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Workbook 1 (without solutions)

Congruences, Congruence Arithmetic and
Diophantine Equations

Summer 2013

(originally written and devised by
Trevor Hawkes and Alyson Stibbard;
revised in 2010 by John Cremona)

Aims of these workbooks:

(a) To encourage you to teach yourself mathematics
from written material,

(b) To help you develop the art of independent study
— working either alone, or cooperatively with
other students,

(c) To help you learn a mathematical topic, in this
case Number Theory, through calculation and
problem-solving.

Copies of this workbook, both with and without
solutions, can be found on Mathstuff.



In this course you will constantly get your hands dirty and, we
hope, your brain engaged. You will be expected to calculate, to
experiment, and to explore, in order to uncover some of the secrets
of the counting numbers 1,2,3,.. that have fascinated our ancestors
since the dawn of history.

Note: You will need a pocket calculator for some of the questions in
the workbooks, and are encouraged to use one for this purpose and
to experiment with results and ideas in the course. Calculators are
NOT needed and are NOT allowed in tests or in the examination.

Are You Ready?

To understand the material and do the problems in each section of
this workbook, you will need to be on good terms with:
Section 1: • division with remainder (see Workbook 0)

• equivalence relations and equivalence classes
• group axioms

Section 4: • the Euclidean Algorithm

These workbooks were orginally written and devised by Trevor Hawkes and

and Alyson Stibbard. Ben Carr designed the LATEX template and Rob Reid

converted their drafts into elegant print. Over the years, other lecturers and
students have corrected a number of typos, mistakes and other infelicities. In
2010 John Cremona made some substantial revisions.

Send corrections, ask questions or make comments at the module forum. You
can join the MA246 forum by going to http://forums.warwick.ac.uk/wf/

misc/welcome.jsp and signing in, clicking the browse tab, and then following
the path: Departments > Maths > Modules > MA2xx modules > MA246
Number Theory.



1 Finite Arithmetic

“The world is a circle
without a beginning”
— Lost Horizon
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As the hand of the clock
sweeps round, the hours
keep repeating themselves.
In a thousand hours it will
still be no more than 12
o’clock (what time will it
be?) In this workbook we
will think in circles as we
apply our minds to finite
(“clock”) arithmetic.

Some History:
In 1801, when he was only 24 years old, Karl Friedrich Gauss (1777-1855) published a very
influential book called Disquisitiones Arithmeticae (Latin was still the common language
for scientific and scholarly communication in those days). In this book, Gauss lays the
foundations of modern number theory. One of many remarkable achievements to be found
there is a fully-fledged mathematical framework for the “arithmetic of remainders” (or
the “theory of congruences”, as it is known today). Gauss was the first to understand
and exploit the power of this idea and, importantly, the first to devise a good notation
for working with it.

Three Practical Projects for Motivation

(a) Starting only with knowledge of

• today’s date and day of the week, and

• your date of birth,

work out on which day of the week you were born. (Answer at the end of this
section)

(b) A team of twelve frisbee players stand in a circle looking inwards. They fix a number
a > 0 and agree always to throw the frisbee to the player a places further round in
the circle in the clockwise direction. Thus, when a = 1, the frisbee is thrown to the
next person on the left.

(i) For which values of a do all the players get a turn?

(ii) For the other values of a, which of the players handle the frisbee?

(Answer at the end of Section 2)

(c) Draw a straight line L in the plane R2.

(i) Does L pass through any “lattice points”, i.e. points with integer coordinates?

(ii) How many lattice points does L pass through: just one, finitely many or infinitely
many?

(Answer at the end of Section 3)
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Section Targets

(a) To describe three of the four operations of finite
arithmetic:

addition, subtraction and multiplication
modulo n,

where n is some fixed natural number.

(b) To understand the trickier, but more interesting,
operation of division modulo n.

Parity

The parity of an integer is its

oddness or evenness. Thus −3

and 100 have odd parity, while 0

and 106 have even parity.

(1.1) Questions about odd and even integers

(a) Write down two odd integers and note the parity
of their sum and their product.

(b) Give a precise definition of an even number and
an odd number. Suppose m is even and n is odd.
Use your definition to show that m+n is odd and
mn is even.

(c) Complete the following addition and multiplica-
tion tables:

+ even odd

even

odd

× even odd

even

odd

Answers to (1.1)

(a) −3, 5, for which,

(−3) + 5 = 2 (even)

(−3)× 5 = −15 (odd)

(b) An integer n is even if there exists an integer m
such that n can be written as n = 2m and an
integer k is odd if there exists an integer l such
that k can be written as k = 2l + 1. Let m be
even and n odd. Then there exist integers r and
s such that m = 2r and n = 2s+ 1. Hence,

m+ n = 2(r + s) + 1 is odd

m× n = 2r(2s+ 1) is even
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continued. . .

(c) The completed tables look like:

+ even odd

even

odd

even odd

odd even

× even odd

even

odd

even even

even odd

(1.2) Definition Let n be a natural number (n ∈ Z
and n > 0). We say two integers a and b are congruent
modulo n, and write

a ≡ b (mod n)

if n divides a − b, or, equivalently, if a = b + kn for
some k ∈ Z.

Examples

11 ≡ 5 (mod 2) since 11 = 5 + 3× 2

−5 ≡ 3 (mod 4) since − 5 = 3 + (−2)× 4

Equivalence Relations
Look up the section “Clock
Arithmetic”in your Foundations

(Sets and Groups) lecture notes
and read the proof that ‘congru-
ence modulo n’ is an equivalence
relation. (Alternatively, just
prove it for yourself bearing
in mind that an equivalence
relation is reflexive, symmetric
and transitive.)

Notice that 0 ≤ r < n iff 0 ≤

r ≤ n− 1 since r and n are both

integers.

(1.3) Questions on Congruences

(a) Show that 106 ≡ 1 (mod 7) and −37 ≡ −2
(mod 5).

(b) For the given pairs (x, n) below, find a number r
satisfying x ≡ r (mod n) and 0 ≤ r < n:

(102, 3), (25, 4), (1001, 101), (1012, 9)

(Section 2 of Workbook 0 will help.)

(c) For the same pairs (x, n), find an r satisfying

{

x ≡ r (mod n)
−n < r ≤ 0

(d) Explain how ‘division with remainder’ shows that
each integer is congruent modulo n to one and
only one of the integers 0, 1, . . . , n− 1
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(1.4) Continued...

(e) Find an integer m satisfying n ≤ m ≤ n+11 and
m ≡ 7 (mod 12) in each of the following cases:

(i) n = 100

(ii) n = 106

(iii) n = −999

Division With Remainder

Make sure you have looked at

this section in Workbook 0.

Given integers a and b you need

to know how to find q and r such

that a = qb+ r and 0 ≤ r < b.

Answers to (1.4) (a) 106 = 142857 × 7 + 1,−37 =
−7 × 5 − 2. (b) You are looking for the remainder
on division by n, as you did in Workbook 0. 102 =
34 × 3 + 0 ⇒ r = 0; 25 = 6 × 4 + 1 ⇒ r = 1;
1001 = 9 × 101 + 92 ⇒ r = 92; 9|1012 − 1 (why?)
⇒ r = 1. (c) r = 0,−3,−9,−8. (d) ‘Division with
remainder’ states that there exist integers q and r
with 0 ≤ r < n such that x = qn + r. Hence x ≡ r
(mod n). If x ≡ s (mod n) with 0 ≤ s < n, then n
divides x − r and x − s and therefore divides their
difference (x− r)− (x− s) = s− r. Since |s− r| < n,
this can only happen if r = s. (e) (i) 103, (ii) 106+3,
(iii) −989.

Note: We write 10Z instead of
10Z + 0, and 3Z − 2 instead of
3Z+ (−2)

What’s in a name? Two seem-

ingly different expressions can

represent the same set, e.g. 2Z+1

and 2Z−1 both represent the odd

numbers, so 2Z+ 1 = 2Z− 1.

(1.5) Helpful Notation Let n be a fixed natural
number and m be an integer. We define

nZ+m = {nk +m : k ∈ Z}

E.g. 2Z + 1 = {2k + 1 : k ∈ Z} = {±1,±3,±5 . . .}
is the set of odd numbers, 10Z = {10k : k ∈ Z} =
{0,±10,±20, . . .} is the set of integers that are divis-
ible by 10.

Given a set nZ + m, result (e)

tells you that any integer congru-

ent tom can be used to represent

it. Equivalently, (d) says that

any integer contained in nZ+m

can be used to represent it, so

you know at once that 2Z+ 1 =

2Z+ 5297, since 5297 is odd.

(1.6) Questions about this notation

(a) Write down two elements from each of the con-
gruence classes 2Z− 1, 4Z+ 3 and 7Z.

(b) Prove that m ∈ nZ+m.

(c) Find 3 different values of m such that 4Z + 3 =
4Z+m.

(d) Prove that nZ+ a = nZ+ b iff a ∈ nZ+ b.

(e) Hence show that nZ + a = nZ + b iff a ≡ b
(mod n).
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Division with Remainder
rides again

The set nZ + r, (0 ≤ r < n), is

the set of all integers that leave a

remainder of r when divided by

n.

Answers to (1.6) (a) E.g. −1, 13 ∈ 2Z− 1; 3,−1 ∈
4Z + 3; 0, 7 ∈ 7Z. (b) m = n × 0 + m ∈ nZ + m.
(c) E.g. m = −5,−1, 203 (d) If nZ + a = nZ + b,
then a ∈ nZ + b by part (b). If a ∈ nZ + b, then
a = nk + b for some k ∈ Z. Suppose α ∈ nZ + a.
Then for some k′ ∈ Z, α = nk′ + a = nk′ + nk + b =
n(k′ + k) + b ∈ nZ + b. Suppose β ∈ nZ + b. Then
for some k′′ ∈ Z, β = nk′′ + b = nk′′ + a − nk =
n(k′′ − k) + a ∈ nZ + a. It follows that nZ + a =
nZ+ b. (e) a ≡ b (mod n) ⇐⇒ a = b+ kn for some
k ∈ Z ⇐⇒ a ∈ nZ + b ⇐⇒ nZ + a = nZ + b by
part (d).

The sets Z/nZ
For a given n, we define the set
Z/nZ by

Z/nZ = {nZ+m : m ∈ Z}

Z/nZ is not as big as you might
think! Many distinct m deter-
mine the same set nZ + m. For
instance, once you collapse it
down,

Z/4Z = {4Z, 4Z+1, 4Z+2, 4Z+3}

which has only four elements.

(1.7) Further Questions about nZ+m

(a) In each case, find an r satisfying 0 ≤ r < 10 such
that 10Z+111 = 10Z+ r, 10Z− 2 = 10Z+ r and
10Z+ 109 = 10Z+ r.

(b) Prove that nZ + m contains a unique integer r
satisfying 0 ≤ r < n such that nZ+m = nZ+ r.

(c) For a given n, how many distinct sets of the form
nZ+m are there? What are they? List them for
n = 2.

(d) Prove that a ≡ b (mod n) iff a, b ∈ nZ + r for
some r satisfying 0 ≤ r < n.

The notation Z/nZ

N.B. Some people use the nota-

tion Zn for Z/nZ, but Number

Theorists never do! Other nota-

tions used are Z/(n) or even Z/n.

We will use Z/nZ in these work-

books.

Answers to (1.7) (a) 10Z+101 = 10Z+1, 10Z−2 =
10Z+ 8, 10Z+ 109 = 10Z+ 0. (b) By (1.3)(d), there
is a unique r = {0, 1, . . . , n − 1} such that m ≡ r
(mod n). By (1.6)(d)(e), this is the unique r, (0 ≤
r < n) such that nZ+m = nZ+ r and r ∈ nZ+m.
(c) nZ, nZ + 1, . . . , nZ + (n − 1) are the n distinct
sets of the form nZ +m. When n = 2, these are 2Z
and 2Z+ 1. (d) If a ≡ b (mod n) then a, b ∈ nZ+ a
by (1.6)(b)(e). By (1.7)(b), there exists r(0 ≤ r < n)
such that nZ + a = nZ + r. If a, b ∈ nZ + r, then
nZ+r = nZ+a = nZ+b by (1.6)(d). Therefore a ≡ b
(mod n) by (1.6)(e). You can also prove this result
directly as follows: Using division with remainder we
know that b = nk + r for some k ∈ Z, 0 ≤ r < n.
Therefore a ≡ b (mod n) ⇒ a − b = nk′, (k′ ∈ Z) ⇒
a−nk−r = nk′ ⇒ a = n(k+k′)+r ⇒ a, b ∈ nZ+r.
On the other hand, a, b ∈ nZ + r ⇒ a = nk + r and
b = nk′+r for some k′, (k′ ∈ Z) ⇒ a−b = n(k−k′) ⇒
a ≡ b (mod n).
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Equivalence Classes

If the first sentence in (1.8)

makes no sense, return to your

Foundations (Sets and Groups)

notes and re-read the section on

equivalence classes.

(1.8) Congruence Classes The equivalence rela-
tion ‘congruent modulo n’ partitions the set Z of
integers into a set of equivalence classes, called the
congruence classes modulo n. Each congruence class
contains all those integers that are congruent to each
other modulo n. From (1.7)(d) we can see that each
congruence class is of the form nZ+r(0 ≤ r < n) and
that Z/nZ = {nZ, nZ+1, . . . , nZ+(n−1)} gives the
complete set of congruence classes modulo n.

Example: Z/3Z
The three congruence classes
modulo 3 are

3Z = {0,±3,±6,±9 . . .}

3Z+ 1 = {. . . ,−2, 1, 4, 7, . . .}

3Z+ 2 = {. . . ,−1, 2, 5, 8, . . .}

Notice that these sets partition

Z.

(1.9) Questions on Congruence Classes

(a) List the congruence classes modulo 4.

(b) Choose an element a from 4Z+1 and an element
b from 4Z + 3. Identify the congruence classes
modulo 4 containing a+ b, a− b and ab.

(c) Now choose new elements α from 4Z + 1 and β
from 4Z+3. Identify the congruence classes mod-
ulo 4 containing α + β, α − β and αβ. Compare
your answers with (b). What do you notice?

(d) If a ≡ α (mod n) and b ≡ β (mod n), prove that
a + b ≡ α + β (mod n), a − b ≡ α − β (mod n)
and ab ≡ αβ (mod n).

Hint for (d):
By definition,

a ≡ α (mod n)

means a = α+kn for some k ∈ Z

Answers to (1.9) (a) 4Z, 4Z + 1, 4Z + 2, 4Z + 3.
(b) E.g. 1 ∈ 4Z + 1 and 3 ∈ 4Z + 3. We can see
that 1 + 3 = 4 ∈ 4Z, 1 − 3 = −2 ∈ 4Z + 2, 1 × 3 =
3 ∈ 4Z + 3. (c) E.g. −3 ∈ 4Z + 1 and 7 ∈ 4Z + 3.
In this case −3 + 7 = 4 ∈ 4Z,−3 − 7 = −10 ∈
4Z+ 2,−3× 7 = −21 ∈ 4Z+ 3. The sum, difference
and product belong to the same congruence classes
as they did in the previous part. This is no accident,
as we now see: (d) a = α + kn, b = β + k′n for some
k, k′ ∈ Z. Therefore a+b = (α+β)+(k+k′)n, a−b =
(α−β)+(k−k′)n, ab = αβ+(αk′+βk+kk′)n. Hence,
a+ b ≡ α + β (mod n), a− b ≡ α− β (mod n), and
ab ≡ αβ (mod n).
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‘Finite’ Arithmetic

We are now in a position to

do arithmetic with congruence

classes.

(1.10) Adding, subtracting and multiplying
congruence classes We now define three binary op-
erations on the set Z/nZ:

• Addition: (nZ+ a) + (nZ+ b) = nZ+ (a+ b)

• Subtraction: (nZ+a)− (nZ+ b) = nZ+(a− b)

• Multiplication: (nZ+ a)(nZ+ b) = nZ+ ab

Warning: We can write the congruence class nZ+m
in many ways, e.g. 4Z + 3 = 4Z + 11 = 4Z − 9 and
any one of the infinitely many elements in nZ + m
can play the role of the representative m. Since we
have used particular representatives to define addi-
tion, subtraction and multiplication, we had better
check that we get the same answers when any other
representatives are used.

Why it Works

The equations here show that

the definitions of addition, sub-

traction and multiplication do

not depend on how we represent

the congruence classes involved.

This is what we mean by say-

ing that the operations are well-

defined.

(1.11) Questions to show that addition, sub-
traction, and multiplication are well-defined
Assume that a, b, α and β are integers such that

nZ+ a = nZ+ α

nZ+ b = nZ+ β

Use (1.9)(d) and (1.6)(d) to prove that

• nZ+ (a+ b) = nZ+ (α + β)

• nZ+ (a− b) = nZ+ (α− β)

• nZ+ ab = nZ+ αβ

Reminder
In (1.6)(e) we proved that

nZ+ a = nZ+ b

⇐⇒

a ≡ b (mod n)

Answers to (1.11) By (1.6)(e), a ≡ α (mod n) and
b ≡ β (mod n). Therefore, by (1.9)(d), a + b ≡
α + β (mod n), a − b ≡ α − β (mod n) and ab ≡
αβ (mod n). The result follows immediately from
(1.6)(e)
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The group structure of

(Z/nZ,+) depends crucially on

the group structure of (Z,+).

(1.12) Remarks about group structure

(a) We proved in Foundations/Sets and Groups that
(Z/nZ,+) is a commutative group, with nZ as
the neutral element 0 and nZ + (−r) the inverse
of nZ+ r.

(b) Multiplication is a binary operation on Z/nZ
which satisfies the commutative and associative
laws and has a neutral element.

(c) However, when n > 1, Z/nZ is not a group with
respect to multiplication because nZ, the neutral
element, does not have an inverse.

(d) The set (Z/nZ)∗ = Z/nZ \ {nZ} of non-zero
classes is a group under multiplication if and only
if n is prime. (This fact will be justified later.)

Warning

The symbol r now has two mean-

ings: its usual meaning as the in-

teger r and its new meaning as

the congruence class nZ + r of

Z/nZ.

(1.13) A new notation for the elements of Z/nZ
We saw in (1.6) that each element nZ +m of Z/nZ
contains a unique integer r such that nZ+m = nZ+r
and 0 ≤ r < n. We now denote the congruence class
nZ+ r simply by r, so that

Z/nZ = {0, 1, . . . , n− 1}

To avoid ambiguity we need new symbols +n and
×n to denote the binary operations of addition and
multiplication in Z/nZ. Thus,

r +n s = nZ+ (r + s)

r ×n s = nZ+ rs

(1.14) Example

12Z− 3 = 12Z+ 9 = 9

12Z+ 20 = 12Z+ 8 = 8

9 +12 8 = 12Z+ 17 = 12Z+ 5 = 5

9×12 8 = 12Z+ 72 = 12Z+ 0 = 0
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Reminder

In Part (g) of (1.14) the notation

(Z/5Z)∗ means the set of four

non-zero elements of Z/5Z.

(1.15) Questions on the new labels
{0, 1, . . . , n− 1} for the elements of Z/nZ

(a) Write down the “new labels” for 4Z + 2, 4Z +
3, 4Z+ 5 and 4Z+ 6.

(b) Find the unique r in (4Z+2)+(4Z+3) satisfying
0 ≤ r ≤ 3.

(c) What is 2 +4 3 and 2×4 3?

(d)Which elements of Z/6Z = {0, 1, . . . , 5} represent
1 +6 2 +6 . . .+6 5 and 1×6 2×6 . . .×6 5?

(e) Quickly work out 99 ×100 99 ×100 . . . ×100 99 (99
terms) in Z/100Z.

(f) In Z/nZ, show that r+ns is either r+s or r+s−n.

(g) Using the notation of (1.13), construct the addi-
tion table for (Z/5Z,+5) and the multiplication
table for ((Z/5Z)∗,×5).

Answers to (1.15) (a) 2, 3, 1, 2. (b) r = 1. (c)
2 +4 3 = 1, 2×4 3 = 2. (d) 3, 0. (e) Working modulo
100, we have 99 ≡ −1 and therefore 9999 ≡ (−1)99 =
−1 ≡ 99. (f) Since 0 ≤ r, s < n, either 0 ≤ r+ s < n,
in which case r +n s = nZ + (r + s) = r + s, or
n ≤ r+s < 2n, in which case r+n s = nZ+(r+s) =
nZ+ (r + s)− n = (r + s)− n. (g)

+5 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

×5 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1
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(1.16) We have looked at the arithmetic of congruences from two different viewpoints.
The first focused on the congruence classes modulo n as the objects to be added, sub-
tracted, multiplied (and later on, divided). The second emphasised a set of labels for the
congruence classes 0, 1, . . . , (n− 1) which we manipulated according to the standard rule:

Calculate in Z and reduce modulo n.

The first approach contains an idea of dramatic importance, capable of powerful general-
isation throughout mathematics (the idea of a quotient structure). The second approach
is just a conventional practical notation for carrying out the calculations implied by the
first.

Summary of Section 1

Let n be a natural number.

• The congruence class nZ+m consists of the (infinitely many) integers
that are congruent to m modulo n.

• nZ+m = nZ+ s for all s ∈ nZ+m.

• nZ + m contains a unique integer r satisfying 0 ≤ r < m. Every
integer in nZ+m leaves a remainder r when divided by n.

• The sum of two congruence classes (nZ + a) + (nZ + b) is defined to
be the congruence class containing a + b, namely nZ + (a + b). The
definition does not depend on the choice of the representatives a and
b. The same applies to the difference and product.

• If we denote nZ + r simply by r when 0 ≤ r < n, then Z/nZ =
{0, 1, . . . , n − 1}. Furthermore, the sum (difference, product) of two
congruence classes described this way is denoted by +n (−n,×n) to
distinguish it from the usual sum (difference, product) of two integers.
Thus, for instance,

s−n t = nZ+ (s− t)

where s and t on the left hand side of the equation denote elements
of Z/nZ and on the right-hand side denote ordinary integers.

• In practice, the sum/difference/product of two elements s, t of Z/nZ
is the remainder when the sum/difference/product of the integers s
and t is divided by n.
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A solution to the birthday problem (by Trevor Hawkes)
I (TOH) will illustrate the solution with my own birthday. I am writing this on Tuesday,
17th March, 1998. I was born on 24th October, 1936. Let’s label the days of the week
0, . . . , 6 starting with Monday as 0, and suppose that I was born on day d (0 ≤ d ≤ 6). If
m days have passed since my birthday, then m+ d ≡ 1 (mod 7) since today (Tuesday) is
day 1. I need only calculate m modulo 7. Between my birthday and 24th October, 1997
some 61 years have elapsed. The number of days in a normal year is 365 ≡ 1 (mod 7)
and in a leap year 366 ≡ 2 (mod 7). Since 15 of the 61 years were leap years, the number
of days from 24/10/36 to 24/10/97 is congruent to

15× 2 + (61− 15) = 76 ≡ 6 (mod 7)

The number of days from 24/10/97 to today is congruent to 7(for Oct) +2(for Nov)
+3(for Dec) +3(for Jan) +0(for Feb) +17(for Mar) = 32 ≡ 4 (mod 7). Putting these two
calculations together gives

m ≡ 6 + 4 ≡ 3 (mod 7)

and so 1 ≡ m+ d ≡ 3 + d (mod 7). Hence, d ≡ 1− 3 = −2 ≡ 5 (mod 7), and therefore I
was born on day 5 of the week, that is to say a Saturday. (I knew this anyway, because
my mother told me that I was “Saturday’s child” that “works hard for a living”. But
using modular arithmetic is less hard work than counting the days on your fingers!)

Exercise Work out the day of the week on which you were born. (Leap years are the
ones that are divisible by 4 excepting those divisible by 100 but including those divisible
by 400. The year 2000 was a leap year!)
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2 Solving Linear Congruences
Motivation: Return to the second project at the start of Section 1. Assign the
numbers 0, 1, . . . , 11 to the twelve frisbee players, counting in a clockwise direction.
Assume that the frisbee starts with player 0 and is always thrown to the player a places
to the left (assuming the players are facing inwards). After x turns, the frisbee has
moved ax places beyond its starting point and has therefore reached the player whose
number is congruent to ax modulo 12. To ensure that every player gets a turn we must
be able to solve the congruence

ax ≡ b (mod 12) (2.a)

for all values of b between 0 and 11

Section Targets To investigate solutions of the lin-
ear congruence

ax ≡ b (mod n) (2.b)

where n is a natural number. (By a solution we mean
an integral value of x satisfying this congruence for
given integers a and b.) Specifically, we will do these
things:

(a) Decide for what values of a and n there is a solu-
tion for all possible values of b. (In frisbee terms,
this amounts to deciding for what number of play-
ers and what length of throw we are guaranteed
that each player will get a turn.)

(b) Given a, b and n, decide whether or not there is a
solution x. (This amounts to deciding whether a
particular player in a given frisbee game will get
a turn.)

(c) Given a, b and n, determine how many solutions
there are. (This amounts to determining how
many turns a given player will get.)

12



Note: If r ≡ s (mod n), then

rx ≡ sx (mod n). Hence, for in-

stance, 71x ≡ x (mod 7).

(2.1) Questions on some special cases of (2.b)

(a) By trial and error or simple cunning, find a so-
lution to the following congruences whenever a
solutions exists.

(i) 2x ≡ 3 (mod 5)

(ii) 2x ≡ 3 (mod 6)

(iii) 771x ≡ 71 (mod 7)

(iv) 22x ≡ 1 (mod 23)

(b) If x0 is the solution you found to congruence (i),
check whether x0+5 and x0−5 are also solutions.
Deduce that (i) has infinitely many solutions.

(c) Describe all the solutions to congruence (iv) in
part (a).

Observe that the congruence

x ≡ y (mod n)

is equivalent to

−x ≡ −y (mod n).

Answers to (2.1)

(a)(i) x = 4

(ii) No solution because 2x− 3 is odd and cannot
be divisible by 6.

(iii) x = 1

(iv) x = −1

(b) The values x = 4 + 5 = 9 and x = 4 − 5 = −1
both satisfy 2x ≡ 3 (mod 5). More generally, the
values 4+5n satisfy the congruence for all n ∈ Z,
since 2(4 + 5n) ≡ 8 + 10n ≡ 8 ≡ 3 (mod 5).

(c) Since 22 ≡ −1 (mod 23), the congruence can
be written −x ≡ 1 (mod 23). Hence x ≡ −1
(mod 23), and therefore x = 23n − 1 for some
n ∈ Z. So the set of solutions is 23Z− 1.

13



(2.2) Questions on linear congruences with no
solution

(a) Find values of b for which the following linear con-
gruences have no solutions;

(i) 3x ≡ b (mod 6)

(ii) 14x ≡ b (mod 7)

(iii) 4x ≡ b (mod 8)

(iv) 10x ≡ b (mod 30)

(b) Now find all values of b for which the four congru-
ences in (a) do have solutions.

A pattern is emerging here. Try

to formulate a necessary and suf-

ficient condition for the congru-

ence ax ≡ b (mod n) to have a

solution.

Answers to (2.2) Congruence (i) has no solutions
when b is not a multiple of 3, for then 3x − b is not
divisible by 3 and therefore certainly not divisible by
6. The congruence (i) does have a solution when
b = 0,±3,±6, . . ., i.e. b ∈ 3Z. Congruence (ii) can
be rewritten 0 = 0.x ≡ b (mod 7), and therefore has
solution if and only if b ∈ 7Z. Congruence (iii) has
no solutions when b is odd or twice an odd number.
It has a solution if b = 4c for some c ∈ Z. Congruence
(iv) has no solutions when b is not divisible by 2 or
by 5. It has solutions when 10|b.

The following idea will give us a useful way of looking
at the congruence ax ≡ b (mod n):

A residue is an old-fashioned

word for a ‘remainder’.

(2.3) Definition Let n be a natural number. A com-
plete set of residues modulo n is a subset S of Z con-
taining exactly one element from each of the distinct
congruence classes,

nZ, nZ+ 1, . . . , nZ+ n− 1

Evidently S = {0, 1, . . . , n − 1} is a complete set of
residues modulo n.

14



Hint for (c)
Suppose a ∈ Z. Then

a ≡ r (mod n)

for some 0 ≤ r < n. It follows

from (1.9)(d) that a2 = r2 for

some 0 ≤ r < n.

(2.4) Questions on complete sets of residues

(a) Which of the following sets form a complete set
of residues modulo 5?

(i) {−5,−4,−3,−2,−1}

(ii) {11, 22, 33, 44, 55}

(iii) {0,−1, 2,−3, 4}

(iv) {12, 22, 32, 42, 52}

(b) Find a complete set of residues modulo 6

(i) lying in the range (−110,−101),

(ii) consisting of integers differing from each other
by at least 100, and

(iii) lying in an arithmetic progression with com-
mon difference 7.

(c) Is there a complete set of residues modulo p con-
sisting of perfect squares

(i) when p = 7?

(ii) for any prime p?

Answers to (2.4)

(a)(i) Yes! The members of the sequence are con-
gruent respectively to {0, 1, 2, 3, 4}; in fact any
sequence of five consecutive integers is a com-
plete set of residues modulo 5.

(ii) Yes.

(iii) No. (−1 ≡ 4 and 2 ≡ −3 (mod 5))

(iv) No. (42 = 16 ≡ 1 = 12 (mod 5))

(b)(i) {−106,−105,−104,−103,−102,−101} for in-
stance.

(ii) {0, 101, 202, 303, 404, 505} for instance.

(iii) {0, 7, 14, 21, 28, 35} are congruent respec-
tively to {0, 1, 2, 3, 4, 5} (mod 6).

(c)(i) No. For p = 7, each element of such
a set would be congruent to one of
02, 12, 22, 32, 42, 52, 62 and hence to one of
0, 1, 4, 2, 2, 4, 1 modulo 7. This is not a com-
plete set of residues.

(ii) For p = 2, we have {02, 12}, but we shall see
later that for p ≥ 3 there is no complete set of
residues consisting of perfect squares.
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(2.5) Question characterising a complete set of
residues (CSR) Let n ∈ N and S ⊆ Z. Prove that
the following two conditions are together necessary
and sufficient for S to be a CSR modulo n.

(a) |S| = n and

(b) no two elements of S are congruent modulo n.

Answer to (2.5) Suppose |S| = n. Then S is not a
CSR iff there exists a, b ∈ S such that a, b ∈ nZ + r
for some 0 ≤ r ≤ n − 1 which is the case iff a ≡ b
(mod n) by (1.7)(d).

Something to note:

If b ≡ β (mod n) then ax ≡

β (mod n) iff ax ≡ b (mod n).

Furthermore, if a ≡ α (mod n)

and x ≡ y (mod n) then ax ≡

αy by 1.7. It follows that ax ≡ b

(mod n) iff αy ≡ b (mod n).

Given a, b and n, we wish to decide whether the linear
congruence

ax ≡ b (mod n)

has solutions. A key step in working this out is to
first decide for what values of a and n the congruence

ax ≡ b (mod n)

has a solution x for all b. To make life easier, we
notice that the problem does not change if a, b and
x are replaced with congruent values (mod n). (For
a justification of this statement, see the box on the
left.) When convenient, we can assume without loss
of generality that a, b or x all lie in the set Sn =
{0, 1, 2, . . . , n− 1}, i.e. that 0 ≤ a, b, x ≤ n− 1.

Now back to the problem of deciding when ax ≡ b
(mod n) has a solution for all b. First notice that if
we multiply the elements of Sn = {0, 1, 2, . . . , n− 1}
by a we get a new set,

aSn = {0, a, 2a, . . . , (n− 1)a}

and so there will be solutions x ∈ Sn for all choices
of b ∈ Sn iff aSn contains elements congruent to each
element of Sn, in other words iff aSn is a complete set
of residues modulo n.
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A matter of terminology
The highest common factor
(hcf) is also known as the
greatest common divisor (gcd):

hcf{a, b} = hcf(a, b) = gcd(a, b).

(2.6) Questions on when aSn is a complete set
of residues Let n ∈ N and let Sn = {0, 1, . . . , n− 1}
denote the basic set of residues modulo n.

(a) For each of the following values of n compute the
set

aSn = {0, a, 2a, . . . , (n− 1)a}

for each a ∈ Sn and find all values of a for which
aSn is a complete set of residues modulo n.

(i) n = 4 (ii) n = 5 (iii) n = 6

(b) Use your calculations to decide whether the fol-
lowing equations have a solution for all b ∈ Sn

and to find the value of x corresponding to each
b when a such solution exists.

(i) 3x ≡ b (mod 4)

(ii) 3x ≡ b (mod 5)

(iii) 3x ≡ b (mod 6)

(c) For n = 4, 5, 6 calculate hcf{a, n} for the values
of a where,

(i) aSn is a complete set of residues (CSR)

(ii) aSn is not a CSR.

(d) Make a conjecture for a condition on a and n that
ensures the congruence ax ≡ b (mod n) has a so-
lution for all b ∈ Sn.

Note our use of the notation
{0, 2, 4, 8} ≡ {0, 2} to mean that
the elements of the first set are
all congruent modulo n = 4 to
the elements in the second set.
To save space, let’s agree to
write,

x ≡ y (n)

instead of

x ≡ y (mod n)

in future.

Answers to (2.6)

(a)(i) n = 4.

0.S4 = {0} is not a CSR

1.S4 = {0, 1, 2, 3} is a CSR

2.S4 = {0, 2, 4, 6} ≡ {0, 2} is not a CSR

3.S4 = {0, 3, 6, 9} ≡ {0, 3, 2, 1} is a CSR

Hence, aS4 is a CSR for a = 1, 3, but not for
a = 0, 2
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continued. . .

(a)(ii) n = 5.

0.S5 = {0} is not a CSR

1.S5 = {0, 1, 2, 3, 4} is a CSR

2.S5 = {0, 2, 4, 6, 8}

≡ {0, 2, 4, 1, 3} is a CSR

3.S5 = {0, 3, 6, 9, 12}

≡ {0, 3, 1, 4, 2} is a CSR

4.S5 = {0, 4, 8, 12, 16}

≡ {0, 4, 3, 2, 1} is a CSR

Hence aS5 is a CSR for all a 6= 0.

(iii) n = 6.

0.S6 = {0} is not a CSR

1.S6 = {0, 1, 2, 3, 4, 5} is a CSR

2.S6 = {0, 2, 4, 6, 8, 10}

≡ {0, 2, 4} is not a CSR

3.S6 = {0, 3, 6, 9, 12, 15}

≡ {0, 3} is not a CSR

4.S6 = {0, 4, 8, 12, 16, 20}

≡ {0, 4, 2} is not a CSR

5.S6 = {0, 5, 10, 15, 20, 25}

≡ {0, 5, 4, 3, 2, 1} is a CSR

Hence aS5 is a CSR only for a = 1, 5.

(b)(i) 3.S4 is a CSR and from calculations we see
that

3× 0 ≡ 0(4) 3× 3 ≡ 1(4)
3× 2 ≡ 2(4) 3× 1 ≡ 3(4)

(ii)
3× 0 ≡ 0(5) 3× 2 ≡ 1(5)
3× 4 ≡ 2(5) 3× 1 ≡ 3(5)
3× 3 ≡ 4(5)

(iii) 3x ≡ 2 (mod 6) has no solutions for instance.
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continued. . .

(c) n = 4:
When a.S4 is a CSR, hcf{1, 4} = hcf{3, 4} =
1. When aS4 is not a CSR, hcf{0, 4} =
4, hcf{2, 4} = 2.
n = 5:
hcf{1, 5} = hcf{2, 5} = hcf{3, 5} = hcf{4, 5} = 1
when aS5 is a CSR, hcf{0, 5} = 5 when aS5 is not
a CSR.
n = 6:
When aS5 is a CSR, hcf{a, 6} = 1. Otherwise,
hcf{2, 6} = 2, hcf{3, 6} = 3, hcf{4, 6} = 2

(d) Conjecture: The linear congruence,

ax ≡ b(n)

has solutions for all b ∈ Sn iff hcf{a, n} = 1.

We now want to prove the following:

Be careful!

The hypothesis that hcf{a, n} =

1 is essential! Try a = b = 2 and

n = 4.

(2.7) Lemma Let a and n be integers with
hcf{a, n} = 1. Then

n divides ab if and only if n divides b.

Euclidean Algorithm
This gives you a procedure for
finding the highest common fac-
tor of two numbers. You can
read about it in your Founda-
tions notes. One consequence of
the Euclidean algorithm is that if
a and b are integers, then there
exist integers u and v such that

hcf{a, b} = ua+ vb

At the end of this workbook we

will revisit the Euclidean Algo-

rithm and give an efficient way

of carrying it out.

We could appeal to the Fundamental Theorem of
Arithmetic (FTA), factorising a and b in products
of prime powers and observing that the condition
hcf{a, n} = 1 implies that the primes involved in n
are distinct from those involved in a. Then unique-
ness of factorisation in the equation,

mn = ab

forces the prime powers in a to appear as prime pow-
ers in m. But we are using a sledgehammer to crack
a nut. A better approach (because it is both shorter
and more basic) is to use the following consequence
of the Euclidean algorithm (which is also used in a
standard proof of the FTA):

There exist integers u and v such that

ua+ vn = hcf{a, n} = 1 (2.c)
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Hint: If n divides ab, then n di-

vides uab+ vnb.

(2.8) Question Prove Lemma 2.7

Answer to (2.8) The statement ‘n|b’ means b = cn
for some c ∈ Z. Hence ab = (ac)n and so n|ab.
The statement ‘n|ab’ means ab = mn for somem ∈ Z.
Hence uab+ vnb = umn+ vnb = (um+ vb)n, and so
n divides uab+ vnb = (ua+ vn)b = 1.b = b.

We are now ready to prove the following theorem:

(2.9) Theorem Let n ∈ N and let a, b ∈ Z. The
linear congruence,

ax = b (mod n)

has a solution for all values of b if and only if
hcf{a, n} = 1.

By a contrapositive argument,

Step 1 shows that if ax ≡ b

(mod n) has a solution for all b,

then hcf{a, b} = 1.

(2.10) Question leading to a proof of Theo-
rem 2.9 Fill in the details of the following proof:
Step 1: If d = hcf{a, n} > 1 then d does not divide
ax− 1 and so ax ≡ 1(n) has no solution.
Step 2: If hcf{a, n} = 1, then the elements of aSn =
{0, a, 2a, . . . , (n−1)a} are pairwise incongruent mod-
ulo n.
Step 3: Hence the set aSn is a complete set of residues.
Step 4: Therefore ax ≡ b (mod n) has a solution for
each b ∈ Z.
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Answers to (2.10) Step 1: If d divides a, then d di-
vides ax. If d were also a divisor of ax− 1, it would
divide ax− (ax− 1) = 1, contrary to the supposition
that d > 1. Finally ax ≡ 1(n) means that n, and
therefore every divisor of n, divides ax− 1; in partic-
ular, d|ax− 1, which is not the case.
Step 2: Suppose ra ≡ sa(n) with 0 ≤ r, s,≤ n − 1.
Then n divides ra − sa = (r − s)a. It follows from
lemma 2.7 that n|(r − s), which forces r = s since
|r − s| < n.
Step 3: Since aSn = {0, a, 2a, . . . , (n − 1)a} contains
n pairwise incongruent integers, it follows from (2.5)
that aSn is a complete set of residues modulo n.
Step 4: Consequently, aSn contains an element ax
which is congruent to b for any b ∈ {0, 1, . . . , n − 1}
and hence for any b whatsoever.

We can now give the complete answer to the question,
“when does the linear congruence ax ≡ b (mod n)
have a solution?”

(2.11) Theorem Let n ∈ N and let a, b ∈ Z. The
linear congruence

ax ≡ b (mod n)

has a solution if and only if

hcf{a, n} divides b (2.d)

(2.12) Question leading to a proof of Theo-
rem 2.11 Fill in the details of the following proof:
Let d = hcf{a, n} and write a = da0 and n = dn0,
observing that hcf{a0, n0} = 1 (convince yourself of
this).
Step 1: If ax ≡ b(n) for some x ∈ Z, show that d
divides ax and ax− b and hence that d divides b.
Step 2: Now suppose that d divides b and write b =
db0. Show that ax ≡ b(n) if and only if

a0x ≡ b0(n0) (2.e)

Step 3: Use Theorem 2.9 to conclude the proof.
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Answers to (2.12) Step 1: We know d divides a,
therefore d divides ax. Also d divides n and n divides
ax − b, therefore d divides ax − b. Hence d divides
ax− (ax− b) = b.
Step 2: If a0x ≡ b0(n0), then a0x− b0 = n0c for some
integer c. Consequently ax−b = d(a0x−b0) = dn0c =
nc, and so ax ≡ b(n). And conversely.
Step 3: Since hcf{a0, n0} = 1, congruence (2.e) has
a solution and therefore ax ≡ b(n) has a solution by
Step 2.

Summary of Section 2

During the section, we worked steadily towards a necessary and sufficient
condition for the linear congruence

ax ≡ b (mod n)

to have a solution x ∈ Z, and came up with the answer: There exists a
solution iff

hcf{a, n} divides b

We also discovered that ax ≡ b (mod n) has a solution for all b iff
hcf{a, n} = 1. On the way we introduced and explored the fruitful idea of
a Complete Set of Residues (CSR) modulo n. We also used a consequence
of the Euclidean algorithm to prove that if n divides ab and hcf{a, n} = 1,
then n divides b.

Solution to the Frisbee Problem
We can now answer the question formulated at the beginning of this section in relation
to Project (b). Every player gets a turn iff the congruence,

ax ≡ b (mod 12)

has a solution for all b ∈ {0, 1, . . . , 11}. By Theorem 2.9, this happens when hcf{a, 12} =
1, i.e. for all a that are coprime with 12. These are precisely the integers in the congruence
classes

12Z+ 1, 12Z+ 5, 12Z+ 7, 12Z+ 11.

Thus, everyone gets a turn if and only if the frisbee is consistently thrown either 1, 5, 7 or
11 places round the circle (in either direction).
Now decide, for the remaining values of a, which players get a turn.
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3 Solving Linear Diophantine Equa-
tions
Motivation: In this section we shift our focus from solving a linear congruence of the
form ax ≡ b (mod n) to solving a Linear Diophantine Equation of the form

ax+ by = c. (3.a)

Here “Diophantine” just means that we are seeking solutions which are integers.

Section Targets To investigate solutions of the lin-
ear Diophantine equation

ax+ by = c

where a, b, c are given integers, and only integral so-
lutions x, y are of interest.

Specifically, we will do two things:

(a) Decide for what values of a, b and c there is a
solution.

(b) Given a, b and c, describe the general solution.

The task of actually finding the solutions when they
exist will be left to the final section.
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(3.1) Question on passing between congru-
ences and equations

(a) The congruence 3x ≡ 7 (mod 11) has the solu-
tions x = 6. Write down a solution (x, y) to the
equation 3x+ 11y = 7 in which x = 6.

(b) The equation 3x + 11y = 7 also has the solution
(x, y) = (−5, 2). What is the corresponding solu-
tion to the congruence 3x ≡ 7 (mod 11)?

(c) Show that for every k ∈ Z, (x, y) = (−5+11k, 2−
3k) is a solution to the equation 3x + 11y = 7.
Which k gives the solution in (a)?

(d) Do all solutions to the equation have this form?
If so, prove it.

Answers to (3.1)

(a) (x, y) = (6,−1).

(b) x = −5.

(c) For all k, 3x+ 11y = 3(−5 + 11k) + 11(2− 3k) =
−15 + 33k + 22− 33k = 7. k = 1.

(d) Yes. Given any solution (x, y), write u = x+5 and
v = y−2. Then 3u+11v = 3(x+5)+11(y−2) =
3x + 11y − 7 = 0, so 3u = −11v. Then 11 | u, so
u = 11k and then v = −3k with k ∈ Z.

The following theorem should now be obvious:

(3.2) Theorem Let n ∈ N and let a, b ∈ Z. There
is a bijection between

(a) The set of solutions x ∈ Z to the linear congru-
ence ax ≡ b (mod n); and

(b)The set of solutions (x, y) ∈ Z2 to the linear equa-
tion ax+ ny = b.

With this new viewpoint we can reinterpret the
main theorem of the previous section (Theorem 2.11),
changing notation slightly:
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(3.3) Theorem Let a, b, c ∈ Z. The equation

ax+ by = c

has a solution (x, y) ∈ Z2 if and only if hcf(a, b) | c.

Easy facts about hcf:
hcf(±a,±b) = hcf(a, b).
hcf(±a, 0) = |a|.
hcf(a, b) = hcf(b, a).

hcf(0, 0) = 0.

Proof If b = 0 this just says that ax = c has a
solution if and only if a | c, which is obvious by
definition. Otherwise, let n = |b| ∈ N; every solu-
tion (x, y) gives x ∈ Z satisfying ax ≡ c (mod n),
so hcf(a, b) = hcf(a, n) | c (by Theorem 2.11), and
conversely by Theorem 3.2.

We now turn to the question of uniqueness of solu-
tions. A congruence such as ax ≡ b (mod n) will
never have a unique integer solution (or even finitely
many) since if x is a solution then so is x + kn for
all k ∈ Z. When counting solutions to a congruence,
therefore, we only count as distinct solutions which
are incongruent modulo the modulus. (Equivalently,
we only count solutions x satisfying 0 ≤ x < n where
n is the modulus.)

We could alternatively describe

the general solution to (a) by

x ≡ 4 (mod 5), since 4 + 5Z is

the union of 4 + 10Z and 9 +

10Z. This is more concise, but

hides the fact that the original

congruence was modulo 10 and

that there are two solutions mod-

ulo 10.

Examples

(a) Consider 4x ≡ 6 (mod 10). The solutions x with
0 ≤ x < 10 are x = 4 and x = 9, so x is a solution
if and only if x ≡ 4 (mod 10) or x ≡ 9 (mod 10).
The number of solutions is 2.

(b) Consider 17x ≡ 37 (mod 101). This has one so-
lution: since hcf(17, 101) = 1 (both 17 and 101
are prime!), {17x | 0 ≤ x < 101} is a CSR mod-
ulo 101, so 17x ≡ b (mod 101) has a unique solu-
tion for every b.

The last example is the simplest situation. As in
Theorem 2.11, when hcf(a, n) = 1 there is always a
solution to ax ≡ b (mod n), and the proof of Theo-
rem 2.11 shows that it is unique.

(3.4) Theorem Let n ∈ N and let a ∈ Z with
hcf(a, n) = 1. Then for all b ∈ Z the congruence
ax ≡ b (mod n) has a unique solution modulo n.
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(3.5) Let n = 9.

(a) Fill in the following table: all entries should be in
the range 0 . . . 8.

x (mod 9) 0 1 2 3 4 5 6 7 8
4x ≡ 0 4 2
6x ≡ 0 6 3

(b)What property does the map x 7→ 4x from Z/9Z
to itself have, which the map x 7→ 6x does not
have?

(c) Use your table to solve 4x ≡ b (mod 9) for b =
5, 6 and 7.

(d) Use your table to solve 6x ≡ 3 (mod 9).

Answer to (3.5)

(a)

x (mod 9) 0 1 2 3 4 5 6 7 8
4x ≡ 0 4 8 3 7 2 6 1 5
6x ≡ 0 6 3 0 6 3 0 6 3

(b) x 7→ 4x is a bijection from Z/9Z to itself, while
x 7→ 6x is not (it is neither injective nor surjec-
tive).

(c) x ≡ 8, 6, 4 (mod 9) for b = 5, 6, 7 respectively
(one solution each).

(d) x ≡ 2, 5, 8 (mod 9) (three solutions).

An equivalent way of stating Theorem 3.4 is to say
that when hcf(a, n) = 1, then for each b ∈ Z:

(a) there exists a solution x0 to ax ≡ b (mod n);

(b) the general solution is x = x0 + kn for k ∈ Z, in
the sense that x0 + kn is a solution for all k and
every solution has this form.

Converting this to a statement about linear equations
gives the following:
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(3.6) Theorem Let a, b ∈ Z be coprime. Then
for all c ∈ Z the equation ax + by = c has a solu-
tion (x, y) ∈ Z2. If (x0, y0) is any one solution then
the general solution is (x, y) = (x0 + kb, y0 − ka) =
(x0, y0) + k(b,−a) for k ∈ Z.

(3.7) Illustrations of Theorem 3.6

(a) Write down one solution (x0, y0) to 5x+7y = −3.

(b) Now write down the general solution.

(c) Repeat parts (a) and (b) with the equation 6x−
11y = 2.

Answer to (3.7)

(a) (x0, y0) = (−2, 1) (for example).

(b) (x, y) = (−2 + 7k, 1− 5k) = (−2, 1) + k(7,−5).

(c) (x0, y0) = (4, 2); (x, y) = (4 + 11k, 2 + 6k) =
(4, 2) + k(11, 6).

Does every line in R2 have such

an equation with a, b, c ∈ Z?

with a, b, c ∈ Q? If not, try to

give conditions on L which en-

sure that it does have such an

equation. [Thinking about the

slope of L might help.]

Geometric interpretation: The equation ax+by =
c is the equation of a straight line L in the plane R2

(provided that a and b are not both 0). Since we want
integer solutions for x and y, we are asking whether L
passes through any of the integer points (also called
lattice points) (x, y) ∈ Z2 ⊂ R2.
There may be none: for example the line 2x+4y = 5
can have no integer points [why?]. Theorem 3.3 says
that the obvious necessary condition that hcf(a, b) | c
is also sufficient for integer solutions to exist. Theo-
rem 3.6 says that when a, b are coprime then there are
always infinitely many integer points on the line L,
which are evenly spaced along it: from any one such
point (x0, y0) one can get to all others by taking
“steps” along the vector (b,−a) (or in the reverse
direction).

Theorems 3.4 and 3.6 only cover the simplest case,
but the general case easily reduces to this.
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(3.8)

(a) Consider the congruence 6x ≡ 3 (mod 15).

1.Find hcf(6, 15).

2.Deduce that solutions exist.

3.Find one solution.

4.Find all solutions x with 0 ≤ x < 15. How
many are there? What was hcf(6, 15) again?

(b) Repeat part (a) with the congruence 15x ≡ 10
(mod 20).

Answer to (3.8)

(a) hcf(6, 15) = 3. This divides 3 (the right-hand
side) so solutions exist. A solution is x = 3. The
complete set of solutions is {3, 8, 13}. There are
3 solutions, and hcf(6, 15) = 3.

(b) hcf(15, 20) = 5. This divides 10 (the right-hand
side) so solutions exist. A solution is x = 2.
The complete set of solutions is {2, 6, 10, 14, 18}.
There are 5 solutions, and hcf(15, 20) = 5.

(3.9) Theorem Let n ∈ N and let a, b ∈ Z. Set h =
hcf(a, n), and assume that h | b. Then the congruence
ax ≡ b (mod n) has precisely h solutions (only count-
ing as distinct solutions which are incongruent mod-
ulo n). Moreover, if x0 is any one solution then the
complete set of solutions is {x0 + kn/h | 0 ≤ k < h}.

Make sure you understand this.

Proof Write a = ha0, n = hn0, b = hb0. Then ax ≡ b
(mod n) ⇔ a0x ≡ b0 (mod n0). Since hcf(a0, n0) =
1, there is a unique solution modulo n0 by Theorem
3.4. If x0 is a solution then the general solution has
the form x = x0 + kn0; taking 0 ≤ k < h gives the
distinct solutions modulo n.

(3.10) In each case give the number of solutions,
and list the solutions with 0 ≤ x < n in each case,
where n is the modulus):

(a) 4x ≡ 8 (mod 12).

(b) 15x ≡ 3 (mod 18).
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Answer to (3.10)

(a) h = hcf(4, 12) = 4 and 4 | 8 so there are 4 solu-
tions. Since 2 is obviously a solution, the general
solution is x = 2+k(12/4) = 2+3k for 0 ≤ k < 4,
i.e. x = 2, 5, 8, 11.

(b) h = hcf(15, 18) = 3 and 3 | 3 so there are 3
solutions. Since −1 is a solution, the general so-
lution is x = −1+k(18/3) = −1+6k which gives
x = 5, 11, 17.

(3.11) Theorem Let a, b, c ∈ Z, with a, b not both
zero. Set h = hcf(a, b), and assume that h | c, so that
the equation ax+ by = c has a solution (x0, y0) ∈ Z2

by Theorem 3.3. Then the general solution is (x, y) =
(x0 + kb/h, y0 − ka/h) = (x0, y0) + k(b/h,−a/h) for
k ∈ Z.

Proof Write a = ha0, b = hb0, c = hc0. Then ax +
by = c ⇔ a0x+ b0y = c0, and the general solution to
this is (x0 + kb0, y0 − ka0) by Theorem 3.6

(3.12) In each case give the general solution, using
the particular solution given:

(a) 12x+ 18y = 66; (4, 1).

(b) 26x+ 91y = 39; (−2, 1).

Answer to (3.12)

(a) h = hcf(12, 18) = 6 so the general solution
is (x, y) = (4, 1) + (k/6)(18,−12) = (4, 1) +
k(3,−2) = (4 + 3k, 1− 2k).

(b) h = hcf(26, 91) = 13 so the general solution is
(x, y) = (−2, 1) + (k/13)(91,−26) = (−2, 1) +
k(7,−2) = (−2 + 7k, 1− 2k).

In the final section we will see how to find the partic-
ular solution in an efficient and straightforward way.
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Summary of Section 3

In this section, we saw that there was a precise correspondence between
solutions of a linear congruence

ax ≡ b (mod n)

and solutions of a linear Diophantine Equation

ax+ by = c.

Using this and the results of the previous sections we proved that the
equation has a solution if and only if

hcf{a, b} divides c,

and we found the general solution when this condition is satisfied.
We also gave a geometric interpretation of this result in terms of lattice
points lying on a straight line in the plane.
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4 Numerical techniques

Section Targets In this section we turn from the
theory of linear congruences and linear Diophantine
Equations to how one actually solves them in prac-
tice. The key is the (extended) Euclidean Algorithm,
which you met before in Foundations (Sections 3 and
4.1 of the Foundations lecture notes).
Specifically, we will first show how, given integers a
and b, to:

(a) use the Euclidean Algorithm (EA) to compute h =
hcf(a, b) (also called gcd(a, b));

(b) use the Extended Euclidean Algorithm (EEA) to
also compute x, y such that

ax+ by = h = hcf(a, b).

Then we show how to find one solution to either a
linear congruence ax ≡ b (mod n) or a linear Dio-
phantine equation ax + by = c, and also find the
general solution. Specifically, we will develop general
methods for the following problems:

(c) Given a, b and n:

(i) determine whether or not the linear congru-
ence ax ≡ b (mod n) has a solution;

(ii) if so, find one solution, and the general solu-
tion.

(d) Given a, b and c:

(i) determine whether or not the linear Diophan-
tine equation ax+by = c has a solution (x, y);

(ii) if so, find one solution, and the general solu-
tion.

The techniques developed here will also be useful in
Workbooks 4 and 5.
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We may as well assume that a, b > 0 since hcf(±a,±b) = hcf(a, b) and hcf(±a, 0) = |a|.

The standard layout for the Euclidean Algorithm is usually shown like this:

a = q0b+ r1 0 ≤ r1 < b

b = q1r1 + r2 0 ≤ r2 < r1

r1 = q2r2 + r3 0 ≤ r3 < r2
...

...
...

...
...

...
...

rt−2 = qt−1rt−1 + rt 0 ≤ rt < rt−1

rt−1 = qtrt

For example, when a = 89 and b = 49 this looks like

89 = 1× 49 + 40

49 = 1× 40 + 9

40 = 4× 9 + 4

9 = 2× 4 + 1

4 = 4× 1.

There is a lot of repetition in writing this out. A more concise form is just to write two
columns:

a q0
b q1
r1 q2
...

...
rt−2 qt−1

rt−1 qt
rt

The left column is the remainder sequence (r), starting with a, b and ending with the last
non-zero remainder rt which is hcf(a, b). The right column is the quotient sequence (q),
which you do not even need to write down if all you want is the value of hcf(a, b). (We
will need the quotients for the Extended Euclidean Algorithm, EEA.) In the example
this looks like this:

(r) (q)
89 1
49 1
40 4
9 2
4 4
1

At each step you divide one number in the left column by the one below it, write the
quotient to its right and the remainder underneath; then move down one row. Stop
when the remainder is 0, which you do not need to write down, but you should write
down the last quotient (which is 4 in this case).

This is already enough to find hcf(a, b): it is the last entry in the left column. In our
example, hcf(89, 49) = 1.
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(r) (q)
78 0
123 1
78 1
45 1
33 2
12 1
9 3
3

(4.1) Here is another example, with a = 78 and b =
123, where the hcf is not 1, and the first quotient is 0
(since a < b): So hcf(78, 123) = 3.

(4.2) Use the concise layout to compute
hcf(123, 456).

Answer to (4.2)

(r) (q)
123 0
456 3
123 1
87 2
36 2
15 2
6 2
3

So hcf(123, 456) = 3.

Now we come to the EEA. While the EA allows us to decide on the existence of solutions
to linear congruences and equations, the EEA will allow us to actually find solutions
when they exist. There are also many further applications, which we will see in later
workbooks.

What we do is this. To the columns of remainders and quotients in the EA layout we
add two more columns, labelled u and v. For example:

(r) (q) (u) (v) (au− bv)
1 0 89

89 1 0 1 -49
49 1 1 1 40
40 4 1 2 -9
9 2 5 9 4
4 4 11 20 -1
1 49 89 0

Here we have also included a 5th column labelled au− bv which will help up keep track
of what is happening, but which we do not need to include in practice. Notice that this
5th column is the same as the r column but with alternating signs and shifted one row.

What is the rule for producing the u and v sequences? For u, we start with 1, 0 and
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then repeatedly use the general formula

un = qnun−1 + un−2.

For the v sequence we start with 0, 1 and use the same recurrence:

vn = qnvn−1 + vn−2.

This is simpler in practice than it sounds: start the u and v columns off with
1 0
0 1

(looking like a 2 × 2 identity matrix), with the bottom row aligned with the first row
of r, q values. To get each row from the previous ones, use the recurrence relations:
multiply each u value by the q next to it, add to the u above; this gives the next u.
Do exactly the same for the vs. For example, the entry 9 in the v column comes from
9 = 4 × 2 + 1 using the preceding values v = 2 and v = 1 and the value q = 4 next to
v = 2.

Note that the u and v columns only depend on the qs and not the rs. To see that the
values of au−bv are the same as the r values but with alternating sign, note that this is
obviously true for the first two rows; and an induction proof can be used to show that
it remains true. As a consequence, in the last but one row we have au− bv = ±h since
h = hcf(a, b) is the final r value. (Also, in the very last row we have au− bv = 0, which
can be useful as a check.)

So to solve ax + by = h = hcf(a, b) we simple put (x, y) = (u,−v) or (x, y) = (−u, v)
depending on the parity of the number of rows used.

Here is another example:

EEA for a = 78, b = 123:

(r) (q) (u) (v)
1 0

78 0 0 1
123 1 1 0
78 1 1 1
45 1 2 1
33 2 3 2
12 1 8 5
9 3 11 7
3 41 26

(4.3) From the table we take (u, v) = (11, 7) and find
au− bv = 78 · 11− 123 · 7 = −3, so h = 3 = ax+ by
with (x, y) = (−u, v) = (−11, 7).
The very last row in the u, v columns is not needed,
but serves as a check since the values here satisfy au−
bv = 0: in fact u = b/h and v = a/h. (The reduced
form of the fraction 78/123 is therefore 26/41.)

(4.4) Practice with the EEA Use this method to
solve

(a) 16x+ 83y = 1;

(b) 355x+ 113y = 1;

(c) 377x+ 233y = 1.
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What does (b) have to do with
π?

What does (c) have to do with

rabbits?

Answer to (4.4)

(a)
(r) (q) (u) (v)

1 0
16 0 0 1
83 5 1 0
16 5 5 1
3 3 26 5
1 83 16

Now 26 · 16 − 5 · 83 = 416 − 415 = 1, so x = 26
and y = −5.

(b)
(r) (q) (u) (v)

1 0
355 3 0 1
113 7 1 3
16 16 7 22
1 113 355

Now 7 ·355−22 ·113 = −1, so x = −7 and y = 22.

(c) After 12 steps with q = 1 each time: x = 89 and
y = −144.

We now put everything together into a general
method for solving either ax ≡ b (mod n) or ax +
by = c.

(4.5) To solve ax ≡ b (mod n)

(a) Compute h = hcf(a, n) using EA.

(b) Test whether h | b; no solutions if not. If h | b:

(c) Write h = ax0 + ny0 using EEA.

(d) One solution is x1 = x0b/h; the general solution is
x ≡ x1 (mod n/h), and the h solutions modulo n
are x = x1 + kn/h for 0 ≤ k < h.

Note that once you have checked h | b it is probably
easier to divide through by h and solve (a/h)x ≡
(b/h) (mod n/h) since the numbers are smaller.
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(4.6) Practice solving linear congruences Use
this method to solve

(a) 19x ≡ 30 (mod 40);

(b) 9x ≡ 5 (mod 25);

(c) 103x ≡ 444 (mod 999);

(d) 980x ≡ 1500 (mod 1600).

Answer to (4.6)

(a)
(r) (q) (u) (v)

1 0
19 0 0 1
40 2 1 0
19 9 2 1
2 2 19 9
1 40 19

Now 19 · 19− 9 · 40 = 1, so x ≡ 19 · 30 ≡ 570 ≡ 10
(mod 40) is the unique solution.

(b)
(r) (q) (u) (v)

1 0
9 0 0 1
25 2 1 0
9 1 2 1
7 3 3 1
2 2 11 4
1 25 9

Now 9·11−4·25 = −1, so x ≡ −11·5 ≡ −55 ≡ 20
(mod 25) is the unique solution.

(c)
(r) (q) (u) (v)

1 0
103 0 0 1
999 9 1 0
103 1 9 1
72 2 10 1
31 3 29 3
10 10 97 10
1

Now 103 · 97 − 10 · 999 = 1, so x ≡ 97 · 444 ≡
388 · 111 ≡ 111 (mod 999) is the unique solution.
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continued. . .

(d)
(r) (q) (u) (v)

1 0
980 0 0 1
1600 1 1 0
980 1 1 1
620 1 2 1
360 1 3 2
260 2 5 3
100 1 13 8
60 1 18 11
40 2 31 19
20

Now 980 · 31 − 1600 · 19 = −20. Simplifying the
congruence by dividing through by h = 20 we get
49x ≡ 75 (mod 80), with solution x ≡ −31 · 75 ≡
31 · 5 ≡ 155 ≡ 75 (mod 80). The 20 solutions
modulo 1600 are then 75 + 80k for 0 ≤ k < 20.

(4.7) To solve ax+ by = c

(a) Compute h = hcf(a, b) using EA.

(b) Test whether h | c; no solutions if not. If h | c:

(c) Write h = ax0 + by0 using EEA.

(d) One solution is (x1, y1) = (x0c/h, y0c/h); the gen-
eral solution is

(x, y) = (x1, y1) + k(b/h,−a/h).

The general solution may also be written as

x = (cx0 + kb)/h, y = (cy0 − ka)/h.

Note that once you have checked h | c it is proba-
bly easier to divide through by h and solve (a/h)x+
(b/h)y = (c/h) since the numbers are smaller.
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(4.8) Practice solving linear Diophantine
Equations Use this method to solve

(a) 2x+ 5y = 11;

(b) 17x+ 13y = 100;

(c) 21x+ 14y = 147;

(d) 60x+ 18y = 97;

(e) 1402x+ 1969y = 1.

In each case it is fine to divide

out by any common factors you

notice, and to use an obvious

base solution if you spot one.

The general method is there to

help in hard cases, not to make

easy cases harder!

Answers to (4.8)

(a) By inspection (3, 1) is a solution, so the general
solution is (3, 1) + k(5,−2) since hcf(2, 5) = 1.

(b)
(r) (q) (u) (v)

1 0
17 1 0 1
13 3 1 1
4 4 3 4
1

So hcf(17, 13) = 1 and 17 · 3− 13 · 4 = −1 so the
general solution is (−300, 400) + k(13,−17).

(c)
(r) (q) (u) (v)

1 0
21 1 0 1
14 2 1 1
7

So hcf(21, 7) = 7 = 21 − 14; one solution
is therefore (21,−21) and the general solution
is (21,−21) + k(2,−3) (and not (21,−21) +
k(14,−21) which only gives one in every 7 solu-
tions). Here it is fine to spot the common factor
of 7 and solve 3x+ 2y = 21 instead.

(d) No solutions since hcf(60, 18) = 6 ∤ 97.
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continued. . .

(e)
(r) (q) (u) (v)

1 0
1402 0 0 1
1969 1 1 0
1402 2 1 1
567 2 3 2
268 8 7 5
31 1 59 42
20 1 66 47
11 1 125 89
9 4 191 136
2 2 889 633
1

So hcf(1402, 1969) = 1 = 1402 · 889 − 1969 ·
633, and the general solution is (889,−633) +
k(1969,−1402).

Summary of Section 4

In this section, we reviewed the Euclidean Algorithm (EA), and the Ex-
tended Euclidean Algorithm (EEA), showing a simple concise way to set
these out for computation.
We then showed how to use the EA to determine whether both linear
congruences

ax ≡ b (mod n)

and linear Diophantine Equations

ax+ by = c

have solutions, and how to use the EEA to find their solutions (including
the general solution) when solutions exist.

39


