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The conformation of membranes
Reinhard Lipowsky

Membranes composed of amphiphilic molecules are highly flexible surfaces that determine the architec-
ture of biological systems and provide a basic structural element for complex fluids such as microemul-
sions. Physical theories have been developed to describe many aspects of their conformational behaviour,
such as the preferred shapes and shape transformations of closed vesicles, and the shape fluctuations,
random-surface configurations, and adhesion and unbinding of interacting membranes. Understanding of
these phenomena has been much improved through fruitful interactions between theory and experiment.

THE membranes that I shall consider here are very thin and
highly flexible sheets of amphiphilic molecules—structures that
are a uniquitous component of biological systems. On length
scales large compared with the size of the molecules, these
membranes can be regarded as two-dimensional surfaces embed-
ded in three-dimensional space. The behaviour of these surfaces
has recently attracted interest from several communities.
Biology, biophysics and biochemistry. Membranes represent the
main structural component for the complex architecture of bio-
logical systems. The human brain, for example, consists of a
complex network of membranes with a total surface area of
103-104 m2. Biophysicists have constructed a number of model
membranes that are expected to capture some of the essential
features of their biological counterparts. The simplest models
of this kind are provided by lipid bilayers which assemble
spontaneously from lipid molecules dissolved in water.
Physical chemistry and chemical engineering. Surfactant mole-
cules in mixtures of immiscible fluids often assemble into mem-
branes which then form a variety of different structures. These
supramolecular structures can include: a liquid crystal such as
a smectic phase formed by an ordered stack of membranes; a
periodic crystal in which the membranes divide space into two
interpenetrating labyrinths and thus form a bicontinuous struc-
ture; or new, unusual phases such as the so-called sponge phase,
which represents a bicontinuous but disordered state of matter.
Theoretical physics and mathematics. To understand the confor-
mational behaviour of membranes, one has to introduce a num-
ber of novel theoretical concepts such as bending elasticity and
curvature, scale invariance arising from fluctuations on many
length scales, and renormalization of membrane interactions. I
will try to explain these theoretical concepts and their relation
to experiments. One intriguing aspect of this topic is the need
to combine mathematical techniques such as differential
geometry (see Box A) and renormalization group theory (see
Box B) with the behaviour of real systems as observed under
the microscope.

Mesoscopic shape of membranes
In aqueous solution, lipid or surfactant bilayers typically form
closed surfaces or vesicles. Multilamellar vesicles consisting of
several phospholipid bilayers were first observed by electron
microscopy1. Several methods are now available through which
one can obtain large unilamellar vesicles consisting of a single
lipid bilayer2. Such vesicles have a linear size of the order of
1-10 and can be studied directly by optical microscopy.

These observations have shown that lipid vesicles exhibit a large
variety of different shapes (Fig. 1a, b); in particular, they can
exhibit the non-spherical, biconcave shape typical of red blood
cells3,4.
Bending elasticity and formation of vesicles. It is well known
that liquid droplets usually have a spherical shape which is
governed by interfacial tension. Non-spherical shapes cannot
be determined by such a tension. It is now generally believed
that the shape of vesicles is determined primarily by bending

elasticity and curvature5-7. This idea leads to the theoretical
model described in Box A. In this model, which I will call the
curvature model, the energy of a given shape depends on the
mean curvature and on the gaussian curvature of the membrane6

(see Box A). In its simplest version, this model involves only
two parameters: the bending rigidity, , and the gaussian
curvature modulus, . For phospholipid bilayers,
(refs 8, 9).

One nice feature of the curvature model is that it provides a
very simple explanation for the fact that bilayers tend to form
vesicles. Consider a membrane segment of linear size . If this
segment is planar, it has no bending energy but its boundary
has an edge energy, , per unit length arising from the partial
contact between the water and the hydrocarbon chains of the
lipid. The total edge energy of the segment is thus proportional
to . On the other hand, if the segment forms a sphere, it has
no edge energy but the bending energy is non-zero, and is given

FIG. 1 Shape transformations of free vesicles induced by a change in
temperature4. a, c, Expulsion of a small vesicle from a larger one (budding).
b, d, Inverse budding ('endocytosis') via the transformation from a discocyte
to a stomatocyte. The shapes are axisymmetric with respect to the broken
line.



by , which does not depend on the linear size of
the membrane (see Box A). Therefore, for large , the membrane
can always lower its energy by forming a closed surface. For
phospholipid bilayers, the edge energy
(refs 10, 11). This mechanism of vesicle formation via the hydro-
phobic effect is quite general, and operates in biological systems
which usually contain a large number of such structures.
Shape transformations of free vesicles. Consider again the
vesicle shapes shown in Fig. 1a and b. These micrographs show
a single lipid vesicle, which undergoes shape transformations
induced by a change in temperature.

In thermal equilibrium, the vesicle should attain the shape
that corresponds to the minimum bending energy. If one assumes
rotational symmetry, these minimal shapes can be calculated
from the curvature model12-14. It has been found recently that,
if one assumes that the two monolayers of the bilayer exhibit a
small asymmetry4,14, the experimentally observed shapes and
shape transformations shown in Fig. 1a and b can be explained
by such minimal shapes (Fig. 1c, d).
Adhesion of vesicles and vesicle fusion. Now consider a vesicle
that interacts with another membrane or surface. If this interac-
tion is attractive, it can lead to a bound state of the vesicle.
Bound states have been investigated experimentally by micro-
pipette techniques15, which allow one to study, for example, the
adhesion of two vesicles (Fig. 2).

Box A. DIFFERENTIAL GEOMETRY AND THE CURVATURE
MODEL

Consider a two-dimensional surface embedded in three-dimensional
space. At each point on the surface, one can define two principal
curvatures, and , which determine the mean curvature
and the gaussian curvature . The curvature model is then defined
by the configurational energy or 'effective Hamiltonian'6

(A.1)

where the integral extends over the whole membrane surface (which
could consist of several disconnected components) and represents
the intrinsic area element. The parameters , and are the bending
rigidity, spontaneous curvature and gaussian curvature modulus,
respectively. For a symmetric membrane (both sides identical),

The shape of a vesicle with surface area A and enclosed volume
is determined by minimization of , where and denote
the difference between the outside and the inside pressure and the
lateral tension, respectively. For phospholipid bilayers, the exchange
of lipid molecules with the surrounding solution is very slow and the
area is essentially constant on experimentally relevant timescales.
In addition, one may control the vesicle volume for example by
varying the concentration of a solute that cannot permeate the bilayer.
The pressure and the tension then play the role of Lagrange
multipliers. This approach has been used to calculate the shapes
shown in Fig. 1 and Fig. 3.

For a spherical vesicle of radius . When inserted into
(A.1) with , one obtains . In fact, for a closed
surface, the third term in (A.1) always leads to a constant that does
not depend on the size of the surface but only on its topology or, more
precisely, on its Euler characteristic96, . For a surface without edges,
the integral over the gaussian curvature is given by

(A.2)

as follows from the Gauss-Bonnet theorem of differential geometry96.
Now consider the minimal surface shown in Fig. 4b, for which the

mean curvature, , is zero everywhere. This surface is topologi-
cally equivalent to a cubic lattice of spheres connected in all three
spatial directions by pieces of cylinders; it has Euler characteristic

per lattice site. Thus, for , the bending energy of the
minimal surface in Fig. 4b is given by per lattice site. The
same energy applies, for , to a surface with constant

. The latter surface represents a minimum of ; it thus
represents a model for the prolamellar body shown in Fig. 4a.

The shape of a bound vesicle is determined by the interplay
between adhesion and bending energies. This interplay can be
studied theoretically by starting from a simple generalization of
the curvature model in which the membrane experiences a
contact potential arising from the attractive surface16,17. If one
assumes that the vesicle does not change its topology, theory
predicts a large variety of different bound states (Fig. 3). As
shown in this figure, the vesicle can undergo shape transforma-
tions between free and bound states as well as transformations
between different bound states.

Adhesion can also lead to topological changes such as vesicle
rupture and vesicle fusion. In the limit of strong adhesion, a
bound vesicle with constant volume attains the shape of a
spherical cap. In this limit, the adhesion energy, , is related
to the lateral tension by the Young-Dupre equation:

, where denotes an effective contact angle16,17.
If the tension exceeds a certain threshold, it will disrupt the
membrane. As a result, the closed vesicle will be transformed
into a disk-like membrane segment with a free edge. A segment
of linear size has an adhesion energy proportional to ,
which overcomes the edge energy (proportional to ) for
sufficiently large .

If two vesicles collide, they may adhere and eventually fuse
into a larger one18. According to the curvature model, the energy
gained by the fusion of two free vesicles is 19.
Thus, fusion of two free vesicles is energetically favourable if

. In principle, the fusion process also involves a loss
of translational entropy which leads to a free-energy increase
of the order of where and are the linear sizes

FIG. 2 Adhesion of two lipid vesicles which are brought into contact by two
micropipettes. The vesicle radii are (courtesy of E. Evans).



of the container and of the vesicle respectively ( is the
Boltzmann constant). For lipid bilayers with this
entropic contribution is usually small relative to the bending
energies.

On the other hand, for two bound vesicles of linear size ,
the energy gained by fusion is proportional to for large
(ref. 17). Therefore, two vesicles can fuse in their bound state
even if they cannot fuse in their free state. Such an adhesion-
induced fusion process has been observed for vesicles attracted
by a gold surface20 and for lecithin membranes at the air-water
interface21.
Ordered and disordered assemblies of bilayers. So far, I have
discussed the behaviour of one or two vesicles in plenty of water.
For a larger concentration of amphiphilic molecules, membranes
can assemble into a variety of different structures. First, the
membranes may spontaneously form an ensemble of unilamellar
vesicles, as has been observed for bilayers of several kinds of
surfactant22-25. Lipid bilayers, on the other hand, often form
layered structures such as multilamellar vesicles, myelin cylin-
ders or oriented stacks, which are stabilized by interactions
between the membranes.

Another possible structure is a triply periodic surface which
divides the whole three-dimensional space into two interwoven
labyrinths or subvolumes and thus gives rise to a bicontinuous
phase26-30. Such crystalline states of bilayers have been reported
for a variety of amphiphilic molecules27,29,30 and are present in
plant cells26 (Fig. 4a). In some cases, the partitioning bilayer
forms a 'minimal surface', which is characterized by zero mean
curvature. An example with cubic symmetry is shown in Fig.
46. Minimal surfaces can exhibit many different symmetries,
and there has been recent progress in classifying the correspond-
ing space groups31. Triply periodic surfaces with constant but
non-zero mean curvature have also been constructed32,33.

The ordered structures shown in Fig. 4a and b are perturbed
by thermally excited shape fluctuations of the bilayers. These
fluctuations can pinch off some of the narrow necks and can
introduce other types of defects, causing the crystals to melt
into a sponge (Fig. 4c). A sponge phase, which is still bicon-
tinuous but exhibits no long-range order, seems to have been
observed for surfactant bilayers34-36. This interpretation is still
somewhat controversial: an alternative model in terms of disk-
like membrane segments has also been proposed (C. A. Miller
et al., preprint, Univ. of Bayreuth).

Shape fluctuations of membranes
In general, low-dimensional objects such as interfaces, mem-
branes and polymers undergo thermally excited shape fluctu-
ations to increase their configurational entropy37. A membrane
is usually more flexible than an interface but less flexible than
a polymer. It has been realized recently that the character of its
shape fluctuations depends on the internal state of the mem-
brane, which can be fluid, polymerized or hexatic (see below).

The shape fluctuations of a lipid vesicle can be observed
directly under a light microscope. In this way, one can probe
fluctuations with wavelengths of the order of the vesicle radius.
It is important to realize, however, that these fluctuations involve
a large range of different length scales, from molecular
dimensions up to the membrane size, most of which cannot be
resolved by the microscope.

In the following, I will assume that there is essentially no
reservoir of amphiphilic molecules within the aqueous sol-
ution—in other words, that these molecules have all assembled
into bilayers. This should apply to lipids and double-chained
surfactants that have a very low critical micelle concentration.
One is thus led to study the shape fluctuations of random
surfaces that contain a fixed number of molecules.
Fluid membranes. Biological membranes are typically fluid38,
which means that the molecules can diffuse rapidly within the
membrane. This fluidity was first recognized in experimental
studies of lipid bilayers39. At sufficiently high temperatures,

these bilayers exhibit a fluid phase with a diffusion constant
(ref. 40).

The molecules within a fluid membrane possess no reference
lattice. In the absence of lateral tension, the shape of the mem-
brane is then governed by its bending rigidity, , and the shape
fluctuations represent bending modes. These modes lead to a
certain roughness: at temperature a membrane segment of
linear size forms spatially anisotropic humps of transverse
extension (ref. 41). On the other hand, if one
applies a lateral tension, , the membrane roughness is strongly
reduced and , where is a micro-
scopic length scale.

The shape fluctuations of tensionless fluid membranes rep-
resent a boundary case, because the overall gradient of the
humps, , does not decay for large . In fact, it follows
from the curvature model that the scaling behaviour

applies only for length scales that are small com-
pared with the so-called persistence length ,
where is a dimensionless coefficient42. Furthermore, as is
increased towards , the shape fluctuations reduce the bending
rigidity and lead to an effective rigidity
in the limit of small (refs 43, 44).

For phospholipid bilayers at room temperature, the per-
sistence length is usually much larger than the size of the
membranes, and the reduction of the bending rigidity by shape
fluctuations is negligible. An exceptionally small value for is
obtained for lecithin membranes containing a small amount of
bipolar ('bola') lipid, leading to (ref. 8). Such values
for may also apply to surfactant bilayers that form lamellar
and bicontinuous phases45-47.

In general, the membrane should have an effective bending
rigidity of the order of on length scales . It will then
undergo rather strong shape fluctuations. The character of these
fluctuations is, however, not understood. Real membranes can-
not self-intersect and this constraint of self-avoidance is difficult
to treat theoretically. Recently, fluid-like membranes with self-
avoidance have been investigated by computer simulation, but
so far no (bare) bending rigidity has been included48.

Three different possibilities can be envisaged for the large-
scale behaviour of fluid membranes. (1) The membrane could
become highly convoluted or crumpled: a membrane segment
of linear size forms spatially isotropic blobs of size

FIG. 3 Shape transformations of a vesicle interacting with a planar surface.
These transformations are induced by a change in area at constant volume.
The initial state is a sphere with area . The upper and the lower sequence
correspond to two different contact potentials.



FIG. 4 Bicontinuous structures of bilayers, a, Prolamellar body as present
in some organelles of plant cells26, b, Triply periodic minimal surface. The
mean curvature vanishes for each point of this surface. c, Sponge phase,
obtained by melting of the bilayer crystals shown in a and b.

with . A crumpled membrane represents the two-
dimensional analogue of a one-dimensional polymer
chain49,50,37. In fact, it has been speculated that crumpled fluid
membranes exhibit the same scaling properties as branched
polymers. This behaviour has been found for one-dimensional
ring polymers ('planar vesicles') in two dimensions when
deflated by an external pressure51. If two-dimensional fluid
membranes in three dimensions indeed exhibit the same scaling
behaviour as branched polymers, the crumpled blobs would
scale as with (ref. 37). (2) On the other hand, there
is no clear evidence so far that self-avoiding fluid membranes
governed by bending rigidity are indeed crumpled. Thus, it is
possible that self-avoidance prevents crumpling and acts to
stabilize the effective bending rigidity at the value (3)
If the membrane is allowed to undergo topological changes, it
could break up into smaller pieces (Fig. 4c). The energy required
to create a spherical vesicle of size is which might
be overcome by the translational entropy of the vesicle. Lecithin
bilayers containing bipolar lipids might show this behaviour, as
they have been seen to expel small vesicles on experimental
timescales.8

Polymerized membranes. Biological membranes often contain
two-dimensional protein networks, such as the spectrin network
which is part of the plasma membrane of red blood cells52. As
the timescales for breaking and reassembling the molecular
connections of these networks are usually large compared with
the timescales involved in the shape fluctuations70, the networks
can be regarded as 'fishnets' of fixed connectivity.

The mesh size of protein networks is typically large
(~100 nm). Polymerized membranes with a much smaller mesh
size can be obtained from bilayers of polymerizable lipids53,54.
Several types of lipids are now available that have two or more
polymerizable units per molecule, polymerization of which can
often be accomplished by irradiation of the bilayer with ultravio-
let light.

On length scales that are large relative to the mesh size of the
network, a polymerized membrane can be regarded as a thin
elastic sheet. The shape fluctuations of such a sheet consist of
both bending and stretching modes55,56. For a phantom mem-
brane with self-intersections, these shape fluctuations lead to a
crumpled state: a membrane segment of linear size forms
blobs of lateral extension , where is a micro-

scopic length scale. For zero bending rigidity, a crumpled state
exists for all non-zero temperatures50. For finite bending rigidity

, on the other hand, the phantom membrane undergoes
a crumpling transition at a critical temperature (Fig.
5)57-59. For , the bending rigidity is irrelevant and the
membrane behaves as though ; for , the bending
rigidity is relevant and the membrane exhibits a rough but
uncrumpled state.

The rough state of a polymerized membrane is again charac-
terized by anisotropic humps: a membrane segment of linear
size makes transverse excursions of size (ref. 60). In
contrast to fluid membranes with , the roughness exponent

now satisfies and the overall gradient of the hump,
, decays for large . Computer simulations of

FIG. 5 Crumpling transition of a polymerized membrane with self-inter-
sections, induced by a change in the reduced bending rigidity, For

and 0.25, the membrane is crumpled; for and 0.5,
the membrane is rough but not crumpled. The transition takes place at

. (Courtesy of Y. Kantor and D. R. Nelson.)



tethered networks gave an estimate (refs 61, 62).
More recently, Monte Carlo simulations of solid-like elastic
sheets revealed that , which is consistent with the
existence of a finite shear modulus for the membrane on large
scales63.

As mentioned, a real membrane cannot intersect itself. This
constraint of self-avoidance does not affect the rough state of
a membrane but acts to prevent its crumpling. Recent simula-
tions have shown that the tethered networks considered so far
are not crumpled at any finite temperature as a result of self-
avoidance64-66.
Crystalline and hexatic membranes. At low temperature or high
lateral pressure, monolayers and bilayers of surfactant or lipid
molecules exhibit solid-like phases with translational short-
range ordering of the molecules. One may often define two
different reference lattices: one for the hydrocarbon chains and
one for the polar head groups. The mismatch between these two
lattices is expected to lead to a high density of defects, such as
dislocations67.

Another mechanism for the proliferation of dislocations is
provided by buckling56. For a flat membrane, a single dislocation
has a stretching energy that diverges logarithmically with the
membrane size. This energy can be reduced by buckling. Recent
calculations indicate that, for a buckled membrane, the energy
of such a dislocation might be finite68. Dislocations would then
be thermally activated and thus would melt the crystalline phase
at any finite temperature. This could lead to a normal fluid
phase, or alternatively to a hexatic phase—a kind of anisotropic
fluid56.

Theoretically, a hexatic membrane with self-intersections is
found to exist at sufficiently low temperatures, characterized by
a finite bending rigidity, , on large scales69. Such a membrane
is less crumpled than a tethered membrane (with self-intersec-
tions). Therefore, hexatic membranes with self-avoidance are
presumably not crumpled; their shape fluctuations should then
be characterized by the roughness exponent (ref. 60).
Plasma membrane of red blood cells. On the molecular level,
biological membranes are rather complex52. One such structure
that has been studied extensively is the plasma membrane of
red blood cells70. This consists of two coupled membranes: a
fluid bilayer which contains a mixture of many lipids and pro-
teins, and a two-dimensional network of fibrous spectrin
molecules which represents a polymerized membrane (on
sufficiently short timescales) with a mesh size of
This network has a small but finite shear modulus,

(refs 71, 72).
The flickering of red blood cells has been studied experi-

mentally for a long time41,73. From the theoretical point of view,
these fluctuations should exhibit a characteristic crossover from
fluid-like behaviour with on small scales to solid-like
behaviour with on large scales63. This crossover should

occur on a scale that is comparable to the mesh size of the
spectrin network.

Adhesion and renormalized interactions
Adhesion of membranes plays an essential part in many biologi-
cal and biophysical phenomena52. The formation of tissue, for
example, is based on the mutual adhesion of cell membranes
or on the adhesion of these membranes to a network of
macromolecules. On a somewhat smaller scale, many transport
processes involve the binding and unbinding of vesicles to and
from the membrane surfaces of cells and organelles. This latter
process can be used for the delivery of drugs to specific cell
types. The construction of biosensors is often based on the
binding of membranes to solid surfaces.

The shape of large adhering vesicles can be observed through
a light microscope (Figs 2 and 3). Within the contact region
between the vesicle and the substrate, the two surfaces are, on
average, parallel and separated by a small gap containing water.
They then experience a variety of direct interactions arising from
the intermolecular forces.
Direct interaction of membranes. Consider two lipid bilayers in
water that carry no electric charge, and that have no
macromolecules attached to them. Their direct interaction con-
sists of two parts: (1) a strong short-ranged repulsion usually
called the hydration interaction74—the molecular mechanism
underlying this interaction is still controversial75 but its repulsive
and short-ranged character is well established; and (2) a longer-
ranged van der Waals attraction resulting from the
polarizabilities of the water and lipid molecules76.

The hydration and van der Waals interactions are 'non-
specific'—they are always present for amphiphilic membranes
in aqueous solution. In general, the direct interaction includes
additional non-specific interactions arising, for example, from
electric charges, and 'specific' interactions mediated by biologi-
cally relevant macromolecules.
Experiments on membrane interactions. The direct interaction
between two membranes can be determined experimentally
when these membranes are immobilized on molecularly smooth
mica surfaces77. The force between two such surfaces can be
measured accurately as a function of the surface separation.

The interaction between membranes can also be studied in
swelling or dilution experiments of lamellar phases consisting
of a stack of membranes. For phospholipid bilayers, the inter-
membrane spacing has been measured as a function of the
external pressure, which can be varied over several orders of
magnitude78. Typical experimental data resemble the results of
Monte Carlo simulations, which are shown in Fig. 6. Swelling
experiments have also been performed for stacks of surfactant
bilayers46,47. The interaction measured in these swelling experi-
ments, however, represents a renormalized interaction which
includes the effect of thermally excited shape fluctuations.

FIG. 6 Monte Carlo simulations of the separation of two interacting fluid
membranes as a function of external pressure. The three curves on the
right (Hamaker constants , and ) are for room tem-
perature; the three curves on the left represent the behaviour in the absence
of shape fluctuations. The difference between these two sets of curves
shows the strong renormalization of the direct interaction by shape fluctu-
ations. ,  ; ,  ;  ,         .



Unbinding and adhesion transitions. Thermal shape fluctuations
renormalize the direct interaction, increasing its repulsive
part79,80,37 (see Box B). The renormalized interaction may be
attractive or repulsive at large membrane separation, corre-
sponding to a bound or an unbound state of the membranes.
These two different states are separated by a phase boundary
at which the membranes undergo an unbinding or adhesion
transition80.

Unbinding transitions were first found theoretically by func-
tional renormalization-group (RG) methods. The RG results
imply that two lipid bilayers interacting with realistic inter-
membrane forces undergo such a transition at a critical unbind-
ing temperature (ref. 80). In addition, the RG calculation
predicts that these unbinding transitions are continuous and
characterized by universal critical exponents60,80-83. For
example, the mean separation, , of the membrane from the
other surface grows continuously as as the
unbinding temperature is approached from below. The critical
exponent is universal in the sense that it is independent of
the parameters of the direct interaction, and has the exact value

for fluid membranes, and the value for poly-
merized membranes60. Similar transitions also occur when a
crumpled membrane is adsorbed onto another surface84.

Consider two (or several) membranes that are subject to an
external pressure and thus have a finite separation . The
presence of an unbinding transition can then be deduced from
the behaviour of in the limit of vanishing pressure80,85: for

and , the membranes attain a finite and an infinite
separation, respectively, as the pressure is decreased to zero.
This unbinding transition is in many ways analogous to the
wetting transition studied extensively in gas-liquid-surface
equilibria37.

FIG. 7 Unbinding or adhesion transition as observed experimentally for a
bunch of lipid bilayers in aqueous solution, a, For , the membranes
undulate very strongly, appearing as thick fuzzy lines. b, For
the membranes form a bound state, corresponding to the sharp dark line.
The water between the membranes has been squeezed into the large water
pocket. The bars represent . (Courtesy of W. Helfrich.)

For fluid membranes, the existence of unbinding transitions
has been confirmed by recent Monte Carlo simulations17,86. The
results shown in Fig. 6 were obtained for two membranes with
bending rigidities that experience realistic
hydration and van der Waals interactions and are subject to an
external pressure. The different values of the Hamaker constant

in Fig. 6 determine the strength of the van der Waals interac-
tion. Extrapolation of the room-temperature data gives the
critical value : for , the shape fluctu-
ations overcome the van der Waals attraction and the membranes
unbind in the limit of zero pressure. Similar results have been
obtained for the unbinding transition of solid-like elastic sheets63

and tethered networks (F. F. Abraham and M. Kardar, preprint,
MIT).

Unbinding and adhesion transitions of fluid membranes have
also been found in recent experiments with sugar-lipid mem-

Box B. FLUCTUATION INDUCED REPULSION AND
RENORMALIZED INTERACTIONS

Consider a fluctuating membrane that adheres to another surface. The
entropy of such a bound membrane is reduced by the presence of the
second surface. All shape fluctuations of the free membrane that
exceed a certain wavelength are inaccessible to the bound mem-
brane. The difference, , between the entropies of the bound
and the free state can be estimated by the difference in the number
of accessible modes90. For a two-dimensional object, the latter
difference scales as for large size, of the membrane.
The excess free energy per unit area arising from the confinement of
the shape fluctuations is then given by

(B.1)

which represents a fluctuation-induced repulsion acting between the
surfaces.

For a rough membrane, the scale invariance of the shape fluctuations
is characterized by with roughness exponent . depends
on temperature and on the elastic moduli. If the membrane is bound
to another surface at separation this scale invariance holds only up
to and with . It then follows from (B.1)
that the fluctuation-induced repulsion is given by37 . For
fluid membranes with and , such a repulsive interac-
tion was first predicted by Helfrich79.

Some information about the renormalization of the direct interaction
can be obtained from a simple superposition of and . To

study the properties of unbinding or adhesion transitions, however,
one has to use a more systematic theoretical approach which is
provided by renormalization-group (RG) methods.

Roughly speaking, the direct interaction represents the interac-
tion between two surface segments of linear size a, the smallest
wavelength available to the shape fluctuations. Within the RG approach,
one then calculates the effective interaction, , between two
segments of linear size with . This interaction
contains all fluctuations of wavelength with . As is
increased, one successively includes more shape fluctuations and thus
obtains the effective interaction on increasingly larger scales.

The first RG method to be used to calculate the renormalized
interaction80 was an extension of Wilson's approximate recursion
relation91 and was applied previously to wetting phenomena37,92. This
RG scheme leads to the differential flow equation

(B.2)

for the renormalized interaction , where the scale factors and
depend on the temperature and on the microscopic scale This

RG transformation has a line of fixed points, , characterized by
(refs 60, 81-83). The RG flow in the vicinity of these fixed

points then determines the critical behaviour at the unbinding transi-
tions—providing, for example, the critical exponent for the mean
separation

The above theory does not include any hydrodynamical effects. The
fluctuating membrane is, however, coupled to overdamped surface
waves in the aqueous medium41,93,94. The amplitude of these waves
decays as with distance from the membrane. This is a
long-ranged effect which should lead to and thus, according
to (B,1), to an effective repulsion between the surfaces.



branes87, in which bunches of membranes were observed by
light microscopy (Fig. 7). Above a characteristic unbinding
temperature, , these membranes are unbound and exhibit
strong undulations, appearing as thick fuzzy lines in Fig. 7a. As
the sample is cooled below , the membranes suddenly form
a bound state, visible in Fig. 7b as the sharp dark line. Adhesion
of the membranes drives the water between them into compact
pockets. A similar transition may have been observed in experi-
ments on phospholipid bilayers, in which the swelling behaviour
was studied for different levels of salinity88.

For , adhesion of membranes can be induced by a
lateral tension, , which acts to suppress the shape fluctuations.
Such a tension-induced adhesion has been observed for fluid
lecithin membranes89. In the limit of small , the membrane
separation grows as which represents a superuni-
versal scaling law, as it holds for fluid, polymerized and hexatic
membranes17.

Summary and outlook
The conformational behaviour of membranes continues to pro-
vide many challenging problems for future research. In the
context of vesicle shapes, one poorly understood phenomenon
is 'blebbing'—the formation of a long necklace of small vesicles
which is expelled from a larger one (refs 4, 95; L. Miao et al.,
preprint, Simon Fraser Univ.). As far as shape fluctuations are
concerned, there is still no clear understanding of the large-scale
behaviour of fluid membranes, which may remain uncrumpled
as a result of self-avoidance. Likewise, it remains to be seen

whether a realistic model membrane can be found that under-
goes a crumpling transition. Experimentally, it is important to
probe the whole range of length scales involved in these fluctu-
ations. Some very promising tools are X-ray and neutron scatter-
ing. These methods should also be useful for systematic studies
of unbinding and adhesion transitions.

In a more general context, another set of puzzles is provided
by the very dynamic features of the membrane surfaces of
biological cells and organelles. These membranes continuously
form and expel small vesicles towards the exterior and the
interior of the various compartments52. These processes, called
respectively budding and endocytosis, look rather similar to the
shape transformations of lipid vesicles shown in Fig. 1. Even
though budding and endocytosis of biomembranes are typically
induced by local changes in the membrane structure, these
processes will still fit into the conceptual framework described
here if they do not depend crucially on the release of metabolic
energy. On the other hand, some form of metabolic energy is
certainly involved in the heavy traffic of vesicles which shuttle
between different compartments of the cell.

Finally, membranes must have played a crucial role in the
origin of life. One may postulate that cellular life began with a
vesicle containing just the right mixture of polymers. But where
did the amphiphilic molecules that formed the first vesicle come
from?
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