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1 Moving the action to Z/nZ

Section Targets

(a) To translate the work of the previous workbook
to the ringa

Z/nZ = {0, 1, . . . , n− 1}.

(b) To discuss

• the concept of a unit in Z/nZ;

• the fact that these units form a group, Un;

• Euler’s phi-function φ, which gives the order
of this group;

• Euler’s Theorem; and a special case,

• Fermat’s Little Theorem.

aA ring is a set R with 2 binary operations: addition (+)
and multiplication (juxtaposition). (R,+) has to be a com-
mutative group, and the distributive laws must hold. Keep in
mind Z as a prototype of a ring.

The congruence,

ax ≡ b (mod n) (1.a)

means that ax and b belong to the same congruence
class and so nZ + ax = nZ + b. The rule for mul-
tiplying congruence classes (see (1.9) of WB1) gives
nZ+ax = (nZ+a)(nZ+x), and if we suppose WLOG
that a, x and b lie between 0 and n− 1 and then use
the label a for the class nZ + a, etc. the congruence
(1.a) can be rewritten

a×n x = b (1.b)

with a, x, b ∈ {0, 1, . . . , n− 1}.
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Change of notation Let’s now agree to abandon the
fastidious notation +n and ×n and revert to the more
familiar + (for addition in Z/nZ as well as in Z) and
juxtaposition (for multiplication in Z/nZ as well as in
Z). It will introduce ambiguity, but we will usually be
able to see from the context whether we are working
in Z/nZ or in Z. In this section, the emphasis will be
on Z/nZ for some fixed n ∈ N. The above translation
from ‘congruences in Z’ to ‘equations in Z/nZ’ means
we can rewrite Theorem 2.11 of WB1 as follows.

(1.1) Theorem Let n ∈ N and let a, b ∈ Z/nZ.
Then the equation,

ax = b (1.c)

has a solution x ∈ Z/nZ if and only if (now regarding
a and b as integers) hcf{a, n} divides b.

Definition: The elements
u ∈ Z/nZ such that uv = 1 for
some v ∈ Z/nZ are called the
units of Z/nZ.

Notice that unless n = 1, the ele-

ment 0 can never be a unit, which

is why we look for units in the

multiplication table of (Z/nZ)∗,

rather than in that of Z/nZ

(1.2) Question about addition and multiplica-
tion in Z/nZ

(a) Complete the multiplication table for (Z/nZ)∗ =
Z/nZ\{0} when n = 4 and n = 6 (you did n = 5
in WB 1).

(b) Using the multiplication tables, list all the ele-
ments u in Z/nZ for which uv = 1 for some v in
Z/nZ when n = 4, 5 and 6.
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Observe that in the multiplica-

tion table of (Z/nZ)∗, every row

and every column contains either

a 1 or a 0 but not both. Why do

you think this is?

Answers to (1.2)

(a)(i) ×4 1 2 3
1 1 2 3
2 2 0 2
3 3 2 1

(ii) ×6 1 2 3 4 5
1 1 2 3 4 5
2 2 4 0 2 4
3 3 0 3 0 3
4 4 2 0 4 2
5 5 4 3 2 1

continued. . .

(b) To find the pairs u and v with uv = 1, we look
for 1’s in the multiplication tables:

(i) 1 and 3 are the units of Z/4Z

(ii) 1, 2, 3 and 4 are all units of Z/5Z

(iii) 1 and 5 are the units of Z/6Z

An element u in Z/nZ is a unit iff the equation ux = 1
has a solution. By Theorem 1.1 this happens if and
only if hcf{u, n} = 1; the solution is then unique (in
Z/nZ), and is called the inverse of u. So we know
exactly what the units of Z/nZ are.

(1.3) Proposition The units of Z/nZ are those el-
ements u ∈ {1, 2, . . . , n− 1} such that hcf{u, n} = 1.

(1.4) Notation For n ≥ 2, we will denote the set of
units of Z/nZ by Un. Thus

Un = {u | 1 ≤ u < n and hcf(u, n) = 1};

u ∈ Un if and only if hcf{u, n} = 1.
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(1.5)

(a) Show that Un 6= ∅ for n ≥ 2

(b)Write down the units of

(i) Z/8Z (ii) Z/9Z (iii) Z/10Z.

(c) Use the empty tables in the answer box below to
fill in multiplication tables for U8,U9,U10. Hence
find the inverse of each unit in each case.

(d) For each unit u in U8, work out the smallestm ≥ 1
such that um = 1 (the order of u).

(e) Now do the same for U10.

In Z/1Z we find that 1 = 0,

so the concept of a unit gets a

bit silly. Notice that the entries

in these tables all belong to Un

(n = 8, 9, 10). Thus multiplica-

tion is a binary operation on Un.

Why?

Answers to (1.5)

(a) If n ≥ 2, then 1 is a unit in Z/nZ.

(b)(i) The units in Z/8Z are the elements in
{1, 2, . . . , 7} which are coprime to 8, in other
words, the odd numbers 1, 3, 5 and 7.

(ii) U9 = {1, 2, 4, 5, 7, 8}
(iii) U10 = {1, 3, 7, 9}

(c)

×8 1 3 5 7
1 1 3 5 7
3 3 1 7 5
5 5 7 1 3
7 7 5 3 1

×10 1 3 7 9
1 1 3 7 9
3 3 9 1 7
7 7 1 9 3
9 9 7 3 1

×9 1 2 4 5 7 8
1 1 2 4 5 7 8
2 2 4 8 1 5 7
4 4 8 7 2 1 5
5 5 1 2 7 8 4
7 7 5 1 8 4 2
8 8 7 5 4 2 1

Thus in U8 each element is its own inverse; in
U9 the inverse pairs are {(1, 1), (2, 5), (4, 7), (8, 8)}
and in U10 they are {(1, 1), (3, 7), (9, 9)}.

(d) The non-identity units in Z/8Z all have order 2
(note the 1’s down the diagonal).

(e) In Z/10Z 1 has order 1, 9 has order 2, while 3 and
7 have order 4.

4



In the previous question we saw that the product of
two units in Z/nZ, (n = 8, 9, 10) is another unit. The
reason is not hard to find. Let u1 and u2 be units in
Z/nZ . Then u1v1 = 1 = u2v2 for suitable v1, v2 in
Z/nZ . Hence

(u1u2)(v1v2) = u1v1u2v2 = 1,

and it follows that u1u2 is also a unit in Z/nZ, with
inverse v1v2. We have therefore justified the follow-
ing.

(1.6) Proposition Multiplication on Un is a binary
operation; in other words, Un is closed under multi-
plication.

Note that when uv = 1 then both

u and v are in Un.

Evidently (Un,×) has a neutral (or identity) element
1, and every element u has an inverse v such that
uv = vu = 1. The associative law for Un follows
from the corresponding law for multiplication in Z.
To spell this out in detail,

A similar argument shows that

the commutative law for Un

(uv = vu) follows from the cor-

responding law for multiplication

in Z.

(uv)w = ((nZ+ u)(nZ+ v))(nZ+ w)

= (nZ+ uv)(nZ+ w)

= nZ+ (uv)w

= nZ+ u(vw)

= (nZ+ u)(nZ+ vw)

= (nZ+ u)((nZ+ v)(nZ+ w))

for all u, v, w,∈ Un. We have therefore justified the
following theorem.

(1.7) Theorem If n ≥ 2, the set Un is a commu-
tativea group with respect to the binary operation of
multiplication in Z/nZ.

aRecall that a group satisfying the commutative law is
called abelian after the Norwegian mathematician, Niels Hen-
rik Abel (1802-1829)

The order |Un| of Un (i.e. the number of elements in
Un) is given by Euler’s so-called phi-function,

φ : N −→ N

which is defined as follows:
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(1.8) Definition

(a) An integer m is said to be relatively prime (or
coprime) to an integer n if hcf{m,n} = 1.

(b) For all n ∈ N, the value of φ(n) is the number
of positive integers not exceeding n that are rela-
tively prime to n. In symbols, we have

φ(n) = |{m ∈ N : m ≤ n, hcf{m,n} = 1}|

We note in particular the following consequences
of this definition:

(1.9) Corollary

(a) φ(1) = 1, and

(b) for n ≥ 2, the value of φ(n) is equal to |Un|, the
order of the group of units of Z/nZ.

Two groups G and H are iso-

morphic if there is a bijection

f : G → H such that f(g1g2) =

f(g1)f(g2) for all g1, g2 ∈ G.

This is equivalent to saying that

there is a way of pairing off their

elements so that their multiplica-

tion tables look the same.

(1.10) Questions on φ(n)

(a) Work out φ(n) for 1 ≤ n ≤ 24.

(b)Write down the values of n in (a) with φ(n) =
n− 1.

(c) What do you notice about the answer in (b)?

(d)Work out the orders of each of the elements in U5

and U10.

(e) We can identify U5 as a cyclic group by writing:

U5 = {1, 2, 3, 4} = {20, 21, 22, 23}

(since 23 = 3). Write U10 in a similar way and
show that the groups U5 and U10 are isomorphic.
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Part (d) of (1.10) is a special case

of the fact that two cyclic groups

of the same order are isomorphic.

If G = {gi : 0 ≤ i ≤ n − 1} and
H = {hi : 0 ≤ i ≤ n − 1}then
the map f : gi → hi is an iso-

morphism.

Answers to (1.10)

(a)
n 1 2 3 4 5 6 7 8

φ(n) 1 1 2 2 4 2 6 4

n 9 10 11 12 13 14 15 16
φ(n) 6 4 10 4 12 6 8 8

n 17 18 19 20 21 22 23 24
φ(n) 16 6 18 8 12 10 22 8

(b) n = 2, 3, 5, 7, 11, 13, 17, 19, 23

(c) They are precisely the prime values of n.

(d) In U5, 1 has order 1, 2 and 3 have order 4, and 4
has order 2. In U10, 1 has order 1, 3 and 7 have
order 4, and 9 has order 2.

(e) U10 = {1, 3, 7, 9} = {30, 31, 32, 33}, so the map
f : U5 → U10 defined by f(2i) = 3i is the desired
isomorphism.

Look for Lagrange’s Theorem

in your Foundations (Sets and

Groups) notes.

Recall: The order of a group
is the number of elements in the
group. The order of a group el-
ement g is the smallest natural
number m such that gm = 1.
Consequently, the order of g is
also the order of

〈g〉 = {1, g, g2, . . . , gm−1},

the subgroup generated by g.

If g is an element of order m in a group G (i.e.
gm = 1), the powers 1, g, g2, . . . , gm−1 of g form a
subgroup of G with m elements. (This is called the
cyclic subgroup generated by g and is sometimes de-
noted by 〈g〉.) Lagrange’s Theorem states that the
order of a subgroup divides the order of the parent
group. Hence m = |〈g〉| divides |G| and so

the order of a group is divisible by the orders of
each of its elements.

A special case of this states that if u is a unit in Z/nZ,
then the order m of u divides the order φ(n) of the
group of units Un, in other words, φ(n) = mm′ for
somem′ ∈ N. In particular, uφ(n) = umm′

= (um)m
′

=
1m

′

= 1. This is the content of our next result.

(1.11) Euler’s Theorem

(a) If u is a unit in Z/nZ, then uφ(n) = 1.

(b) For any integer m relatively prime to n,

mφ(n) ≡ 1 (mod n)
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Part (b) of (1.11) is simply a restatement of part (a)
in the language of congruences. If m = kn + m0,
then hcf{m,n} = hcf{m0, n} (convince yourself of
this). Suppose that hcf{m,n} = 1 and let m0 denote
the remainder when m is divided by n (1 ≤ m0 < n).
Then

mφ(n) ≡ m
φ(n)
0 (mod n) (1.d)

and regarding m0 as an element of Un (since
hcf{m0, n} = 1), we have the following equation in
Z/nZ:

m
φ(n)
0 = 1.

This equation can be written in the notation of con-
gruences (with m0 ∈ Z) thus:

m
φ(n)
0 ≡ 1 (mod n). (1.e)

Part (b) is now the conjunction of the congruences
(1.d) and (1.e).

The special case when n is prime Now let n = p,
a prime. If 1 ≤ u ≤ p − 1, evidently hcf{u, p} = 1
and therefore

Up = {1, 2, . . . , (p− 1)}

and φ(p) = p−1. (you may have observed in (1.10)(c)
that φ(p) = p−1 in the case when p is a prime). This
gives the following special case of Euler’s Theorem;

Notation

p ∤ m means ‘p does not divide

m’.

(1.12) Fermat’s Little Theorem Let p be a prime.

(a) If p ∤ m, then

mp−1 ≡ 1 (mod p).

(b) For all integers m

mp ≡ m (mod p).

Example

216 ≡ 1 (mod 17). Equivalently,

217 ≡ 2 (mod 17), i.e. 17 divides

217 − 2. Check this on your cal-

culator.

If p ∤ m, then hcf{m, p} = 1, so part (a) follows
directly from Euler’s Theorem. Multiplying by m
gives part (b) also (when p ∤ m). When p | m then
part (b) holds trivially since both sides ≡ 0 (mod p).
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Remark There are many proofs of Fermat’s Little Theorem. Here are two more in outline.

(a) Prove (1.12)(b) by induction on m. The induction step uses (i) the binomial theorem

(m+ 1)p − (m+ 1) =

(mp −m) +p C1m
p−1 +p C2m

p−2 + . . .+p Cp−1m

and also the fact that (ii) when p is a prime, the binomial coefficient pCr is divisible
by p when 1 ≤ r ≤ p− 1.

(b) If p ∤ m, then hcf{p,m} = 1, and by WB1, {m, 2m, . . . , (p− 1)m} is a complete set of
residues mod p. Hence

m× . . .× (p− 1)m ≡ 1× 2× . . .× (p− 1) (mod p)

or
mp−1(p− 1)! ≡ (p− 1)! (mod p)

whence p divides (p − 1)!(mp−1 − 1). Since p does not divide (p − 1)!, we can cancel
the factor of (p− 1)! to get mp−1 ≡ 1 (mod p).

(1.13) Question Requiring Fermat’s Little
Theorem Suppose p is an odd prime. Show that

1p + 2p + . . .+ pp ≡ 0 (mod p)

Answer to (1.13) We have

1p + 2p + . . .+ pp ≡ 1 + 2 + . . .+ p (mod p)

= p
(p+ 1)

2
≡ 0 (mod p)

since p is odd and so (p+ 1)/2 is an integer.
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Summary of Section 1

• We saw how to switch between congruences in Z and equations in
Z/nZ = {0, 1, . . . , n− 1}.

• We investigated the elements u in Z/nZ for which uv = 1 for some
v ∈ Z/nZ. These units form a group Un with respect to multiplication.

• The order of the group is φ(n) equals the number of integersm coprime
with n in the range 1 ≤ m ≤ n.

• Lagrange’s Theorem tells us that the multiplicative orders of the units
in Z/nZ divide the group order |Un| = φ(n), which translated into
the language of congruences implies that mφ(n) ≡ 1 (mod n) when
hcf{m,n} = 1. This is known as Euler’s Theorem.

• Fermat’s Little Theorem, which states that mp ≡ m (mod p) for all
primes p and for all m ∈ Z, is a special case of Euler’s Theorem.
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2 The Chinese Remainder Theorem
Section Targets

(a) To consider solutions to simultaneous congruences
of the form

{

x ≡ a (mod m)

x ≡ b (mod n)

for given a, b ∈ Z and m,n ∈ N:

•to establish a criterion for solubility;

•to give a method of solution.

(b) To show that there is a bijection

Z/mnZ ∼= Z/mZ× Z/nZ

(which is an isomorphism of rings) when m and n
are coprime.

Let m,n ∈ N. We want to see when we can find a
single number x ∈ Z satisfying simultaneously both
x ≡ a (mod m) and x ≡ b (mod n), when a, b are
given integers.

(2.1) Question about simultaneous congru-
ences

(a) Do x ≡ 0 (mod 2) and x ≡ 1 (mod 2) have a
simultaneous solution?

(b) Do x ≡ 6 (mod 10) and x ≡ 7 (mod 10) have a
simultaneous solution?

(c) Do x ≡ 6 (mod 10) and x ≡ 7 (mod 16) have a
simultaneous solution?

(d) Do x ≡ 6 (mod 10) and x ≡ 8 (mod 16) have a
simultaneous solution?

(e) Let c = 6a − 5b. Show that c ≡ a (mod 5) and
c ≡ b (mod 6). What does this tell you about the
simultaneous congruences x ≡ a (mod 5), x ≡ b
(mod 6)?
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Answer to (2.1)

(a) No: since if such an x existed then 0 ≡ x ≡ 1
(mod 2), which is a contradiction.

(b) No: since 6 6≡ 7 (mod 10).

(c) No: since x ≡ 6 (mod 10) implies x ≡ 6 ≡ 0
(mod 2), while x ≡ 7 (mod 16) implies x ≡ 7 ≡ 1
(mod 2), and these are again incompatible.

(d) Yes: x = 56, for example.

(e) c−a = 5(a−b) ≡ 0 (mod 5) and c−b = 6(a−b) ≡
0 (mod 6). There is always at least one solution,
given by x = c.

These examples show that some condition is neces-
sary for two congruences to have a simultaneous so-
lution. In fact there is a rather obvious necessary
condition, which turns out to be sufficient!

(2.2) Chinese Tables

(a) Fill in the table with the integers a, 0 ≤ a < 12
so that a goes in the row labelled a (mod 3) and
in the column labelled a (mod 4):

0 1 2 3 (mod 4)
0 6

(mod 3) 1 10
2 2

(b) Repeat with a (mod 3) and a (mod 5) for 0 ≤
a < 15:

0 1 2 3 4 (mod 5)
0

(mod 3) 1
2

(c) What happens if you try to put the a with 0 ≤
a < 24 into a 4× 6 table in the same way?

0 1 2 3 4 5 (mod 6)
0

(mod 4) 1
2
3
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Answers to (2.2)

(a)

0 1 2 3 (mod 4)
0 0 9 6 3

(mod 3) 1 4 1 10 7
2 8 5 2 11

(b)

0 1 2 3 4 (mod 5)
0 0 6 12 3 9

(mod 3) 1 10 1 7 13 4
2 5 11 2 8 14

(c)

0 1 2 3 4 5
0 0,12 8,20 4,16

(mod 4) 1 1,13 9,21 5,17
2 6,18 2,14 10,22
3 7,19 3,15 11,23

All goes well for 0 ≤ a < 12 but then for 12 ≤
a < 24 the same spots are needed again; half the
spots are not filled at all, and half are filled twice
over.

The next question establishes the necessary condition
for simultaneous congruences to have a solution.

(2.3) Establishing the necessary condition

(a) Let h | m. Show that x ≡ a (mod m) ⇒ x ≡ a
(mod h).

(b) Let h = hcf(m,n). Show that x ≡ a (mod m)
and x ≡ b (mod n) together imply a ≡ b
(mod h).

Answers to (2.3)

(a) h | m and m | (x− a), so h | (x− a).

(b) From (a), x ≡ a (mod h) and x ≡ b (mod h), so
a ≡ x ≡ b (mod h).
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Hence a necessary condition for the simultaneous solubility of x ≡ a (mod m) and x ≡ b
(mod n) is a ≡ b (mod h) where h = hcf(m,n). This condition is vacuous when h = 1,
i.e. when the moduli m,n are coprime. This case is the simplest.

(2.4) Theorem: Chinese Remainder Theorem Mark I Let m,n ∈ N be coprime.
Then

(a) For all a, b ∈ Z the simultaneous congruences

{

x ≡ a (mod m)

x ≡ b (mod n)

have a solution x ∈ Z.

(b) If x1, x2 are both solutions then x1 ≡ x2 (mod mn).

Proof

(a) Since hcf(m,n) = 1 there exist u, v ∈ Z such that mu+ nv = 1 (Extended Euclidean
Algorithm). Set x = bmu+ anv. Then x is a solution:

x− a = bmu+ a(nv − 1) = (b− a)mu ≡ 0 (mod m)

and similarly x− b ≡ 0 (mod n).

(b) x1 ≡ a ≡ x2 (mod m) and similarly x1 ≡ x2 (mod n). So x1 − x2 is divisible both
by m and by n. Since m and n are coprime it is also divisible by mn.

Example Let m = 15 and n = 38, Using the EEA (see WB1) we solve mu + nv = 1 to
get u = −5, v = 2: 1 = −5m+ 2n = −75 + 76. Now x = 76a− 75b satisfies

x− a = 75(a− b) ≡ 0 (mod 15);

x− b = 76(a− b) ≡ 0 (mod 38).

For example, if a = 7 and b = 8 we find x = 76 · 7− 75 · 8 = 532− 600 = −68, and indeed
−68 ≡ 7 (mod 15) and −68 ≡ 8 (mod 38). The general solution is x ≡ −68 (mod 570)
(since 15 · 38 = 570), and the least positive solution is x = −68 + 570 = 502, so we may
also write the general solution as x ≡ 502 (mod 570).

(2.5) Practice with CRT Let m = 20 and n = 17.
Write down a formula for the general solution x to
the simultaneous congruences x ≡ a (mod 20) and
x ≡ b (mod 17), in terms of a and b. Hence find the
least positive solution when (a, b) = (5, 2) and when
(a, b) = (11, 9).
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Answer to (2.5) The EEA gives 20u+17v = 1 with
u = 6 and v = −7, so 1 = 20 · 6− 17 · 7 = 120− 119.
So x ≡ 120b−119a (mod 340) is the general solution
(since 340 = 20 · 17).
When (a, b) = (5, 2) we have x = 120 · 2 − 119 · 5 =
240 − 595 = −355 ≡ −15 ≡ 325 (mod 340): so x =
325 is the least positive solution.
When (a, b) = (11, 9) we have x = 120 · 9− 119 · 11 =
1080− 1309 = −229 ≡ 111 (mod 340): so x = 111 is
the least positive solution.

(2.6) We now turn to the general case, where the
moduli are not (necessarily) coprime. We saw above
that a necessary condition for a solution to exist is
that a ≡ b (mod h) where h = hcf(m,n). This turns
out to be also sufficient.

(2.7) Theorem: Chinese Remainder Theorem Mark II Let m,n ∈ N and h =
hcf(m,n). Let a, b ∈ Z. Then the simultaneous congruences

{

x ≡ a (mod m)

x ≡ b (mod n)

have a solution x ∈ Z if and only if a ≡ b (mod h); any two solutions are congruent
modulo l = lcm(m,n).

Make sure that you can prove the

fact used in (b)!

(2.8) Proof of CRT II Prove this by filling in the
details of this sketch:

(a) Writing h = mu + nv with u, v ∈ Z, set x =
(anv+bmu)/h. Show that x ∈ Z and is a solution
provided that h | (b− a).

(b) For the last part, use the fact that any integer
divisible by both m and n is also divisible by their
lcm.
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Answer to (2.8) Write h = hcf(m,n) in the form
h = mu + nv with u, v ∈ Z, which is possible by
the Extended Euclidean Algorithm (EEA). Set x =
(anv + bmu)/h as suggested. Now

h | n, h | m =⇒ x = a(n/h)v + b(m/h)u ∈ Z,

m | x− a since

x−a =
a(nv − h) + bmu

h
=

a(−mu) + bmu

h
= mu

b− a

h

and h | b− a, and similarly n | x− b since

x−b = anv + b(mu− h)

h
=

anv + b(−nv)
h

= nv
a− b

h
.

Hence x is a solution.
Now suppose that x1, x2 are both solutions. Then
x1 ≡ a ≡ x2 (mod m) and x1 ≡ b ≡ x2 (mod n), so
x1 − x2 is a common multiple of m and n. But every
common multiple of two integers m,n is a multiple of
their least common multiple l = lcm(m,n), so x1 ≡
x2 (mod l).

(2.9) Solve the following simultaneous congruences
(or show that they have no solutions). In each case
express the answer as a single congruence to an appro-
priate modulus, and give the least positive solution.

(a)

{

x ≡ 4 (mod 6)

x ≡ 13 (mod 15)

(b)

{

x ≡ 7 (mod 10)

x ≡ 4 (mod 15)

(c)

{

x ≡ 10 (mod 60)

x ≡ 80 (mod 350)

(d)

{

x ≡ 2 (mod 910)

x ≡ 93 (mod 1001)
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To save space the details of the

EEA computations have been

omitted.

Answers to (2.9)

(a) x ≡ 28 (mod 30); x = 28.

(b) No solutions since 7 6≡ 4 (mod 5).

(c) x ≡ 430 (mod 2100); x = 430.

(d) x ≡ 9102 (mod 10010); x = 9102.

(2.10) We complete this section by giving a new view of the Chinese Remainder Theorem
which goes far beyond its role so far as a tool for solving congruences: it will enable us
to determine the structure of Z/nZ (as a ring) and Un (as a group), by reducing to the
case where n is a prime power.

Look back at Question (2.2). This illustrates the following result.

(2.11) Chinese Remainder Theorem Mark III Let m,n ∈ N be coprime. Then there
is a bijection

Z/mnZ←→ Z/mZ× Z/nZ

given by a (mod mn) 7→ (a (mod m), a (mod n)).

(2.12) Proof of (2.11) Check that the map is well-
defined. Show that it is surjective and injective using
the existence and uniqueness parts of Theorem (2.4)
respectively.

Answer to (2.12) a ≡ a′ (mod mn) =⇒ mn |
(a − a′) =⇒ m | (a − a′), n | (a − a′) =⇒ a ≡ a′

(mod m), (mod n).
Theorem (2.4)(a) shows that every (a (mod m), b
(mod n)) is the image of some x (mod mn), and
part (b) shows that this x is unique (as an element
of Z/mnZ).

(2.13) Convince yourself that the map in Theorem
(2.11) preserves both addition and multiplication in
the groups on both sides. (On the right-hand-side the
operations are defined component-wise).

17



Answer to (2.13) It is clear from the definition
in WB1 that the map Z/mnZ → Z/mZ defined by
a (mod mn) 7→ a (mod m) preserves both addition
and multiplication. Similarly with n in place of m.
That suffices, since the operations on Z/mZ× Z/nZ
are component-wise.

So the bijection between the rings Z/mnZ and Z/mZ× Z/nZ mapping

a (mod mn) 7→ (a (mod m), a (mod n))

preserves both the ring operations of addition and multiplication. Such a map is called a
ring isomorphism, so a fancier way of stating what we have proved is this:

(2.14) Corollary: Chinese Remainder Theorem Mark IV Letm,n ∈ N be coprime.
Then

Z/mnZ ∼= Z/mZ× Z/nZ

as an isomorphism of rings.

By writing n as a product of prime powers, we obtain the following version:

(2.15) Corollary Let n ∈ N have prime factorization n = pe11 pe22 . . . pekk where p1 < p2 <
· · · < pk are prime and all ei ≥ 1. Then

Z/nZ ∼= Z/pe11 Z× Z/pe22 Z× · · · × Z/pekk Z.

In the next section we will see how the CRT can also apply to the unit groups Un. This
will help us find a formula for φ(n), the order of the group Un.

Projects for further investigation

I. Look at simultaneous solutions to 3 or more congruences x ≡ ai (mod ni) for i =
1, 2, . . . . What conditions on the moduli guarantees a solution for all ai?

II. Consider natural numbers n 6= 0, 1 with at most d digits such that n2 ends in the
same d digits as n. For example, when d = 1, only n = 5 and n = 6 have this property;
when d = 2, both n = 25 (with n2 = 625) and n = 76 (with n2 = 5776) do. Are there
any others for d = 2? How many are there for larger d? Can you find them? Can you
spot any patterns?

This involves looking for solutions of n2 ≡ n (mod 10d) other than n = 0, 1. You
should first try to solve n2 ≡ n (mod 2d) and n2 ≡ n (mod 5d), and then use CRT to
put the solutions together to give solutions modulo 10d.
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Summary of Section 2

• We found a criterion for the solubility of pairs of simultaneous con-
gruences.

• We gave a method (based on the EA) for solving simultaneous con-
gruences, including the general solution.

• We interpreted these results as a ring isomorphism between Z/mnZ

and Z/mZ× Z/nZ when m,n are coprime.

• We discovered that the same name (Chinese Remainder Theorem)
may be used to label many different, related results.
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3 Calculating φ(n)

Section Targets

(a) To show that, when m,n are coprime,

Umn
∼= Um × Un

(isomorphism of groups: see page 6).

(b) To show that φ(n) has the important property of
being multiplicative.

(c) To derive a simple formula for φ(n) from this
property.

(3.1) In the tables of Question (2.2)(a,b), circle the
entries a which are coprime tomn (wherem and n are
the numbers of rows and of columns). Also circle the
row labels which are coprime to m and the column
labels which are coprime to n. What do you notice?

Answers to (3.1) A table entry is circled (boxed
here, since I do not know how to circle things in
LATEX!) if and only if its row and column labels are
both labelled.

(a)

0 1 2 3 (mod 4)

0 0 9 6 3

(mod 3) 1 4 1 10 7

2 8 5 2 11

(b)

0 1 2 3 4 (mod 5)

0 0 6 12 3 9

(mod 3) 1 10 1 7 13 4

2 5 11 2 8 14

This suggests the following general result, which is
easy to prove.
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(3.2) Let m,n ∈ N be coprime, let a, b ∈ Z and
let x = c be any solution to the simultaneous con-
gruences x ≡ a (mod m), x ≡ b (mod n). Show
that hcf(c,mn) = 1 ⇐⇒ hcf(a,m) = 1 and
hcf(b, n) = 1.

Answer to (3.2)

hcf(c,mn) = 1 ⇐⇒ hcf(c,m) = 1 and hcf(c, n) = 1

⇐⇒ hcf(a,m) = 1 and hcf(b, n) = 1

where in the first line we use (1.6), and in the second
the fact that hcf(a,m) only depends on a (mod m) so
that hcf(a,m) = hcf(c,m) (and similarly modulo n).

This means that in the bijection Z/mnZ↔ Z/mZ×Z/nZ, units on the left correspond
to pairs of units on the right. In other words, the bijection restricts to a bijection
Umn ↔ Um×Un. And since this bijection respects the group operation (multiplcation)
on both sides, it is in fact a group isomorphism:

(3.3) Corollary: Chinese Remainder Theorem Mark V Let m,n ∈ N be coprime.
Then

Umn
∼= Um × Un

as an isomorphism of groups.

(3.4) Theorem: Multiplicativity of φ Let m,n ∈ N be coprime. Then

φ(mn) = φ(m)φ(n).

Counting products
Make sure that you understand
why

|A×B| = |A| · |B|

for all finite sets A,B, and also
why

|A| = |A′|

when there is a bijection from A

to A′.

(3.5) Do you see why Theorem 3.4 follows immedi-
ately from Theorem 3.3? If not, see the side panel.
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(3.6) Theorem 3.4 states that the function φ : N → N is
multiplicative. It would be nice if ‘being multiplica-
tive’ meant that

n = ab⇒ φ(n) = φ(a)φ(b)

but it does not! It only means that

n = ab with a, b coprime⇒ φ(n) = φ(a)φ(b)

(3.7) Definition A function f : N → N is said to be multiplicative if f(ab) = f(a)f(b)
for every pair of coprime numbers a and b.

Pattern?

Note the cases where φ(ab) really

is equal to φ(a)φ(b), and those

where φ(ab) 6= φ(a)φ(b). What

is the pattern?

(3.8) Questions on φ(ab)

(a) Work out φ(2), φ(4), φ(8). Is φ(2)φ(4) = φ(8)?

(b)Work out φ(3), φ(6), φ(12). which of the following
(if any) is equal to φ(24):
(i) φ(2)φ(12), (ii) φ(3)φ(8), (iii) φ(4)φ(6).

(c) In the following two cases write down all the fac-
torisations, n = ab and decide whether φ(ab) =
φ(a)φ(b):
(i) n = 30, (ii) n = 72

(d)Which of your factorisations 72 = ab satisfy
hcf{a, b} = 1?

Answers to (3.8) (a) φ(2) = 1, φ(4) = 2, φ(8) =
4, φ(2)φ(4) = 2 6= φ(8) (b) φ(3) = 2, φ(6) =
2, φ(12) = 4. (i) φ(2)φ(12) = 4 6= 8 = φ(24) (ii)
φ(3)φ(8) = 8 = φ(24) (iii) φ(4)φ(6) = 4 6= φ(24)
(c)(i) 30 = 1×30 = 2×15 = 3×10 = 5×6 (and 4 more
interchanging a and b). φ(30) = 8 = φ(1) × φ(30) =
φ(2) × φ(15) = φ(3) × φ(10) = φ(5) × φ(6) (ii)
72 = 1×72 = 2×36 = 3×24 = 4×18 = 6×12 = 8×9
(and 6 more interchanging a and b). φ(72) = 24 =
φ(1)×φ(72) = φ(8)×φ(9) are the only factorisations
which work. (d) 72 = 8 × 9 is the only nontrivial
‘coprime’ factorisation.

Using the multiplicativity of φ we will now derive a
formula for it.

22



Factorisation

The formula for φ(n) involves

knowing all the prime factors of

n. On the 1997 Number The-

ory exam, a number of candi-

dates could not factorise 22500

into prime powers.

(3.9) Question on Prime Factorisation

(a) Factorise each of the following numbers into a
product of primes:

64, 72, 168, 2419

(b) Factorise each of the following numbers into a
product of prime powers:

96, 168, 22500

(c) Which of the following numbers are prime:

169, 1231, 28891

Recall that n is prime if and only

if it fails to be divisible by all

primes p satisfying 2 ≤ p ≤ √n.

Answers to (3.9) (a)

64 = 2× 2× 2× 2× 2× 2

72 = 2× 2× 2× 3× 3

168 = 2× 2× 2× 3× 7

2419 = 41× 59

(b) 96 = 25×3; 168 = 23×3×7; 22500 = 22×32×54

(c) 169 = 13× 13; 1231 is prime; 28891 = 167× 173

Primes Even though you only have to check primes
up to

√
n, you will have noticed from (c) that it

is hard work to check whether a given number n is
prime.

By repeated application of this Theorem, we obtain the following:

(3.10) Corollary If the natural number n has a factorisation

n = pα1

1 pα2

2 . . . pαt

t

into powers of distinct primes, then

φ(n) = φ (pα1

1 )φ (pα2

2 ) . . . φ (pαt

t )

(3.11) Example

φ(36) = φ(22)φ(32) = φ(4)φ(9) = 2× 6 = 12 .

To complete our task of finding a formula for φ(n) we therefore just need to find φ(n)
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in the case where n is a prime power n = pα.

Warning
A lot of candidates in the 1997
examination very wrongly as-
sumed that

φ (pα) = φ(p)α

Since φ(2) = 1 and φ(4) =

φ(22) = 2, this cannot be the

case!

(3.12) Questions on φ (pα)

(a) Write down the numbers 1 to 24. Cross out the
ones that are not coprime with 24. How many are
left. Which ones did you delete?

(b) Now try to work out φ(25), φ(32), φ(34), φ(73).
Look for a pattern in the numbers you delete that
gives you a shortcut to the answer.

Answers to (3.12) (a) 1, 62, 3, 64, 5, 66, 7, 68, 9, 610, 11,
612, 13, 614, 15, 616. Eight are left – you deleted all the
even numbers. (b) φ(25) = 24;φ(32) = 6;φ(34) =
34 − 33;φ(73) = 73 − 72.

You may have already noticed that a number is not coprime with pα if and only if it is
divisible by p. Thus the following numbers in the range 1 to pα are not coprime with
pα:

p, 2p, 3p, . . . , p2, p2 + p, p2 + 2p, . . . , pα

One in every p is not coprime with pα; in other words pα/p = pα−1 are not coprime with
pα. Hence pα − pα−1 are coprime with pα. You should be convinced, therefore, that

(3.13) Lemma If p is a prime and α a natural number, then

φ (pα) = pα − pα−1 = pα−1(p− 1) = pα
(

1− 1

p

)

We now combine this lemma and the preceding corollary to produce a theorem that
enables us to easily calculate φ(n) for any n.

(3.14) Theorem For any natural number n,

φ(n) = n
∏

p prime

p|n

(

1− 1

p

)
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Proof If n = pα1

1 pα2

2 . . . pαt

t is the prime power decomposition of n, then

φ(n) = φ (pα1

1 ) . . . φ (pαt

t )

= pα1

1

(

1− 1

p1

)

pα2

2

(

1− 1

p2

)

. . . pαt

t

(

1− 1

pt

)

= pα1

1 pα2

2 . . . pαt

t

∏

p prime

p|n

(

1− 1

p

)

= n
∏

p prime

p|n

(

1− 1

p

)

Warning

Do not be fooled by the first for-

mula into thinking that φ(n) is a

multiple of n! It certainly is not,

since φ(n) < n (unless n = 1).

(3.15) When n =
∏

p|n p
α there are several different

ways of writing the formula for φ(n):

φ(n) = n
∏

p|n

(

1− 1

p

)

=
∏

pα
(

1− 1

p

)

=
∏

pα−1(p− 1).

(3.16) Concluding Questions

(a) Calculate φ(288), φ(22500), φ(106).

(b)Write down the divisors of 24 and check that

∑

d|24

φ(d) = 24

(c) If φ(ab) = φ(a)φ(b), does it follow that a and b
are coprime?

(d) φ(n) is even for all n ≥ 3. [Can you see any rea-
sons for this apart from looking at the formula?]

(e) p | n =⇒ (p − 1) | φ(n), and pα | n =⇒ pα−1 |
φ(n).

(f) φ(pm) =

{

pφ(m) if p | m
(p− 1)φ(m) if p ∤ m

.

(g) m | n =⇒ φ(m) | φ(n).
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Answers to (3.16)

(a) 288 = 25 × 32, φ(288) = 288(1 − 1
2
)(1 − 1

3
) =

96, 22500 = 22 × 32 × 54, φ(22500) = 22500(1 −
1
2
)(1− 1

3
)(1− 1

5
) = 6000, 106 = 26 × 56, φ(106) =

106(1− 1
2
)(1− 1

5
) = 4× 105.

(b) The divisors of 24 are 1, 2, 3, 4, 6, 8, 12 and 24.

∑

d|24

= φ(1) + φ(2) + φ(3) + φ(22) + φ(2.3)

+ φ(23) + φ(22.3) + φ(23.3)

= 1 + 2

(

1− 1

2

)

+ 3

(

1− 1

3

)

+ 4

(

1− 1

2

)

+ 6

(

1− 1

2

)(

1− 1

3

)

+ 8

(

1− 1

2

)

+ 12

(

1− 1

2

)(

1− 1

3

)

= 1 + 1 + 2 + 2 + 2 + 4 + 4 + 8

= 24

(c) Yes! If a and b have a common factor then
φ(a)φ(b) < φ(ab). Can you see why?

(d) From the formula: if n has an odd prime factor p
then φ(n) is a multiple of p − 1 so is even. Oth-
erwise n = 2α and φ(n) = 2α−1 which is even for
α ≥ 2.

From the definition: a ∈ Un ⇐⇒ (n − a) ∈ Un

so the elements of Un come in pairs.

Using group theory: −1 has order 2 in Un when
n > 2. Hence?

(e) Clear from the formula.

(f) Clear from the formula.

(g) Follows from previous part (or directly from the
formula).
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Summary of Section 3

• In general φ(ab) 6= φ(a)φ(b).

• The Euler φ-function is multiplicative in the sense that φ(ab) =
φ(a)φ(b) when a and b are coprime.

• If p1, p2, . . . , pt are the distinct prime divisors of a natural number n,
then φ(n) is the product of n with the rational number

(

1− 1

p1

)(

1− 1

p2

)

. . .

(

1− 1

pt

)
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