorem 3.8 you
can also use the same method as we used for powers
of 2: if there is any solution to x2 ≡ 1 (mod n) other
than ±1, then n cannot have a primitive root. To find
such an x when n = n1n2 with n1, n2 coprime and
≥ 3, use the Chinese Remainder Theorem to find
x such that both x ≡ 1 (mod n1) and also x ≡ −1
(mod n2). Details left to the reader!

Summary of “negative” results

The following numbers do not have primitive roots:

• powers of 2 (apart from 2 and 4);

• all numbers which are not of the form pe or 2pe where p is an odd prime and e ≥ 1.

Odd prime powers

We now turn to proving some positive results. We will show that all the numbers not
excluded in the previous subsection actually do have primitive roots.

Let p be an odd prime. We know by Theorem 1.16 that p has a primitive root, say g.
Miraculously, it turns out that this same integer g is (almost) always a primitive root
modulo every power of p, and also (almost) of 2pe.

We deal with the prime powers first, and start with n = p2.
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(3.11) Let p be an odd prime with primitive root g,
and let n = p2. What can we say about the order of g
modulo p2?

(3.12) Show that the order of g modulo p2:

(a) is a divisor of p(p− 1);

(b) is a multiple of p− 1;

(c) is either p− 1 or p(p− 1).

Orders

If g is an element of some group

and has order d, then ge is the

identity if and only d | e. Look

this up if you need to.

Answers to (3.12)

(a) The order divides φ(p2) = p(p − 1) (Lagrange’s
Theorem).

(b) Let the order be d. Then gd ≡ 1 (mod p2) =⇒
gd ≡ 1 (mod p) =⇒ (p− 1) | d.

(c) Since p is prime, the only divisors of p(p−1) which
are multiples of p− 1 are p− 1 and p(p− 1).

So all we need to check to see if g is also a primitive
root modulo p2 is whether gp−1 ≡ 1 (mod p2). Even
if this is the case, it is easy to fix:

(3.13) Theorem Let p be an odd prime and g a
primitive root modulo p.
If gp−1 6≡ 1 (mod p2), then g is a primitive root mod-
ulo p2.
Otherwise, if gp−1 ≡ 1 (mod p2), then g+p is a prim-
itive root modulo p2.

(3.14) Proof of Theorem 3.13 The first part was
proved above, so suppose that gp−1 ≡ 1 (mod p2).
Set g1 = g + p; since g1 ≡ g (mod p), g1 is also a
primitive root modulo p. So we just have to check
that gp−1

1 6≡ 1 (mod p2). Using the binomial expan-
sion,

gp−1
1 = (g + p)p−1 ≡ gp−1 + (p− 1)gp−2p

≡ 1− pgp−2 (mod p2),

which is not 1 since p ∤ g.
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(3.15) Examples modulo prime squares

(a) Show that 2 is a primitive root modulo 9, and also
modulo 25.

(b) Find a primitive root modulo 49.

Answers to (3.15)

(a) 2 is a primitive root modulo 3, and 23−1 = 4 6≡
1 (mod 9). 2 is a primitive root modulo 5, and
25−1 = 16 6≡ 1 (mod 25).

(b) 3 is a primitive root modulo 7 (and 2 is not!), and
37−1 = 36 = 729 = 1 + 7 · 104 6≡ 1 (mod 49) since
7 ∤ 104. So 3 is a primitive root modulo 49.

Once we have a primitive root modulo p2, we are home and dry, since (as we will see)
the same number is then automatically also a primitive root modulo every power of p.

We start with a primitive root g modulo p satisfying gp−1 6≡ 1 (mod p2). As we proved
above, if the first primitive root modulo p fails the second condition, we just add p to
it to get one which passes.

This is the key to the induction argument:

(3.16) Lemma. Let p be an odd prime and g a prim-
itive root modulo p satisfying gp−1 6≡ 1 (mod p2).
Show by induction that for all e ≥ 2,

gp
e−2(p−1) 6≡ 1 (mod pe).

Answer to (3.16) When e = 2 this is the given fact:
gp−1 6≡ 1 (mod p2).
Assume true for e. Since pe−2(p− 1) = φ(pe−1) we do
have gp

e−2(p−1) ≡ 1 (mod pe−1), so we must have

gp
e−2(p−1) = 1 + ape−1

for some a ∈ Z with p ∤ a. Raising both sides to the
power p, and reducing modulo pe+1, gives

gp
e−1(p−1) ≡

(

gp
e−2(p−1)

)p

≡ (1 + ape−1)p

≡ 1 + ape 6≡ 1 (mod pe+1)

as required.
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(3.17) Theorem Let g be a primitive root modulo the prime p, such that gp−1 6≡ 1
(mod p2). Then g is a primitive root modulo pe for all e ≥ 1.

(3.18) Proof of Theorem 3.17 Induction on e: true for e = 1 by hypothesis. Suppose
true for e−1, i.e. that g is a primitive root modulo pe−1. Let d be the order of g modulo pe.
As in an earlier proof, we have that d is a multiple of φ(pe−1) = pe−2(p− 1) and a divisor
of φ(pe) = pe−1(p− 1), hence either d = pe−2(p− 1) or d = pe−1(p− 1). The first case is
ruled out by the Lemma, so the second case holds, and this says that g has order φ(pe)
modulo pe, so g is a primitive root modulo pe.

(3.19) Examples modulo prime powers

(a) Show that 2 is a primitive root modulo 3e and
modulo 5e for all e ≥ 1.

(b) Find an integer g which is a primitive root mod-
ulo 7e for all e ≥ 1.

Answers to (3.19)

(a) 2 is a primitive root modulo 3, and 23−1 = 4 6≡ 1
(mod 9), so 2 is a primitive root modulo 3e for
all e ≥ 1. 2 is a primitive root modulo 5, and
25−1 = 16 6≡ 1 (mod 25), so 2 is a primitive root
modulo 5e for all e ≥ 1.

(b) 3 is a primitive root modulo 7, and 37−1 = 36 =
729 = 1 + 7 · 104 6≡ 1 (mod 49) since 7 ∤ 104. So
3 is a primitive root modulo 7e for all e ≥ 1.

(3.20) And finally. . . The only moduli n for which we have neither proved the existence
of primitive roots nor shown that they do not exist are n = 2pe where p is an odd prime
and e ≥ 1. Since φ(2pe) = φ(2)φ(pe) = φ(pe), the groups Upe and U2pe have the same
order, and it is almost true to say that any g which generates the first (i.e., which is a
primitive root modulo pe) also generates the second. The only problem is that g may be
even and so not even in U2pe !
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(3.21)

(a) We know that 3 is a primitive root modulo 5.
What is the order of 3 modulo 10?

(b)We know that 3 is a primitive root modulo 7.
What is the order of 3 modulo 14?

(c) Given that 6 is a primitive root modulo 41, can
you find a primitive root modulo 82?

(d) Find primitive root modulo 250.

Answer to (3.21) (a) 3 has order 4 = φ(10) mod-
ulo 10, so is a primitive root modulo 10. (b) 3 has
order 6 = φ(14) modulo 14, so is a primitive root
modulo 14. (c) Any odd primitive root modulo 41
will do. The simplest is to take g = 6 + 41 = 47. (d)
We need an odd primitive root modulo 125: g = 3
will do since 34 = 81 6≡ 1 (mod 52).

(3.22) Theorem Let g be a primitive root modulo the prime p, such that g is odd and
gp−1 6≡ 1 (mod p2). Then g is a primitive root modulo 2pe for all e ≥ 1.

(3.23) Proof of Theorem 3.22 By Theorem 3.17 we know that g has order φ(pe)
modulo pe, so the smallest positive exponent k such that gk ≡ 1 (mod pe) is k = φ(pe).
But since gk − 1 is even for all k > 0,

gk ≡ 1 (mod pe) ⇐⇒ gk ≡ 1 (mod 2pe),

so the smallest k such that that gk ≡ 1 (mod 2pe) is also k = φ(pe) = φ(2pe). So g is a
primitive root modulo 2pe.

(3.24) To summarise this subsection: for any odd prime p, take any primitive root g
modulo p. If gp−1 ≡ 1 (mod p2), replace g by g+ p. Then g is a primitive root modulo pe

for all e ≥ 1; if g is odd then g is also a primitive root modulo 2pe for all e ≥ 1, while if
g is even then g + pe is a primitive root modulo 2pe for all e ≥ 1.
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Taking it further

• Just as 5 has almost, but not quite, large enough order to be a primitive root
modulo powers of 2, it is possible to show that for every odd prime p, the number
1 + p has exact order pe−1 modulo pe, for every e ≥ 1. That is not enough for
it to be a primitive root, since a primitive root has to have order pe−1(p − 1). In
fact, p+ 1 generates the subgroup of Upe consisting of the residues congruent to 1
(mod p), which has order pe−1 (just as 5 generates the subgroup of U2e consisting
of the residues which are congruent to 1 (mod 4)).

You can try to prove this, by first proving by induction on e ≥ 2 that

(1 + p)p
e−2

≡ 1 + pe−1 (mod pe).

• It is actually quite hard to find primes p whose smallest primitive root g satisfies
gp−1 ≡ 1 (mod p2). One example is p = 40487, for which g = 5 is the smallest
primitive root and 540486 ≡ 1 (mod 40487).

In the case g = 2, primes p such that 2p−1 ≡ 1 (mod p2) are very special and
also rare: they are called Wieferich primes, after Arthur Wieferich (1909) who
encountered them in trying to prove Fermat’s Last Theorem with exponent p.
Only two are known, but it is an unsolved problem to decide whether or not there
are infinitely many of them! The smallest is p = 1093. Can you find the only other
known example?

Summary of Section 3

In this section we have given a complete answer to the question

which n ∈ N have primitive roots?

The answer is:

n = 1, 2, 4, n = pe and n = 2pe for p any odd prime.

We also saw that (almost) every primitive root modulo p is also a primitive
root modulo pe and 2pe.
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