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0.1 Introduction

This chapter is concerned with minimal surfaces of general type X: I make
the blanket assumptions that X is a nonsingular projective surface (for ex-
ample, defined over C) for which KX is nef (that is, KXC � for every curve
C) and K2

X > 0. As usual pg = h0(KX) and q = h1(OX).

Definition 0.1.1 A Godeaux surface is a minimal surface of general type
X with pg = q = 0 and K2 = 1. A Campedelli surface is a minimal surface
of general type X with pg = q = 0 and K2 = 2.

There is up to now no special name for surfaces with K2 = 3; immortality
beckons for anyone who does particularly significant work with these. This
chapter discusses the known results on Godeaux and Campedelli surfaces,
with several interesting classes of examples.

0.1.1 Motivation

Surfaces with pg = q = 0 are interesting for several reasons.

(1) The characterisation of ruled and rational surfaces in terms of plurigen-
era Pm = h0(mKX) was obtained around 1900 by Castelnuovo and Enriques.
A surface is rational (birational to P2) if and only if pg = P2 = q = 0;
a surface is ruled (birational to C ⇥ P1 for some curve C) if and only if
pg = P2 = P3 = P4 = P6 = 0; these conditions together are of course implied
by (in fact equivalent to) P12 = 0 or  = �1. This raises the simple-minded
question of whether pg = q = 0 might not already be su�cient for rationality.
This is false. The first example, around 1910, was Enriques’ famous example
of a sextic hypersurface in P3 passing doubly through the 6 edges of a tetrahe-
dron; the modern treatment, unfortunately less picturesque, is as a quotient
of a K3 surface by a free action of Z/2. The first examples of surfaces of
general type with pg = 0 were discovered by Godeaux and Campedelli in the
1930s. An example of a simply connected Godeaux surface was discovered
by Rebecca Barlow [1], [2] around 1980.

More recently, Craighero and Gattazzo [5] have discovered another surface
with pg = 0, K2 = 1. Their surface is torsion free (Dolgachev and Werner
[6]), and I have little doubt that it is in the same deformation family as the
Barlow surface.
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(2) The problem of describing all surfaces with fixed invariants seems to be
completely intractable, except for very favourable choices of the invariants.
The best results known in this direction are Horikawa’s results on surfaces
with small K2, which contains a fairly explicit treatment of all surfaces of
general type with pg � 2 and K2 = 2pg � 4. Nevertheless, the Godeaux and
Campedelli cases pg = q = 0 and K2 = 1, 2 are in some sense the first cases
of the geography of surfaces of general type, and it is somewhat embarassing
that we are still quite far from having a complete treatment of them. The
study of Godeaux and Campedelli surfaces is thus a test case for the study
of all surfaces of general type.

(3) Donaldson theory, one of the most substantial advance in mathematics
of the 1980s, constructs C1 invariants of smooth 4-manifolds, capable of
distinguishing between the smooth structure of 4-manifolds with the same
homotopy type; in other words, the Donaldson invariants can be used (in
favourable cases) to prove that two homotopy equivalent 4-manifolds are not
di↵eomorphic. Now the invariants of Donaldson theory work very di↵erently
for algebraic surfaces with B+

2 � 3 (that is, pg 6= 0) and those with B+
2 = 1

(that is, pg = 0). The fact that many papers on Donaldson theory refer to
the Barlow surface as the “only known” simply connected surface of general
type with pg = 0 is a challenge to construct more; there must be lots lying
around, if only anyone was clever enough to find them.

This chapter gives several classes of examples of Godeaux and Campedelli
surfaces and discusses some of the known results.
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0.2 The algebraic fundamental group and the
main result

Godeaux and Campedelli surfaces are further subdivided according to their
torsion subgroup TorsX ⇢ PicX and their algebraic fundamental group
⇡alg

1 (X). The definition and properties of ⇡alg
1 of an algebraic variety are

discussed below. For Godeaux and Campedelli surfaces, the following result
is known.

Theorem 0.2.1 A Godeaux surface X has algebraic fundamental group ⇡alg
1 (X)

of order  5.

Theorem 0.2.2 (Beauville, Reid [10]) A Campedelli surface X has alge-
braic fundamental group of order  9.

Restatement of Theorems 0.2.1–0.2.2 The algebraic fundamental group
⇡alg

1 of an algebraic variety is discussed in the following section. However,
Theorems 0.2.1–0.2.2 could be stated and proved without mentioning ⇡alg

1 ,
in the following equivalent form.

Theorem 0.2.3 Suppose that Y is an algebraic surface and G a finite group
of automorphisms of Y acting freely, and such that the quotient variety
X = Y/G is a Godeaux (or Campedelli) surface. Then G has order  5
(respectively  9).

0.2.1 The state of current knowledge

Comparable to the idea that, other things being equal, surfaces with small
K2 are easier than those with large K2, the general experience with these
surfaces is that the bigger ⇡alg

1 is, the easier it is to study them. The Godeaux
surfaces with ⇡alg

1 = Z/5, Z/4, Z/3 are completely described in [9], and it is
known that ⇡alg

1 = Z/2�Z/2 is impossible. Examples with ⇡alg
1 = Z/2 or 0 are



4

known, but a complete description remains a problem. I conjecture that in
either case, the moduli space is irreducible (and more-or-less rational). There
are lots of examples of Campedelli surfaces with ⇡alg

1 of order 4, 5, 7, 8, 9, and
it should be possible to give a complete description if ⇡alg

1 has order � 6. It
is probable that every group of order  9 except for the dihedral groups D8

and D6 = S3 occurs as ⇡alg
1 of a Campedelli surface; the most interesting and

almost certainly the hardest questions concern the simply connected case.1

More generally, surfaces with pg = q = 0 have K2 + c2 = 12�(OX) = 12,
and c2 � 3, so that K2  9. Each of the possible values K2 = 1, . . . , 9 occurs,
but there is little in the way of a systematic study of the resulting surfaces.

0.2.2 Background to ⇡alg
1

Let X be a topological space and ⇡ : eX ! X its universal cover; the topo-
logical fundamental group ⇡1 = ⇡top

1 acts naturally on X in such a way that
X = eX/⇡1. If N ⇢ ⇡1 is a normal subgroup of finite index then Y = eX/N
is a finite etale cover p : Y ! X with Galois group G = ⇡top

1 /N .
Now suppose that the topological space X is an algebraic variety over C;

then it can be proved that Y has a natural structure of algebraic variety such
that X = Y/G as an algebraic variety (that is, OX = (p⇤OY )G). In other
words, algebraic geometry can see the finite etale covers p : Y ! X even if it
cannot see the whole of eX.

This motivates the definition of the algebraic fundamental group:

⇡alg
1 (X) = lim �Gal(Y/X),

where the inverse limit runs over all finite etale covers ⇡ : Y ! X. This
definition is due to Grothendieck in SGA1, and makes sense for an arbitrary
scheme X.

The explanation just given shows that for a variety over C, the algebraic
fundamental group is the profinite completion of the topological fundamental
group, ⇡alg

1 = b⇡1.
The algebraic fundamental group is a subgroup of the Galois group Gal(k(X)).

To be more precise, let k(X) be the function field of X and K = k(X) its
(separable) algebraic closure. A finite extension k(X) ⇢ L ⇢ K is etale
(unramified) over X if the normalisation XL of X in L is an etale cover

1What I wrote here is out of date. The question is settled by the work of Naie and the
Korean geometers Yongnam Lee and Jongil Park and their students.
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XL ! X. Let k(X)et be the union of all etale extensions of k(X); then
⇡alg

1 = Gal(k(X)et/k(X)). The Galois group of any infinite algebraic field
extension K ⇢ L is automatically a profinite group, because it is determined
in terms of automorphisms of finite subextensions.

0.2.3 Known relations between ⇡alg
1 and ⇡top

1

A theorem of Xiao Gang states that the natural homomorphism

⇡1(X)! b⇡1(X) = ⇡alg
1 (X)

is injective for all surfaces of general type with K2
X < 3�(OX)� 10. A group

G with the property G ,! bG is residually finite. Injectivity just means that
a nonzero element of G is nonzero in some finite quotient group. Although
Xiao’s theorem can probably be extended to surfaces with K2

X < 4�(OX) (see
[12]), it is not true that ⇡1 of an algebraic surface is always residually finite:
Domingo Toledo [14] has constructed an example of an algebraic surface for
which ⇡1 contains a normal subgroup that is free of infinite rank, but maps
to the identity under any homomorphism to a finite group.

Whereas the fundamental group is the most basic invariant in topology
and homotopy theory, in algebraic geometry, covers with specified ramifica-
tion may be just as important as etale covers. The definition of ⇡alg

1 in terms
of Galois theory has the advantage that it can cover these generalisations
with no extra e↵ort. “The fundamental group is not really fundamental”
would be a reasonable slogan in some contexts of algebraic geometry.

0.2.4 Proof of Theorem 0.2.1

Let X be a Godeaux surface, p : Y ! X a finite Galois etale cover of degree n.
Then since TY = p⇤TX it follows that KY = p⇤(KX) and c2(Y ) = p⇤(c2(X)),
so that

K2
Y = n, �(OY ) = n�(OX) = n, that is, pg(Y ) = n� 1 + q(Y ).

Thus what I have to prove is equivalent to the following:

Theorem 0.2.4 Let Y be a minimal surface of general type, with K2
Y = n,

pg(Y ) = n� 1 + q(Y ), and suppose that a group G of order n acts freely on
Y . Then n  5.
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Proof The inequality K2 � 2pg � 4 of Max Noether and Horikawa gives

n � 2(n� 1 + q(Y ))� 4,

so that n  6. Suppose that n = 6; then K2
Y = 6 and pg = 5, so that

K2 = 2pg � 4. Then by Horikawa’s results, |KY | defines a double cover
'KY : Y ! F1 ⇢ P4 from Y to F1 embedded in P4 as a rational normal scroll
of degree 3. Now the composite f = p�' of 'KY : Y ! F1 and the projection
p : F1 ! P1 is a fibre space Y ! P1 with fibres of genus 2.

Since p is constructed in a unique way from Y , it follows that it is invariant
under G, or more precisely, G also has an action on P1 so that f : Y ! P1

is equivariant. The following result then contradicts the assumption that G
acts freely on Y .

Lemma 0.2.5 If a fibre space f : Y ! P1 of curves of genus g has compatible
automorphisms ↵ 2 AutY and � 2 Aut P1, such that ↵ generates a cyclic
group G = h↵i = Z/r ⇢ AutY acting freely on Y , then r divides g � 1. (If
g = 1 the statement is vacuous.)

Corollary 0.2.6 A surface with a canonically defined pencil of curves of
genus 2 over P1 has no fixed point free automorphism. This holds in particular
for all the Horikawa surfaces with K2 = 2pg � 4, and in fact for all regular
surfaces with K2 < 8

3pg � 14 (compare [11] or [15]).

Proof � certainly has a fixed point P 2 P1, so that ↵ preserves some fibre
F = p�1P . If g = 0 then F is a tree of rational curves, so that there can be
no fixed point free automorphism.

Write F = p⇤P for the scheme theoretic fibre. Then if g > 1 it follows
that KY F = 2g�2 > 0, and clearly, ↵ must have finite order, say r. (Because
↵ preserves an ample divisor class on Y of the form KY + f⇤(ample.) If ↵
has no fixed points near F then the quotient by ↵ is a finite etale cover
⇡ : Y ! X of degree r, and both KY = ⇡⇤(KX) and F = ⇡⇤G are pullbacks
of divisors on X. Therefore 2g � 2 = KY F = rKXG; also G2 = 0, so that
KXG is even. Thus r divides g � 1. Q.E.D.

The proof of Theorem 0.2.2 is basically similar, although a bit more com-
plicated. See [10].
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0.3 Standard example of Godeaux surfaces

0.3.1 The Z/5 Godeaux surface

In the notation of the preceding proof, if n = 5 then K2
Y = 5, pg = 4 and

q(Y ) = 0, that is, Y has the numerical invariants of a quintic hypersurface.
By Horikawa’s results there are two possibilities:

(I) The canonical linear system |KY | is free, and the associated morphism
'KY : Y ! Y5 ⇢ P3 is birational to a quintic Y5 ⇢ P3.

(II) KY has a unique base point P .

In case (II), G must fix the point P , which is a contradiction. Hence
only (I) can hold. In suitable homogeneous coordinates x1, . . . , x4 on P3,
the action of Z/5 on P3 is given by xi 7! "ixi for i = 1, . . . , 4 (where " is
a primitive 5th root of 1), and Y is defined by a quintic invariant under G,
for example x5

1 + · · · + x5
4 = 0. The quotient X = Y/(Z/5) is a nonsingular

projective surface with K ample, and it is easy to calculate its invariants:
K2

X = K2
Y /5 and �(OX) = �(OY )/5 = 1. Also H1(OX) ⇢ H1(OY ) = 0, so

that X is a Godeaux surface.
For Z/4 Godeaux surfaces see [9] or Ex. 3.

0.3.2 Example of a Campedelli surface with ⇡1 = 3Z/2

Consider the action of G = 3Z/2 = Z/2�Z/2�Z/2 on a 7-dimensional vector
space V which is the sum of the 7 di↵erent nontrivial character spaces. That
is, write x001, x010, . . . , x111 for coordinates on V , with the group action given
by

gijk(xi0j0k0) = (�1)ii0+jj0+kk0
xi0j0k0

for gijk 2 G. In other words, every element e 6= g 2 G acts by diag(±, . . . ,±)
with 3 pluses and 4 minuses. Then G acts on P6, and one checks at once
that every nonzero element g 2 G has fixed locus Fix g = P2 [ P3.

Any diagonal quadratic form q =
P

aix2
i is of course invariant under G.

It is easy to see that a general choice of 4 diagonal quadrics Q1, Q2, Q3, Q4

intersect transversally in a nonsingular surface Y disjoint from Fix g for all
g 2 G. Then ⇡ : Y ! X = Y/G is an etale quotient, and pg(Y ) = 7,
q(Y ) = 0 and K2

Y = 16 implies that pg(X) = 0, K2
X = 2, that is, X is a

Campedelli surface with ⇡1 = Z/2� Z/2� Z/2.
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There are lots of variations on this example, obtained by making di↵erent
groups of order 8 act on Y =

T4
i=1 Qi ⇢ P6 (see [10] and compare [4]).

Each of Z/8, Z/2 � Z/4, Z/2 � Z/2 � Z/2 and the quaternion group H8 =
{±1,±i,±j,±k} can act freely. The dihedral group D8 of order 8 does not
have a free action on Y =

T4
i=1 Qi ⇢ P6, for easy reasons of representation

theory. For more details see Exercises 1–8.
It is also interesting to consider a group of order 16 acting on a complete

intersection of 4 quadrics Y =
T4

i=1 Qi ⇢ P6 such that certain group elements
have isolated fixed points on Y . In this way, using Lemma 0.4.3 below, Barlow
[3] constructed Godeaux surfaces with ⇡1 = Z/2 and Z/4.

0.3.3 Example of a Campedelli surface with ⇡1 = Z/7

For this example, I first construct a class of surfaces Y ⇢ P5 with the following
properties:

(i) Y is canonically embedded, that is, OY (KY ) = OY (1), so that pg(Y ) =
6, and of degree 14, that is, K2

Y = 14.

(ii) It is projectively normal (that is, H0(P5,OP5(k)) ! H0(Y,OY (k))
is surjective for every k), and projectively Cohen–Macaulay, that is
H1(OY (k)) = 0 for every k, and in particular q(Y ) = h1(OY ) = 0.

Under these assumptions, the canonical ring

R(Y,KY ) =
M
n�0

H0(Y, nKY ),

which equals the homogeneous coordinate ring k[x1, . . . , x6]/IY of Y ⇢ P5

is a Gorenstein ring of codimension 3. The famous structure theorem of
Buchsbaum and Eisenbud asserts that the ideal of relations of such a ring
can be written in Pfa�an format. In my case, this means the following:
there is a skew 7 ⇥ 7 matrix M = (lij) with entries lij linear forms in the
homogeneous coordinates of P5, and the ideal IY is generated by the 7 cubic
forms Pfi obtained as the 6 ⇥ 6 Pfa�ans. That is, delete the ith row and
jth column of M to obtain a skew 6 ⇥ 6 matrix Mij; then the determinant
of Mij is a product of two Pfa�ans:

detMij = ±Pfi Pfj
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as a polynomial identity in the entries of M , and in particular, the diagonal
minors are perfect squares: detMii = Pf2i . One shows that if the entries lij
of M are su�ciently general then Y : (Pfi = 0) has the stated properties.

Now to construct Y with an action of Z/7, I have to choose the matrix
M carefully. In homogeneous coordinates x1, . . . , x6 on P5, I take the action
of Z/7 to be generated by ↵ : xi 7! "ixi, where "i is a primitive 7th root of
1. Let M be the skew 7⇥ 7 matrix given by

M =

0
BBBBBBBBBBBBBBB@

0 x1 x3 x2 x6 x4 x5

0 x4 �3x3 0 ��5x5 �x6

0 x5 �2x2 0 ��1x1

0 x1 �6x6 0

0 x3 �4x4

�sym 0 x2

0

1
CCCCCCCCCCCCCCCA

where �1 . . . ,�6 are parameters. It is not hard to see that every 2⇥ 2 minor
of M is an eigenform of the group action, and hence so is every minor and
Pfa�an. Then one calculates easily that

Pf0 = x1x2x4 + . . .

Pf1 = � �5x
3
5 � �1�6x

2
1x6 + (1� �1�5)x1x2x5 � �1�3x1x3x4 + x2x

2
4

� �3x2x
2
3 + (1 + �6)x4x5x6 + �6x3x

2
6

. . .

The group action maps Pfi 7! "i Pfi. It is extremely di�cult to see that for
su�ciently general values of �1, . . . ,�6, the equations Pf0 = Pf1 = · · · = Pf6
define a nonsingular surface Y ⇢ P5. I only know how to do this by a
computer algebra calculation (see [13]).

The columns of M should be thought of as labelled by 0 and 1, 3, 2, 6, 4, 5,
to be invariant under the symmetry group (Z/7)⇥ of Z/7. In fact, if �1 =
· · · = �6, then it is easy to check that the permutation � : x1 7! x3 7! x2 7!
· · · of the coordinates xi takes Pf1 7! Pf3 7! . . . , so that construction has
the symmetry group of order 42 generated by ↵ and �.
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0.4 The Burniat–Inoue examples

Inoue’s form of the Burniat construction starts from three elliptic curves
E1, E2, E3, each marked with an action of (Z/2)�2 generated by the follow-
ing two commuting involutions �i, ⌧i: a “minus” involution �i : Ei ! Ei,
corresponding to a double cover ⇡i : Ei ! P1, and a translation involu-
tion ⌧i : Ei ! Ei. The composite ⌧i�i is of course another “minus” invo-
lution. I consider the group H ' 3Z/2 of involutions of the Abelian 3-fold
A = E1 ⇥ E2 ⇥ E3 generated by the 3 elements:

(id1, ⌧2,�3⌧3)

(�1⌧1, id2, ⌧3)

(⌧1,�2⌧2, id3)

(note the cyclic symmetry (123)). Each generator acts as a translation ⌧i in
one of the three components, and therefore has no fixed points on E1⇥E2⇥E3;
the same holds for each composite of 2 generators, for example (�1⌧1, ⌧2,�3).
The composite of all 3 generators is (�1,�2,�3), the “minus” of the Abelian
3-fold, and so has 64 fixed points.

Now look for an H-invariant divisor Z ⇢ E1⇥E2⇥E3. Choose the divisor
class of Z to be

N3
i=1 ⇡⇤i OP1(1), where ⇡i : Ei ! P1. In this section, I leave

all the nonsingularity calculation until the end. I check in 0.4.2 below that
there is an invariant 1-dimensional linear system whose general element Z is
nonsingular and misses the 64 fixed points of (�1,�2,�3), so that the quotient
Y = Z/H is a nonsingular surface.

Claim 0.4.1 pg(Y ) = q(Y ) = 0, K2
Y = 6. (Of course, ⇡1(Y ) is infinite.)

Proof An easy calculation shows that a nonsingular divisor in an Abelian
3-fold Z ⇢ A satisfies c2

1 = c2, that is, K2
Z = 6�(OZ). Indeed, A has trivial

tangent bundle TA = 3OA, so that the usual restriction sequence gives

0! TZ ! O�3
A ! OA(Z)! 0.

Hence the total Chern class of Z is c(TZ) = (1 + Z)�1 = 1 � Z + Z2, and
thus

KZ = �c1(TZ) = Z|Z , and c2(Z) = Z2
|Z = c2

1(Z).
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Now Z is twice a principal polarisation of A, so that K2
Z = Z3 = 23 · 3! = 48,

and therefore the quotient Y = Z/H has K2
Y = 6, �(OY ) = 1.

Thus it is enough to show that q(Y ) = 0. But Y is an ample divisor
on the quotient B = A/H, and H1(OB) = 0. Indeed, H1(OB) equals the
invariants of H acting on H1(OA) =

L3
i=1 H1(OEi) = C� C� C; but H is

generated by 3 elements acting on this by +, +,� and cyclic permutations,
so leaves nothing invariant.

0.4.1 First variation

If2 we choose E1 = E2 = E3 the Inoue construction obviously has the cyclic
symmetry (123). Thus the surface Y just constructed has an action of Z/3.
In 0.4.2 below I check that (123) acts on Y with 3 fixed points {Pj}, and that
the action on the tangent space TPj at each fixed point diagonalises to (", "�1),
where " is a primitive 3rd root of 1. Thus the quotient X = Y/(123) has 3
Du Val singularities A2. It is clear that its resolution X ! X is a Campedelli
surface: indeed, KY is ample, and ⇡ : Y ! X is etale in codimension 1, so
that KY = ⇡⇤(KX), and KX is ample with K2

X
= 2.

Claim 0.4.2 ⇡top
1 (X) = Z/2.

It is easy to see that ⇡alg
1 (X) is at least Z/2. Indeed, by construction, X

is an ample divisor on the 3-fold C = B/(Z/3) with 2KC = 0 but KC 6= 0,
and therefore KC |X 2 TorsX is a nontrivial 2-torsion class.

Lemma 0.4.3 Let T be a simply connected topological space and G a trans-
formation group of T . Say that g 2 G is elliptic if Fix g 6= ;. Then

⇡1(T/G) = G/E,

where E ⇢ G is the normal subgroup generated by elliptic elements.

This is well known, and can be proved either by the homotopy lifting property
of the universal cover (the universal cover of T/G is dominated by T ! G,
so is of the form T/H, where H ⇢ G is a subgroup, that you show must
be normal and contain the elliptic elements), or by similar ideas in Galois
theory. (For details see Rebecca Barlow’s thesis [1].)

2From here on the paper is not reliable. This material is also out of date. The questions
here have been settled by work of Bauer and Catanese and their school.
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Proof of the claim First, Z ⇢ A is an ample divisor, so by the Lefschetz
theorems, ⇡1(Z)

'�! ⇡1(A); it follows that the inverse image of Z in the
universal cover C3 = eA is the universal eZ cover of Z, and in particular, is
connected and simply connected. Now X is the quotient of eZ by a complex
crystallographic group G: the group contains the cocompact lattice Z6 =
⇡1(A) as a normal subgroup of index 3⇥23, and the quotient group H = G/Z6

(the “point group” in crystallographic terms) consists of the possible linear
parts of elements of G. By construction, H is generated by matrixes

diag(�1, 1, 1), diag(1,�1, 1), diag(1, 1,�1), and

0
@0 1 0

0 0 1
1 0 0

1
A .

Thus the linear parts of elements of G consists of cyclic permutations of 3
coordinates z1, z2, z3 of C3 with ± signs attached. Obviously, such a matrix
M with a nontrivial cyclic permutations has the 3 eigenvalues

⇢
1, ", "2 if detM = 1;

�1,�",�"2 if detM = �1;

Claim 0.4.4 Suppose that the linear part g of g 2 G satisfies

1. g is a nontrivial cyclic permutation;

2. det g = 1;

3. g3 = idC3 .

Then Fix(g : C3) is 1-dimensional, and Fix(g : eZ) 6= ;.

This is obvious: under the stated conditions, the linear part of g is a
matrix M whose linear part with eigenvalues of 1, ", "2. Thus the linear part
has a 1-dimensional fixed set. (3) implies that there is no translation part.

0.4.2 Nonsingularity proofs

I first set up some notation: the elliptic curve E : y2 = (x2�a2)(x2� b2) has
two involutions � : (x, y) 7! (x,�y) and ⌧ : (x, y) 7! (�x,�y). Obviously �
has 4 fixed points y = 0, x = ±a,±b, and ⌧ has no fixed points, but take
(a, 0) 7! (�a, 0). The third element �⌧ of the four-group has fixed points
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x = 0, y = ±ab and x = 1, x2y = 1/ab. My coordinate x is of course
inhomogeneous: I write simply 1, x for the basis of sections of ⇡⇤(OP1(1)) on
E corresponding to ⇡ : E ! P1, and leave the reader to figure out what goes
on at x =1.

For coordinates on the product A = E ⇥ E ⇥ E (or E1 ⇥ E1 ⇥ E2),
I take (x, y); (x0, y0); (x00, y00). The only nonidentity element of H that has
fixed points on A is �,�,�, which fixes the 64 points where y = y0 = y00 = 0
and x, x0, x00 2 {±a,±b} are independent choices.

Now the action of H = (Z/2)�3 on the complete linear system |Z| on
A is given by the linear action of H on the trilinear forms (1, x) ⌦ (1, x0) ⌦
(1, x00). Since the 3 generators of H act on x, x0, x00 by +,�,� and cyclic
permutations, the invariant subspace is based by the two elements {1, xx0x00}.
Thus the invariant surface Z is defined by xx0x00 = c for some constant c 2 P1,
and to ensure the irreducibility of Z, it will be prudent to take c 6= 0,1. To
encourage confidence in the nonsingularity calculation, note that xx0x00 = c
simply defines a “general” hyperplane section of the Segre embedding of
P1 ⇥ P1 ⇥ P1 ⇢ P7.

Claim 0.4.5 For c 6=??, Z : (xx0x00 = c) ⇢ A is nonsingular and misses the
64 fixed points of �,�,�.

Homework to Chapter 0.4

1. Prove that any algebraic action of Z/2 on P3 is given in suitable linear
coordinates by (x0, x1, x2, x3) 7! (±x0,±x1,±x2,±x3). [Hint: Argue
that g⇤O(1) ' O(1), then g⇤xi 2 H0(O(1)), so that g takes xi into a
matrix A times xi. After scaling, you get A2 = 1, and can reduce it to
diagonal form. ]

2. Let G = Z/2 act on P3 by (x0, x1, x2, x3) 7! (x0, x1,�x2,�x3). Prove
that a surface X = Xd : (fd = 0) ⇢ P3 is invariant under G if and only
if fd is a ± eigenform. For general choice of fd, determine the fixed
locus of Z/2 on X and the singularities of the quotient X/G.

3. Godeaux with Z/4.

4. Campedelli with Z/8 and Z/4� Z/2.
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5. Campedelli with Z/3� Z/3.

6. Existence of Campedelli with H8 (compare Beauville [4]).

7. Existence of Campedelli with Z/9 and 2Z/3 (compare Xiao [] and
Mendes Lopes–Pardini []).

8. Nonexistence of Campedelli with D8.

9. Nonexistence of Campedelli with ⇡1 = D6 = S3 (compare Naie [])).
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